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We theoretically study the inverse Faraday effect (IFE), i.e., photoinduced magnetization, in two-dimensional
Rashba spin-orbit-coupled electron systems irradiated by a circularly polarized light. The quantum master
(Gorini-Kossakowski-Sudarshan-Lindblad) equation enables us to accurately compute the laser-driven dynam-
ics, taking inevitable dissipation effects into account. To find the universal features of laser-driven magnetization
and its dynamics, we comprehensively investigate (i) the nonequilibrium steady state (NESS) driven by a
continuous wave and (ii) ultrafast spin dynamics driven by short laser pulses. In the NESS case (i), the
laser-induced magnetization and its dependence of several parameters (laser frequency, laser field strength,
temperature, dissipation strength, etc.) are shown to be in good agreement with the predictions from Floquet
theory for dissipative systems in the high-frequency regime. In the case (ii), we focus on ferromagnetic metal
states by introducing an effective magnetic field to the Rashba model as the mean field of electron-electron
interaction. We find that a precession of the magnetic moment occurs due to the pulse-driven instantaneous
magnetic field and the initial phase of the precession is controlled by changing the sign of light polarization.
This is well consistent with the spin dynamics observed in experiments of laser-pulse-driven IFE. We discuss
how the pulse-driven dynamics are captured by the Floquet theory. Our results provide a microscopic method to
compute ultrafast dynamics in many-electron systems irradiated by intense light.
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I. INTRODUCTION

Tuning various physical properties with a time-periodic
field is called Floquet engineering (FE). If we focus on the
laser-driven systems in solids, in the practical sense, FE
means controlling static or low-frequency properties of sys-
tems by applying a higher-frequency laser field [1–4]. The
FE is based on the Floquet theorem for differential equa-
tions. Applications of Floquet theorem have a long history
[5,6] since the 19th century, while in the last decade, the
concept and techniques of FE have widely penetrated in
the fields of condensed-matter and statistical physics. From
the experimental viewpoint, the development of laser science
has stimulated studies of FE because FE is a typical nonpertur-
bative (nonresonant) effect of the external oscillating field and
hence laser or intense electromagnetic waves are very helpful
to realize FE.

Inverse Faraday effect (IFE) has long been explored in the
magneto-optics field [7], while it could be viewed as one of
the most typical FEs in solids from the modern perspective
of condensed-matter physics. The IFE refers to the laser-
driven nonequilibrium phenomenon that a magnetization or
an effective magnetic field emerges when we apply a circu-
larly polarized light to magnetic materials. This could also
be regarded as an ultrafast angular momentum transfer from

*Contact author: 22nm025r@vc.ibaraki.ac.jp
†Contact author: sato.phys@chiba-u.jp

photons to electron spins in solids. The IFE has been predicted
in the mid 20th century [8–10], and the basic mechanism of
IFE in solid electron systems was first revealed by the theo-
retical work of Ref. [9]. Nowadays, IFE has been observed in
various magnetic materials [11–15] and even low-frequency
laser- (THz-laser-) driven IFEs in magnetic insulators (spin
systems) has been also studied from the microscopic view-
point [16–19].

Previous studies [9,20–22] tell us that a spin-orbit (SO)
interaction is essential and necessary for the emergence of
laser-driven magnetic field (or magnetization) in solids. In
solid electron systems, the necessity is naturally understood
because if the AC electric field of laser is assumed to be the
main driving force of IFE, the field cannot directly couple to
electron spin degrees of freedom and the SO interaction is
the unique term connecting the laser field with the spins in
the Hamiltonian. It is proved that an SO coupling (and the
resulting magnetic anisotropies) is also necessary in the IFE
of spin systems [16–19].

Although (as we mentioned above) the IFE has long
been investigated [9,20–27], its theories starting from many-
electron quantum models have not been well developed. In
particular, the analyses based on the perspective of FE have
less progressed. The purpose of this study is to develop such
a microscopic theory, taking dissipation effects into account.
We focus on two-dimensional (2D) square-lattice Rashba SO
coupled electron models irradiated by circularly polarized
light [21] as a simple but realistic stage of IFE. To extract
essential or universal features of IFE, we will concentrate
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on two different setups in the laser-driven electron system.
The first setup is the laser-driven nonequilibrium steady states
(NESSs), which are realized by waiting for a long enough
time from the beginning of laser application. The second is
the ultrafast spin dynamics when the system is irradiated by
a short laser pulse. In particular, we will focus on the laser-
pulse-driven spin precession, which has been often observed
in experiments [12,14,15].

One should note that dissipation effects, i.e., effects of
a weak interaction between the electron system and a large
environment is very important and inevitable to consider both
setups. In fact, the quantum state of the system is expected
to approach to a NESS due to the balance between the energy
injection by laser and the energy loss by dissipation. Inversely,
if we continuously apply a laser to an isolated system in solids,
it is usually burnt [28–31]. Furthermore, if we ignore the dissi-
pation effect, the energy given by a laser pulse always remains
in the electron system and it would yield nonrealistic spin
dynamics, e.g., a long-time spin oscillation with no relaxation.
We stress that the laser-driven NESS can only be reached by
considering the dissipation effect.

To take such dissipation effects into account, we will utilize
the approach of the quantum master [Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL)] equation [32–35]. So far, many
theories for FE have been developed under the assumption
that the target system is approximated by an isolated quantum
system. On the other hand, some theoretical methods for FE in
dissipative systems have also gradually progressed [18,19,36–
38]. Relying on the theories of dissipative systems, we will
reveal the fundamental properties of the laser-driven NESS
and laser-pulse-driven precession. These two important setups
of IFEs have not been analyzed well in most of previous
theories from the microscopic perspective.

The paper is organized as follows. Section II is devoted
to the explanation about the SO coupled electron model and
the numerical computation method based on the GKSL equa-
tion. Based on these instruments, we analyze the continuous
wave (cw) laser driven NESS in Sec. III. We demonstrate
that the IFE in the NESS is basically captured by the Floquet
theory for dissipation systems [18,19] in a sufficiently high-
frequency regime. In Sec. IV, we discuss IFE driven by a short
laser pulse. Since a precession of spin moment has been often
detected in such short-pulse IFE for magnetic materials (see
Fig. 4), we prepare a ferromagnetic metal state in an electron
model, by introducing a mean-field Zeeman interaction. We
show that a pulse-driven precession is well reproduced within
our model and it can be understood from the Floquet-theory
viewpoint. In Sec. V, we compare our theory with some
previous theoretical works for IFEs. Finally, in Sec. VI, we
summarize our results and comment on a few issues related
to IFE. In the Appendix, we explain the relationship between
GKSL and Bloch equations, a simple extension of the Flo-
quet formula for dissipation systems [18,19], and additional
numerical results.

II. MODEL AND METHODS

In this section, we define our model of a 2D SO-coupled
electron model, an applied circularly polarized laser, and the
GKSL equation we will use.

(a) (b)

(c) (d)

M

X

FIG. 1. (a) Two-dimensional square lattice. The lattice constant
is set to a = 1. Vectors ex and ey are, respectively, unit vectors
connecting neighboring two sites along the x and y directions.
(b) Schematic illustration of applying a circularly polarized laser
whose propagating direction is perpendicular to the square lattice in
the x-y plane. In this setup, the effective magnetic field driven by laser
(i.e., the emergent field of IFE) points to the z direction. (c) Energy
bands of the Hamiltonian (1), at thop = 1 eV and αR = 0.5 eV. Some
representative points in the Brillouin zone are defined as � = (kx =
0, ky = 0), X = (kx = π, ky = 0), and M = (kx = π, ky = π ). We
set the Fermi surface at εF = −3 eV (thop = 1 eV), which is depicted
by the green dashed line. (d) Fermi surface of (c). Arrows indicate the
spin orientation of electrons on the Fermi surface in the momentum
space. Due to the SO coupling, a so-called spin-momentum locking
occurs [39–41].

A. Hamiltonian

We focus on a SO-coupled tight-binding model on a 2D
square lattice. The Hamiltonian is defined by

HPM = Hhop + HSO, (1)

where we have introduced the index “PM” which stands
for paramagnetic. The first term Hhop represents the spin-
independent kinetic term, which is given by

Hhop = −2thop

∑
r,σ=↑,↓,i=x,y

(c†
r+eiσ

crσ + H.c.), (2)

where thop is the hopping strength, c†
rσ (crσ ) is the creation

(annihilation) operator of the spin-σ electron residing on a
site r = �ex + mey (�, m ∈ Z) of a square lattice. These oper-
ators c†

rσ and crσ satisfy = {crσ , c†
r′σ } = δr,r′ and {crσ , cr′σ } =

{c†
rσ , c†

r′σ } = 0. As shown in Fig. 1(a), ex and ey are, respec-
tively, unit vectors connecting neighboring sites along the x
and y directions and the lattice constant is set to a = 1. The
symbol σ =↑ (↓) corresponds to the z component of electron
spin Sz = 1

2 (− 1
2 ). The second term HSO is a Rashba SOI

[39–43], which is defined by

HSO = −αR

2

∑
r

∑
σ,σ ′

[(i(σy)σσ ′c†
r+ex,σ

crσ ′

− i(σx )σσ ′c†
r+eyσ

crσ ′ ) + H.c.]. (3)
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Here, σx,y,z represents the Pauli matrices, and αR denotes
the strength of Rashba SO coupling. The Pauli matrices σx,y

induce a mixing between spin-↑ and -↓ electrons, and hence
HSO can be viewed as a spin-dependent hopping term.

We define the Fourier transforms of c†
rσ and crσ as

c†
rσ = 1√

N

∑
k

e−ik·rc†
kσ

, (4)

where k = (kx, ky) is the wave vector on the Brillouin zone
for the 2D square lattice and N is the total number of
sites. Fermion operators c†

kσ
and ckσ satisfy {ckσ , c†

k′σ } = δk,k′

and {ckσ , ck′σ } = {c†
kσ

, c†
k′σ } = 0. Substituting Eq. (4) into the

Hamiltonian, we have

Hhop = −2thop

∑
k

∑
i=(x,y),σ

cos ki(c
†
kσ

ckσ + H.c.) (5)

and

HSO = αR

∑
k,σ,σ ′

{[(σy)σσ ′ sin kx − (σx )σσ ′ sin ky]c†
kσ

ckσ ′ + H.c.}.

