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Nonlocal conductivity, continued fractions, and current vortices in electron fluids
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Vortices in electron fluids are a key indicator of electron hydrodynamics. However, a comprehensive frame-
work linking macroscopic vorticity measurements with microscopic interactions and scattering mechanisms
has been lacking. We employ wave-number-dependent conductivity σ (k), which incorporates rates of realistic
microscopic scattering processes and is built as a continued fraction from decay rates for different excitations.
This approach is used to clarify the relationship between nonlocal response and vortices across ballistic and
hydrodynamic phases. Vorticity exhibits similar values in both phases but shows markedly different sensitivity
to momentum-relaxing scattering, with ballistic vortical flows being orders-of-magnitude more resilient than the
hydrodynamic ones. This behavior can serve as a diagnostic of the microscopic origin of vorticity in electron
fluids.
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I. INTRODUCTION

Electron hydrodynamics is an emerging framework that
describes interacting electron systems in a manner similar to
conventional fluids, utilizing locally conserved quantities such
as particle density and momentum to simplify the description
at large length- and timescales [1–21]. Hydrodynamics pre-
dicts remarkable effects like reduced dissipation and improved
electrical conduction due to carrier collisions [5,22], energy
and heat propagating as waves [19,23,24], and vortices man-
ifested through currents flowing against externally applied
electric fields [3,25,26], to name just a few. Vortices and their.
relationship with microscopic scattering processes and system
geometry will be the focus of this study.

Spatial current patterns observed on macroscales, such
as Stokes, Poiseuille, and vortical flows [25–30], encode
information about carrier dynamics and interactions on mi-
croscales [15–18,20,21,31,32]. In particular, vortices attract
interest as a telltale signature of electron interactions leading
to viscous behavior [3,8,33,34]. Previous studies have often
regarded vorticity as a distinct feature of the hydrodynamic
phase. Here we explore the conditions under which vortex
patterns can arise in an electron system, focusing on laminar
flows at low currents, which are relevant to ongoing experi-
mental efforts [27–30].

As we will see, the requirements for vortices prove to
be considerably less stringent than what previous work has
suggested. Specifically, as illustrated in Fig. 1, robust vortical
flows can arise not only in the viscous phase but also in the
ballistic phase, in which carrier-carrier scattering is inessen-
tial. Furthermore, vortical flows occurring outside the viscous
phase are in general more resilient under the influence of
momentum-relaxing scattering due to disorder and phonons.
Different aspects of this behavior are discussed in Secs. V
and VI.

To investigate the hydrodynamic and ballistic phases, as
well as the crossover between them, a method that treats these
phases equally is required. For this purpose, we employ a
nonlocal conductivity framework described in Secs. II, III,

and IV, which offers considerable flexibility by incorporating
various factors such as different scattering mechanisms and
multiple types of low-energy excitations. This approach is
well suited for exploring the ballistic-to-viscous crossover as
it works equally well in both the ballistic and viscous phases.
Unlike many studies of electron fluids that rely on minimal
models such as the Navier-Stokes equation, which are effec-
tive only in the extreme hydrodynamic regime, this framework
maintains validity across a wider range of conditions.

II. BROAD FRAMEWORK

This section offers an overview of our approach, emphasiz-
ing the concepts while postponing detailed discussions to later
sections. We first introduce the nonlocal current-field response
for systems without boundaries and discuss its properties in
relation to current vortices. The nonlocal conductivity relates
the electric current at one point (r) to the electric field at
another point (r′):

jα (r) =
∫

d2x′σαα′ (r − r′)Eα′ (r′). (1)

The quantity of interest is the wave-number-dependent and, in
general, frequency-dependent conductivity,

σαα′ (k) =
∫

d2xe−ik(r−r′ )σαα′ (r − r′), (2)

which links Fourier harmonics of field and current. This re-
sponse function, defined in the entire plane, in Sec. IV will
be linked, in a very general manner, to the rates of different
microscopic scattering processes. Then, in Secs. V and VI,
we discuss the methodology used to determine geometry-
dependent flows in finite-size systems.

