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Quantum dynamic response-based NV-diamond magnetometry: Robustness to decoherence
and applications in motion detection of magnetic nanoparticles
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We propose a quantum sensing protocol that leverages the dynamical response of physical observables to
quenches in quantum systems. Specifically, we use the nitrogen-vacancy (NV) color center in diamond to
realize both scalar and vector magnetometry via quantum response. Furthermore, we suggest a method for
detecting the instantaneous motion of magnetic nanoparticles. To achieve this, we derive the closed exact
form of the Berry curvature corresponding to NV centers and design quenching protocols to extract the Berry
curvature via dynamical response. By constructing and solving nonlinear equations, the magnetic field and
instantaneous motion velocity of the magnetic nanoparticle can be deduced. We investigate the feasibility of
our sensing scheme in the presence of decoherence and show through numerical simulations that it is robust
to decoherence. Intriguingly, we have observed that a vanishing nuclear spin polarization in diamond benefits
our dynamic sensing scheme, which stands in contrast with conventional Ramsey-based schemes. In comparison
with Ramsey-based sensing schemes, our proposed scheme can sense an arbitrary time-dependent magnetic field
if its time dependence is nearly adiabatic.
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I. INTRODUCTION

Quantum metrology [1–6] and quantum sensing [7–9]
have attracted significant attention in recent years. Quantum
sensors, leveraging the unique properties of quantum sys-
tems, hold promise for detecting weak or nanoscale signals
that surpass the capabilities of classical sensors. While most
quantum sensors rely on interference schemes, there are situa-
tions in which implementing interferometry or Ramsey-based
schemes becomes challenging [10,11]. One such scenario
arises when the signal to be detected exhibits a short period
of viability, making it impractical to accumulate the neces-
sary phase for information encoding in the interference-based
scheme [12]. As a result, there is a growing emphasis on
exploring mechanisms to realize innovative quantum sensing
schemes, driving rapid developments in the field of quantum
science and technology [6,13–17].

In recent studies [18–22], the concept of dynamical re-
sponse has been proposed as a means to detect geometric
quantities in quantum many-body systems. Notably, the emer-
gence of Berry curvature in the nonadiabatic response of
physical observables to slow quenches, irrespective of the
interaction nature of the system, has been identified [18].
Building upon these findings, in this paper, we showcase the
potential of utilizing the mechanism of dynamic response
for quantum sensing, offering a complementary approach to
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the conventional interference-based sensing schemes. Specif-
ically, we present quantum response-based sensing schemes
utilizing nitrogen-vacancy (NV) color centers in diamond
[23,24]. The NV center in diamond is a highly attractive
candidate for quantum sensing due to its efficient initializa-
tion and readout capabilities through optical excitations as
well as its relatively long coherence time, even at ambient
temperature [25,26]. Consequently, extensive theoretical and
experimental investigations have been conducted to explore
the quantum sensing potential of NV centers [27–32]. No-
tably, NV centers have demonstrated the ability to sense
magnetic fields with nanoscale spatial resolution [31,33].
Owing to their high spatial resolution, NV sensors have
found applications in condensed matter physics, particularly
for investigating the magnetic properties of mesoscopic sys-
tems. Notably, NV centers have been instrumental in sensing
dynamic magnetic fields generated by moving spins, spin
waves, or magnetic oscillations at the nanoscale. For ex-
ample, single-spin magnetometry utilizing NV centers has
been employed to investigate magnons in magnetic insulators
[34]. Additionally, relaxometry techniques employing single
NV sensors have enabled nanoscale imaging of magnetic
order in antiferromagnetic materials [35]. NV magnetometry
has also been applied to sense domain walls and skyrmion
bubbles in thin-film systems [36]. Moreover, NV magne-
tometry has demonstrated the capability to detect individual
proton spins on the surface of diamond with angstrom res-
olution, utilizing electron spins on the diamond surface and
proximal NV centers within the diamond [37]. Furthermore,
single-spin NV magnetometry has been employed to probe
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magnetic fields generated by spin-torque oscillators in mag-
netic insulators [38].

Other geometric quantities, like the geometric phase, in
NV centers have also been investigated [39,40] and proposed
in applications in quantum sensing, like gyroscopes [41,42]
and magnetometers [43]. Furthermore, owing to the chemical
inertness and excellent quantum property under ambient con-
ditions of diamond, NV sensors hold promise for applications
in bioimaging [44]. In this paper, we propose an approach
using NV centers through quantum dynamic response to sense
the motion of magnetic nanoparticles, which has the potential
to find applications in the field of bioimaging.

Before introducing the dynamic response-based sensing
scheme, we provide a brief overview of the quantum response
theory [18,21]. By employing adiabatic perturbation theory
[19], the general formula for quantum response can be derived
as follows (see Appendix A for detailed information):

Mμ = const. +
∑

λ

vλF (m)
μλ + O

(
v2

λ

)
. (1)

Here, Mμ represents the observable being measured in the ex-
periment, often referred to as the generalized force along the
μ direction. It can be defined as Mμ ≡ −〈ψ (t f )|∂μH |ψ (t f )〉,
with ∂μH ≡ ∂H/∂μ. The quantum state evolves according
to |ψ (t f )〉 = T exp[−i

∫ t f

0 H (t ′)dt ′]|�m(0)〉, where T denotes
the time-ordering operator, and the time dependence of the
Hamiltonian is introduced by the time-dependent parameters
H (t ) = H[λ(t ), μ(t ), . . . ] ≡ H (λ,μ, . . . ). The initial state
is prepared as one of the instantaneous eigenstates of the
Hamiltonian H (t )|�m(t )〉 = Em(t )|�m(t )〉. The quench pro-
cess is achieved by varying the parameter λ(t ) over time, with
vλ ≡ ∂λ/∂t representing the instantaneous quench velocity
along the λ direction at time t f . Notably, the Berry curvature
F (m)

μλ corresponding to the instantaneous eigenstate |�m(t f )〉
emerges as the coefficient in the nonadiabatic response when
the quench velocity approaches zero.

We would like to make some comments regarding the
sensor utility of the quantum response formula presented
in Eq. (1). The validity of this equation does not rely on
the specific details of the quench process if the quench is
performed in a nearly adiabatic manner. Most notably, this
formula indicates that, by implementing quenches along the
λ direction and measuring the corresponding response along
the μ direction, we can extract the value of the Berry curva-
ture F (m)

μλ . Since the Berry curvature is a geometric quantity

solely determined by the parameter-dependent instantaneous
eigenstate of the quantum system, it remains independent
of the specific details of the quench process. Moreover, if
the physical quantity of interest is encoded within the Berry
curvature, we can determine its value by measuring the Berry
curvature using the quench-response mechanism. Conversely,
if the Berry curvature is known a priori, we can determine the
instantaneous quench velocity by measuring the response of
the system.

This paper is organized as follows: In Sec. II, we de-
rive the closed exact form of the Berry curvature associated
with NV centers. In Sec. III, we present a concrete dynamic
response-based scheme for NV magnetometry and assess
its feasibility by considering the effects of decoherence. In
Sec. IV, we propose a protocol for detecting the motion of
a magnetic nanoparticle using quantum response. In Sec. V,
we investigate the sensitivity of our quantum response-based
sensing scheme. Finally, summaries and discussions are made
in Sec. VI.

II. BERRY CURVATURE OF NV CENTERS

Our focus centers on utilizing the NV center in diamond
to realize dynamic response-based quantum sensing. In this
section, we employ Sylvester’s formula to derive a formalism
of the Berry curvature, solely in terms of the eigenvalues of the
parameter-dependent Hamiltonian. Then utilizing this formal-
ism, we derive a closed exact analytic expression for the Berry
curvature associated with NV centers. Finally, we demonstrate
the quantum response scheme by applying a linear quench
field.

A. Formalism of Berry curvature using Sylvester’s formula

In general, the Berry curvature can be expressed as the
imaginary part of the geometric tensor Fμλ = −2�[χμλ]. The
geometric tensor χμλ is defined as follows [45]:

χμλ = 〈∂μ�|∂λ�〉 − 〈∂μ�|�〉〈�|∂λ�〉, (2)

where |∂λ�〉 ≡ ∂|�〉
∂λ

, and |�〉 ≡ |�(λ,μ)〉 represents a
parameter-dependent quantum state. When the parameter-
dependent quantum state corresponds to the instantaneous
eigenstates of the parameter-dependent Hamiltonian, given
by H (λ,μ)|φm(λ,μ)〉 = Em(λ,μ)|φm(λ,μ)〉, the Berry cur-
vature can be determined using the following expression:

F (m)
μλ = i

∑
n �=m

〈φm|∂μH |φn〉〈φn|∂λH |φm〉 − 〈φm|∂λH |φn〉〈φn|∂μH |φm〉
[En(λ,μ) − Em(λ,μ)]2 , (3)

assuming the eigenstate |φm〉 is nondegenerate. This formula
immediately indicates that Fλλ = 0 and F (m)

λμ = −F (m)
μλ .

Sylvester’s formula states that any function f (Â) of the
n × n matrix Â with distinct eigenvalues λi can be represented
as [46]

f
(
Â
) =

n∑
i=1

f (λi)Âi, (4)

where

Âi =
∏
j �=i

1

λi − λ j
(Â − λ j1). (5)

Proof: Let us first consider the situation where Â is a
Hermitian matrix. Equation (4) suggests a resemblance to the
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spectral decomposition:

f
(
Â
) =

n∑
i=1

f (λi )|ψi〉〈ψi|, (6)

where |ψi〉 are the eigenvectors corresponding to the eigen-
values λi, i.e., Â|ψi〉 = λi|ψi〉. To prove that Âi is indeed
the projector |ψi〉〈ψi|, we apply the completeness relation
1 = ∑

i |ψi〉〈ψi| on the right-hand side of Eq. (5). This yields∏
j �=i

1

λi − λ j
(Â − λ j1)

∑
k

|ψk〉〈ψk| = |ψi〉〈ψi|. (7)

When Â is non-Hermitian, we need to demonstrate that
Âi = |ψi,R〉〈ψi,L|. The proof follows a similar approach,
with the completeness relation now taking the form 1 =∑

i |ψi,R〉〈ψi,L|, where |ψi,R〉 and |ψi,L〉 are the right and
left eigenvectors, respectively. Notably, employing Eqs. (4)
and (5), we can calculate the dynamics governed by a
non-Hermitian Hamiltonian without needing to resort to a
biorthogonal basis.

