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Design of fragile topological flat bands in an optical microcavity array
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Topological flat bands are increasingly recognized as an important paradigm to study the effects of quantum
geometry and topology in strongly correlated systems. The recently discovered theory of fragile topology
offers an alternative approach toward the understanding and realization of topological phases of matter. In
Bosonic systems, though fragile topological phases have been experimentally realized, specific proposals of
the experimental platform of topological flat bands have not been reported much. In this work, we introduce
a photonic lattice obtained from coupled Kagome and triangular lattices designed based on the topological
quantum chemistry theory, which supports topologically nontrivial flat bands. We further discuss the potential
experimental realization in a microcavity array, as a platform that can be extended into the interacting regime
through the formation of exciton-polaritons via coupling the optical modes to excitons. Notably, we show that the
inevitable in-plane polarization splitting in optical microcavities will not hinder the construction of topological
quasiflat bands. This work paves the way toward the experimental exploration of nontrivial topology in Bosonic
flat bands, offering potential channels for its direct observation.
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I. INTRODUCTION

Dispersionless bands, i.e., flat bands, are commonly rec-
ognized as one of the key paradigms to study physical
phenomena based on strong correlation and interactions due
to the dominance of interaction energy U over the quenched
kinetic energy. Additionally, nontrivial topology can be in-
tegrated with flat bands and thus induce novel phenomena,
of which one significant example is topological flat bands
(TFBs) superconductivity [1–7]. The significance of TFBs in
superconductivity is supported by their connection to quantum
metrics and contribution to superfluid weight or stiffness,
which is not accessible in a trivial flat band. The nontriv-
ial term in the superfluid weight was initially discussed in
Chern flat bands [1], and has later been extended to flat bands
with fragile topology [3]. Fragile topology is a topological
phase that exhibits obstruction to constructing exponentially
localized, symmetric Wannier functions (in short “‘Wan-
nier obstruction”), yet can be trivialized by the addition of
appropriate trivial bands [8]. Wannier obstruction can be
characterized by symmetry-based approaches [9–11]. Among
these approaches, the topological quantum chemistry (TQC)
theory offers a generalized, efficient approach to characterize
and design topological bands [10–12] based on symmetry
representations [13–15], of which the minimal building blocks
are atomic limit bands, termed elementary band representa-
tions (EBRs).

Although in Fermionic systems, many theoretical and
experimental attempts have been made to study TFB super-
conductivity, the extension of TFBs to Bosonic systems is less

*These authors contributed equally to this work.
†Contact author: riteshag@seas.upenn.edu

explored. The study of the integration of topological nontriv-
iality with flat band physics is still in a relatively early stage,
especially in the Bosonic context [16] in spite of pioneering
theoretical works [17,18] focusing on the excitation spectra
of Bose-Einstein condensation (BEC) in trivial flat bands. It
is intuitively expected that the topological nontriviality may
induce novel phenomena in interacting Bosonic systems [19].

A following important question is, how can one design an
experimentally accessible Bosonic lattice system with TFBs
as the platform to further study TFBs in interacting Bosonic
systems? To realize flat bands with nonzero Chern numbers
generally entails complex coupling arrangements [20–23],
strong magnetic field, and cryogenic temperature. Since the
time-reversal symmetry of bosons is fundamentally distinct
from that of Fermions, the topological Z2 insulator is also not
accessible. Consequently, TFBs designed based on specific
crystalline symmetry naturally emerge as a viable option.
Though some earlier reports have realized Bosonic fragile
topological systems [24–26], studies related to realizing TFBs
and the properties emerging from the interplay of quantum
geometry and strong interactions have not been reported.
Here, we propose an optical microcavity array that supports
fragile TFBs based on the TQC theory, as an initial step to
extend the study of TFBs to Bosonic systems, particularly
compatible with many-body interactions. The main text is or-
ganized as follows: the general strategy of constructing fragile
TFBs is reviewed and introduced based on the disconnected
decomposable EBRs [12,27] via an explicit example of an
s-orbital Hamiltonian. Next, the Hamiltonian is re-constructed
with linearly polarized modes, as the electromagnetic propo-
sition of the s-orbital model, where the physical consequence
of in-plane polarization splitting is addressed. We demonstrate
that the change in site symmetry and band representations will
not destroy the topological properties of the flat bands. Lastly,
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FIG. 1. (a) Wyckoff positions 1a (red dots at unit-cell centers)
and 3c (blue dots at edge centers) in the space group p6mm.1′,
with site symmetry of point group (PG) 6mm and mm2, forming
a triangular and Kagome lattice, respectively. (b) High symmetry
points in the first Brillouin zone �, K, and M. Two reciprocal vectors
are noted as G1 and G2.

we discuss the potential experimental realization of fragile
TFBs in an optical microcavity array with detailed numerical
simulations.