(6)

These representations show that the Hamiltonian HPM is block
diagonalized in the momentum k space, and one can obtain
energy eigenvalues via the diagonalization in each k subspace
as follows:

HPM =
∑

k

C†
k

(
εk ηk

η∗
k εk

)
Ck =

∑
k

D†
k

(
Ek

2 0
0 Ek

1

)
Dk, (7)

where εk = −2thop(cos kx + cos ky), ηk = αR(i sin kx +
sin ky), Ck = T(ck,↑, ck,↓), and Dk = T(dk,2, dk,1) = UkCk.
The energy eigenvalues are given by

Ek
1 = εk − |ηk|, Ek

2 = εk + |ηk|. (8)

These values are defined such that Ek
1 < Ek

2 . The unitary ma-
trix Uk is defined as

Uk =
(

uk
+ uk

−
vk

+ vk
−

)
(9)

with uk
± = ηk√

2|ηk| and vk
± = ± 1√

2
. The energy bands of Eq. (8)

are shown in Fig. 1(c). In this study, the Fermi energy εF

is fixed at εF /thop = −3.0, which is depicted in Fig. 1(c).
The corresponding Fermi surface in the kx-ky plane is given
in Fig. 1(d). This parameter setup is almost the same as the
previous study of IFE in Ref. [21].

At the end of this subsection, we define a few spin-related
operators as this work considers the laser-driven spin mo-
ments. The α component of total spin is denoted by Sα

tot =∑
r Sα

r and those per one site are defined as

sα = Sα
tot/N. (10)

In addition, we define the “spin” in the momentum space as

sα
k = 1

2C†
k σαCk. (11)

For instance, the z component of total spin is given by

Sz
tot =

∑
r

Sz
r =

∑
r

1

2
C†

r σzCr = 1

2

∑
k

sz
k

= 1

2

∑
k

[
ηk

|ηk|d†
k,2dk,1 + η∗

k

|ηk|d†
k,1dk,2

]
, (12)

where Cr = T (cr,↑, cr,↓). Here, we have used the unit of h̄ = 1
and we will often use it throughout this paper.

B. Laser

In this study, we will consider two types of lasers. The first
type is a continuous wave (cw), whose AC electric field is
given by

E(t ) = E0(1 − e−t2/τ 2
0 )(cos ωt, sin ωt, 0), (13)

where E0 is the strength of electric field and ω is the angular
frequency of cw laser. We make the strength of the field
gradually approach to E0, by introducing a parameter τ0. We
will focus on the nonequilibrium steady states (NESSs) driven
by a long-time application of cw laser and therefore τ0 is not
important. The corresponding vector potential A(t ) is defined
as − ∫ t

tini
dt ′E(t ′) in the Coulomb gauge, where tini = 0 is the

initial time.
Another type is a laser pulse with a Gaussian wave shape.

Its electric field is defined by

E(t ) = E0e−2t2/τ 2
(cos ωt, sin ωt, 0), (14)

where τ represents the width of the pulse and we have set τ to
10

√
2h̄/thop � 14h̄/thop. For example, if we set ω = thop/h̄, τ

corresponds to about three cycles. The vector potential for the
pulse is given by A(t ) = − ∫ t

tini
dt ′E(t ′), where the absolute

value of initial time |tini| should be sufficiently large compared
with τ . We note that the electric fields of the above two types
of lasers are spatially uniform, i.e., E(t ) is independent of
spatial coordinate r. This condition is valid because the size of
the laser spot is usually much larger than the lattice constant
a (the length scale of 1.0–0.1 nm). Typical values of the laser
field, its frequency and period are summarized in Tables I and
II in Appendix A.

To take the effect of the AC electric field into account,
we use the Peierls formalism. In this formalism, each hop-
ping term c†

rσ cr+eiσ ′ should be replaced with exp[−i e
h̄c A(t ) ·

ei]c†
rσ cr+eiσ ′ when we apply an AC electric field to the 2D

model of Eq. (1). Here, e (> 0) is the electron charge, c is
the speed of light, and we will often use the units of e = 1
and c = 1 in this paper. Through the Peierls formalism, the
time-dependent Hamiltonian of the laser-driven 2D electron
model HPM(t ) = Hhop(t ) + HSO(t ) is given by

Hhop(t ) = −2thop

∑
k

∑
i=(x,y),σ

cos[Ai(t ) + ki]

× (c†
kσ

ckσ + H.c.) (15)

and

HSO(t ) = αR

∑
k,σ,σ ′

{[(σy)σσ ′ sin [Ax(t ) + kx]

− (σx )σσ ′ sin [Ay(t ) + ky]]c†
kσ

ckσ ′ + H.c.}. (16)
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With the 2 × 2 matrix form, we can express the
Hamiltonian as

HPM(t ) =
∑

k

Hk
PM(t ),

Hk
PM(t ) = C†

k

(
εk,A(t ) ηk,A(t )

η∗
k,A(t ) εk,A(t )

)
Ck, (17)

where εk,A(t ) and ηk,A(t ) are defined as

εk,A(t ) = −2thop{cos [Ax(t ) + kx] + cos [Ay(t ) + ky]},
ηk,A(t ) = αR{i sin [Ax(t ) + kx] + sin [Ay(t ) + ky]}. (18)

An important point is that even if we apply laser to the system,
the time-dependent Hamiltonian (17) is still k diagonal.

C. GKSL equation

To analyze the laser-driven quantum dynamics in 2D
Rashba electron models, we use the GKSL equation [32–35],
which is a Markovian equation of motion for the density ma-
trix [44–47] including dissipation effects. As we mentioned,
our Hamiltonian of laser-driven systems is block diagonalized
in the momentum k space even after the application of laser
[see Eq. (17)]. Therefore, we may independently analyze the
time evolution of density matrix at each k subspace. The
GKSL equation for a subspace is defined as

dρk

dt
= −i

[
Hk

PM(t ), ρk] + Dk(ρk), (19)

where ρk(t ) is the density matrix for the k subspace. The first
commutator corresponds to the unitary dynamics driven by the
Hamiltonian and the second term Dk(ρk) represents the effect
of dissipation and is given by

Dk(ρk) =
∑

i j

�k
i j

(
Lk

i jρ
kLk

i j
† − 1

2

{
Lk

i j
†
Lk

i j, ρ
k}). (20)

Here, a constant �k
i j represents the strength of dissipation and

Lk
i j refers to a jump (or Lindblad) operator, whose index (i, j)

denotes each relaxation process. The application of GKSL
equation to our 2D electron models means that the dissipa-
tion dynamics is also assumed to be k diagonal. Complicated
scattering processes would occur during relaxation processes
in real materials, but we expect that various essential features
of laser-driven dynamics can be captured by using the phe-
nomenological dissipation term Dk of the GKSL equation. In
fact, recent studies [48–51] support this expectation.

We assume that the jump operators do not change the
electron number and such a relaxation process is natural in
real experiments in solids. From this assumption and the
free-electron Hamiltonian of Eq. (17), one sees that GKSL
dynamics exists only in the one-particle subspace at each
wave vector k, whereas empty and two-particle states at k
are invariant under the time evolution. Namely, only upper-
or lower-band occupied states [see Fig. 1(c)] contribute to the
laser-driven dynamics in our model. In this setup, the size of
the density matrix ρk(t ) is reduced to 2 × 2. This property is
very helpful to reduce the cost of numerical computation.

In this study, we define the jump operators as Lk
i j =

|Ek
i 〉〈Ek

j |, where |Ek
i 〉 denotes ith one-electron eigenstates of

the time-independent Hamiltonian Hk
PM|A=0 and Ek

i is the
corresponding ith eigenenergy (i = 1, 2) under the condition
of Ek

1 < Ek
2 . Furthermore, we determine the dissipation con-

stants �k
i j such that the GKSL equation satisfies the detailed

balance, relaxing the system towards the equilibrium state of
Hk

PM|A=0. Such constants �k
i j are given by

�k
i j = γ exp

(−βEk
i

)
exp

(−βEk
i

) + exp
(−βEk

j

) (i �= j),

�k
i j = 0 (i = j), (21)

where γ represents the k-independent dissipation strength,
β = 1

kBT is the inverse temperature. In zero-temperature limit

of β → ∞, we find �k
12 = γ and �k

21 = 0. This indicates that
in the two-level system at each k space, only the jump operator
Lk

12 = |Ek
1 〉〈Ek

2 | contributes to the dissipation dynamics and
induced a transition from the excited state to the ground state.
We note that the off-diagonal jump operator Lk

12 with Eq. (21)
induces both longitudinal and transverse relaxation processes
(see Appendix B).

On the other hand, the diagonal type of Lk
i,i controls the

strength of transverse relaxation (dephasing). We should note
that the system cannot reach a thermal equilibrium state if the
GKSL equation has only diagonal-type jump operators Lk

i,i
(see Appendix B 2). This work will not argue the effects of
Lk

i,i because from a few calculations, we have verified that Lk
i,i

is not so important for IFE in our model.
If we focus on our 2D Rashba free-electron model of

Eq. (17) at T = 0, the one-particle states at the initial time
tini = 0 exist only in the doughnut regime between two Fermi
surfaces in Fig. 1(d). Therefore, it is enough to numerically
solve the GKSL equations with k being in the doughnut
regime as we consider the laser-driven dynamics at T = 0.

The expectation value of any observable A at time t is
defined by

〈A〉t =
∑

k

Tr[Aρk(t )]. (22)

Using this formula, one can compute the time dependence of
physical quantities in principle.

III. NONEQUILIBRIUM STEADY STATES

In this section, we study the 2D Rashba electron model
irradiated by a continuous-wave (cw) laser of Eq. (13). The
time parameter τ0 of Eq. (13) is fixed to 50h̄/thop throughout
the numerical calculations in this section. The time-dependent
Hamiltonian is given by HPM(t ) = Hhop(t ) + HSO(t ) [see
Eqs. (15) and (16)]. We focus on the nonequilibrium steady
state (NESS) that is realized if we take a sufficient time af-
ter applying a circularly polarized laser. From our setup of
Fig. 1(b), a laser-driven magnetic field and magnetization are
expected to emerge along the z direction. Therefore, the z
component of spins, sz and sz

k, are the main targets of this
section. To consider the properties of the NESS, it is useful
to observe a time-averaged expectation value of an observable
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A as follows:

〈〈A〉〉 = 1

t2 − t1

∫ t2

t1

dt〈A〉t . (23)

Here, t1,2 − tini (tini = 0 is the initial time) should be much
larger than typical timescales of h̄/thop, Tω = 2π/ω, and h̄/γ

if we want to observe the expectation value for the NESS. In
addition, time interval t1 − t2 should be sufficiently larger than
the laser period Tω if we focus on the time-independent laser-
driven value. In the numerical computation of this section,
we set t1 = 300h̄/thop and t2 = 400h̄/thop. In all the numerical
calculations of this paper, we divide the full Brillouin zone
into 200 × 200 points, which corresponds to N = 200 × 200.

A. Floquet theory

As we already mentioned, when a cw laser is applied to the
2D Rashba model, a NESS arises due to the balance between
the energy injection and dissipation. The density matrix for
such a NESS can be analytically obtained through the recent
Floquet-theory approach [18,19] if we restrict ourselves to the
high-frequency regime. In this subsection, we compute laser-
driven magnetization in the NESS by employing the Floquet
theory and high-frequency expansion [1,52].