Upon examining the Berry curvature F (m)
μλ in Eq. (3), it

becomes apparent that |φn〉〈φn| = Hn, where

Hn =
∏
j �=n

1

En − Ej
(H − Ej1). (8)

Furthermore, we have 〈φm|X̂ |φm〉 = Tr(|φm〉〈φm|X̂ ). Conse-
quently, we can express

〈φm|∂μH |φn〉〈φn|∂λH |φm〉
= 〈φm|(∂μH )Hn(∂λH )|φm〉
= Tr[|φm〉〈φm|(∂μH )Hn(∂λH )]

= Tr[Hm(∂μH )Hn(∂λH )]. (9)

As a result, the Berry curvature can be represented as

F (m)
μλ = i

∑
n �=m

Tr
{
X̂ (mn)

μλ − [
X̂ (mn)

μλ

]†}
(En − Em)2

= i
∑
n �=m

2 Im
{
Tr

[
X̂ (mn)

μλ

]}
(En − Em)2

, (10)

where X̂ (mn)
μλ ≡ Hm(∂μH )Hn(∂λH ), and it is assumed that

∂μ,λH are still Hermitian operators, which is generally ap-
propriate. This result implies that, to calculate the Berry
curvature using our formalism in Eq. (10) instead of Eq. (3),
we only need to determine the corresponding eigenvalues of
the parameter-dependent Hamiltonian, without resorting to
the exact expression of the eigenvectors.

B. Berry curvature for NV centers

The Hamiltonian that describes the NV center driven by a
time-varying magnetic field is given by [47]

H (t ) = DS2
z + E

(
S2

x − S2
y

)
+ geμBh(t ) · S + S ·

N∑
k=1

Ak · Ik . (11)

Here, S = (Sx, Sy, Sz ) represents the spin operator of the NV
electronic spin, which has a spin quantum number S = 1.
The Hamiltonian contains several important terms: The first
term represents the diagonal term of the zero-field splitting,
and D/h̄ ≈ 2.87 GHz represents the zero-field splitting pa-
rameter, which exhibits temperature dependence and can be
exploited for temperature sensing. The second term corre-
sponds to the off-diagonal term of the zero-field splitting,
which captures the interaction between the electronic spin of
the NV center and an external electric field or stress, providing
a means for electric field and stress detection [48]. The third
term corresponds to the Zeeman energy of the NV electronic
spin in the presence of a time-varying magnetic field h(t ) =
[hx(t ), hy(t ), hz(t )], while ge is the NV electronic g factor and
μB is the Bohr magneton. This term enables the sensing of
magnetic fields. The last term describes the hyperfine inter-
action between the NV electronic spin and the surrounding
nuclear spins, such as 13C nuclear spins with a spin quantum
number I = 1

2 . This term enables spin sensing, where Ik rep-
resents the spin operator of the kth nucleus and Ak represents
the coupling strength of the NV electronic spin and the kth
nuclear spin. The NV center in diamond possesses remarkable
quantum properties, making it a versatile and promising quan-
tum sensor under ambient temperature. While the last term
is typically considered the origin of decoherence of the NV
electronic spin, for the purpose of demonstrating our dynamic
response-based sensing protocol, we temporarily neglect this
coupling term. Its effect will be carefully investigated in the
subsequent section.

By neglecting the last coupling term in Eq. (11), the sim-
plified Hamiltonian can be expressed (by assuming geμB = 1
for simplicity) as follows:

H =

⎛
⎜⎜⎜⎝

D + hz
hx−ihy√

2
E

hx+ihy√
2

0 hx−ihy√
2

E hx+ihy√
2

D − hz

⎞
⎟⎟⎟⎠. (12)

To obtain the analytic form of the Berry curvature using
Eq. (3), we need to find the explicit eigenenergies of this
parameter-dependent Hamiltonian. Fortunately, for a general
3 × 3 Hermitian matrix [49,50], since all the eigenvalues
are real, we can analytically calculate them in terms of the
trigonometric solutions (see Appendix B for more details). To
be specific, the eigenvalues of the Hamiltonian in Eq. (12) can
be obtained as follows:

E1 = 2

3

[
D − �0 cos

(
ϕ − π

3

)]
,

E2 = 2

3

[
D − �0 cos

(
ϕ + π

3

)]
,

E3 = 2

3

[
D + �0 cos

(ϕ

3

)]
, (13)

where �0 ≡
√

3
2 Tr[H2] and cos ϕ = 1

2 ( 3
�0

)3 det(H). Here,

we have used the traceless Hamiltonian H ≡ H − Tr[H ]
3 1,

045202-3



DING, ZHANG, LIU, CHEN, AND WANG PHYSICAL REVIEW B 110, 045202 (2024)

with

Tr[H2] = 2

3
D2 + 2E2 + 2h2,

det (H) = 2D

3

(
E2 + h2 − D2

9

)

+ h2
x (E − D) − h2

y (E + D),

where h2 = h2
x + h2

y + h2
z . An obvious advantage of this

trigonometric analytic form is that it immediately re-
veals E1 � E2 � E3 since 0 � ϕ � π . To the best of our
knowledge, the exact form of the eigenenergy of the NV
Hamiltonian presented in this paper has not been utilized

in the existing literature. Conventionally, discussions on the
eigenenergies or transitions of the NV center, a three-level
system, often rely on perturbation methods to obtain approx-
imate results [8,23]. However, these approximate approaches
can pose challenges when it comes to calculating the Berry
curvature, which requires a more precise understanding of the
eigenenergy structure of the system.

Equipped with the exact eigenenergies, we can now cal-
culate the Berry curvature corresponding to the ground
eigenstate using Eq. (10). After performing the involved yet
straightforward calculations, we derive the analytical expres-
sion for the Berry curvature associated with NV centers when
the Cartesian components of the magnetic field hx,y,z are em-
ployed as the driven parameters. The explicit forms of the
Berry curvature components are given as follows:

F (1)
xy = 9

√
3

4�5
0

hz

sin ϕ

[
E2(2D − E2)

sin2 ϕ+π

3

− E3(2D − E3)

sin2 ϕ

3

]
, (14)

F (1)
xz = 9

√
3

4�5
0

hy

sin ϕ

[
(D + E − E3)(2E + E3)

sin2 ϕ

3

− (D + E − E2)(2E + E2)

sin2 ϕ+π

3

]
, (15)

F (1)
yz = 9

√
3

4�5
0

hx

sin ϕ

[
(D − E − E3)(2E − E3)

sin2 ϕ

3

− (D − E − E2)(2E − E2)

sin2 ϕ+π

3

]
. (16)

It is worth noting that these analytical results reveal some
intriguing features. Specifically, when hz = 0, we have Fxy =
0, and similarly, when hx = 0 (hy = 0), we find Fyz = 0
(Fxz = 0).

With the explicit formulation of the Berry curvature at
our disposal, we are now equipped to develop sensing proto-
cols that harness the quantum dynamical response mechanism
described by Eq. (1). In the subsequent sections, we will
illustrate specific sensing schemes based on quantum response
and thoroughly examine their feasibility. Through these inves-
tigations, we aim to establish the practicality and effectiveness
of employing the quantum dynamical response for sensing
applications.

C. Demonstration of a linear quench scheme

We proceed to examine a linear quench scheme where the
magnetic field changes linearly along the x and z axes. Specif-
ically, the linear quench field is given by hx(t ) = hx0 + vxt ,
hy(t ) = hy0, and hz(t ) = hz0 + vzt . The initial state is prepared
as the ground state of the initial Hamiltonian, and the response
along the y axis is measured after evolving for a duration t f .
According to the quantum response formula in Eq. (1), we
need to verify the following relation:

〈ψ (t f )|Sy|ψ (t f )〉 = 〈�1(0)|Sy|�1(0)〉
+ vxF (1)

xy + vzF (1)
zy + O

(
v2

x

) + O
(
v2

z

)
.

(17)

The left-hand side of Eq. (17) corresponds to the quantum
response signal (depicted as the solid line in Fig. 1), where
|ψ (t f )〉 = T exp[i

∫ t
0 H (τ )dτ ]|�1(0)〉, with T denoting the

time-ordering operator and |�1(0)〉 representing the ground
state at the initial time. Meanwhile, the dashed line in
Fig. 1 corresponds to the analytic result 〈�1(0)|Sy|�1(0)〉 +
vxF (1)

xy + vzF (1)
zy , namely, the right-hand side of Eq. (17) by

neglecting the high-order terms. The Berry curvature F (1)
xy

and F (1)
zy can be computed by substituting hx = hx(t f ), hy =

hy(t f ), and hz = hz(t f ) into Eqs. (14) and (16), respectively.
The outcome displayed in Fig. 1 corroborates the quantum
response theory. Evidently, as the quench velocity diminishes,

FIG. 1. Quantum response signal for a linear quench proto-
col. The parameters are set to D = 0.9, E = 0.3. The quench
field is hx (t ) = −10.5 + vt , hy(t ) = 0, and hz(t ) = −9.0 + vt . Here,
for simplicity, we have assumed vx = vz = v. The quantum re-
sponse signal 〈Sy〉 ≡ 〈ψ (t f )|Sy|ψ (t f )〉, with the measurement time
t f = 10.0/v.
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the quantum response signal can be accurately approximated
by the Berry curvature multiplied by the quench velocity.