In the literature, nonlocal relations such as Eq. (1) are
found in the theory of nonlocal supercurrent response in
clean superconductors [35] and in the theory of anomalous
skin effect [36]. However, in these problems the nonlo-
cal response describes supercurrents and normal currents in
a narrow surface layer. To the contrary, in this study the
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FIG. 1. Vortices in the ballistic (a) and viscous (b) regimes within
a strip of width w obtained using the nonlocal conductivity response,
Eq. (1), with boundary conditions treated by the method outlined
in Sec. V. In both regimes, the k-dependent conductivity given in
Eq. (34) was used, with the electron-electron collision rate γ =
0.1 v/w in (a) and γ = 100 v/w in (b). Currents flow into and out
of the strip through a pair of slits on opposite sides, with the slit
width set equal to the strip width. The two flows exhibit vortices
of comparable intensity but different structure: one pair of vortices
in the ballistic regime compared to two pairs in the viscous regime,
centered at x1,1′ ≈ ±w and x2,2′ ≈ ±2w.

relation in Eq. (1) will be employed to describe currents in
the bulk of the system. While nonlocal currents are ubiquitous
in three-dimensional (3D) systems, the behavior in 3D bulk
remains largely concealed by screening, and, to the best of
our knowledge, has not been directly probed. To the contrary,
in modern 2D materials electronic states are exposed and can
be accessed by local probes, which makes these systems an
appealing platform for studying the nonlocal current response
[25–30].

Current vortices play a special role in this endeavor, offer-
ing distinct macroscopic signatures of nonlocal conductivity.
Indeed, in conventional ohmic transport described by a local
relationship between currents and fields, the flow is potential
and vortex free. Conversely, nonlocal conductivity, irrespec-
tive of the mechanisms involved, habitually leads to vortices.
Studying the structure of vortices and their dependence
on various experimental knobs can shed light on transport
mechanisms leading to nonlocal conductivity. While the lit-
erature commonly explores currents and vortices in electron
fluids within the context of viscous hydrodynamics (e.g., see
Refs. [3,34,37]), it leaves unanswered questions regarding the
persistence of vortices beyond the viscous phase. Here we
explore the occurrence of vortices in the ballistic and viscous
phases as well as at the crossover between these phases. As
illustrated in Fig. 1, vortical flows are ubiquitous, emerging re-
gardless of the specifics of the transport mechanism. However,
the structure of vortical flows (the numbers of vortices and
their arrangment) reflects the k dependence of conductivity,
Eq. (2).

Next, we summarize the key aspects of the formalism:
(1) Symmetry properties of the conductivity tensor. Trans-

verse and longitudinal conductivity, the role of screening and
quasineutrality;

(2) Linking nonlocal conductivity to fermion kinetics: A
continued fraction representation for σ (k);

(3) Boundary-value problem for nonlocal conductivity
and implications for vortical flows.

Below we present an overview of these points, for a de-
tailed discussion the reader is referred to Secs. III, IV, V,
and VI.

We consider symmetry of the conductivity tensor, as-
suming, for simplicity, a fully isotropic problem—namely
cylindrical symmetry of the band structure and interaction
Hamiltonian under spatial rotations. Based on symmetry
considerations, the conductivity describing the current-field
response in the bulk of the system, can be expressed as the
sum of its k-transverse and k-longitudinal components:

σαα′ (k) = σ (k)(δαα′ − k̂α k̂α′ ) + σ ′(k)k̂α k̂α′ . (3)

This response function possesses full rotational symmetry.
Assumed here for simplicity, the cylindrical symmetry case
is relevant for many of the problems of current interest. The
quantity in Eq. (3) can describe current response both in the
ac regime at a finite frequency or in the dc regime at zero
frequency, where the frequency dependence enters in σ (k) and
σ ′(k). The quantities σ (k) and σ ′(k) can be found from the
kinetic equation for quasiparticles, as described in Sec. IV.