First, we shortly explain the derivation of the density
matrix for the NESS [18]. Applying the high-frequency ex-
pansion to the GKSL equation in each k subspace, we derive
the effective GKSL equation

dρk

dt
= Lk

effρ
k = −i

[
Hk

FE, ρk] + Dk(ρk), (24)

which describes the lower-frequency dynamics than the laser
frequency ω. Here, the time-independent Floquet Hamiltonian
Hk

FE is defined as

Hk
FE = Hk

0 +
∑

n

[
Hk

−n, Hk
n

]
nω

+ O(ω−2), (25)

where the Fourier components of the Hamiltonian Hk
n =

1
Tω

∫ Tω

0 dt Hk
PM(t )einωt (n ∈ Z). The zeroth-order term Hk

0 is
interpreted as the time-averaged Hamiltonian. From Eq. (24),
the density matrix of the NESS can be written as ρk(t ) →

t→∞
ρk

NESS(t ) = eG(t )ρ̃k
∞. The micromotion operator G is a time-

periodic function satisfying G(t ) = G(t + Tω ), describing
faster dynamics rather than the laser frequency. The remaining
matrix ρ̃k

∞ does not evolve in time and is defined by

Lk
eff ρ̃

k
∞ = 0. (26)

For a certain class of periodically driven systems, Hk
0 = Hk

PM
holds, in which the simple analytical formula of the density
matrix ρk

NESS(t ) has been derived [18]. On the other hand,
for the case of Hk

0 �= Hk
PM, we have to slightly extend the

formula and consider the ω dependence of Hk
0 . Our model of

the 2D Rashba model irradiated by laser corresponds to the
latter case. After some algebra (see Appendix C), the time-
independent part of the density matrix ρ̃k

∞ = ∑
i j ρ

k
i j |Ek

i 〉〈Ek
i |

is given by

ρk
11 = �k

12/γ ,

ρk
22 = �k

21/γ ,

ρk
12 =

〈
Ek

1

∣∣�Hk
FE

∣∣Ek
2

〉
(
Ek

1 − Ek
2

) − iγ /2

(
ρk

11 − ρk
22

)
,

ρk
21 = ρk

21
∗

(27)

in the high-frequency regime. Here, �Hk
FE = Hk

FE − Hk
0 .

Using these results, we can generally compute observables
of the NESS in an analytic way. From the definition of time-
averaged expectation value in Eq. (23), 〈〈sz

k〉〉 is interpreted
as Tr[sz

kρ̃
k
∞]. Combining this interpretation with Eq. (27), we

have

〈〈
sz

k

〉〉 =
〈
Ek

1

∣∣�Hk
FE

∣∣Ek
2

〉(
Ek

1 − Ek
2

)
(
Ek

1 − Ek
2

)2 + γ 2/4

(
ρk

11 − ρk
22

)
. (28)

Furthermore, from the formula of Eq. (25), we can easily
estimate the Floquet Hamiltonian as [21]

Hk
FE =

(
1 − E2

0

4ω2

)
Hk

PM − Beff (k)
1

2
C†

kσzCk + O(ω−4),

(29)

where

Beff (k) = 2
α2

RE2
0

ω3
cos(kx ) cos(ky). (30)

From the fashion of the Floquet Hamiltonion, the parameter
Beff (k) can be interpreted as the k-space effective magnetic
field driven by circularly polarized laser. In fact, Beff (k)
changes its sign if the laser polarization changes from right
to left handed (ω → −ω). As the first term of Eq. (29) cor-

responds to Hk
0 = (1 − E2

0
4ω2 )Hk

PM, the second term �Hk
FE is

expressed as

�Hk
FE = −Beff (k) 1

2C†
kσzCk + O(ω−4), (31)

From Eqs. (28) and (31), we find the relation 〈〈sz
k〉〉 ∝ α2

RE2
0

ω3 ,
which leads to 〈〈

sz
〉〉 = 1

N
〈〈Sz

tot〉〉 ∝ α2
RE2

0

ω3
(32)

at least in a sufficiently high-frequency regime. This power-
law behavior has already been predicted by the theories of IFE
in isolated electron systems [9,21]. Equation (32) shows that
the same power law for the laser-driven magnetization holds
even in laser-driven “dissipative” electron systems.

We here note that the power law of 〈〈sz〉〉 ∝ E2
0 /ω3 holds

for the off-resonant IFE in standard metallic systems con-
sidered in this study, while other laser-field and frequency
dependencies of the laser-driven magnetization can occur,
depending on the sorts of systems such as a resonant-type
IFE [20,24], Mott insulators [22], and magnetic insulators
[16–19].

B. γ and T dependence

In the remaining part of Sec. III, we will discuss the prop-
erties of the NESS with numerical computation of the GKSL
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FIG. 2. Laser-driven magnetization 〈〈sz〉〉 as a function of (a) the
dissipation magnitude (γ ) and (b) temperature (T ). Other parameters
are chosen to be eaE0/thop = 0.1, αR/thop = 0.1, and h̄ω/thop = 1.0.
In (a), γ changes in the range of 0 < γ/thop � 0.4 at T = 0. Red
points and white circles, respectively, correspond to the result of the
numerically solved GKSL equation and that of the Floquet high-
frequency expansion [see Eqs. (28) and (32)]. In (b), we depict the
results of γ /thop = 0.2 and 0.3. Red and green points are numerical
results of the GKSL equation, while white squares and triangles
are those of the high-frequency expansion. Temperature is changed
from kBT/thop = 0.0 to 0.05, which corresponds to about 500 K for
thop = 1 eV.

equation. This subsection is devoted to the dissipation (γ ) and
temperature (T ) dependence of the laser-driven magnetization
〈〈sz〉〉. We stress that the GKSL formalism makes it possible
to discuss the γ and T dependence whereas a standard method
based on Schrödinger equation cannot treat the effects of
dissipation and temperature.

Figure 2(a) shows the γ dependence of the numerically
computed spin moment per one site 〈〈sz〉〉 at T = 0. On the
other hand, 〈〈sz〉〉 can also be computed as Eqs. (28) and (32)
under the condition of a sufficiently high frequency. In Fig. 2,
we plot this analytic result of the Floquet theory as well.
One sees that (as expected) the value of 〈〈sz〉〉 monotonically
decreases with the growth of the dissipation strength γ and
the analytic result well agrees with the accurate numerical
one. It is also shown that even if γ becomes close to the
order of thop, the laser-driven magnetization 〈〈sz〉〉 still remains
at the same order as the value at γ → 0. We have verified
that the magnetization at the limit of γ → 0 and T = 0 is
in agreement with that in the previous study [21], which is
computed from the solution of Schrödinger equation.

Next, we consider the T dependence of 〈〈sz〉〉. As we men-
tioned in Sec. II C, in the case of T = 0, it is enough to analyze
the GKSL equations in the doughnut regime between two
Fermi surfaces shown in Fig. 1(d). At finite temperatures, the
possibilities of the appearance of one-particle states becomes
finite in full Brillouin zone. However, if we consider a suffi-
ciently low-temperature regime (kBT � thop), the effect of the
area outside the doughnut regime would be still negligible for
the analysis of 〈〈sz〉〉. Under this simple approximation, we
here discuss the T dependence of 〈〈sz〉〉 by solving the GKSL
equations only in the doughnut regime. Figure 2(b) represents
the T dependence of numerically computed 〈〈sz〉〉 and the
same quantity computed by the Floquet high-frequency ex-
pansion. One sees that these numerical and analytical results
agree with each other in a semiquantitative level. The laser-
driven spin moment is shown to monotonically decrease with
increasing T , while the figure also shows that the laser-driven

FIG. 3. (a), (b) Log-log plot of 〈〈sz〉〉 as a function of laser
frequency ω (a) and intensity E0 (b). Red and green points, respec-
tively, represent the results of numerical calculations for γ /thop =
0.2 and 0.3. The solid lines are fitting curves obeying the power
law E 2

0 /ω3. Other parameters are set to αR/thop = 0.1, kBT/thop =
0, and eaE0/thop = 0.1. For instance, eaE0/thop = 0.1 corresponds
to E0 = 2 MV cm−1 and h̄ω/thop = 1.0 does to ω/2π = 0.24 PHz
when thop = 1 eV. (c), (d) Linear plot of 〈〈sz〉〉 as a function of ω

(c) and E0 (d). Panel (c) [(d)] corresponds to panel (a) [(b)]. Green
triangles represent the numerical calculation results for γ /thop =
0.3 and white triangles the results of the Floquet high-frequency
expansion.

magnetization is stable against temperature change if T is
small enough compared with thop, i.e., the typical energy scale
of the electron system. It is found that even when T is chosen
to be room temperature, the laser-driven magnetization takes
the value of the same order as at T = 0 for thop = 1eV.

Finally, we shortly remark the γ → 0 limit, i.e., the iso-
lated system. From Fig. 2(a), we see that the NESS at γ → 0
seems to smoothly connect to the NESS with a finite γ .
However, as we mentioned in the Introduction, the theoretical
analyses in Refs. [28,29] show that if we apply a laser to an
isolated many-body system for a long time, the system gener-
ally approaches to a featureless, high-temperature-like state.
The emergence of a NESS at γ → 0 is inconsistent with this
statement in Refs. [28,29]. The NESS realization at γ → 0
might be an artifact owing to the use of a free-fermion model.
In real experiments of laser application, however, even ideal
metals are expected to reach a featureless state because of the
effects of a weak but finite interaction, impurities, crystalline
defects, etc.

C. AC-field dependence

In this subsection, we consider the effects of the frequency
ω and the intensity E0 of the AC electric field on the laser-
driven magnetization in the NESS. Figure 3 shows the ω

and E0 dependence of the numerically computed 〈〈sz〉〉 at
T = 0. As we already have shown in Sec. III A, 〈〈sz〉〉 is pro-
portional to E2

0 /ω3 for |E0/(h̄ω)| � 1, i.e., for a sufficiently
high-frequency regime [see Eq. (32)]. Figures 3(a) and 3(b)
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clearly indicate the power law holds in the high-frequency
regime, while 〈〈sz〉〉 deviates from the law when |E0/(h̄ω)|
becomes larger. In fact, one finds from Figs. 3(c) and 3(d)
that the numerically computed exact value of 〈〈sz〉〉 deviates
from the result of the Floquet high-frequency expansion for
|E0/(h̄ω)| � 1. As we already mentioned, this power law of
the laser-driven magnetization is the same as that in dissipa-
tionless IFE [8,9,21].