III. SCALAR MAGNETOMETRY AND THE ROBUSTNESS
TO DECOHERENCE

A. Berry curvature of the NV center
in the spherical coordinate system

In this section, we present a specific scheme for scalar
magnetometry utilizing the quantum response, focusing on
a rotating quench protocol. Furthermore, we consider the
simplified scenario where E = 0, which allows for a clear
and concise presentation of the sensing procedure. Under
these conditions, the Hamiltonian governing the dynam-
ics of the NV center, driven by a magnetic field h(t ) =
h(sin θ cos φ, sin θ sin φ, cos θ ), takes the form:

H = DS2
z + exp(−iφSz ) exp(−iθSy)Sz

× exp(iθSy) exp(iφSz ), (18)

where we have adopted the convention of rescaling the
zero-field coupling strength by setting h = 1, effectively in-
corporating it into the parameter D/h → D. Utilizing the
eigenenergy expression derived in Eq. (13), we can explicitly
calculate the eigenenergies as follows:

E1 = 2

3

[
D −

√
D2 + 3 cos

(
ϕ − π

3

)]
,

E2 = 2

3

[
D −

√
D2 + 3 cos

(
ϕ + π

3

)]
,

E3 = 2

3

[
D +

√
D2 + 3 cos

(ϕ

3

)]
, (19)

where

cos ϕ = D(−9 − 2D2 + 27cos2θ )

2
√

(D2 + 3)3
. (20)

Notably, the eigenenergies do not depend on the value of φ.
Now we can employ Eq. (10) to explicitly calculate the Berry
curvature F (1)

φθ , with

∂φH = − sin θ sin φSx + sin θ cos φSy,

∂θH = cos θ cos φSx + cos θ sin φSy − sin θSz, (21)

and

Tr
{
X̂ (12)

φθ − [
X̂ (12)

φθ

]†} = iE3 sin θ [D cos(2θ ) + 3D − 2E3]

(E1 − E2)(E1 − E3)(E2 − E3)
,

Tr
{
X̂ (13)

φθ − [
X̂ (13)

φθ

]†} = − iE2 sin θ [D cos(2θ ) + 3D − 2E2]

(E1 − E2)(E1 − E3)(E2 − E3)
.

(22)

After some simplifications, the Berry curvature corresponding
to the ground state becomes

F (1)
φθ = 9

√
3 sin θ

8(D2 + 3)5/2 sin ϕ

[
E3(D cos 2θ + 3D − 2E3)

sin2
(

ϕ

3

)
− E2(D cos 2θ + 3D − 2E2)

sin2
(

ϕ+π

3

)
]
. (23)

FIG. 2. Berry curvature and its susceptibility as functions of
various NV parameters. (a) Berry curvature Fφθ as a function of D
with different values of θ . (b) Susceptibility of the Berry curvature
∂Fφθ /∂D as a function of D with different values of θ . (c) The Berry
curvature can be approximated by a simple analytic form as θ → 0
when D ∼ 1.

Based on this exact result, in Fig. 2, we plot the Berry

curvature Fφθ ≡ F (1)
φθ and its susceptibility F ′

φθ ≡ ∂F (1)
φθ

∂D as
functions of D with different values of θ . As shown in
Fig. 2(a), the maximum value of the Berry curvature diverges
as θ approaches zero. Accordingly, the susceptibility also
diverges at D = 1, as shown in Fig. 2(b). This indicates the
enhancement in the signal contrast at D ∼ 1 when θ → 0. In
fact, when θ → 0, we can derive an approximate analytic ex-
pression as follows (see Appendix C for a detailed derivation):

F (1)
φθ ≈ D − 1

2
√

2

(
1

θ2
− 5

32

)
. (24)

This approximate analytic result immediately reveals the di-
vergent feature in the Berry curvature and its susceptibility. As
shown in Fig. 2(c), the exact result can be well approximated
by this simple analytic expression when D ∼ 1 and θ → 0.
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B. Dynamic response-based sensing scheme using
a rotating quench field

We now present a concrete quenching protocol to demon-
strate how the quantum response-based sensing scheme
operates. Different from the linear quench scheme in Sec. II C,
here, we apply a rotating quench field given by

hx(t ) = sin

(
v2t2

2π

)
,

hy(t ) = 0,

hz(t ) = cos

(
v2t2

2π

)
. (25)

Essentially, this is a quench along the θ direction, with θ (t ) =
v2t2

2π
. This choice of the rotating quench ensures that the

driving at the initial time is adiabatic since vθ (t = 0) = 0.
Specifically, we measure the response along the φ direction,
namely, 〈∂φH〉, at t f = π/v with an instantaneous quench
velocity of vθ (t f ) = v. Firstly, we perform numerical simu-
lations to verify the validity of the quantum response formula
stated in Eq. (1). For a rotating quench scheme, it asserts that

〈ψ (t f )|∂φH |ψ (t f )〉 = 〈�1(0)|∂φH |�1(0)〉
+vθF (1)

φθ + O
[
v2

θ

]
, (26)

where |ψ (t f )〉 = T exp[−i
∫ t f

0 H (t ′)dt ′]|�1(0)〉. Here, the
time-dependent Hamiltonian corresponds to the specific
quench field in Eq. (25), and the quench duration is t f = π/v.
Since at the initial time the quantum system is prepared in the
ground state, which is along the z axis, it immediately implies
that 〈�1(0)|∂φH |�1(0)〉 = 0. By applying Eq. (21), we find
∂φH = Sy at t = t f . Additionally, when θ = θ (t f ) = π/2, the
Berry curvature in Eq. (23) assumes a more compact form:

F (1)
φθ

(
φ, θ = π

2

)
= D − D2 + 2√

D2 + 4
. (27)

Consequently, for the specific rotating quench protocol given
by Eq. (25), to prove the quantum response formula in
Eq. (26), we are aiming to verify that

〈ψ (t f )|Sy|ψ (t f )〉 = v

(
D2 + 2√
D2 + 4

− D

)
+ O[v2]. (28)

In Fig. 3, the quantum response signal 〈Sy〉 ≡
〈ψ (t f )|Sy|ψ (t f )〉 is plotted as a function of the quench
velocity vθ (t f ) = v for various values of the zero-field
splitting strength D. As depicted in the plot, the solid lines
represent the exact numerical calculation of the dynamics
governed by the time-dependent Hamiltonian for a given
zero-field splitting D, while the dashed lines correspond
to the analytic result obtained by multiplying the Berry
curvature by the quench velocity. It is evident from the plot
that, as the quench velocity approaches zero, the quantum
response signal closely aligns with the analytic expression,
which is the Berry curvature multiplied by the quench
velocity.

Furthermore, upon comparing the quantum response sig-
nals for various zero-field splitting strengths, it is evident that,
with a fixed variation in D, a larger quench velocity leads to a
more significant change in the quantum response signal (note

FIG. 3. Quantum response signal as a function of the quench
velocity v for different values of the zero-field splitting D. To clarify,
v denotes the instantaneous quench velocity along the θ direction
at the measurement time t f , denoted as vθ (t f ) = v. The solid lines
correspond to the exact dynamics by numerically solving the time-
dependent Schrödinger equation. The dashed lines correspond to the
Berry curvature multiplied by the quench velocity on right-hand side
of Eq. (28).

the logarithmic scale on the y axis). This suggests that increas-
ing the quench velocity enhances the signal contrast, thereby
benefiting the sensing scheme. However, as depicted in the
figures, when the quench velocity increases even further, the
quantum response signal will deviate from the analytic re-
sult. Consequently, in the quantum response-based sensing
scheme, there exists an optimal quench velocity for estimating
the parameter D to achieve the largest signal contrast.

In Fig. 3, another noteworthy observation is the gradual
emergence of oscillations as the quench velocity increases.
This phenomena can be explained by employing the rotating
reference frame (see Appendix D for a detailed discus-
sion), where the spin vector adiabatically follows the linearly
varying effective magnetic field when the quench velocity
approaches zero. However, for a finite value of the quench
velocity, the spin vector precesses about the effective mag-
netic field simultaneously, and the relative angle between
the spin vector and the effective magnetic field depends on
the quench velocity. Specifically, this angle increases as the
quench velocity increases, leading to an increase in the oscil-
lation amplitude, as shown in the plot.

In conclusion, Fig. 3 demonstrates that, as the quench
velocity approaches zero, the quantum response signal
can be accurately approximated by the Berry curvature
multiplied by the quench velocity. To implement a realistic
quantum response-based sensing scheme, it is essential to
note that the quantity 〈ψ (t f )|Sy|ψ (t f )〉 can be measured in
NV center experiments. Typically, an additional π/2 pulse is
applied to measure 〈Sz〉 instead, utilizing spin state-dependent
photoluminescence (PL) measurement of NV centers. After
experimentally measuring 〈ψ (t f )|Sy|ψ (t f )〉, we can deduce
the value of D or, equivalently, the magnitude of the magnetic
field h, by solving the nonlinear equation in Eq. (28).
This implementation enables quantum response-based
magnetometry.
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C. Robustness to decoherence of the sensing protocol

In this section, we examine the retrieval of the Berry
curvature using quantum response in the presence of deco-
herence. Building upon the numerical simulation presented
in Sec. III B, we extend our analysis to incorporate the in-
fluence of the environment, specifically the interaction with
N nuclear spins. This interaction is captured by the in-
clusion of the last term in Eq. (11), which accounts for
the coupling between the NV electronic spin and the nu-
clear spins. The presence of coupling to the nuclear spins
introduces decoherence effects on the NV electronic spin,
particularly when the nuclear spins are partially polarized.
In this context, we consider the quenching process described
by Eq. (25), and our objective is to calculate the response
signal My = Tr[ρ(t f )Sy] at t f = π/v, where ρ(t f ) is the state
of the compound system ρ(t f ) = U (t f )ρ(0)U †(t f ). The time
evolution operator U (t f ) = T exp[−i

∫ t f

0 H (t ′)dt ′], with H (t )
given by the Hamiltonian in Eq. (11). The initial state ρ(0) =
|φ0〉〈φ0| ⊗ ρn consists of two components: |φ0〉〈φ0|, which
corresponds to the ground state of the NV Hamiltonian in the
absence of coupling to the nuclear spin bath, and ρn, which
represents the initial state of the nuclear spin bath. The nuclear
spin bath is assumed to be in a thermal state and is charac-
terized by the density matrix ρn = (1/Z ) exp(−β

∑N
k=1 Ikz ).

Here, Z = [2 cosh(β/2)]N represents the partition function,
and β = 2 tanh−1(P) denotes the inverse temperature, deter-
mined by the average nuclear polarization P [51].