Further simplifications arise for the dc transport problem,
which will be our focus below. In this case, the longitudi-
nal part of the response vanishes, since longitudinal currents
result in a rapid space charge buildup that generates fields
by which these currents are quickly screened out. Indeed, a
longitudinal electric field which is parallel to the wave vector,
E ‖ k, is nothing but a gradient of a static cosine wave, φ(r) ∼
cos(kr + θ ). Such potential, when applied to an electron sys-
tem, is screened out by polarization in the electron gas and
does not produce a dc current. Accordingly, in what follows
we disregard the longitudinal response by setting σ ′(k) = 0.

It is instructive to look more closely at the origin of this
screening effect. We first note that the conductivity σαα′ (k)
given in Eq. (3), in general, takes nonvanishing values for
fields and currents parallel and perpendicular to the wave
vector k. However, in treating the response of current to an
external dc field, one must account for the potential of a
space charge that builds up due to the spatial nonuniformity
of current. This is described by

j⊥(k) = σ (k)E⊥(k), j‖(k) = σ ′(k)

[
E‖(k) − ik

δμ(k)

e

]
,

where we added a term δμ(k) describing the potential of a
space charge buildup. In a steady state, the potential δμ(r)
induced by the longitudinal field component E‖, determined
by the continuity relation div j = 0, cancels E‖. Namely, for
time-independent fields and currents, the longitudinal currents
vanish due to space charge buildup. As a result, dc currents are
solely described by σ (k) through a relation between the trans-
verse components of j and E, given by the conductivity tensor

σαα′ (k) = σ (k)(δαα′ − k̂α k̂α′ ), (4)
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that is by Eq. (3) with σ ′(k) = 0. Another key aspect of
screening, arising due to ambient charges in the electron
system rearranging in the presence of currents in order to
maintain quasineutrality, will be discussed in Sec. III.

Next we consider the conductivity k dependence. Micro-
scopic analysis links the quantity σαα′ (k) to the relaxation
processes at the Fermi surface. Fermion kinetics that accounts
for the dynamics of carrier distribution perturbed away from
the Fermi sea equilibrium, yields a concise closed-form ex-
pression for conductivity σ (k) in terms of the inverse lifetimes
γm for different angular harmonics of momentum distribution,
organized in a continued fraction (see Sec. IV and Ref. [38]):

σ (k) = D

γp + R(k)
, R(k) = z

γ2 + z
γ3+ z

γ4+ z
γ5+...

, (5)

where D = ne2/m is the Drude spectral weight, and the wave-
number dependence is encoded in the quantity z = v2

F k2/4.
The dependence in Eq. (5) has several remarkable prop-

erties. The sum of two distinct contributions γp + R(k) in
the denominator of σ (k) describes momentum dissipation by
momentum-relaxing and momentum-conserving processes,
respectively. The first term is the rate γp of scattering by
disorder and phonons, the second term is a hydrodynamic
dissipation rate R(k) describing momentum loss due to car-
riers transporting it out of the region where the field induces
current.

It is interesting to note the additive character of the con-
tributions to resistivity σ−1(k) due to momentum-relaxing
and momentum-conserving scattering. Namely, the quantities
γp and R(k) obey a “Matthiessen rule.” To the contrary, the
contributions to resistivity from the perturbed Fermi surface
angular harmonics are nonadditive. Instead of adding up,
the relaxation rates γm for different angular harmonics com-
bine through a continued fraction, as given in Eq. (5).

To clarify the role of the hydrodynamic momentum relax-
ation contribution R(k), it is instructive to consider limiting
cases of σ (k). For spatially uniform fields and currents, k = 0,
the relation in Eq. (5) reduces to the conventional local Drude
conductivity. For a spatially nonuniform current flow, the
quantity R(k) describes a reduction in the conductivity at a
nonzero k arising from a nonlocal dissipation effect due to car-
riers moving away to the system boundary or contacts, where
carriers’ momenta can relax even if carrier-carrier scattering
in the bulk of the system is momentum conserving.