In experiments of IFE, ultraviolet to infrared laser has been
usually used. Roughly speaking, their photon energy is the
same order as the energy scale of solid electron systems, i.e.,
h̄ω ∼ thop. Figure 3 tells us that in the case of h̄ω ∼ thop,
the magnitude of the AC electric field should increase up to
eaE0 ∼ thop to maximize 〈〈sz〉〉. However, we have to note that
in experiments, E0 can approach at most 1 to 10 MV/cm, in
which eaE0 is usually much smaller than thop.

IV. LASER PULSES

In the previous section, we have studied properties of the
NESS that occurs after a long-time application of CW laser.
The NESS is very useful to capture the essential, universal
features of FE phenomena including IFE. However, short laser
pulses (not cw) have been widely used in experiments of
IFE [11–15]. Therefore, here we explore the ultrafast spin
dynamics driven by a short pulse of circularly polarized laser.
Here, “ultrafast” spin dynamics means that it is faster than
typical timescale of electronics, while (as one will see soon
later) it is slower than the laser period Tω.

The electric field of the laser pulse was already defined
in Eq. (14). The pulse length τ and the initial time tini are,
respectively, fixed to about 14h̄/thop and −600h̄/thop in our
numerical calculations. We explore the pulse induced IFE
by numerically solving the GKSL equation for laser-pulse-
driven electron systems. For simplicity, we focus on the
zero-temperature case (T = 0) in this section.

A. Ferromagnetic metal

In the case of cw laser, electron spins are polarized along
the effective magnetic field created by the circularly polarized
laser, as shown in Eqs. (28)–(32). However, when a short
laser pulse is applied to electron systems, a pulse-driven mag-
netic field immediately disappears before the electron spins
becomes polarized. Instead of spin polarization, a precession
of the magnetic moment is induced by the pulse-driven in-
stantaneous magnetic field if we consider IFE in a metallic
system with a magnetic order. Such a precession has been
observed in several experiments of IFE [12,14,15]. Let us
consider the setup of IFE shown in Fig. 4: a laser pulse
with circular polarization is applied to a 2D ferromagnetic
metal with a ferromagnetic moment along the x axis. The
laser-driven instantaneous magnetic field (BIFE) is parallel to
the z axis and its direction becomes positive and negative, de-
pending on the helicity (right and left handedness) of laser. To
theoretically discuss the ultrafast precession, we hence should
prepare a magnetically ordered electron state. For simplicity,
we focus on a ferromagnetic metal state like Fig. 4. To this
end, we extend the 2D paramagnetic Rashba model of Eq. (1)
to a 2D electron model with a ferromagnetic moment, whose

FIG. 4. Schematic image of IFE driven by pulse of circularly
polarized laser (CPL) with (a) right or (b) left handedness. The laser-
driven 2D electron system on the x-y plane has a finite ferromagnetic
moment along the Sx axis and the incident pulse enters along the
z axis. The arrow of BIFE means the direction of an instantaneous
magnetic field induced by the pulse IFE. The direction of BIFE is
expected to be controlled by changing the light polarization from
right (left) to left (right) circular types. Black arrows stand for the
expected precession motion of the spin moment.

Hamiltonian is defined as

HFM = HPM + HMFT, (33)

where HMFT is given by

HMFT = −BxSx
tot = −Bx

∑
k

1

2
C†

kσxCk. (34)

The index “FM” means “ferromagnetic” and the final term
HMFT is a Zeeman coupling due to a magnetic field Bx

and has been introduced to generate a finite ferromagnetic
moment along the Sx axis like Fig. 4. One may consider
that this Zeeman term emerges from a mean-field treatment
for electron-electron interactions including Coulomb interac-
tion, Hund coupling, etc. [53]. However, we here regard the
effective field Bx as a merely free parameter to realize a fer-
romagnetic metal state. In this section, we use this mean-field
Hamiltonian to investigate the ultrafast spin dynamics driven
by laser pulses.

The model of Eq. (33) can be easily solved because it is a
free-fermion type. In the k space, the Hamiltonian reads as

HFM =
∑

k

C†
k

(
εk ηk − Bx/2

η∗
k − Bx/2 εk

)
Ck. (35)

From this Hamiltonian, one can compute expectation values
of arbitrary observable in the equilibrium state.

As the magnetization induced by Bx is important in this
section, we here introduce two expectation values associated
to the spin moment:

Mα = 〈sα〉tini ,

Sα
occ = 1

Nocc

∑
k∈occ

〈
sα

k

〉
tini

. (36)

Here, Mα stands for the α component of magnetization per
site at the initial time t = tini, i.e., the magnetization in an
equilibrium state before the application of a laser pulse. On
the other hand, Nocc is total number of the occupied one-
particle state at T = 0 and

∑
k∈occ means the summation over

all the one-particle states at T = 0, which is equivalent to
the doughnut area between two Fermi surfaces of the model
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FIG. 5. (a), (c) Energy bands of the mean-field ferromagnetic
model of Eq. (33) at (a) a weak spin moment Mx = 0.08 and (c) an al-
most saturated moment Mx = 0.49. Parameters are set to thop = 1 eV
and αR/thop = 0.5. The Fermi energy is fixed to εF = −3thop. Insets
(b) and (d) respectively correspond to the Fermi surfaces for the cases
(a) and (c). (e), (f) Magnetization curves of (e) Sz

occ and (f) Mx as a
function of Bx for αR/thop = 0.5 and kBT/thop = 0.0.

HFM. Therefore, Sα
occ indicates how many electron spins are

polarized along the α axis in all the one-particle states in the
Brillouin zone: The saturation value Sα

occ = 1
2 corresponds to

the state where all the electron spins in one-electron occupied
states are fully polarized at T = 0. Figures 5(a)–5(d) show the
energy bands and Fermi surfaces of the ferromagnetic metal
model of Eq. (35) with finite mean fields Bx at Fermi energy
εF = −3thop. One sees that Fermi surfaces gradually change
with Bx increased. Figures 5(e) and 5(f) are, respectively,
the magnetization curves of Sx

occ and Mx as a function of
Bx at T = 0. They tell us that Sx

occ is almost saturated for
Bx > 0.5thop, while Mx still monotonically increase together
with Bx even if Bx is beyond 5ttop. When Bx is much larger than
thop (Bx � thop), two energy bands Ek

1 and Ek
2 are massively

separated. As a result, the lower band is completely occupied
by electrons with Sx = + 1

2 polarization (Ek
1 < εF ) and the

higher band is empty (Ek
2 > εF ). This situation corresponds to

the saturation of Mx. However, we want to consider a realistic
ferromagnetic metal state within our simple mean-field model.
In real ferromagnetic metals [53], the deviation between spin-
↑ and spin-↓ electron numbers is usually relevant only near
the Fermi surface. From this argument and Fig. 5(e), we
should tune the value of the mean field, for example, in a range
0.01 < Bx/thop < 0.2 such that Sx

occ takes a moderate value
far from the saturation value 1

2 . In fact, as we will explain
in Appendix D, if we start from almost saturated ferromag-
netic state with Sx

occ � 1
2 , even strong laser pulse can induce a

quite small precession motion of the spin moment because the
spin moment is strongly locked due to the considerably large
field Bx.

When the effect of laser pulse is introduced in Eq. (33), it
is enough to replace HPM to HPM(t ) using the Peierls formal-
ism like Sec. II B. However, we should note that we use the
vector potential for the laser “pulse” field of Eq. (14) instead
of cw laser. The time-dependent pulse-driven Hamiltonian is

given by

HFM(t ) = HPM(t ) + HMFT. (37)

This Hamiltonian is still k diagonal like the case of cw laser.
Using Eq. (37), we will numerically solve the GKSL equation.

B. Pulse-induced precession

In this subsection, we discuss the numerical results of the
spin moment induced by pulse laser. For simplicity, the nu-
merical computation will all be done at T = 0 in this section.
Figure 6(a) shows the spin moment of 〈sα〉t as a function of
time t in a ferromagnetic metal state with a moderate value
of Sx

occ. The dotted lines represent the actual time evolution,
while the solid lines represent the extracted slow modes that
are defined as

sα
slow(t ) = 1

2Tω

∫ t+Tω

t−Tω

dt ′�〈sα〉t ′ , (38)

where we have taken a time average over 2Tω and we have
introduced �〈sα〉t = 〈sα〉t − 〈sα〉tini and 〈sy,z〉tini = 0. The gray
area indicates the full width at half-maximum of the laser
pulse, namely, the time interval during which laser intensity
is strong enough.

The most remarkable part in Fig. 6(a) is the behavior of the
slow mode of 〈sy〉t . From Fig. 4, we can expect that a clear
precession arises in the y component of spin in our setup and
the initial “phase” of the precession driven by a right-handed
light (ω > 0) deviates by π from that by a left-handed one
(ω < 0). One finds this phase difference in 〈sy〉t of Fig. 6(a2).
The phase difference has been indeed observed in several
experiments of pulse-driven IFE [12,14,15] and is a definite
evidence for the emergence of an instantaneous magnetic
field (BIFE in Fig. 4) by a circularly polarized laser pulse. In
real magnetic materials, the characteristic frequency of the
precession (i.e., slow mode) is determined by the spin-wave
eigenenergy [53]. Our model does not include the correlation
between spin moments in neighboring sites and hence cannot
reproduce the precession with the spin-wave frequency. To
take the spin-wave nature into account in the microscopic
level, we have to analyze laser-driven dynamics in correlated
electron systems on a lattice such as Hubbard models, more
realistic multiband correlated electron models, etc. It is an
important future issue of the research of IFE. We, however,
emphasize that a slow precession and the phase difference can
be captured within our free-fermion model for a ferromagnetic
metal. Here, we again note that the slow precession is fast
compared with typical timescale of electronics. “Slow” means
that it is slower than the laser frequency and we may refer to
this mode as “ultrafast” spin dynamics.

Figure 6(a) also demonstrates that the slow modes of 〈sx〉t

for right- and left-handed lights are almost degenerate. This
behavior can be understood from Fig. 4. Namely, if the time
evolution of 〈sα〉t is sufficiently close to the ideal precession
on the Sx-Sy plane like Fig. 4, a phase difference does not
appear in 〈sx〉t and it arises only in 〈sy〉t . One can also find
from Fig. 6(a3) that 〈sz〉t slightly increases (decreases) during
the application of right-handed (left-handed) laser pulse. This
could be interpreted as the growth of spin moment by the
instantaneous magnetic field BIFE.
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FIG. 6. (a1)–(a3) Time evolution of 〈sx〉t , 〈sy〉t , and 〈sz〉t computed by the GKSL equation for a ferromagnetic metal state in the model (37)
with “magnetization” Sx

occ � 0.248 (corresponds to Mx � 0.0046 and Bx/thop = 0.1) at T = 0. Here, �〈sα〉t = 〈sα〉t − 〈sα〉tini and 〈sy,z〉tini = 0.
Dotted lines denote 〈sα〉t themselves, while solid lines are the slow modes defined by sα

slow(t ) = 1
2Tω

∫ t+Tω

t−Tω
dt ′�〈sα〉t ′ . Red and blue colors,

respectively, correspond to right circularly polarized (h̄ω/thop = 1) and left circularly polarized (h̄ω/thop = −1) pulses. The gray region denotes
the width of laser pulse τ : The laser intensity is strong enough in this range. (b1), (b2) Plot of slow mode of (a1)–(a3) in the three-dimensional
space (tthop/h̄, 〈sx〉t , 〈sy〉t ). Other parameters are chosen to be eaE0 = 0.5, αR/thop = 0.1, kBT/thop = 0, γ /thop = 0.01, and τ � 14h̄/thop.