When dealing with a large number of nuclear spins
(N), simulating the dynamics governed by a time-dependent
Hamiltonian using the density matrix formalism becomes
computationally challenging due to the exponential growth of
the Hilbert space dimension (∼2N+1 × 2N+1). To simplify the
simulation for larger N , we employ certain approximations.
First, we assume a homogeneous coupling between the NV
electronic spin and the nuclear spins, namely, Ak = A, based
on the quasistatic approximation [52,53]. This allows us to
utilize the collective nuclear spin operator I = ∑N

k=1 Ik , and
the total angular momentum J = S + I becomes a constant
of motion, leading to the reduction of the dimension of the
Hilbert space. Second, since the initial state of the nuclear
spins is assumed to be in a thermal state, we can employ
wave function dynamics instead of density matrix calcula-
tions. Namely,

ρ(t f ) =
N/2∑
I0=k

I0∑
M0=−I0

ω(I0, M0)|ψ (t f )〉〈ψ (t f )|, (29)

where k = 1
2 if N is odd, and k = 0 if N is even. The

time evolution of the wave function is given by |ψ (t f )〉 =
U (t f )(|φ0〉 ⊗ |I0, M0〉), and the statistical weight associated
with the nuclear spin state |I0, M0〉 is given by

ω(I0, M0) = C(N/2)−I0
N

(
1 + P

2

)(N/2)−M0

×
(

1 − P

2

)(N/2)+M0 2I0 + 1
N
2 + I0 + 1

, (30)

where CM
N represents the binomial coefficient. By employing

these simplifications, we can tackle the simulation of the

FIG. 4. Quantum response signal as a function of quench veloc-
ity with and without decoherence. The dashed line represents the
analytic result expressed by the Berry curvature multiplied by the
quench velocity. The black solid line corresponds to the quantum
response signal without decoherence, obtained by exactly solving
the dynamics governed by the Hamiltonian that neglects the cou-
pling to nuclear spins. The blue solid line represents the quantum
response signal in the presence of decoherence, obtained by solving
the dynamics governed by the Hamiltonian in Eq. (11). In this simu-
lation, we consider N = 20 nuclear spins, and the hyperfine coupling
strength is set to Ak = A = 0.02. The nuclear spins are initially
prepared in the maximal thermal state with a nuclear polarization
of P = 0. Additionally, other common parameters are set to E = 0
and D = 0.06765.

dynamics in a more computationally feasible manner while
capturing the essential features of the behavior of the system.

After making the simplifications mentioned above, we
perform simulations of the quantum response experiment con-
sidering N = 20 nuclear spins (with spin I = 1

2 ). In Fig. 4,
we compare the quantum response signal with and without
decoherence. In accordance with Fig. 3, the black solid line
represents the quantum response signal without decoherence,
while the dashed line corresponds to the analytic result ob-
tained by multiplying the Berry curvature with the quench
velocity. Meanwhile, the blue solid line in Fig. 4 represents the
quantum response signal when decoherence effects are con-
sidered, accounting for the coupling to nuclear spins. In this
plot, the nuclear spins are assumed to be in the maximal ther-
mal state, with a nuclear polarization of P = 0, which serves
as a reasonable approximation under ambient temperature
conditions. The close alignment of the blue solid line with the
dashed line signifies that, even in the presence of docoherence,
the quantum response signal can still be well approximated
by the product of the Berry curvature and the quench ve-
locity. In fact, this characteristic is in accordance with the
adiabatic perturbation theory, which states that certain forms
of decoherence, such as dephasing in quantum systems, do
not significantly impact the validity of the quantum response
formula (see Ref. [18]). Additionally, the coupling to nu-
clear spins induces fluctuations in the effective magnetic field
experienced by NV spins, resulting in more pronounced os-
cillations than the case without considering decoherence. We
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FIG. 5. Quantum response signals in the presence of decoher-
ence with different nuclear polarizations. The dashed line and the
black solid line correspond to the same lines in Fig. 4. Here, the
red solid line represents the quantum response signal obtained by
exactly solving the dynamics with a nuclear polarization P = 0.6.
Other common parameters are kept consistent with those in Fig. 4.

will further elucidate these phenomena from the perspective
of effective nuclear fields later.

Furthermore, in Fig. 5, we present a comparison of the
quantum response signal in the presence of decoherence under
varying degrees of nuclear polarization. Notably, when the
nuclear polarization is finite, represented by the red solid line
with P = 0.6, the exactly calculated quantum response signal
deviates from the analytic result (depicted by the dashed line)
as the quench velocity decreases. This observation suggests
that increasing the nuclear polarization will degrade the ef-
fectiveness of the quantum response-based sensing scheme,
which relies on the accuracy of the quantum response for-
mula. In contrast, in a conventional Ramsey sensing scheme
operating in the presence of decoherence, high nuclear polar-
ization is typically required to attain heightened sensitivity.
In Appendix E, we have a comprehensive discussion on the
impact of nuclear polarization on the Ramsey sensing scheme.
To better illustrate the different characteristics of these sens-
ing schemes, we present Fig. 6, which shows the sensing
signals as a function of (effective) quench velocities under
varying levels of nuclear polarization. It is evident that, for
the Ramsey scheme, the sensing signal approaches the ideal
case (neglecting decoherence caused by the flip-flop terms in
the hyperfine interaction) as nuclear polarization increases.
On the other hand, for the quantum response-based sensing
scheme, the sensing signal approaches the ideal case as the
nuclear polarization becomes vanishingly small. Typically,
achieving a high level of nuclear spin polarization in solid-
state systems is challenging due to the small gyromagnetic
ratio of nuclear spins and their weak coupling to the environ-
ment. Furthermore, the overhead associated with the buildup
time for nuclear polarization presents another obstacle, as it
can reduce the overall sensitivity of the quantum sensor. For
example, in Ref. [54], a polarization of P = 0.7 was reported
for the proximal 13C nuclear spins in diamond, and it needs
a typical time of tens of seconds to polarize bulk 13C nuclear
spins. In summary, while a vanishing nuclear polarization will

FIG. 6. Comparison of the effect of nuclear polarization on the
quantum response-based sensing scheme and the Ramsey sensing
scheme. (a) and (b) correspond to the Ramsey sensing scheme, where
〈Sx〉 ≡ 〈Sx (t )〉 + 1

2 represents the normalized spin expectation value.
Here, 〈Sx (t )〉 is given by Eq. (E8) in Appendix E. The effective
quench velocity is defined as v = 1/t , where t is the interrogation
time for the Ramsey scheme. The black solid line represents the ideal
case, neglecting decoherence due to the flip-flop term in the hyperfine
coupling. The blue and red solid lines represent the Ramsey sens-
ing signal in the presence of decoherence with nuclear polarization
P = 0 and 0.6, respectively. It is evident that the red line (P = 0.6)
is much closer to the ideal case than the blue line (P = 0), indicat-
ing that high nuclear polarization is beneficial for the conventional
Ramsey sensing scheme. The parameters for the calculations are
fixed as follows: h0 = 2, N = 20, and A = 0.04. (c) and (d) corre-
spond to the signal of the quantum response-based sensing scheme.
The black solid line represents the ideal case in the absence of deco-
herence. The blue and red lines correspond to cases in the presence
of docoherence with nuclear polarization P = 0 and 0.6, respectively.
These two lines are in accordance with the respective lines in Fig. 5.
For the quantum response-based sensing scheme, it is clear that
the blue line (P = 0) is much closer to the ideal case than the red
line (P = 0.6), indicating that a vanishing nuclear polarization is
beneficial for the quantum response-based sensing scheme instead.

reduce the sensitivity of the Ramsey sensor, it proves ad-
vantageous for the quantum response-based sensing scheme.
This characteristic highlights the robustness of the quantum
response-based sensing scheme to decoherence, indicating its
potential advantages for implementation in realistic solid-state
spin systems since no nuclear polarization is required.

Now we provide explanations for the observed behavior
of the quantum response signals in the presence of decoher-
ence, as depicted in Figs. 4 and 5, from the perspective of
effective nuclear field. In our simulation, the decoherence of
the electronic spin arises from the hyperfine coupling with the
surrounding nuclear spins. According to Eq. (11), the hyper-
fine interaction is expressed as Hhf = S · ∑N

k=1 AIk , with the
assumption of homogeneous coupling strength (Ak = A). In
fact, the hyperfine coupling can be decomposed into two dis-
tinct components: the dephasing part Hdephase = Sz

∑N
k=1 AIz

k

and the flip-flop part Hflip-flop = A
2

∑N
k=1(S+I−

k + S−I+
k ). In
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FIG. 7. Sensing the motion of the magnetic nanoparticle via
quantum dynamic response. The NV ensemble in the diamond is
optically initialized by illuminating it with a 532 nm laser, and the
electronic spin state of the NV center can be determined by the
spin-state-dependent photoluminescence (PL). The static local field
gradient can be introduced by mounting a nanomagnet onto the dia-
mond. Generally, the magnetic nanoparticle can be in the Brownian
motion, but here, we restrict the motion of the magnetic nanoparticle
along the x axis for clarity.

situations where the resonance condition is not satisfied [51],
as in our simulations, the flip-flop term is typically suppressed,
and the dephasing term assumes dominance. Alternatively,
from a different perspective, the dephasing term can be in-
terpreted as the coupling of the electronic spin with an
effective nuclear field, given by Hdephase = B̂N Sz, where B̂N =∑N

k=1 AIz
k . When the initial state of the nuclear spins is in a

thermal state with nuclear polarization P, it can be verified that
the average value of the nuclear field is 〈B̂N 〉 = NAP/2, while
the variance of the nuclear field is 〈�B̂N 〉 = NA2(1 − P2)/4.
As depicted in Fig. 4, when the average nuclear field is zero
for P = 0, the dephasing within the quantum system does
not invalidate the quantum response formula, although the
nonzero fluctuation of the nuclear field results in an increase
in the amplitude of the oscillations. In contrast, as illustrated
in Fig. 5, when P = 0.6, the average nuclear field becomes
nonzero. This finite nuclear field, coupled with its fluctua-
tions, leads to deviations of the quantum response signal from
the analytic result.