This picture allows us to understand the counterintuitive
effect of carrier collisions assisting conduction [5,22]. Due to
carrier collisions, each carrier spends more time within the
system before it reaches the boundary or escapes out of the
system. Higher collision rates therefore translate into smaller
R(k) values, suppressing dissipation and enhancing conduc-
tance. This explains, in very general terms, why the growth
in the carrier-carrier collision rates with temperature assists
conduction and reduces dissipation.

Properties of R(k) can be further illustrated by two ex-
amples. In the free-particle regime, γp = γm = 0, evaluating
continued fraction gives R(k) = √

z = kv/2 [see Eq. (33) and
discussion beneath it]. In this case, the response function σ (k)
describes ballistic transport in which the nonlocal conduc-
tivity is mediated by noninteracting particles freely moving

through the system. Linear scaling R(k) ∼ k translates into
conductivity k dependence σ (k) ∼ 1/k, which can be un-
derstood by considering ballistic transport through a slit or
aperture of width w � λF . In this case the conductance is
expected to scale linearly with the width w, which is precisely
the scaling that follows from the relation σ (k) ∼ 1/k.

Another simple limiting case is when carrier collisions do
occur but the wave numbers k are small. In this case, at lead-
ing order in k2, disregarding contributions of γm with m > 2
yields R(k) = νk2 where ν = v2

F /4γ2. This gives the nonlocal
conductivity which coincides with that obtained from viscous
hydrodynamics, σ (k) = D/(γp + νk2), where ν is the kine-
matic viscosity. These two conductivity models will be further
discussed below [see Eq. (37)] and employed to understand
vortical flows.

Last, we discuss the approach used below to tackle the
boundary-value problem for nonlocal conductivity. In the lit-
erature on electron fluids, currents and vortices in systems
of finite size are typically investigated using hydrodynamic
models that employ partial differential equations (such as
Navier-Stokes equations) with appropriately defined bound-
ary conditions (see, for instance, Refs. [3,34,37,39–41].
Treating nonlocal conductivity in a finite-size system repre-
sents a problem of a very different kind [5,6,15,38,42]. In
this context, it is natural to extend the problem to the entire
2D plane by considering currents and potentials equally both
inside and outside the region of interest. In this approach, the
physical boundary is replaced by a contour that nominally
allows current flow but effectively acts as an impenetrable
barrier due to its high resistivity. Mathematically, this concept
is implemented by defining an auxiliary electric field localized
on the boundary, which is treated as a free parameter and
determined self-consistently to nullify currents at the impene-
trable parts of the boundary.

This approach enables the treatment of transport for
general nonlocal conductivity, as given in Eq. (5), and accom-
modates arbitrary system geometries. This flexibility offers
a significant advantage as it allows for the study of currents
and vortices without the need to commit to a specific regime.
Below, this approach will be employed to characterize vor-
ticity and vortices across several different regimes, including
the viscous and ballistic regimes, as well as the intermediate
crossover regime.

We will find that vortices, rather than being unambiguously
associated with viscous flows, are a generic property of sys-
tems with dispersive (k-dependent) conductivity that governs
a nonlocal current-field response. To elucidate the properties
of vortices in different transport regimes we tune the system
from the viscous regime, occurring at high electron-electron
collision rates, to the ballistic free-electron regime. We find
that vorticity does not disappear when the electron collision
rate decreases. Rather, the vorticity experiences little change
on the viscous-to-ballistic crossover, taking similar values in
the ballistic and viscous regimes.