Figure 6(b) depicts the trajectories of the pulse-driven
slow dynamics in the three-dimensional (tthop/h̄, 〈sx〉t , 〈sy〉t )
space, from which one can visually understand the precessions
generated by right and left circularly polarized pulses. The
corresponding movie is in Ref. [54].

C. Time-dependent effective Hamiltonian

Here, we consider how one can understand the precession
mode of Fig. 6 from the Floquet-theory perspective. For this
purpose, let us first remember the case of a cw laser. In the
case, the Floquet high-frequency expansion [1,52] enables us
to lead to the time-independent Floquet Hamiltonian, which is
given by

H cw
FE =

(
1 − E2

0

4ω2

)
HPM −

∑
k

Beff (k)
1

2
C†

k σzCk + HMFT,

(39)

where Beff = 2α2
RE2

0 /ω3 cos(kx ) cos(ky) [see Eq. (29)]. In the
case of laser pulse, on the other hand, the high-frequency
expansion is no longer applicable in principle. However, we
can expect that the expansion is still valid for a short time
interval, which is somewhat longer than the laser period Tω.
Under this rough expectation, we may introduce the effec-
tive Hamiltonian (time-evolution operator) for the case of
laser pulse, by replacing E0 with E0e−t2/(τ/2)2

in Eq. (39).
Therefore, the effective Hamiltonian for laser pulse is given

by

Hpulse
FE (t ) =

(
1 − (e−2t2/τ 2

E0)2

4ω2

)
HPM

− e−4t2/τ 2
∑

k

Beff (k)
1

2
C†

kσzCk + HMFT. (40)

Furthermore, the laser-driven magnetic field Beff (k) is ex-
pected to be more significant rather than the correction to HPM.
Hence, we also introduce another effective Hamiltonian:

Hpulse
FE2 (t ) = HPM − e−4t2/τ 2

∑
k

Beff (k)
1

2
C†

k σzCk + HMFT.

(41)

These two Hamiltonians, Hpulse
FE (t ) and Hpulse

FE2 (t ), are expected
to describe the slow dynamics, whose timescale is slower than
the laser period Tω.

We compare the numerically exact results of 〈sα〉t with
those derived from Hpulse

FE (t ) or Hpulse
FE2 (t ). To this end, we here

define the Fourier transform of the magnetization as

sα
FT(�) = thop

h̄

∫ ∞

−∞
�〈sα〉t e

−i�t dt, (42)

where �〈sα〉t = 〈sα〉t − 〈sα〉tini and 〈sy,z〉tini = 0. The factor thop

h̄
is introduced to make sα

FT(�) dimensionless. Figures 7(a1)–
7(a3) represent the slow precession motion of spins after
the laser pulse passes. Each panel includes the numerically
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FIG. 7. (a1)–(a3) Time evolution of slow modes of 〈sx〉t , 〈sy〉t , and 〈sz〉t in the case of circularly polarized laser pulse at T = 0. Each
panel includes the numerical results estimated by three models of Eqs. (37), (40), and (41). CPL+ and CPL−, respectively, stand for right
(h̄ω/thop = 1 > 0) and left (h̄ω/thop = −1 < 0) circularly polarized laser pulses. Light red (CPL+) and light blue (CPL−) curves are the
results of Eq. (37). Orange dotted (CPL+) and blue dotted (CPL−) lines are those of Eq. (40). White diamond (CPL+) and black diamond
(CPL+) marks are those of Eq. (41). (b1)–(b3) Fourier spectra of sα

FT as a function of arbitrary frequency � in the case of right circularly
polarized pulse. We use the logarithm plot and the value of the vertical axis is measured from the maximum value of log10 |sα

FT(�)|. Red line
is the result of Eq. (37), blue area is that of Eq. (40), and orange area is that of Eq. (41). In (b1)–(b3), we define the characteristic angular
frequency �α

slow that is the highest peak position of log10 |sα
FT(�)| in the low-frequency regime � < ω. Other parameters are chosen to be

Mx � 0.0046 (Sx
occ � 0.25 and Bx/thop = 0.1), ttop = 1, eaE0/thop = 0.5, αR/thop = 0.1, and γ /thop = 0.01.

exact result of sα
slow(t ) and the spin moments 〈sα〉t computed

by the effective Hamiltonians Hpulse
FE (t ) and Hpulse

FE2 (t ). As we
discussed in Sec. IV B, sx,y

slow(t ) exhibits the laser-pulse-driven
precession mode in the Sx-Sy plane, while sz

slow(t ) represents
the slow oscillation after a small magnetization growth driven
by the pulse. Figures 7(a1)–7(a3) show that the Hamiltonian
Hpulse

FE (t ) well describes all the components of slow spin mo-
tion although the amplitudes of 〈sy,z〉t somewhat deviate from
the exact results of sα

slow(t ). They also tell us that even a
simpler Hamiltonian Hpulse

FE2 (t ) can reproduce the precession of
〈sy,z〉t with the accurate frequency (although it cannot describe
the z component of spin).

Figures 7(b1)–7(b3) show the Fourier transforms sα
FT(�)

for a right circularly polarized pulse. We plot results esti-
mated by three methods: numerically exact calculation by the
GKSL equation, the numerical result based on Hpulse

FE (t ), and
that based on Hpulse

FE2 (t ). The curve of sα
FT(�) estimated by

Hpulse
FE (t ) is shown to well agree with the exact result in the

low-frequency regime of � < ω, while Hpulse
FE2 (t ) can describe

the low-frequency dynamics for the y and z components of
spin and cannot do the x component. These results are con-
sistent with the upper panels of Fig. 7(a). In particular, one
finds from Figs. 7(b2) and 7(b3) that both models of Eqs. (40)
and (41) extract the lowest-frequency peak structures of
sy,z

FT(�).
The broad peaks at � = ω, 2ω, and 3ω in the numerically

exact curves of Fig. 7(b) are a sort of the high-harmonic

generation induced by the laser pulse, and these high-
frequency structures cannot be captured by the Floquet
Hamiltonian.

We here define the characteristic frequency �α
slow as the

highest peak position of sα
FT(�) that is smaller than the laser

frequency ω. The positions of �α
slow are depicted in Fig. 7(b).

The frequency �
y
slow can be viewed as the frequency of the

slow precession mode in Figs. 6 and 4. Figure 8 shows
sα

FT(�α
slow) as a function of the AC electric field E0 and

the laser frequency ω. It is found that sα
FT(�α

slow) computed
by combining the effective Hamiltonian (40) and the GKSL
equation is in good agreement with the numerically exact
result. This means that the Hamiltonian (40) works well to
describe the dynamics that is slower than the laser frequency.
Moreover, Figs. 8(a3) and 8(b3) demonstrate that sα

FT(�z
slow)

obeys the line ∝E2
0 /ω3 like Eq. (32). It implies that the Flo-

quet picture still survives even for the case of a few-cycle laser
pulse.

From the results of Figs. 7 and 8, we conclude that
the effective Hamiltonian for the laser-pulse-driven systems,
Eqs. (40) and (41), can capture the lower-frequency dynamics
and the pulse-driven IFE can be viewed as a short-time FE.

Before ending this subsection, we shortly comment on
the frequency �

y
slow of the pulse-driven precession mode. As

we mentioned, in real experiments of laser-pulse IFE, the
precession frequency is given by the spin-wave frequency of
the target magnetic material. However, our mean-field model
does not include such a spin-wave mode, and the precession
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FIG. 8. (a), (b) Logarithm plot of |sα
FT(�α

slow)| as a function of
the frequency ω (a) and the field strength E0 (b) of laser pulse.
The frequency �α

slow is determined as the highest peak position of
|sα

FT(�)| in � < ω. Red (white) triangles are the numerical result of
combining the original mean-field Hamiltonian HFM(t ) [the effective
Hamiltonian Hpulse

FE (t )] with the GKSL equation. In (a1)–(a3), the
laser intensity is chosen to be eaE0/thop = 0.5, while in (b1)–(b3),
the laser frequency is set to h̄ω/thop = 1.0. Fitting dotted lines in (a3)
and (b3) are proportional to E 2

0 /ω3. Other parameters are thop = 1,
αR/thop = 0.1, Bx/thop = 0.1, γ /thop = 0.01, and τ � 14h̄/thop.

frequency �
y
slow is expected to be associated with some param-

eters of HFM. Through the numerical computation, we verify
that �

y
slow strongly depends on the Fermi energy εF and the

magnetic field Bx (equivalently magnetization), whereas it is
stable against a moderate change of laser-pulse width τ , laser
field E0, and laser frequency ω. Figure 9 clearly shows that
log10 |sy

FT(�)| and �
y
slow change depending on the value of

εF . This result is reasonable because the laser-driven effective
Zeeman interaction Beff (k) depends on the wave vector k [see
Eqs. (28) and (39)]. The εF dependence of �

y
slow might be

observed in a laser-pulse-driven IFE for a nearly paramagnetic
metal with a small magnetic moment.

FIG. 9. (a) Fermi-energy (εF ) dependence of log10 |sy
FT(�)| and

the characteristic frequency �
y
slow in the laser-pulse-driven system of

HFM(t ) with thop = 1, αR = 0.1, and Bx = 0.1 at T = 0. Three curves
are the results of εF /thop = −0.1, −1.5, and −3.0. The highest peak
position in log10 |sy

FT(�)| corresponds to �
y
slow. (b) Lines of εF /thop =

−0.1, −1.5, and −3.0 in the energy band of HFM with thop = 1, αR =
0.1, and Bx = 0.1. Other parameters are the same as those in Fig. 7.

D. Importance of relaxation

Finally, we discuss how important the dissipation terms of
the GKSL equation is when we consider the laser-pulse-driven
IFE. To this end, we introduce the Gabor transformation

sα
GT(�, t ) = thop

h̄

∫ ∞

−∞
dtse

−(ts−t )2/ξ 2
�〈sα〉ts e

−i�ts , (43)

where ξ = 0.1h̄/thop. This quantity tells us how the frequency
components of 〈sα〉t are distributed at each time. This is also
referred to as short-time Fourier transform.