IV. VECTOR MAGNETOMETRY AND MOTION SENSING
OF MAGNETIC NANOPARTICLES

In recent years, several proposals have been put forward
to realize vector magnetometry using solid-state spins [28,
55–58]. In this section, we present a concrete example to
demonstrate the implementation of vector magnetometry and
the motion sensing of magnetic nanoparticles using NV cen-
ters in diamond through quantum dynamic response. The
schematic diagram in Fig. 7 illustrates the setup, where
NV centers are utilized to sense the motion of a magnetic
nanoparticle and determine the instantaneous magnetic field

generated by the magnetic nanoparticle itself [59]. Typically,
the magnetic nanoparticle undergoes Brownian motion, lead-
ing to a time-varying magnetic field experienced by the NV
center. By formulating equations based on the quantum re-
sponse formula, we can, in principle, determine the motion
of the magnetic nanoparticle for arbitrary time dependencies
if the motion is nearly adiabatic. Here, for clarity, we restrict
the motion of the magnetic nanoparticle along the x axis to
demonstrate the capability of the vector magnetometry and
the motion sensing. We now consider two ensembles of NV
centers, and the Hamiltonian for the NV center in the ith
ensemble is given by

H (i)(t ) = DS2
z + h(i)

z Sz + hySy + hx(t )Sx. (31)

Here, h(i)
z represents the static magnetic field applied to the

ith ensemble along the z axis. Since these two ensembles
of NV centers are usually close to each other, this different
static field can be generated by mounting a nanomagnet on
the diamond. The static magnetic field hy is common to both
NV ensembles. The static fields h(i)

z and hy are assumed to
be known beforehand, which can be determined, for example,
through conventional Ramsey-based magnetometry. The mag-
netic field hx(t ), which we aim to detect, is generated by the
magnetic nanoparticle. Initially, at time t = 0, the magnetic
nanoparticle is far away from the NV center, resulting in a
negligible value for hx(t = 0). The initial state of the NV
center is prepared in its ground state, which can be optically
polarized by illuminating a 532 nm laser [26,60].

When the magnetic nanoparticle moves in close proximity
to the NV center, the NV center experiences a time-
varying magnetic field hx(t ) along the x axis. At a specific
measurement time t f , we perform measurements on the spin-
expectation values of the two NV ensembles, denoted as 〈S(1)

z 〉
and 〈S(2)

z 〉, utilizing spin-state-dependent PL [26]. According
to the quantum response formula, the relationship between
these measured spin-expectation values and the magnetic field
components can be described by the following equations:〈

S(1)
z

〉 = vxF (1)
xz

[
hx(t f ), hy, h(1)

z

] + O
[
v2

x

]
,〈

S(2)
z

〉 = vxF (1)
xz

[
hx(t f ), hy, h(2)

z

] + O
[
v2

x

]
, (32)

where the Berry curvature F (1)
xz [hx, hy, h(i)

z ] is determined by
Eq. (15) and vx is the quench velocity. By solving these
nonlinear equations, we can obtain the instantaneous values of
the magnetic field hx and the velocity vx at time t f . From the
perspective of motion sensing, the proposed method allows
us to determine the instantaneous velocity of the magnetic
nanoparticle and extract valuable information about its posi-
tion by determining the magnetic field hx. In other words, by
constructing groups of these nonlinear equations using static
field gradients, we eliminate the need to know the quench
velocity beforehand to estimate the magnetic field. The vec-
tor magnetometry can be realized in the same manner. For
instance, in the case where the value of hy is not known in ad-
vance, we can extend the setup by incorporating an additional
ensemble of NV centers with a different h(i)

z . This allows
us to construct an additional nonlinear equation, enabling
the determination of hy as well. Specifically, by applying an
additional ensemble of NV centers, an extra equation, given
by 〈S(3)

z 〉 = vxF (1)
xz [hx(t f ), hy, h(3)

z ] + O[v2
x ], can be added to
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Eq. (32). Now with these three equations at our disposal, the
three unknowns (hx, hy, vx) can be determined by numerically
solving this set of equations. Once the components of the mag-
netic field (hx, hy) are determined, this indicates that vector
magnetometry has been successfully implemented.

In the particle motion detection protocol depicted in Fig. 7,
employing multiple NV centers serves a role analogous to
applying reference fields in standard Ramsey vector magne-
tometry. In principle, the protocol requires only two settings of
the NV ensembles to extract both the magnetic field strength
and the quench velocity. Indeed, the extraction of the magnetic
field components and the quench velocity involves solving
equations derived from both the quantum response formula
and the analytic form of the Berry curvature. As the number
of unknown components of the magnetic field increases, it
becomes necessary to utilize multiple NV ensembles. Fur-
thermore, instead of applying reference fields successively,
the utilization of multiple NV ensembles offers the benefit
of enhancing the temporal resolution of the sensing scheme.
If the NV ensembles are too far apart, the spatial resolution
of the sensing scheme may be compromised. Conversely, if
they are placed too close together, the diffraction limit of the
microscope (or the CCD) becomes a limiting factor. Conse-
quently, there exists an optimal range of distances for the
spatial distribution of NV ensembles, typically spanning a few
micrometers.

As depicted in Figs. 1 and 3, it is imperative to ensure
the validity of the quantum response formula that the quench
velocity of the magnetic field remains sufficiently small, ap-
proaching the adiabatic condition. In the realm of motion
sensing of magnetic nanoparticles, this quench velocity is in-
tricately linked to both the velocity of the nanoparticle and the
magnetic field gradient, which is contingent upon the specific
shape of the nanoparticle. Consequently, the upper bound of
the range of nanoparticle velocities that can be effectively
detected is predominantly determined by the imperative to
maintain the validity of the quantum response formula as
well as the field gradient generated by the magnetic parti-
cle. Meanwhile, the lower bound of the quench velocity is
constrained by the longitudinal relaxation time T1, as relax-
ation to the ground state can compromise the validity of the
quantum response formula. For the NV spin in diamond, the
typical longitudinal relaxation time T1 ranges from several
milliseconds to several seconds [8]. The detection speed of
NV centers imposes an additional constraint on the detectable
range of nanoparticle velocity. When the interrogation time
of the optical signal is much shorter than the evolution
time of the quantum response-based sensing scheme, the
impact of this constraint can be negligible. The NV-diamond
magnetometry proposal in Ref. [61] estimated the optical
readout time tR ∼ 2 µs. Additionally, Table V in Ref. [8] lists
the readout times used for the optical readout of NV centers
across various experimental setups. These timescales range
from submicrosecond to several microseconds. To achieve
high sensing accuracy, the parameters to be estimated, such as
the motion velocity and the magnetic field, should remain rel-
atively constant during the spin readout duration. For instance,
in the sensing scheme presented in Fig. 7, the quench velocity
is fixed during the spin readout duration, while the variation
of the magnetic field depends on the motion velocity and the

field gradient (which in turn is determined by the shape of
the magnetic nanoparticle). Consequently, the combination of
the shape of the nanoparticle and the spin readout duration
determines the upper bound of the quench velocity that can be
accurately detected. By considering both the upper and lower
bounds together, we can effectively estimate the detectable
range of nanoparticle velocity.

In conclusion, we present a sensing proposal for detecting
the motion of magnetic nanoparticles based on the mecha-
nism of quantum dynamic response. This approach enables us
to realize highly sensitive motion sensing within nanoscale,
where the position and instantaneous velocity of the magnetic
nanoparticle can be determined through the analysis of the
measured spin expectation values. It offers a promising av-
enue for accurately tracking and characterizing the motion of
nanoscale objects using solid-state spins. This has significant
implications in various fields, including bioimaging, where
magnetic nanoparticles can serve as indicators for targeted
imaging [44,59]. Additionally, the quantum response-based
sensing protocol provides high temporal resolution, namely,
it can measure the instantaneous value of the magnetic fields.
Combined with the high spatial resolution of the NV sensors,
our sensing scheme may be adapted to sense the dynamic
fields within nanoscale. For instance, by placing the NV center
close to a nanowire, our quantum response-based sensing
scheme may be applied to sense the Oersted fields [62], the
domain-wall motion [63], the Barkhausen effect [64], etc.

Now we conduct a comparative analysis between the quan-
tum response-based sensing scheme and the conventional
sensing scheme employing interference to detect motion by
NV centers in diamond. In Ref. [65], by coupling the me-
chanical motion of a levitated micromagnet to the NV spin,
the motion of the magnet is sensed by measuring the peak in
the power spectral densities of the NV PL counts. Similarly,
spin readout of the particle libration was demonstrated [66]
by coupling the librational mode of the levitating ferromag-
netic particles to the NV spin in diamond. The proposal in
Ref. [67] puts forth a strategy leveraging a single NV spin
magnetometer to detect the quantum motion of a mechanical
oscillator through magnetic coupling, akin to spin-echo-based
ac-magnetometry techniques. Essentially, these methodolo-
gies aim to perceive the motion of micromagnets by detecting
the time-varying magnetic field they generate via either NV
ac or dc magnetometry. However, it is important to note
that these schemes do not correspond to standard continu-
ous position measurement. Instead, they focus on discerning
the fluctuations in the positions of the magnetic oscillators,
without providing direct information about the instantaneous
position of the micromagnet. In essence, while these methods
excel at detecting the dynamic variations in the position of the
micromagnet, they lack the high temporal resolution required
to precisely determine its motion at any given instant.

V. INVESTIGATION ON THE SENSITIVITY

In this section, we investigate the sensitivity of our dy-
namic response-based sensing scheme, specifically focusing
on the sensing scheme discussed in Sec. III. By analyzing the
closed exact form of the Berry curvature given in Eq. (23),
we can calculate the susceptibility of the Berry curvature with
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respect to the parameter D. This susceptibility corresponds to
the signal contrast. Remarkably, we can analytically calculate
the susceptibility as θ approaches zero when D = 1. In this
limit, the susceptibility exhibits the following behavior:

lim
θ→0

∂

∂D

[
9
√

3 sin θE3(D cos 2θ+3D−2E3)

8(D2+3)5/2 sin ϕ sin2
(

ϕ

3

)
]

=∞,

lim
θ→0

∂

∂D

[
9
√

3 sin θE2(D cos 2θ+3D−2E2)

8(D2+3)5/2 sin ϕ sin2
(

ϕ+π

3

)
]

=− 1

8
√

2
,

(33)

which indicates that

lim
θ→0

∂F (1)
φθ

∂D
= ∞. (34)

This reveals that, near the work point (θ = 0, D = 1), a slight
change in D will result in a significant variation in the Berry
curvature F (1)

φθ , which corresponds to a measurable quantity
divided by the quench velocity in the experiment. Conse-
quently, we anticipate an exceptionally high sensitivity near
the work point in our dynamic response sensing scheme. This
is reminiscent of the sensor utility of non-Hermitian systems,
where the susceptibility of certain measurable quantities can
also exhibit divergent behaviors [14,15].