We illustrate this resilience of vorticity for a flow in a strip
geometry pictured in Fig. 1, with carriers injected and drained
through a pair of contacts positioned at the opposite sides
of the strip. The flow was obtained by the method outlined
in Sec. V and discussed in subsequent sections. The flows
pictured in Figs. 1(a) and 1(b) were found for the nonlocal
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FIG. 2. (a) Current backflow in the viscous, ballistic, and inter-
mediate regimes sampled on the line y = w/2 in the middle of the
strip. The backflow magnitude is nearly the same in all regimes,
being slightly larger in the intermediate regime compared to the vis-
cous and ballistic regimes. Secondary vortices in the viscous regime,
manifested through multiple current sign reversals, are illustrated in
the zoom-in shown in Fig. 6. (b) Stream function φy=w/2(x) normal-
ized to unit net current, φy=w/2(x)|L/2

−L/2 = 1, and a zoom-in detailing
backflows for different regimes. The largest backflow magnitude
occurs for γ = 1v/w (intermediate regime).

conductivity model in Eq. (34) for parameter values corre-
sponding to the ballistic and viscous regimes. Both flows
feature vortices of comparable intensity but different struc-
ture: two pairs of vortices in the viscous regime at x1,1′ ≈ ±w

and x2,2′ ≈ ±2w vs one pair in the ballistic regime. The in-
terpolated current distributions shown in Figs. 1(a) and 1(b),
while accurately representing the flow geometry, greatly ex-
aggerate secondary vortices in Fig. 1(b). For a quantitatively
accurate representation of the primary and secondary vortices,
see Fig. 6. Vorticity values, quantified by the nonmonotonic
part of the stream function related to backflow, are overall
quite similar in the two flows (as quantified in Fig. 2).

The robustness and generic character of vorticity in elec-
tron flows prompts a question of how the vortex patterns
observed experimentally can be linked to the microscopic in-
teractions and scattering mechanisms. Naively, judging from
Fig. 1 this may seem challenging. Indeed, despite somewhat
different appearance in the viscous and ballistic phases, vortex
patterns feature comparable vorticity values. However, while
vorticity experiences little change on the viscous-to-ballistic
crossover, its response to momentum-relaxing collisions due
to phonons or disorder is completely different in the two cases.
Namely, vorticity is suppressed by momentum-relaxing scat-
tering orders-of-magnitude more strongly in the viscous phase
than in the ballistic phase. That is, a minuscule momentum-
relaxing scattering is sufficient to suppress the vorticity of
viscous flows, leaving vorticity of ballistic flows practically
unaffected. As discussed below, this behavior can serve as a

diagnostic allowing to delineate between ballistic and viscous
vortical flows.

III. LINEAR RESPONSE AND QUASINEUTRALITY

In this and the next section, we link the nonlocal conduc-
tivity σ (k) to fermion kinetics, deriving the continued fraction
representation as given in Eq. (5). While the general form of
this response function matches that obtained elsewhere [38],
the treatment presented here addresses key questions such
as the role of space charge and quasineutrality. As a gen-
eral framework, we adopt the Boltzmann kinetic equation for
carriers in the presence of an external electric field. Taking
the free-particle Hamiltonian to be H = p2/2m + U (r) and
accounting for relevant collision processes, the kinetic equa-
tion describes evolution of carrier distribution as1

df

dt
+ [ f , H] = I ( f ). (6)

Here f (p, r, t ) is electron momentum distribution evolving in
space and time, and [ f , H] denotes the Poisson bracket,

∇r f ∇pH − ∇rH∇p f = v · ∇r f + eE · ∇p f , (7)

where v and e are the electron band velocity and charge. The
collision term I ( f ) will be discussed below.

Nonlocal conductivity, describing linear response of cur-
rents to a weak external field Eexteikr−iωt , can be found from
perturbation in the carrier distribution δ f (p, r, t ) induced by
Eext throughout the system. After finding δ f (p, r, t ) from the
kinetic equation response, we will evaluate currents as

j(r, t ) =
∫

d2 p

(2π )2
ev(p)δ f (p, r, t ). (8)

In general, the electric fields of interest are not purely po-
tential, meaning that Eext has components both parallel and
perpendicular to the modulation wave vector k. To determine
such a response, we must consider the field E in Eq. (7) as
the sum of an externally applied field Eext and an “internal”
field arising from the space charge (or polarization) induced
by Eext:

E(r) = Eext (r) − ∇r

∫
d2x′U (r − r′)δρ(r′), (9)

where U (r − r′) is the electron-electron 1/r interaction
screened by gates, by polarization charges in the electron
system and the dielectric environment. The perturbed density
δρ, which describes screening of the applied field by space
charge buildup, must be determined self-consistently from the
kinetic equation response.