Figures 10(a1)–10(a3) and 10(b1)–10(b3) show the above
Gabor transforms for the case of laser pulse as a function of
the frequency � and time t . Figures 10(a1)–10(a3) are the
results by the GKSL equation for the model (37) with a finite
dissipation strength γ = 0.03 thop, while Figs. 10(b1)–10(b3)
correspond to the results without dissipation term (γ = 0).
The results of γ = 0 are shown to be almost the same as
those of γ = 0.03thop in the higher-frequency regime (� �
�α

slow). On the other hand, these figures also show that in the
dissipationless case (γ = 0), the low-frequency (� ∼ �α

slow)
dynamics including the precession in Fig. 6 survives for a
long time, whereas the precession gradually relaxes in the
case of γ �= 0, i.e., we have a finite spin relaxation time.
From Figs. 10(c1)–10(c3), we find that in the dissipationless
system, the amplitude of the pulse-driven precession mode
still remains at least in t ∼ 800h̄/thop.

The typical relaxation time of electron spins is in the
range of 1 ps–1 ns [7,53,55–63] in magnetic materials. There-
fore, the never-ending tails of the low-frequency regime in
Figs. 10(b1)–10(b3) are nonrealistic and it indicates the im-
portance of taking the dissipation effect into account when we
consider the laser-pulse-driven dynamics.

We note that the dissipation parameter γ = 0.03thop used
in Fig. 10 corresponds to the timescale h̄/γ ∼ O(10)fs for
thop ∼ 1 eV and is too large to obtain a typical relaxation time
of the spin precession motion. However, the key point is that
(as we mentioned) the spin relaxation time can be “finite”
by taking account for the dissipation effect with the help
of the GKSL equation, whereas a never-ending precession
survives within the dissipationless Schrödinger equation. One
can easily expect that if we make the value of γ sufficiently
small, the spin relaxation time becomes long and approaches
to a typical value. To clearly verify this expectation, we depict
the γ dependence of sy

GT(�, t ) in Fig. 11. As expected, the
lifetime of the low-frequency precession is shown to grow
with h̄/γ increasing. Therefore, the GKSL equation approach
can control the relaxation time of the pulse-driven preces-
sion with tuning the phenomenological parameter γ . If we
further introduce a k or � dependence of �k

i j in Eq. (20), it
would be possible to control the relaxation times of different
observables.

V. COMPARISONS

As we mentioned in the Introduction, the IFE has long been
explored and hence there are a lot of papers associated with
IFEs. Here, we shortly compare our present theory and some
of the previous analyses.

A standard method of accurately describing laser-driven
dynamics in many-electron systems is to (numerically) solve
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(a)

(b)

(c)

(a1) (a2)

(b1) (b2) (b3)

(c1) (c2) (c3)

(a3)

FIG. 10. (a), (b) Gabor transformation of 〈sα〉t , sα
GT(�, t ), as a function of time t and the observed frequency �. The magnitude of

log10 |sα
GT(�, t )| is color plotted. Panels (a) and (b) respectively correspond to the cases with a finite relaxation rate (γ /thop = 0.03) and

without dissipation (γ /thop = 0). Other parameters are chosen to be thop = 1, αR/thop = 0.1, Bx/thop = 0.1, eaE0/thop = 0.5, h̄ω/thop = 1, and
T = 0. (c) log10 |sα

GT(�, t )| at � = �α
slow for γ /thop = 0.03 (red line) and γ /thop = 0 (blue line).

the Schrödinger equation for isolated systems [16,17,21,26]
(although it can be applied to only small-size systems). This
method has been often applied in theoretical works of photoin-
duced phenomena in solids, especially in correlated systems,
and has captured their short-time evolution. On the other
hand, the GKSL equation approach used in this study can
capture the dissipation effect, which is inevitable in experi-
ments, and hence it can describe both short- and long-time
evolution of the laser-driven phenomena. This study focuses
on IFEs and their dissipation effects in metallic systems, while
Refs. [18,19] have analyzed dissipation effects of THz-laser-
driven IFEs in magnetic insulators.

In addition to the numerical methods, recently, Floquet-
theory techniques [1–4] have begun to be applied to IFEs
[4,21,22]. In particular, the Floquet Hamiltonian is useful
to understand the essential picture of IFE [21,22]. We have
indeed used the effective Hamiltonian in this work. However,
we note that (as discussed in Sec. IV) the Floquet Hamiltonian

is not enough to quantitatively understand the time evolution
of physical quantities. Estimating the time evolution during
laser application is necessary for an accurate prediction and
an explanation for experimental results of IFEs.

Perturbation approaches with respect to laser fields
[9,20,24] are powerful to obtain the lower-order effects of
laser. In particular, they enable one to obtain analytical ex-
pressions for laser-driven quantities. It is difficult to obtain
such analytical results from the numerical computation based
on Schrödinger or GKSL equations, whereas the numerical
approaches can capture nonperturbative effects of laser (see,
e.g., Fig. 3).

Most of the above techniques basically start from a mi-
croscopic Hamiltonian. On the other hand, phenomenological
theories have also been developed for IFEs. For instance,
Ref. [25] has developed a combination method consisting
of the perturbation theory, the stochastic Landau-Lifshitz-
Gilbert (LLG) equation [7,64], and the phenomenological

(a) (b) (c)

FIG. 11. Dissipation-strength (γ ) dependence of the Gabor transform of spin, sy
GT(�, t ), in the laser-pulse-driven ferromagnetic state in

HFM(t ). Panels (a), (b) and (c) respectively correspond to the results of γ /thop = 0.03, 0.01, and 0.005. The other parameters are all the same
as those of Fig. 10. As expected, the low-frequency mode (� < ω) survives longer with γ decreasing.
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multiple-temperature model [7]. The perturbation theory
(with the electron-band structure) is used to compute the
instantaneous magnetic field driven by a circularly polarized
laser pulse, and then the LLG and multiple-temperature mod-
els compute the ultrafast magnetization dynamics generated
by the instantaneous field, including laser-heating effects.
This method effectively describes two different timescale dy-
namics of photoinduced electron transitions and the correlated
spin dynamics after laser pulse application. In particular, it is
powerful to discuss laser-heating effects. However, we should
note that such a phenomenology requires several fitting pa-
rameters. On the other hand, in this work, we have tried to
develop a microscopic theory for IFE that relies as little on
phenomenological parameters as possible. As a result, for
instance, we have succeeded in describing the laser-pulse-
driven spin precession from the microscopic Hamiltonian (and
a simple jump operator). It is generally important to develop
the microscopic theory with reference to the phenomenology,
to deeply understand IFEs.

VI. CONCLUSIONS AND DISCUSSIONS

In this study, we have theoretically investigated the IFE
driven by continuous (pulse) waves for paramagnetic (ferro-
magnetic) states in 2D Rashba electron models. The quantum
master (GKSL) equation [32–35] makes it possible to handle
the spin dynamics driven by both pulse and continuous waves.
Moreover, it also enables us to take the dissipation effects into
account unlike the standard approach of the Schrödinger equa-
tion. We emphasize that the dissipation plays the significant
roles to realize the NESS in the case of cw (see Sec. III) and
to describe the spin dynamics in the case of laser pulse (see
Sec. IV). Through the comprehensive analyses in Secs. III
and IV, we have succeeded in revealing some fundamental
properties of the laser-driven NESS and laser-pulse-driven
precession, starting from the microscopic Hamiltonians.

In Sec. III, we have investigated the NESS that arises due
to the balance between the energy injection by cw laser and
the energy dissipation. We demonstrate that the laser-driven
magnetization and its nature can be captured by the Floquet
theory for dissipative systems [18,19] in the high-frequency
regime. We analytically and numerically prove that the power
law of magnetization, 〈〈sz〉〉 ∝ E2

0 /ω3, holds in the NESS.
With the GKSL equation, we predict the T and γ dependence
of IFE in a quantitative level. For example, for a typical value
of thop, the laser-driven magnetization is shown to remain large
enough even when T is as high as room temperature.

Section IV is devoted to the analysis of the short-laser-
pulse-driven IFE. We have focused on ferromagnetic metal
states by introducing a mean-field-type Zeeman interaction
and computed the pulse-driven ultrafast spin dynamics in
the ferromagnetic state by using the GKSL equation. We
find that a pulse-induced instantaneous magnetic field leads
to a precession of the spin moment, which has been often
observed in experiments of IFE. Furthermore, by introduc-
ing time-dependent effective Hamiltonians, we show that the
precession can be understood from the Floquet-theory per-
spective. We note that when even “a few”-cycle pulse is
applied, the Floquet picture is still useful to understand some
essential properties of the laser-pulse-driven systems.

Our results indicate that the GKSL equation [32–35] and
the Floquet theory for dissipative systems [18,19] are useful to
deeply understand Floquet-engineering phenomena in solids
including IFE, in which the dissipation effect is usually in-
evitable. On the other hand (as we discussed in Sec. IV B), the
pulse-driven precession with the spin-wave frequency cannot
be reproduced within our free-electron model. The develop-
ment of a microscopic theory for such a spin-wave precession
mode is an interesting future issue. The analysis of dissipation
effects beyond the GKSL equation [65–67] is also important
in broad fields of nonequilibrium physics.
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APPENDIX A: TYPICAL VALUES OF PARAMETERS

When we theoretically study laser-driven systems, we
should consider realistic values of many parameters. The
number of them is generally much larger than that in equi-
librium systems. Here, we prepare two tables, Tables I and
II, in which typical values of important parameters are
listed.

APPENDIX B: RELATION BETWEEN GKSL
AND BLOCH EQUATIONS

In this study, we have treated dissipation effects by using
the GKSL equation. Below, we explain that the GKSL equa-
tion encompasses the (optical) Bloch equation [68], which
has been often used to describe photoinduced dynamics in
semiconductors. We assume that the system is given by a
two-level quantum model, whose 2 × 2 Hamiltonian denotes
H . The GKSL equation for the density matrix ρ is written as
follows:

dρ

dt
= −i[H, ρ] +

∑
m

(
LmρL†

m − 1

2
{L†

mLm, ρ}
)

, (B1)

where Lm is a jump operator describing a dissipation pro-
cess. We note that the dissipation term in Eq. (B1) can be
reexpressed as Eq. (20) by changing the definition and nor-
malization of Lm. In the two-level system, arbitrary operator
A is given by A = 1

2

∑
α=0,x,y,z Aασα , where σx,y,z are Pauli

matrices and σ0 is the 2 × 2 unit matrix. The density ma-
trix ρ is hence expressed as ρ = 1

2

∑
α=0,x,y,z ρασα and the

determination of the density matrix is equivalent to giving
the vector of three coefficients ρ = (ρx, ρy, ρz ). Similarly, the
Hamiltonian H and each jump operator Lm may be, respec-
tively, defined by three-component vectors H = (Hx, Hy, Hz )
and Lm = (Lm,x, Lm,y, Lm,z ). Using these instruments, one can
exactly map the GKSL equation to the following differential
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TABLE I. Several quantities that are used when we consider laser-driven electron systems. In the second column, we define typical
quantities in the dimensionless fashion. The symbol “dl” means “dimensionless.” In the third column, we show typical values of these
quantities under the condition that the dimensionless parameters are fixed to E (dl)

0 = 1, h̄ω(dl) = 1, T (dl) = 1, t (dl ) = 1, and γ (dl) = 1 and
we set thop = 1 eV and a = 5 Å. See Ref. [21].