However, it is important to note that the work point
(θ = 0, D = 1) corresponds to an energy-degenerate point
(E1 = E2). Thus, achieving near adiabatic conditions when
approaching this point requires an extremely small quench-
ing velocity. Consequently, while the susceptibility near the
work point may be divergent, it is accompanied by a signif-
icantly longer evolution time. Therefore, the divergence in
susceptibility does not necessarily translate into a divergence
in sensitivity. In fact, a general bound for the estimation
uncertainty has been proposed in Ref. [68] for dynamic
quantum sensing schemes, considering the evolution time
explicitly. When the parameter encoding process (for both
sudden quench and adiabatic quench) is governed by the pa-
rameter Hamiltonian Ĥλ, this bound is given by

δλ � 1

t
∣∣∣∣∣∣ ∂Ĥλ

∂λ

∣∣∣∣∣∣ , (35)

where ||Â|| represents the seminorm defined as the differ-
ence between the maximum and minimum eigenvalues of the
operator Â, i.e., ||Â|| = Emax − Emin. In the dynamic sensing
protocol described in Sec. III, the ultimate sensitivity bound
for estimating the parameter D is given by δD � 1/t .

Since both our dynamic response-based sensing scheme
and the conventional Ramsey-based sensing scheme are sub-
ject to the same ultimate sensitivity bound as described by
Eq. (35), the divergence in the susceptibility of the Berry
curvature presented in Eq. (34) does not necessarily imply
a divergent sensitivity. Hence, our dynamic response-based
sensing scheme does not offer an inherently enhanced ulti-
mate sensitivity compared with the Ramsey-based scheme.
However, the advantage of our dynamic response-based
sensing scheme lies in its capability to sense time-varying
magnetic fields or the motion of magnetic nanoparticles
with very high temporal resolution. As discussed in the

previous section, conventional interference-based sensing
schemes face challenges in detecting instantaneous motions
effectively. Consequently, the quantum response-based sens-
ing scheme presents opportunities for applications in dynamic
sensing scenarios, where conventional schemes may prove
insufficient.

VI. DISCUSSION AND SUMMARY

The essence of our dynamic response-based sensing
scheme lies in utilizing the dynamics governed by a time-
dependent Hamiltonian to encode the parameter of interest
into the quantum state. Usually, calculating the dynamics
governed by a time-dependent Hamiltonian, like using the
time-ordering evolution operator, can be challenging, limiting
its application in quantum sensing. However, the quantum
response theory offers a valuable tool by providing a sim-
ple and clear expression of the observable dynamics in
terms of the Berry curvature if the time dependence of the
Hamiltonian is near adiabatic. In this paper, we leverage this
relation to demonstrate the power of the quench-response
mechanism in realizing quantum sensing. Unlike conventional
interference or Ramsey-based sensing schemes, which rely
on time-independent Hamiltonians to encode the parameter,
our dynamic response-based sensing scheme offers distinct
advantages. It enables the sensing of instantaneous magnetic
fields and the detection of the real-time motion of magnetic
nanoparticles. This capability opens up possibilities in quan-
tum sensing, particularly in scenarios where the parameter to
be estimated are time dependent and require real-time mea-
surements.

In this paper, we employ the NV center in diamond as
our platform to demonstrate the effectiveness of the dynamic
response-based sensing scheme. By analytically deriving the
exact form of the Berry curvature, we can design quench-
response protocols that enable us to accurately estimate the
magnitude of the magnetic field or the quench velocity. One
of the notable advantages of our dynamic response-based
sensing scheme is its robustness to decoherence. Contrary
to conventional interference-based approaches, we find that
a vanishing nuclear polarization actually benefits our scheme.
This counterintuitive result highlights the unique properties of
the dynamic response-based approach and its resilience to de-
coherence effects. This robustness is a significant advantage,
making our scheme highly feasible for realistic experi-
ments, as nuclear polarization invariably demands additional
resources. Furthermore, by exploiting the quench-response
mechanism, we propose schemes that enable the detection
and characterization of the motion of magnetic nanoparticles.
This advancement opens up possibilities for applications in
bioimaging and other areas where accurate motion tracking
within nanoscale is essential.

By measuring the geometric phase, dc magnetometry has
been implemented using NV centers [43]. While both this
geometric phase magnetometry technique and our quantum
response-based sensing scheme rely on measuring geometric
quantities such as Berry phase or Berry curvature, they exhibit
distinct characteristics. Our findings indicate that the quan-
tum response-based sensing scheme offers superior temporal
resolution and robustness to decoherence, while geometric
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phase magnetometry enables wide-dynamic-range magnetic
field sensing by eliminating the phase ambiguity. In Ref. [12],
NV centers within diffusing nanodiamonds were utilized to
detect the rotation of the entire sensor package. While this
protocol primarily estimates physical quantities through the
determination of geometric phase, it is worth noting that the
quantum response mechanism may offer an alternative av-
enue for sensing applications. In Ref. [69], the intrinsic and
induced quantum quenches is incorporated to the standard
T2-type qubit-based quantum noise spectroscopy (QNS). In
this approach, a quench-induced phase shift is applied to
investigate the properties of the environment. The primary
distinction between the quench-enhanced QNS and our quan-
tum response-based sensing scheme lies in the target of the
quenches. In the former, quenches are applied to the envi-
ronment, whereas in the latter, quenches are applied solely to
the system. Furthermore, the quench-enhanced QNS aims to
estimate properties such as temperature of the environment,
which are encoded in the initial state. By comparison, our
quantum response-based sensing scheme estimates param-
eters incorporated in the Hamiltonian, like external fields.
Essentially, the time evolution of the quench-enhanced QNS
scheme is governed by a time-independent Hamiltonian after
the sudden change at the initial time. In contrast, the time-
evolution of our quantum response-based sensing scheme is
governed by a time-dependent Hamiltonian. This difference
signifies that the quench-enhanced QNS employs a sudden
quench, while our quantum response-based scheme employs
an adiabatic quench. Moreover, in Ref. [20], the response
of a driven open system governed by adiabatically evolving
Lindbladians is investigated. In this paper, the response as-
sociated with observables is connected with the Fubini-Study
metric and the Berry curvature. The theory presented in this
paper may also be applied to estimate properties of the envi-
ronment, such as the dephasing rate.

In fact, the principle of our dynamic sensing scheme can be
extended to other quantum systems, including quantum many-
body systems, whether they are interacting or not. While
the exact form of the Berry curvature may not be obtain-
able in these systems, it can still be measured experimentally
through alternative methods [70,71] or via the quantum re-
sponse theory introduced here. By measuring the value of
the Berry curvature in advance, we can design dynamic
sensing protocols to detect the quench velocity in these sys-
tems. The dynamic response-based sensing scheme proposed
in this paper offers the advantage of technical simplicity,
making it highly accessible for practical implementation in
experimental settings. In this paper, we demonstrate the
potential of utilizing the dynamic response and the quench-
response mechanism to realize a sensing scheme. However,
there are still untapped possibilities and further potentials to
explore in the field of quantum sensing using this approach.
Future researchers can delve deeper into these unexplored
avenues and uncover applications and insights.
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APPENDIX A: REVIEW OF THE QUANTUM
RESPONSE THEORY

To render this paper more self-consistent, we now make
a brief review on the adiabatic perturbation theory and
the quantum response theory. More details can be found
in Refs. [18,19,21]. The Schrödinger equation for a time-
dependent Hamiltonian is

i
∂|ψ (t )〉

∂t
= H (t )|ψ (t )〉. (A1)

Here, we expand the wave function using the instantaneous
eigenstates as

|ψ (t )〉 =
∑

n

an(t )|φn(t )〉, (A2)

with H (t )|φn(t )〉 = En(t )|φn(t )〉. Thus, the Schrödinger equa-
tion can be represented as (by left multiplying 〈φm(t )| on both
sides)

i
∂am(t )

∂t
+ i

∑
n

an(t )〈φm(t )| ∂

∂t
|φn(t )〉

= Em(t )am(t ). (A3)

We now make the gauge transformation an(t ) =
αn(t ) exp[−iωn(t )] exp[iγn(t )], where the dynamic phase
is defined as ωn(t ) ≡ − ∫ t f

t En(τ )dτ , and the Berry phase is
defined as γn(t ) = −i

∫ t f

t 〈n| ∂
∂t ′ |n〉dt ′. As a result, we obtain

(the indices m ↔ n are exchanged)

∂αn(t )

∂t
= −

∑
m �=n

αm(t )〈φn(t )| ∂

∂t
|φm(t )〉

× exp{i[ωnm(t ) − γnm(t )]}, (A4)

where ωnm(t ) = ωn(t ) − ωm(t ) and γnm(t ) = γn(t ) − γm(t ).
Alternatively, we can write it in the integral form as follows:

αn(t ) = −
∫ t

ti

dt ′ ∑
m �=n

αm(t ′)〈φn(t ′)| ∂

∂t ′ |φm(t ′)〉

× exp{i[ωnm(t ′) − γnm(t ′)]}. (A5)

Now if the initial state is in the ground state, namely, α0(0) =
1 and αm(0) = 0 for m �= 0, by making the adiabatic pertur-
bation approximation [19,21], we obtain

αn(t ) ≈ −
∫ t

ti

dt ′〈φn(t ′)| ∂

∂t ′ |φ0(t ′)〉

× exp{i[ωn0(t ′) − γn0(t ′)]}. (A6)

Using integration by parts, we obtain that

αn(t f ) ≈
[

i
〈φn(t )| ∂

∂t |φ0(t )〉
En(t ) − E0(t )

− 1

En(t ) − E0(t )

d

dt

〈φn(t )| ∂
∂t |φ0(t )〉

En(t ) − E0(t )
+ . . .