Changes in the net carrier density due to currents flowing in
the system are usually disregarded based on the “quasineutral-
ity principle,” which assumes that any deviation from charge
neutrality is screened out by ambient carriers. This concept
is well established and widely used for local (ohmic) con-
ductivity response in 3D metals, where the current-carrying

1We thank Professor Emmanuel Rashba for clarifying to us the
notion of space charge screening outside local equilibrium and its
relation to quasineutrality, as summarized in Sec. III.
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state is considered as a perturbation of a local equilibrium
state. It is instructive to consider how this picture changes
for the nonlocal response in 2D systems obtained without
assuming local equilibrium. To that end, we focus on the
response of the carrier distribution to Eext (r), including the
effect of nonequilibrium space charge in the perturbed system
as the second term in Eq. (9), which hereafter we denote as
EU (r). We consider the kinetic equation linearized in the car-
rier distribution perturbed from the Fermi sea at equilibrium.
Writing f (p, r, t ) = f (0)(p) + δ f (p, r, t ), where δ f (p, r, t ) is
first order in Eext, we have

(∂t + v · ∇r − I )δ f = −e(Eext + EU ) · ∇p f (0)
p , (10)

where I is a shorthand for the linearized collision operator and
f (0)

p is the equilibrium distribution.
Using Eq. (10), we can compare the solutions in the

presence and in the absence of the interaction U (r − r′). It
turns out that the interaction screens out the s-wave (angle-
independent) part of momentum distribution but does not
impact other angular harmonics. As a result, since current
obtained from Eq. (8) is insensitive to the angle-independent
part of momentum distribution, the current response to Eext

obtained from Eq. (10) is identical to that obtained in the
absence of interactions.

To establish this behavior, we write momentum distribution
as a sum of two terms,

δ f (p, r, t ) = δ f̃ (p, r, t ) + ∂ f (0)
p

∂ε
Ûδρ(r, t ), (11)

where δ f̃ defines an auxiliary “free-particle” carrier distri-
bution that will be dealt with shortly, and the quantity Ûδρ

denotes a position-dependent potential given by the inte-
gral

∫
d2r′U (r − r′)δρ(r′). The last term in Eq. (11) can be

formally interpreted as a change in the equilibrium carrier
distribution due to a change in the “chemical potential” by
δμ(r, t ) = −Ûδρ(r, t ).

To clarify the relation among the actual distribution δ f , the
fictitious free-particle distribution δ f̃ , and the quasineutrality
picture, we integrate Eq. (11) over d2 p, finding a relation
between densities

δρ(r) = δρ̃(r) + ν

∫
d2r′U (r − r′)δρ(r′), (12)

where ν = ∫ d2 p
(2π )2 [−∂ f (0)

p /∂ε] is the compressibility of the
electron system. Introducing Fourier harmonics for den-
sities and interaction, δρ(k) = ∫

d2re−ikrδρ(r), δρ̃(k) =∫
d2re−ikrδρ̃(r), and Uk = ∫

d2re−ikrU (r), we recover the
standard Thomas-Fermi screening relation

(1 + νUk)δρ(k) = δρ̃(k), (13)

as expected for the “free-particle” density and the actual den-
sity affected by screening. For a long-range interaction, the
relation in Eq. (13) predicts strong screening.