II. PRINCIPLE OF CONSTRUCTION OF FRAGILE TFBs

It has been realized from the previous work [24,28] that
photonic crystals constructed based on the 3c Wyckoff posi-
tion of the space group p6mm.1′ [Fig. 1(a)] can potentially
support the topological phase if the corresponding EBR is
appropriately disconnected. In this case, at least one of the
disconnected band representations is necessarily topologically
nontrivial [8,12]. A specific case is when one of the two
disconnected band representations is an EBR, then the other
one exhibits fragile topology [8]. In the p6mm.1′ case, with
s-orbital states at 3c (point group mm2) Wyckoff positions
represented by the irreducible representation (irrep) A1 (see
the Supplemental Material for detailed descriptions [29]), the
corresponding EBR can be written as

(A1 ↑ G)3c = {�1 ⊕ �5, K1 ⊕ K3, M1 ⊕ M3 ⊕ M4}
= {�1, K1, M1} ⊕ {�5, K3, M3 ⊕ M4}, (1)

where �, K, and M are high symmetry momenta marked
in Fig. 1(b). Notice that {�1, K1, M1} is an EBR and can
be induced from s-orbital states at the 1a site (point group
6mm), represented by A1. Hence, according to the previous
deduction, the remaining two bands {�5, K3, M3 ⊕ M4} are
a set of fragile topological bands. In this Kagome lattice,
(A1 ↑ G)1a can be constructed as the synthetic s-orbital state
formed by the equal-phase superposition of s-orbital states at
3c sites. Naturally, we can introduce another s-orbital state
at the 1a site, corresponding to a triangular lattice [red sites
in Fig. 1(a)], to only couple with the quasi-s-orbital state.
This coupling setting can be realized by introducing identical
real couplings only between 1a and the nearest neighboring
3c sites [solid arrows in Fig. 2(a)], preserving C6 symmetry.
If all couplings are originally set to zero, the lattice is at
its atomic limit, forming four (1 + 3) degenerate flat bands.
After introducing these couplings between 1a and 3c sites, two
complete band gaps will be formed across the entire BZ, and
the residual two bands will stay degenerate and flat with the
representation

{A1 ↑ G}3c � {A1 ↑ G}1a = {�5, K3, M3 ⊕ M4}. (2)

FIG. 2. Tight binding model of s-orbital states in A1 represen-
tation. (a) Schematic of the lattice, where t measures the coupling
between 1a and 3c sites (solid arrows), and tK for the Kagome
lattice couplings (dashed arrows). (b) Calculated band diagram with
t = −1.0, tK = 0 (red) and tK = −0.3 (gray). Note that Kagome
coupling renders the central two bands dispersive and nondegenerate.
(c) Calculated Wilson loop spectra correspond to tK = 0 (red) and
tK = −0.3 (gray), both showing a winding feature.

Consequently, we construct two fragile topological flat bands
based on the simple couplings between two lattices.

Subsequently, we explicitly write down the Hamiltonian.
With two distinct on-site energies at 1a and 3c sites and the
couplings among 3c (Kagome) sites included, the total tight-
binding Hamiltonian as the sum of three parts is

H = 2t
3∑

i=1

[a†
1aa3c,i cos(ki ) + H.c.], H0 = Ua†

1aa1a,

HK = 2tK
∑

{i, j}
[a†

3c,ia3c, j cos(ki + k j ) + H.c.]. (3)

Here, a1a,3c are annihilation operators of orbital states of
corresponding Wyckoff positions. H is the Hamiltonian that
captures the core idea of the construction of fragile TFBs that
orbitals at the 1a site couple with orbitals at 3c sites with a real
and constant coupling strength t . H0 and HK address the effect
of distinct onsite energy U at 1a sites and Kagome coupling
between 3c and 3c sites given by tK . In H and HK , ki = k ·
di, where d1 = a[−1/2,

√
3/2], d2 = a[−1/2,−√

3/2], and
d3 = a[1, 0], and a is the distance between nearest neigh-
boring sites [Fig. 1(a)]. H.c. corresponds to the Hermitian
conjugate. Index pairs {i, j} = {1, 2}, {1, 3}, {2, 3} describe
the nearest neighboring coupling between 3c sites.