]

× exp{i[ωn0(t ) − γn0(t )]}|t f
ti . (A7)
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Since the time dependence of the Hamiltonian is usually in-
troduced through the time-varying parameter, namely, H (t ) ≡
H[λ(t )], we have the following relation:

〈φn(t )| ∂

∂t
|φ0(t )〉 = ∂λ

∂t
〈φn(λ)| ∂

∂λ
|φ0(λ)〉, (A8)

while ωn(λ) ≡ − ∫ λ f

λ

En (λ′ )
v(λ′ ) dλ′, with v(λ) = dλ

dt , and γn(λ) =
−i

∫ λ f

λ
〈n| ∂

∂λ′ |n〉dλ′. Therefore, the integral above can be
rewritten as follows:

αn(λ f ) ≈
[

i
∂λ

∂t

〈φn(λ)| ∂
∂λ

|φ0(λ)〉
En(λ) − E0(λ)

− ∂2λ

∂t2

〈φn(λ)| ∂
∂λ

|φ0(λ)〉
[En(λ) − E0(λ)]2

−
(

∂λ

∂t

)2 1

En(λ) − E0(λ)

d

dλ

〈φn(λ)| ∂
∂λ

|φ0(λ)〉
En(λ) − E0(λ)

+ . . .

]

× exp{i[ωn0(λ) − γn0(λ)]}|λ f

λi
. (A9)

When the quench is near adiabatic ( ∂λ
∂t → 0), the transition

amplitude can be approximated as

αn(λ f ) ≈ i
∂λ

∂t

〈φn(λ)| ∂
∂λ

|φ0(λ)〉
En(λ) − E0(λ)

× exp{i[ωn0(λ) − γn0(λ)]}
∣∣∣∣∣
λ f

λi

. (A10)

Particularly, when the energy gap is large or the quench veloc-
ity is vanishing at the initial time, we have

an(λ f ) = αn(λ f ) exp[−iωn(λ f )] exp[iγn(λ f )]

≈ i
∂λ

∂t

〈φn(λ)| ∂
∂λ

|φ0(λ)〉
En(λ) − E0(λ)

∣∣∣∣∣
λ f

. (A11)

This is the result presented in Ref. [18]. We can also utilize
the following relation:

〈φn(λ)| ∂

∂λ
|φm(λ)〉 = −〈φn(λ)| ∂H

∂λ
|φm(λ)〉

En(λ) − Em(λ)
. (A12)

Thus, we have the response signal along the μ direction as
a function of the quench velocity vλ ≡ ∂λ

∂t up to the leading
order as follows:

Mμ ≡ − 〈ψ (t f )|∂H

∂μ
|ψ (t f )〉 ≈ −〈φ0|∂H

∂μ
|φ0〉

+ i
∂λ

∂t

∑
n �=0

〈φ0| ∂H
∂μ

|φn〉〈φn| ∂H
∂λ

|φ0〉 − μ ↔ λ

[En(λ) − E0(λ)]2

∣∣∣∣∣∣
λ f

.

(A13)

This leads to the general formula of the quantum response as
follows:

Mμ = const. + vλF (0)
μλ + O

(
v2

λ

)
, (A14)

where the Berry curvature is given by

F (m)
μλ = i

∑
n �=m

〈φm| ∂H
∂μ

|φn〉〈φn| ∂H
∂λ

|φm〉 − μ ↔ λ

[En(λ) − Em(λ)]2
. (A15)

APPENDIX B: EXACT EIGENVALUES
AND EIGENVECTORS OF A 3 × 3 HERMITIAN MATRIX

In this section, we provide the analytic solution of the
eigenvalues and eigenvectors of a general 3 × 3 Hermitian

matrix represented as follows:

H =

⎛
⎜⎝a11 a12 a13

a∗
12 a22 a23

a∗
13 a∗

23 a33

⎞
⎟⎠. (B1)

The secular equation to calculate the eigenvalue is

det (H − λ1) = 0, (B2)

which according to the Cayley-Hamilton theorem, corre-
sponds to the cubic equation:

λ3 − Tr(H )λ2 − 1
2 {Tr(H2) − [Tr(H )]2}λ − det(H ) = 0.

(B3)

Since H is a Hermitian operator, Tr(H2), Tr(H ), and det(H )
are all real quantities. To further simplify the correspond-
ing cubic equation, we now make some transformations as
follows:

B = H − Tr[H]

3
1,

A =
√

2

Tr[B2]
B. (B4)

As a result, the eigenvalues of H and the eigenvalues of A
follow the relation:

λk =
√

Tr[B2]

2
tk + Tr[H]

3
. (B5)

We notice that Tr[A] = 0 and Tr[A2] = 2. Consequently, the
secular equation to calculate the eigenvalues of A becomes a
depressed cubic equation:

t3 − t − q = 0, (B6)

with q = det(A). Since the operator A is still a Hermitian
operator, all the eigenvalues are real, then we can assume the
solution to be t = u cos θ . We can prove that − 2

3
√

3
< q <

2
3
√

3
, when Eq. (B6) has three distinct real roots (it is easy

to observe by plotting the graph of the function). Specifically,
when q = 2

3
√

3
, two multiple roots correspond to the stationary

point of f (t ) = t3 − t , namely, t1 = t2 = 1√
3

and t3 = − 2√
3
. It

is similar when q = − 2
3
√

3
, and we can conclude that − 2√

3
�

t � 2√
3
. As a result, we can choose u = 2√

3
. After dividing the
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equation by u3/4, the depressed cubic equation in Eq. (B6)
now becomes

4 cos3 θ − 3 cos θ − 3
2

√
3q = 0. (B7)

Using the trigonometric identity:

4 cos3 θ − 3 cos θ = cos(3θ ), (B8)

we obtain that

cos(3θ ) = 3
2

√
3q. (B9)

As a result, we have the three eigenvalues of matrix A as
follows:

tk = 2√
3

cos

{
1

3
arccos

[
3

2

√
3 det(A)

]
− 2πk

3

}
, (B10)

for k = 0, 1, 2. Then the eigenvalues of H can be determined
by Eq. (B5).

The eigenstates of the 3 × 3 Hermitian matrix H can be
represented as the cross-product of two three-dimensional
vectors |�̃m〉 = [(h1 − Eme1) × (h3 − Eme3)]∗ if the two vec-
tors are linear independent [72]. Here, h j is the jth column
of the Hermitian matrix H , and ei is the unit vector, like
e1 = (1, 0, 0)T. We now make a brief proof to show that |�̃m〉
is indeed the eigenstate. First, if |�̃m〉 is the eigenstate, then
we have (H − Em1)|�̃m〉 = 0, or equivalently, we must prove
that

〈�̃m|(H − Em1)|ψ〉 = 0, (B11)

where |ψ〉 = α1e1 + α2e2 + α3e3 is an arbitrary wave vector.
After the expansion, we have

〈�̃m|(H − Em1)|ψ〉
= α1〈�̃m|(h1 − Eme1)〉 + α2〈�̃m|(h2 − Eme2)〉

+α3〈�̃m|(h3 − Eme3)〉. (B12)

Obviously, both the first and last terms equal zero. To prove
the second term equals zero, we need to utilize the property of
the mixed product as follows:

(a × b) · c = det

⎛
⎝a1 b1 c1

a2 b2 c2

a3 b3 c3

⎞
⎠. (B13)

As a result, we can prove that

〈�̃m|(h2 − Eme2)〉
= [(h1 − Eme1) × (h3 − Eme3)] · (h2 − Eme2)

= det(H − Em1) = 0.

When these two vectors are linear dependent, namely,
(h1 − Eme1) = μ(h3 − Eme3), the eigenstate can be straight-
forwardly calculated by solving (H − Em1)|�̃m〉 = 0, and the
normalized eigenstate is given by

|�m〉 = 1

1 + |μ|2

⎛
⎝ 1

0
−μ

⎞
⎠. (B14)

For instance, this is the situation when θ = π/2 in the
Hamiltonian [Eq. (18)] in the main text, where for E2 = D, the
corresponding eigenstate can be determined using the above
expression.

APPENDIX C: APPROXIMATE ANALYTIC RESULT
OF THE BERRY CURVATURE

By plotting the Berry curvature under various NV param-
eters in Fig. 2, we observe that the susceptibility of the Berry
curvature exhibits divergent behavior when D ∼ 1 and θ ∼ 0.
This suggests that a slight change in the parameter values can
lead to a significant variation in the response signal. Conse-
quently, selecting D = 1 and θ = 0 as the work point allows
us to achieve the maximum signal contrast. To facilitate the
application of the quantum response-based sensing scheme,
we can make approximations to Eq. (23) near the work point,
leading to a much simpler analytic expression for the Berry
curvature.

Near the work point, the energy level E1 is nearly degen-
erate with the energy level E2. Thus, we can neglect the term
involving (E1 − E3)2 in the denominator in Eq. (10). As a re-
sult, the Berry curvature in Eq. (23) can be well approximated
by only the first term:

F (1)
φθ ≈ 9

√
3 sin θ

8(D2 + 3)5/2 sin(ϕ)

×
{

E3[D cos(2θ ) + 3D − 2E3]

sin2
(

ϕ

3

)
}

. (C1)

Since θ ∼ 0, by substituting sin θ ≈ θ and cos 2θ ≈ 1, we
obtain

F (1)
φθ ≈ 9

√
3θ

8(D2 + 3)5/2 sin(ϕ)

{
E3[D + 3D − 2E3]

sin2
(

ϕ

3

)
}

. (C2)

Moreover, the eigenenergy E3 in Eq. (19) can be approximated
as E3 ≈ 2 + (D − 1); thus, we obtain

F (1)
φθ ≈ 9

√
3θ (D2 − 1)

4(D2 + 3)5/2 sin ϕ

1

sin2 ϕ

3

. (C3)

By substituting cos2θ ≈ 1 − θ2 in Eq. (20), we obtain

cos ϕ = D(18 − 2D2 − 27θ2)

2
√

(D2 + 3)3
. (C4)

Now we denote F (1)
φθ ≈ f1 f2, with

f1 = 9
√

3θ (D2 − 1)

4(D2 + 3)5/2 sin ϕ

= 9
√

3θ (D2 − 1)