At the same time, perhaps surprisingly, the quantity
δ f̃ (p, r, t ) can be shown to obey a free-particle kinetic equa-
tion almost unaffected by screening. Indeed, by substituting
into Eq. (10) the distribution δ f written as a sum given
in Eq. (11), we observe that, under v · ∇r, the contribution

− ∂ f (0)
p

∂ε
δμ cancels with the term −eEU ∇p f (0)

p . We therefore

obtain a closed-form equation for δ f̃ (p, r, t ):

∂t [δ f̃ /s(p)] + (v · ∇r − I )δ f̃ = −eEext · ∇p f (0)
p , (14)

where we account for the fact that the quantity ∂ f (0)
p

∂ε
is a zero

mode of the linearized collision operator, replacing Iδ f with
Iδ f̃ . In the first term, we used Eq. (11) to express f (p) =
f̃ (p)/s(p), where s(p) = 1 − ∂ f (0)

p

∂ε
Uk. For the dc transport

problem, which is our focus in this study, the term ∂t [δ f̃ /s(p)]
drops out. In this case the distribution δ f̃ obeys a free-particle
kinetic equation unaffected by interactions. A more compli-
cated behavior is expected in the ac regime, since in this case,
oscillating space charge can excite collective plasma wave
modes (to be discussed elsewhere).

Properties of the linear response of the carrier distribution
to Eext can be summarized by expressing the perturbed dis-
tribution in terms of modulations of the Fermi surface with
different angular structure, provided by a sum of cylindrical
harmonics

δ fp(t, r) = eikr−iωt
∑

m

δ fm(p, t )eimθ , (15)

where θ is the azimuthal angle on the Fermi surface and p =
|p|. The argument presented above proves that the m 	= 0 har-
monics are unaffected by space charge buildup and screening,
whereas the m = 0 harmonic is reduced by the screening fac-
tor 1 + νUk. In the limit of a long-range interaction U (r − r′),
the effect of screening is strong and the m = 0 harmonic is
nearly completely screened out.

Mathematically speaking, the sharp difference between the
m = 0 and m 	= 0 harmonics arises because electron interac-
tions are taken to be of a density-density form. As a result,
only the density (m = 0) harmonics are affected, whereas the
m 	= 0 harmonics remain unchanged. If, instead, the interac-
tion had some momentum dependence, as it does, for instance,
in Fermi-liquid theory, then the harmonics with nonzero m
would also be affected by screening.

It is worth noting that, while the predicted behavior aligns
with the conventional quasineutrality picture, there are some
essential differences. Specifically, unlike the usual picture, the
carrier distribution does not obey local equilibrium. Instead,
the momentum distribution can be strongly angle dependent.
This angle dependence, as will become clear, is a pronounced
effect in the ballistic transport regime discussed below. There-
fore, the quasineutrality framework introduced here for a
nonequilibrium problem represents an extension of the con-
ventional quasineutrality appropriate for the problem at hand.

IV. CONDUCTIVITY σ(k) AND CONTINUED FRACTIONS

Our next goal is to link the nonlocal conductivity to the
properties of the linearized collision operator I . As we will
see, it proves rewarding to focus on the normal modes and
associated eigenvalues of this operator. The cylindrical sym-
metry of the problem allows us to work with the system of
angular harmonics given in Eq. (15), each of which evolves in
time as e−γmt , where γm are the eigenvalues of I . It turns out
that the conductivity can be expressed directly in terms of the
rates γm.
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To set the stage for this discussion, we take a closer look
at the collision operator I ( f ) describing electron-electron
scattering kinetics. In this case,

Iee( f1) =
∑
21′2′

(w1′2′→12 − w12→1′2′ ). (16)