The most simplified, ideal case is with U = 0 and tK = 0,
of which we only need to discuss H. The corresponding band
diagram is shown in red in Fig. 2(b), where two degener-
ate perfectly flat bands at zero energy can be observed. The
physical picture is also nicely presented in the molecular-
orbital (MO) representations: H = 2t (M†

1 M2 + H.c.), where
the two molecular orbital operators are defined as M1 = a1a

and M2 = ∑3
i=1 a3c,i cos(ki ) [33,34]. The molecular orbital

M2 here equivalently describes the synthetic s-orbital state.
MO representation additionally elucidates that the rank of
the Hamiltonian is two with four s-orbital states originally
involved, determining the perfect degenerate band flatness.
Also, H0 = Ua†

1aa1a = UM†
1 M1 implies that the difference

of on-site energy at 1a and 3c sites will not affect the band
flatness. With a nonzero tK , the central two bands are not
strictly flat and degenerate [see gray bands in Fig. 2(b) with
tK = −0.3]. However, the nontrivial fragile topology is pre-
served as long as the band representation of the central two
bands is not altered by finite tK . The bands will be connected
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at t = tK and as long as the magnitude of tK is smaller than
t, the current band representations [Eq. (2)] are valid. An-
other indicator of the topological nontriviality is the winding
Wilson loop spectrum [35,36]. The geometry of the Wilson
loop calculation is denoted in Fig. 1(b), where the closed loop
is along the reciprocal lattice vector G1 and the spectra are
plotted as the loop moves along G2 following the �-M-�
path. The spectrum of the calculated Wilson loop indicates
a winding feature providing direct evidence that the central
two bands of the proposed system are Wannier obstructed and
hence topologically nontrivial [red in Fig. 2(c)]. Another cal-
culated Wilson loop spectrum corresponds to the tK = −0.3
case shown in Fig. 2(b), confirming that weak Kagome cou-
pling preserving the band representations will not trivialize
the central two bands [gray in Fig. 2(c)].

III. TIGHT-BINDING MODEL
OF ELECTROMAGNETIC MODES

In order to explore the physical consequence of the
topological nontriviality in a Bosonic system beyond the
single particle picture, we specifically consider the electro-
magnetic (EM) realization in an optical microcavity array
due to its compatibility to interacting Bosonic systems such
as exciton-polaritons. Optical microcavities can also enable
direct observation across both real and momentum space,
including dispersion, excitation spectra, and phase coherence
[37–40].

We first construct the model with two degenerate circularly
polarized eigenmodes. Without any polarization splitting,
these two eigenmodes will act similarly as two copies of s-
orbital Hamiltonians previously introduced. It should be noted
that the mirror operation will then inverse the polarization
mutually and C2 may add a π phase to the circularly po-
larized modes. Due to the finite longitudinal-transverse (LT)
polarization splitting [41], originating from distinct boundary
conditions for TE and TM modes in Maxwell equations, the
degeneracy of these two copies of Hamiltonians is removed if
not protected by symmetry. The site symmetry at 1a Wyckoff
positions remains PG 6mm1′ and we choose the irrep to be E1

since there is no symmetry breaking that breaks the degener-
acy of two circularly polarized modes. The site-symmetry PG
mm21′ at 3c Wyckoff positions supports two independent and
orthogonal linearly polarized states: one is parallel to edges
of the unit cell and the other one is normal to edges, noted
as azimuthal (A) and radial (R) modes and corresponding to
B1 and B2 representations, respectively (see the Supplemen-
tal Material for a more detailed description of irreps [29]).
Azimuthal and radial modes are represented in p-orbital-like
features in Fig. 3(a), color coded in blue and red, respec-
tively, to illustrate how they are aligned. We emphasize that
no modes corresponding to higher orbital angular momentum
numbers are involved in the current model.