4(D2 + 3)5/2
√

1 − D2(18−2D2−27θ2 )2

4(D2+3)3

. (C5)

By performing a series expansion near D = 1, we obtain

f1 = 3(D − 1)

4
√

32 − 27θ2
+ O[D − 1]2 ∼= 3(D − 1)

16
√

2
, (C6)

where the θ2 term has been neglected in the last line. More-
over, by applying a series expansion of Eq. (C4) near D = 1,
we obtain

cos ϕ = 1

256
(16 − 27θ2)

+ 27

512
θ2(−16 + 27θ2)(D − 1) + O[D − 1]2
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∼= 1

256
(16 − 27θ2)2

∼= 1 − 27θ2

8
. (C7)

As a result,

f2 = 1

sin2 ϕ

3

≈ 1

sin2
[

1
3 arccos

(
1 − 27θ2

8

)] , (C8)

and by performing a series expansion near θ = 0, we obtain

f2
∼= 8

3θ2
− 5

12
− 13θ2

128
+ O[θ ]3

∼= 8

3θ2
− 5

12
. (C9)

Finally, we obtain the approximate analytic expression of the
Berry curvature near D = 1 and θ = 0 as follows:

F (1)
φθ = f1 f2 ≈

(
1

θ2
− 5

32

)
D − 1

2
√

2
. (C10)

This result immediately indicates that

lim
θ→0

∂F (1)
φθ

∂D

∣∣∣∣∣
D=1

→ ∞. (C11)

APPENDIX D: EXPLANATION OF OSCILLATIONS
IN THE RESPONSE SIGNAL

In this section, we provide explanations for the oscillations
observed in the quantum response signal depicted in Figs. 3–
5. For simplicity, but without loss of generality, we consider
the case where the rotating quench field is applied to a single
qubit. Since the zero-field splitting term vanishes for a spin- 1

2
system, the Hamiltonian can be written as

H (t ) = exp[−iφ(t )Sz] exp[−iθ (t )Sy]Sz

× exp[iθ (t )Sy] exp[iφ(t )Sz], (D1)

where Sx,y,z are spin operators for the qubit. The instantaneous
ground state of this Hamiltonian is given by

|�〉 = exp(−iφSz ) exp(−iθSy)|↓〉. (D2)

We can straightforwardly calculate the Berry curvature using
the formula in Eq. (2) as

Fφθ (φ, θ ) = sin θ. (D3)

Like the rotating quench scheme utilizing NV centers in the
main text, here, we apply the same rotating quench field de-
scribed by φ(t ) = 0 and θ (t ) = v2t2

2π
. In Fig. 8(a), we also cal-

culate the quantum response signal for the single qubit driven
by this rotating quench field. Again, the solid line corresponds
to 〈Sy〉 ≡ 〈ψ (t f )|Sy|ψ (t f )〉 as a function of the quench ve-
locity vθ (t f ) = v, where |ψ (t f )〉 = T exp[i

∫ t f

0 H (t ′)dt ′]| ↓〉
with t f = π/v. Meanwhile, the dashed line corresponds to the
analytic result vFφθ (φ = 0, θ = π/2).

Upon comparing Figs. 3 and 8(a), it is evident that the
calculated quantum response signals exhibit several consis-
tent characteristics: (i) As the quench velocity approaches
zero, the exactly calculated quantum response signal closely

FIG. 8. Explanation of the oscillations in the quantum response
signal. (a) Quantum response signal driven by a rotating quench
field for a single qubit. The solid line corresponds to the exact
numerical calculation of the dynamics, while the dashed line repre-
sents the analytic result obtained by multiplying the Berry curvature
by the quench velocity. (b) Schematic plot illustrating the motion of
the spin vector S as it precesses about the effective magnetic field
Beff in the rotating reference frame. The relative angle θ between the
spin vector and the effective magnetic field varies with the quench
velocity.

aligns with the analytic result (the Berry curvature mul-
tiplied by the quench velocity); (ii) oscillations gradually
manifest as a function of the quench velocity; and (iii) the
amplitude of these oscillations grows with increasing quench
velocity.

The first characteristic can be explained by the quantum
response theory, while the explanation of the second and third
characteristics requires the employment of the rotating refer-
ence frame. By making a unitary transformation, we obtain
the effective Hamiltonian in the rotating reference frame as
follows:

Heff = exp[iθ (t )Sy]H (t ) exp[−iθ (t )Sy]

= Sz + v2

π
tSy = hzSz + hySy. (D4)
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This effective magnetic field Beff = (0, hy, hz ) is illustrated in
Fig. 8. In the rotating reference frame defined by the rotation
about the y axis, the spin vector will adiabatically follow the
linearly changing instantaneous magnetic field while simul-
taneously precessing about it (see Ref. [70]). The precession
angle between the spin vector and the instantaneous effective
magnetic field in the rotating frame is determined by the
quench velocity [70]. As the quench velocity increases, the
precession angle also increases. Conversely, when the quench
velocity approaches zero, this angle tends toward zero as
well. In this limit, the spin vector adiabatically follows the
time-varying effective magnetic field in the rotating reference
frame, resulting in a slight change in the projection of the spin
vector along the y axis. This subtle variation indicates a small
oscillation when the quench velocity is small. In contrast,
for a finite quench velocity, the relative angle between the
spin vector and the effective magnetic field remains finite,
signifying a notable alteration in the projection of the spin
vector along the y axis. This elucidates why the amplitude of
the oscillation increases with the quench velocity.

APPENDIX E: RAMSEY SENSING PROTOCOL
IN THE PRESENCE OF DECOHERENCE

For simplicity, here, we consider the Ramsey sensing
scheme for a single qubit in the presence of decoherence.
Similar Ramsey sensing schemes can also be applied to NV
centers. The Hamiltonian describing the sensor qubit in the
presence of decoherence, arising from coupling to surround-
ing spins, is given by

H = h0Sz + A
N∑

k=1

S · Ik. (E1)

This Hamiltonian also describes the homogeneous central
spin model [53], where S = (Sx, Sy, Sz ) represents the spin
operator of the central electronic spin (or qubit), Ik denotes
the spin operator of the kth nuclear spin (assuming Ik =
1
2 ), and A represents the hyperfine coupling strength. In the
Ramsey sensing scheme, the interaction between the central
electronic spin and the surrounding nuclear spins introduces
decoherence during the parameter encoding process, leading
to reduction of the overall sensitivity.

For the standard Ramsey sensing scheme, the initial state
of the central spin is prepared as

|φ(0)〉 = 1√
2

(|↑〉 + |↓〉), (E2)

while the initial state of the kth nuclear spin is given by the
thermal state:

ρnk =
(

1+P
2 0

0 1−P
2

)
. (E3)

Here, P represents the nuclear polarization. Thus, the initial
state of the compound system is given by

ρ(0) = |φ(0)〉〈φ(0)| ⊗ ρn, (E4)

where ρn = ⊗N
k=1ρnk . To investigate the Ramsey sensing

scheme, we need to calculate the dynamics of the compound

FIG. 9. Time evolution of the signal-to-noise ratio under dif-
ferent nuclear polarizations for the Ramsey sensing scheme. The
parameters for the calculation are fixed as follows: h0 = 2, N = 20,
and A = 0.1.

system:

ρ(t ) = exp(−iHt )ρ(0) exp(iHt ). (E5)

Finally, we measure the expectation value of the central spin
〈Sx(t )〉 = Tr[ρ(t )Sx] to estimate the magnitude of the mag-
netic field h0.

In fact, for the specific initial state of the nuclear spins as
given in Eq. (E3), the dynamics of the compound system can
be exactly calculated as follows:

ρ(t ) =
N/2∑
I0=k

I0∑
M0=−I0

ω(I0, M0)|ψ (t )〉〈ψ (t )|, (E6)

where |ψ (t )〉 = exp(−iHt )|φ(0)〉 ⊗ |I0, M0〉. Here, the
weight function is given by

ω(I0, M0) = C(N/2)−I0
N

(
1 + P

2

)(N/2)−M0

×
(

1 − P

2

)(N/2)+M0 2I0 + 1
N
2 + I0 + 1

, (E7)

where |I0, M0〉 represents the eigenstate of the collective
nuclear spin operator I = ∑N

k=1 Ik . Accordingly, the spin ex-
pectation value is given by

〈Sx(t )〉 =
N/2∑
I0=k

I0∑
M0=−I0

ω(I0, M0)〈ψ (t )|Sx|ψ (t )〉. (E8)

Since Jz = Sz + Iz is a conserved quantity, we can exactly
obtain [73]

〈ψ (t )|Sx|ψ (t )〉

= 1

2

[
cos(h1t ) cos(h2t ) + h1zh2z

h1h2
sin(h1t ) sin(h2t )

]
,

(E9)

045202-16



QUANTUM DYNAMIC RESPONSE-BASED NV-DIAMOND … PHYSICAL REVIEW B 110, 045202 (2024)

where

h1x = A

2

√
(I0 − M0)(I0 + M0 + 1),

h1z = 1

2

(
h0 + AM0 + A

2

)
,

h2x = A

2

√
(I0 + M0)(I0 − M0 + 1),

h2z = 1

2

(
−h0 − AM0 + A

2

)
,

h1 =
√

h2
1x + h2

1z, h2 =
√

h2
2x + h2

2z. (E10)

To quantitatively investigate the impact of decoherence on
the sensitivity of the Ramsey sensing scheme, we calculate
the signal-to-noise ratio (SNR) using the error propagation

formula:

SNR =

∣∣∣ ∂〈Sx (t )〉
∂h0

∣∣∣√
1
4 − 〈Sx(t )〉2

. (E11)

Typically, a larger SNR indicates higher sensitivity in the
experiment. In Fig. 9, we plot the SNR as a function of
evolution time with different nuclear polarizations. This fig-
ure illustrates that the SNR evolves periodically, with local
maxima occurring when 〈Sx〉 ∼ 0, indicating a regime suit-
able for slope detection. Meanwhile, owing to the presence
of decoherence, there exists a global optimal sensing time
to achieve the global maximal SNR. It is evident that, with
increasing nuclear polarization, the maximal SNR also in-
creases. This is because increasing the nuclear polarization
extends the coherence time, thereby enhancing the precision
of magnetic field sensing.
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