Parameter Dimensionless parameter E (dl)
0 = 1, h̄ω(dl) = 1, T (dl) = 1, γ (dl) = 1, t (dl) = 1

Strength of laser electric field E (dl)
0 = eaE0/thop E0 � 20 MV cm−1

Strength of laser magnetic field B(dl)
0 = gμBB0/thop = gμB(E0/c)/thop B0 � 6.67 T

Laser angular frequency h̄ω(dl) = h̄ω/thop
ω

2π
� 2.42 × 102 THz

Temperature kBT (dl) = kBT/thop T � 1.16 × 104 K

Strength of dissipation γ (dl) = γ /thop γ = 1 eV

Time t (dl) = t thop/h̄ t � 0.66 fs

equation:

d

dt

⎛
⎜⎝ρx

ρy

ρz

⎞
⎟⎠ = H × ρ +

∑
m

⎛
⎜⎝−τ x

m τ
xy
m τ xz

m

τ
yx
m −τ

y
m τ

yz
m

τ zx
m τ

zy
m −τ z

m

⎞
⎟⎠

⎛
⎜⎝ρx

ρy

ρz

⎞
⎟⎠

+ i
∑

m

(Lm × L†
m)/2, (B2)

where τ i
m = (|Lm,i+1|2 + |Lm,i+2|2)/2 (here, x, y, and z, re-

spectively, read as 1, 2, and 3 mod 3) and τ
i j
m = (Lm, jLm,i

∗ +
Lm, j

∗Lm,i )/4 for i �= j. The trace conservation of ρ leads to
the traceless nature of Tr[Lm] = 0.

The jump operators are here determined such that ρ(t )
approaches to an equilibrium state of the time-independent
Hamiltonian Hstat: The full Hamiltonian is given by H (t ) =
Hstat + δH (t ). To quantitatively discuss the jump operators,
we prepare the eigenstates of Hstat . Two energy eigenstates of
Hstat are defined by |E1〉 and |E2〉, whose eigenenergies E1,2

satisfy E1 < E2. In this setup, the density matrix

ρgs = |E1〉〈E1| =
(

1 0
0 0

)
(B3)

corresponds to the ground state.
To consider the relation between the GKSL and Bloch

equations, we somewhat restrict the form of the jump op-
erators: Each Lm is assumed to be proportional to σz, σ+ =
(σx + iσy)/2 or σ− = (σx − iσy)/2. For example, we do not
consider the case where Lm is given by a linear combination
of σz and σ±. Under this constraint, the matrices in the sec-
ond term of Eq. (B2) possess only diagonal components τ i

m.
Similarly, the vector L × L† can have only the z component.

1. Absence of σz

Here, we consider the case where jump operators do not
include any diagonal component. Two jump operators are

TABLE II. Laser energy flux for reference field strengths. See
Ref. [48].

E0 = 1 MV cm−1

Strength of laser magnetic field (B0) 0.33 T
Laser energy flux (I) 1.3 GW cm−2

defined by

L1 =
√

�12σ+ =
√

�12|E1〉〈E2|,
L2 =

√
�21σ− =

√
�21|E2〉〈E1|. (B4)

This setup corresponds to the GKSL equation we have de-
fined in Sec. II C: The relation between the jump operator
in Sec. II C and that in Eq. (B4) is given by L12 = L1/

√
�12

and L21 = L2/
√

�21. The equation of motion for the density
matrix is

dρx

dt
= [H × ρ]x − ρx

T⊥
, (B5)

dρy

dt
= [H × ρ]y − ρy

T⊥
, (B6)

dρz

dt
= [H × ρ]z − ρz − �12−�21

�12+�21

T‖
, (B7)

where 1/T⊥ = (�12 + �21)/2 and 1/T‖ = �12 + �21. This
equation is nothing but the same form as the Bloch equation.
If we regard the vector ρ as a classical spin, T‖ and T⊥ may
be respectively interpreted as the longitudinal and transverse
relaxation times. Like Sec. II C, if �i j satisfy the detailed
balance condition

�i j = γ exp(−βEi )

exp(−βEi ) + exp(−βEj )
(i �= j), (B8)

the system relaxes to the equilibrium state of the time-
independent Hamiltonian. In fact, we find that the factor in
the final term of Eq. (B7) satisfies

�12 − �21

�12 + �21
= exp(−βE1) − exp(−βE2)∑

i=1,2 exp(−βEi )
= 〈ρz〉eq, (B9)

where 〈. . . 〉eq denotes the expectation value of an equilib-
rium state. Moreover, one finds T⊥ = 2T‖. Namely, the use
of Eq. (B4) corresponds to the Bloch equation under a special
condition that the relaxation times satisfy T⊥ = 2T‖. At T = 0
(β → ∞), �21 → 0 and 〈ρz〉eq = 1.

2. Existence of σz

In addition to L1,2, we introduce another jump operator
with a diagonal component:

L3 =
√

γ⊥
2

σz. (B10)
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From Eq. (B2), the GKSL equations with three jump operators
L1,2,3 are expressed as

dρx

dt
= [H × ρ]x −

(
1

T⊥1
+ 1

T⊥2

)
ρx, (B11)

dρy

dt
= [H × ρ]y −

(
1

T⊥1
+ 1

T⊥2

)
ρy, (B12)

dρz

dt
= [H × ρ]z − ρz − �12−�21

�12+�21

T‖
, (B13)

where 1/T⊥1 = (�12 + �21)/2 = γ /2 and 1/T⊥2 = γ⊥. This
is also equivalent to a Bloch equation. The longitudinal relax-
ation time is T‖ = 1/γ , while the transverse relaxation time
is given by T⊥ = (1/T⊥1 + 1/T⊥2)−1 = 2/(γ + 2γ⊥). That is,
one sees that the additional jump operator L3 contributes to
only transverse relaxation process and it is not sufficient to
make the system relax to an equilibrium state. This is because
L3 does not include any transition between the ground state
|E1〉 and the excited one |E2〉. We can control the magnitude
and ratio of T⊥ and T‖ by tuning the dissipation strength of
jump operators γ and γ⊥. This control is impossible when we
have only L1,2. We note that 2T‖ � T⊥ holds in this Bloch (or
GKSL) equation [69,70].

It is noteworthy that recently there have been a few ad-
vancements in theoretical studies that argue some issues
about the relaxation-time approximation in the GKSL equa-
tion [65–67].

APPENDIX C: DENSITY MATRICES IN NESS

In this Appendix, we consider the density matrices of
the laser-driven NESS in GKSL equations. We focus on the
GKSL equation for laser-driven time-periodic systems with a
static jump operator like Eqs. (19) and (20):

dρ(t )

dt
= Lρ(t ) = −i[H (t ), ρ(t )] + D(ρ(t )), (C1)

where ρ(t ) is the density matrix, H (t ) = H (t + Tω ) is the
time-periodic Hamiltonian, and D(ρ(t )) is the dissipation part
with a static jump operator Lm. For the dissipative quantum
system, we can apply the Floquet high-frequency expansion
[18,19] like the case of Schrödinger equations for isolated
systems. To this end, we divide the time-evolution operator
into three parts as follows:

U (t, 0) = eG(t )ρtLeff e−G(0), (C2)

where U (t, 0) is the time-evolution operator, G(t ) = G(t +
Tω ) is the micromotion operator describing the faster dy-
namics than the laser period Tω = 2π/ω, and Leff is the
time-independent Lindbladean describing the slow dynamics.
Via the high-frequency expansion for Leff and G(t ), we ob-
tain the following effective equation of motion for the slow
dynamics [18]:

dρ(t )

dt
= Leffρ(t ) = −i[HFE, ρ(t )] + D(ρ(t )), (C3)

where time-independent Flouqet Hamiltonian HFE is given
by HFE = H0 + ∑

n
[H−nHn]

nω
+ Oω−2 and Hn is defined from

the Fourier transform of H (t ): H (t ) = ∑
n Hne−inωt (n ∈ Z).

Here, we define

ρ̃(t ) = etLeff e−G(0)ρ(0) (C4)

and ρ̃∞ = limt→∞ρ̃(t ). Using them, the density matrix for the
NESS is given by

ρNESS(t ) = eG(t )ρ̃∞, (C5)

and we find that ρ̃(t ) satisfies

dρ̃(t )

dt
= Leff ρ̃(t ). (C6)

Because G(t ) gives an oscillating factor to the density matrix,
the main time-independent nature of the NESS is written in
ρ̃∞. From Eq. (C6), we see that ρ̃∞ is the solution of

Leff ρ̃(t ) = 0. (C7)

Below we will explain the explicit form of ρ̃∞ in some repre-
sentative setups.

1. H0 = Hstat

In laser-driven systems, the Hamiltonian is generally
given by

H (t ) = Hstat + δH (t ), (C8)

where Hstat is the time-independent part and δH (t ) = δH (t +
Tω ) is the time-dependent periodic part. First, we consider the
case where

H0 = Hstat. (C9)

This condition often holds in periodically driven systems. In
addition, we assume that jump operators are given by Li j =
|Ei〉〈Ej | and the corresponding coupling constants �i j satisfy
the detailed balance condition

� jie
−βEi = �i je

−βEj (i �= j),

�ii = 0 (C10)

such that for δH (t ) = 0, the system approaches to the equi-
librium state of Hstat . Here, Ei is the ith eigenenergy of Hstat

and |Ei〉 is the corresponding eigenstate. The solution of the
NESS under the condition of Eqs. (C9) and (C10) is given in
Ref. [18]. For simplicity, we restrict ourselves to the nonde-
generate case: Ei �= Ej for i �= j. Here, we shortly review the
result of Ref. [18].