The new induced band representations accounting for
eigenmodes corresponding to different polarizations can be
written as

(E1 ↑ G)1a = {�6, K3, M3 ⊕ M4},
(B1 ↑ G)3c = {�3 ⊕ �6, K1 ⊕ K3, M1 ⊕ M2 ⊕ M3}, (4)

(B2 ↑ G)3c = {�4 ⊕ �6, K2 ⊕ K3, M1 ⊕ M2 ⊕ M4}.

FIG. 3. Tight binding model of the EM-field realization of TFBs
in E1, B1, and B2 irreps. (a) Schematic of the lattice, tT stands
for the transverse coupling to the azimuthal modes (blue) and tL

stands for the longitudinal coupling to the radial modes (red). tK,A

stands for the couplings between the azimuthal modes at 3c Kagome
sites, and tK,R stands for the Kagome couplings between radial
modes. (b) Calculated band diagram with tL = −1.2, tT = −1, UA =
−0.4, UR = 0.4, and U1a = 0 with vanished Kagome couplings. Two
flat bands can be noticed near zero at UA and UR. (c) Corresponding
Wilson loop of the central four bands, where four branches can be
observed, and both sets exhibit a winding feature.

Similarly, we obtain the expected fragile topological band
representation

(B1 ↑ G)3c ⊕ (B2 ↑ G)3c � (E1 ↑ G)1a

= {�3 ⊕ �4 ⊕ �6, K1 ⊕ K2 ⊕ K3, 2(M1 ⊕ M2)}, (5)

which is not an EBR. Note that in Eq. (5), the C2 symme-
try eigenvalues of corepresentations at �, namely, �3,4,6, are
−1 and those of corepresentations M1,2 are +1, respectively.
This specific combination of symmetry eigenvalues cannot
be found in any EBR in the p6mm.1′ group, which confirms
the topological nature of the bands. The main parameters in
the corresponding Hamiltonian include on-site energy of two
degenerate modes at the 1a site U1a and on-site energy of
azimuthal and radial modes at 3c sites UA and UR, respec-
tively; The coupling between azimuthal and radial modes to
1a modes are noted as tT and tL, respectively. To account for
the effect of Kagome couplings between 3c sites, we also
introduce the Kagome couplings between azimuthal modes
and radial modes to be tK,A and tK,R, respectively. Detailed
Hamiltonian representing the EM field case is discussed in
the Supplemental Material [29].

The band diagram calculated from this EM tight-binding
model is shown in Fig. 3(b), with tL = −1.2, tT = −1,
UA = −0.4, and UR = 0.4. We intentionally defined tT �= tL
and UA �= UR so that the central four bands are not com-
pletely degenerate. In this case, two upper bands, four central
bands, and two lower bands correspond to band representa-
tions (E1 ↑ G)1a, (B1 ↑ G)3c ⊕ (B2 ↑ G)3c � (E1 ↑ G)1a, and
(E1 ↑ G)1a, respectively, as designed [Eq. (5)]. With zero
Kagome coupling in the model, two perfectly flat bands can be
observed in Fig. 3(b). The corresponding Wilson loop of the
central four bands is demonstrated in Fig. 3(c), indicating two
sets of winding branches in the Wilson spectra, degenerate at
0 and ±π points.

IV. ELECTROMAGNETIC NUMERICAL SIMULATIONS

To further examine the experimental accessibility and eval-
uate the performance of our theoretical model, we carried out
3D numerical simulations of the eigenfrequency spectrum of
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FIG. 4. (a) Schematic of the planar cavity lattice structure in
numerical simulations. The cavity region corresponding to high re-
fractive index are shaded. Cylindrical resonators at 1a and 3c sites
are connected by links, while resonators at 3c sites are mutually sep-
arated. (b) Numerically simulated band diagram (marked in red cir-
cles) and tight binding fitting (plotted in blue lines). Complete gaps
can be observed between central four bands and the other two sets
of bands. A base energy of 1257 meV has been subtracted from the
spectrum. (c) Parameter phase diagram predicted by the tight binding
model, where we define the tT = −0.38, tL = −0.68, tK,A = −0.02,
tK,R = 0.1, and scan �U3c and U1a. The central white regime corre-
sponds to the fragile topological phase of the lattice. The parameter
set in (a) falls into the topological phase after scaling, marked as a
red circle.

a planar microcavity system consisting of etched microres-
onators, functioning as synthetic atoms in the lattice, similar
to Refs. [41–43].

To map the proposed electromagnetic tight-binding model
to this structure, we intentionally introduce an extended spac-
ing to reduce (ideally to vanish) the overlapping of EM fields
between each circular resonator, and subsequently only con-
nect resonators at 1a and 3c sites to locally enhance couplings
between them via links to increase the coupling contrast
[Fig. 4(a)]. These links will consequently change the shape of
resonators at 3c Wyckoff positions, hence inevitably affect-
ing the on-site energy of azimuthal and radial modes. The
elliptical aspect ratio of the resonators at 3c sites is tuned
accordingly, whereas the shape of resonators at 1a Wyckoff
positions are not changed since links connected to the 1a
site will not break the degeneracy of two circularly polarized
modes. The elliptical design does not break any crystalline
symmetry of the space group and therefore the band repre-
sentations previously introduced are still valid. The detailed
geometric parameters and setup of numerical simulations are
discussed in the Supplemental Material [29].

We numerically calculated the eigenfrequency spectrum of
the structure and it was then fitted based on the tight bind-
ing model discussed in the previous section [red circles and
blue lines in Fig. 4(b), respectively]. The fitting parameters
for the numerical simulation results are tL = −0.267 meV,
tT = −0.149 meV, tK,A = −0.008 meV, tK,R = 0.039 meV,
UA = 0.118 meV, UR = 0.0 meV, and U1a = 0.0 meV. Note
that fitting parameters are now assigned with units to capture
the actual energy scale in practice. In the current results,
band representations and degeneracies are correctly captured.
The numerical results indeed agree with the electromagnetic
tight-binding model [Fig. 4(b)]. Four eigenmodes at the M
point exhibit C2 eigenvalues +1, which captures the main fea-
ture of topological nontriviality [29]. We note that the direct
imaging of symmetry representations at high-symmetry

points, together with the imaging of spectral flow at inter-
face states of twisted boundary conditions, are two possible
approaches to experimentally examine the topological non-
triviality in these systems [25,44]. The upper band of the
central four bands show flatness of ∼1/10 of the gap width
near K and M points.

We further illustrate the calculated fragile topological
phase diagram based on the tight-binding model in the pa-
rameter space [Fig. 4(c)], which can be helpful for further
optimization of the structural design of a TFB microcavity ar-
ray. Based on the fitting parameters of the simulation results in
Fig. 4(a), we set tT = −0.38, tL = −0.68, with finite Kagome
coupling tK,A = −0.02, tK,R = 0.1, UR = 0, and scanning
�U3c = UA − UR and U1a from −2 to 2. The topological
phase is numerically characterized by two features: (1) the
presence of two complete gaps between the central four bands
with the upper and lower two bands; and (2) C2 eigenvalues at
the M point of the central four bands are +1. The central re-
gion in Fig. 4(c) corresponds to the fragile topological phase,
confirming our intuitive conjecture that a suppressed �U3c

and U1a will be beneficial for realizing fragile topological
phases. Lastly, we discuss possible experimental realizations
of our proposed designs. As we deduce from our previous
calculation [Fig. 3(b)], the Kagome coupling is the most
significant ingredient for enhanced band flatness. However,
due to the non-negligible overlapping of electromagnetic
modes in the microcavity array, it is challenging to selectively
turn off the Kagome couplings. Additionally, for microcavity
structures, the design of the reflectors directly affects the
linewidth of the photonic bands, characterized by quality (Q-)
factor. Consequently, in future study, the computer-assisted
inverse design may be applied to further optimize the struc-
ture for lower Kagome couplings and enhanced Q-factor.
In addition, for the condensation condition, we note that
previous works have demonstrated that by controlling the
excitation pattern, Bosonic condensation in higher bands is
possible [38,45].

V. CONCLUSION

In summary, we exploited the TQC theory to design a sim-
ple photonic lattice with fragile topological quasiflat bands,
completely isolated from other trivial bands, manifesting its
Wannier obstructed properties. We further proposed a mi-
crocavity array realization, where LT polarization splitting is
taken into consideration, to host fragile quasiflat topological
bands. A tight binding description and numerical simulations
of the proposed microcavity system together demonstrate the
validity of this topological lattice and can estimate the para-
metric requirement for future optimization and applications.
Our designs are compatible with coupling the photonic cavity
to excitonic materials to enable new experimental observa-
tions of the effect of quantum geometry and topology on
polariton condensates [19,46].
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