To obtain the density matrix of the NESS, it is convenient
to divide ρ̃∞ into the diagonal part ρ̃

(d )
∞ and the off-diagonal

one ρ̃
(od )
∞ as follows:

ρ̃ (d )
∞ :=

∑
k

ρkk|Ek〉〈Ek|, ρ̃ (od )
∞ :=

∑
k,l (l �=k)

ρkl |Ek〉〈El |,

(C11)

where ρ̃∞ = ρ̃
(d )
∞ + ρ̃

(od )
∞ . Equation (C7) means

〈En|Leff ρ̃∞|Em〉 = 0. Focusing on the dissipation part,
we have

〈En|D(ρ̃∞)|Em〉 =
∑

i

(�niρ
ii − �inρ

nn)δnm

− γnmρnm(1 − δnm), (C12)
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where γnm = 1
2

∑
i(�in + �im). Second, considering the com-

mutator part −i〈En|[HFE, ρ̃∞]|Em〉, we obtain

− i(En − Em)ρnm − i(ρmm − ρnn)〈En|�HFE|Em〉
− i〈En|

[
�HFE, ρ̃ (od )

∞
]|Em〉 − γnmρnm = 0 (m �= n),

(C13)

− i〈En|
[
�HFE, ρ̃ (od )

∞
]|En〉 +

∑
i

(�niρ
ii − �inρ

nn)

= 0 (m = n), (C14)

where �HFE = HFE − H0. By using these equalities, we can
obtain ρkl . From Eq. (C14), we find that the diagonal ele-
ments ρ ii satisfy

∑
i(�niρ

ii − �inρ
nn) = 0 in the (1/ω)0 order.

Therefore, we have

ρ (d )
∞ = ρcan + O(ω−2), (C15)

where ρcan is the canonical distribution

ρcan =
∑

k e−βEk |Ek〉〈Ek|∑
l e−βEl

. (C16)

Using this result, we also obtain the off-diagonal elements:

ρ̃ (od )
∞ = σFE + O(ω−2), (C17)

where σFE is defined as

〈En|σFE|Em〉 = 〈En|�HFE|Em〉
(En − Em) − iγnm

(
ρn

can − ρm
can

)
. (C18)

This off-diagonal part represents the Floquet engineering.

2. H0 �= Hstat

In the following, we consider the case where H0 �= Hstat,
while Eqs. (C8) and (C10) hold. In this case, Eq. (C12) still
holds, whereas we have to slightly modify the calculation
below Eq. (C12). First, we divide H0 into two parts as follows:

H0 = H (0)
0 + H (1)

0 , (C19)

where H (0)
0 and H (1)

0 are, respectively, O(ω0) and O(ω−1).
Moreover, we define

�H (1)
FE = HFE − H (0)

0 , (C20)

as an extension of �HFE. The Floquet Hamiltonian is given
by HFE = H (0)

0 + �H (1)
FE and �H (1)

FE is O(ω−1). These new
parameters are useful to estimate the density matrix in terms
of the power 1/ω. The remaining task is to compute the
matrix elements 〈En|Leff ρ̃∞|Em〉. The diagonal (m = n) and
off-diagonal (m �= n) elements are computed as

− i(ρmm − ρnn)〈En|H (0)
0 + �H (1)

FE |Em〉
− i〈En|

[
H (0)

0 + �H (1)
FE , ρ̃ (od )

∞
]|Em〉 − γnmρnm

= 0 (m �= n), (C21)

− i〈En|
[
H (0)

0 + �H (1)
FE , ρ̃ (od )

∞
]|En〉 +

∑
i

(�niρ
ii − �inρ

nn)

= 0 (m = n). (C22)

Here we have used the Hermitian natures (ρmn)∗ = ρnm and
〈Em|H0|En〉∗ = 〈En|H0|Em〉.

For simplicity, below we restrict ourselves to two-level
systems, in which indices m and n take only two values of
1 and 2. In such two-level systems, the above equations are
reduced to(
i〈En|H (0)

0 + �H (1)
FE |En〉 − i〈Em|H (0)

0 + �H (1)
FE |Em〉 + γnm

)
ρnm

+ i(ρmm − ρnn)
[〈En|�H (1)

FE |Em〉 + 〈En|H (0)
0 |Em〉]

= 0 (m �= n), (C23)

iρkn
[〈En|H (0)

0 + �H (1)
FE |Ek〉

] − iρmn
[〈Ek|H (0)

0 + �H (1)
FE |En〉

]
+ (�nkρ

kk − �knρ
nn) = 0 (m = n �= k). (C24)

Solving these four equations, we can obtain all the matrix
elements of ρ11, ρ12, ρ21, and ρ22. The result is

ρ11 = −�12 + 2 Im{G∗F }
4 Im{G∗F } − γ

,

ρ12 = (�12 − �21)

4 Im{G∗F } − γ
F = ρ21∗

, (C25)

ρ22 = −�21 + 2 Im{G∗F }
4 Im{G∗F } − γ

,

where γ = 2γ12 and we have defined

F = −iG/J,

G = 〈E1|H (0)
0 |E2〉 + 〈E1|�H (1)

FE |E2〉,
J = i

(〈E1|H (0)
0 + �H (1)

FE |E1〉 − 〈E2|H (0)
0 + �H (1)

FE |E2〉
)

+ γ /2. (C26)

To obtain an explicit form of the density matrix in the high-
frequency regime, we expand F and Im{G∗F } in terms of 1/ω

and we define

F = F (0) + F (1) + F (2) + · · · ,

Im{G∗F } = F (0) + F (1) + F (2) + · · · , (C27)

where F (m) and F (m) are, respectively, the (1/ω)m-order terms
of F and Im{G∗F }. As a result, the density matrix in the
NESS is given by

ρ11 = 1

λ
[�12 − 2(F (0) + F (1) )]

+ 4

λ2
(�12 − 2F (0) )4F (1) + O(ω−2),

ρ12 = (�12 − �21)(−(F (0) + F (1) )/λ − 4F (0)F (1)/λ2)

+ O(ω−2) = ρ21∗
,

ρ22 = 1

λ
[�21 − 2(F (0) + F (1) )]

+ 4

λ2
(�21 − 2F (0) )F (1) + O(ω−2), (C28)

where we have introduced new parameters

λ = 2γ

κ

∣∣〈E2|H (0)
0 |E1〉

∣∣2 + γ ,

κ = (〈E1|H (0)
0 |E1〉 − 〈E2|H (0)

0 |E2〉
)2 + (γ /2)2. (C29)
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At the end of the subsection, we comment on a simple
case of H (0)

0 = Hstat. In this case, the computation flow of Ap-
pendix C 1 is still applicable if H0 and �HFE are respectively
replaced with H (0)

0 and �HFE + H (1)
0 .

3. H0 = CHstat

Here, we shortly consider a special case of H0 �= Hstat in
two-level systems. Namely, we consider the case where H0 is
proportional to Hstat: H0 = CHstat with C being a constant in-
dependent of ω. In this case, 〈En|H0|Em〉 = CδnmEm holds and
it leads to λ = γ , F (0) = F (1) = 0, and F = 〈E1|�HFE|E2〉

−C(E1−E2 )+iγ /2 +
O(ω−2). Hence, the diagonal components of the density ma-
trix ρ̃∞ are

ρkk = ρk
can + O(ω−2) = e−βEk∑

l e−βEl
+ O(ω−2). (C30)

The off-diagonal components ρkl (k �= l ) are

ρkl = 〈Ek|�HFE|El〉
C(Ek − El ) − iγ /2

(
ρk

can − ρ l
can

) + O(ω−2). (C31)

Equations (C30) and (C31) are still applicable in generic
multilevel systems if we replace γ /2 with γkl in Eq. (C31).

4. �ii �= 0

Finally, we consider the case that a “diagonal” jump op-
erator Lii = |Ei〉〈Ei| exists under the condition of H0 �= Hstat.
For simplicity, we focus on two-level systems. As in Ap-
pendix B 2, the diagonal jump operator is given by

L3 =
√

γ⊥
2

σz. (C32)

For this setup, the dissipation term of the GKSL equation is
written as

D(ρ) =
∑

i, j(i �= j)

�i j

[
Li jρL†

i j − 1

2
{L†

i jLi j, ρ}
]

+
[

L3ρL†
3 − 1

2
{L†

3L3, ρ}
]
, (C33)

where off-diagonal jump operators L12,21 are assumed to sat-
isfy the detailed balance condition of Eq. (C10). Computing
the matrix elements 〈En|Leff ρ̃∞|Em〉 with the dissipation term
of Eq. (C33), we can obtain the generic formula for the den-
sity matrix in the NESS. The result is almost the same as
Eq. (C28), but we should respectively replace the parameters
λ and κ with

λ̃ = 2

κ̃
(γ + 2γ⊥)

∣∣〈E2|H (0)
0 |E1〉

∣∣2 + γ ,

κ̃ = (〈E1|H (0)
0 |E1〉 − 〈E2|H (0)

0 |E2〉
)2 + (γ + 2γ⊥)2/4.

(C34)

The generalization to multilevel systems is straightforward.

APPENDIX D: ADDITIONAL RESULTS
OF PULSE-DRIVEN PRECESSION

In Sec. IV B, we have analyzed the laser-pulse-driven spin
dynamics in a ferromagnetic metal state with magnetization
being a moderate value (Sx

occ = 0.248). As we mentioned, the
reason why we choose a moderate value Sx

occ = 0.248 is that
in real metallic magnets, only a part of conducting electrons
near Fermi surface contribute to the magnetic order [53]. In
this section, aside from such a realistic setup, we show the
numerical results of spin dynamics in two extreme cases:

FIG. 12. Time evolution of 〈sx〉t , 〈sy〉t , and 〈sz〉t computed by the GKSL equation for (a) a paramagnetic metal state (Sx
occ = 0 and Bx = 0)

and (b) a nearly saturated state (Sx
occ � 0.494) in the model (37) at T = 0. Dotted lines denote 〈sα〉t , while solid lines are the slow modes

defined by sα
slow(t ) = 1

2Tω

∫ t+Tω

t−Tω
dt ′�〈sα〉t ′ . Symbols CPL+ and CPL−, respectively, correspond to right (h̄ω/thop = 1) and left (h̄ω/thop = −1)

circularly polarized pulses. The gray region stands for the width of the laser pulse τ . Other parameters are all the same as those of Fig. 6(a):
thop = 1, eaE0/thop = 0.5, α/thop = 0.1, and γ /thop = 0.01.
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the first case is the paramagnetic metal state without mean
field (Bx = 0) and the second is a nearly saturated state with
Sx

occ → +0.5.
From Fig. 12(a), one sees that there is no pulse-driven

precession of the y component of electron spins in the para-
magnetic state. This is a natural result because we have no
magnetic moment unlike Fig. 4. Instead, we find that the laser
pulse induces a small magnetization along Sz axis and it may
be interpreted as a short-time version of IFE in the NESS.
Figure 12(b) shows that in the nearly saturated state, the y and

z components of spins have only a very fast oscillation, whose
frequency is the same as the laser one ω. The numerical result
indicates that FE does not occur well in this state. This would
be because the direction of spin moment is strongly locked by
a strong mean field Bx and laser cannot change their direction
and magnitude well.

From these results, we can conclude that the ferromagnetic
metal state with a small or moderate magnetization, that we
have used in Sec. IV, is close to a real setup of IFE in magnetic
systems.
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