The quantities on the right-hand side of Eq. (16) describe the
rate of change of the occupancy of a state p1, given as a sum
of the gain and loss contributions resulting from the two-body
scattering processes 12 → 1′2′ and 1′2′ → 12. The gain and
loss contributions are related by the reciprocity symmetry
12 ↔ 1′2′. For these processes, Fermi’s golden rule yields the
scattering rates

w1′2′→12 = 2π

h̄
|V12,1′2′ |2δεδp(1 − f1)(1 − f2) f1′ f2′ , (17)

where the delta functions δε = δ(ε1 + ε2 − ε1′ − ε2′ ), δp =
δ(2)(p1 + p2 − p1′ − p2′ ) account for the energy and momen-
tum conservation and the factors 1 − f1 and 1 − f2 account
for fermion exclusion. Here V12,1′2′ is the two-body in-
teraction, properly antisymmetrized to account for fermion
exchange and spin dependence (see, for instance, Ref. [43],
Sec. 2). Interaction V12,1′2′ depends on momentum transfer k
on the k ∼ kF scale; this k dependence is inessential and, for
simplicity, can be ignored. The sum over momenta 2, 1′, and
2′ in Eq. (16) represents a six-dimensional integral over p2,
p1′ , and p2′ , given by (2π )−6

∫
d2 p2d2 p1′d2 p2′ .

To understand the properties of the collision term in
Eq. (6), we briefly consider a spatially uniform problem, set-
ting [ f , H] = 0. Using the standard ansatz

δ f (p) = −∂ f (0)
p

∂ε
η(p) (18)

yields a linear integrodifferential equation for η1(p, t ): f0(1 −
f0) dη1

dt = Ieeη with the linearized collision operator

Ieeη =
∑
21′2′

λF121′2′δεδp(η1′ + η2′ − η1 − η2). (19)

Here λ denotes the interaction matrix element 2π
h̄ |V12,1′2′ |2,

and the quantity F121′2′ is a product of the equilibrium Fermi
functions f 0

1 f 0
2 (1 − f 0

1′ )(1 − f 0
2′ ).

Different excitations are described by eigenfunctions of the
operator Iee, with the eigenvalues giving the decay rates equal
to inverse lifetimes. Because of the cylindrical symmetry of
the problem, the eigenfunctions are products of angular har-
monics on the Fermi surface and functions of the radial energy
variable x = β(ε − μ):

η(p, t ) =
∑

m

e−γmt eimθχm(x), (20)

where γm and χm(x) are solutions of spectral problems,

−γm f0(1 − f0)eimθχm(x) = Ieeeimθχm(x), (21)

one per each angular momentum channel. The quantities γm

define inverse lifetimes of excitations in the Fermi gas rep-
resenting modulations of the Fermi surface with different
angular structure. The values γm, which give the spectrum of
relaxation times of the system, have been studied some years
ago in 3D Fermi liquids [44] and, recently, in 2D Fermi liquids

[22,42,43,45,46]. These studies support the picture that in
each angular momentum channel the modes with the smallest
values γm dominate the dynamics. At small temperatures, the
rates γm become small, scaling as T 2 in 3D systems. In 2D
systems, the rates scale as T 4 for odd m and as T 2 for even m.
Focusing on such longest-lived modes simplifies the picture
and allows us to arrive at a simple and general result for
conductivity.

The approach developed here, based on accounting for
the long-lived modes in each scattering channel, proves
to be widely applicable. In particular, besides momentum-
conserving two-body collisions, it can be used to tackle
kinetic problems involving momentum-relaxing scattering by
disorder and phonons. Due to the cylindrical symmetry of
these problems, different eigenfunctions of the linearized col-
lision operator can always be chosen as angular harmonics
δ fm(p)eimθ , where

Iδ fm(p)eimθ = −γmδ fm(p)eimθ (22)

(as above, we suppress the time dependence to emphasize that
the operator I , which is nonlocal in p, is local in time and time
independent). This allows us to incorporate these processes on
equal footing with momentum-conserving electron-electron
scattering into a single framework. In particular, γ1 = γp

describes momentum relaxation due to disorder of phonon
scattering, γ2 is usually dominated by electron-electron colli-
sions, γ0 = 0 due to particle number conservation, and so on.

The key observation that allows progress towards a simple
physical picture is that by choosing the basis δ fm(p)eimθ , the
problem can be transformed into a tridiagonal matrix form. In
this representation, which can be viewed as a one-dimensional
tight-binding problem defined on a chain of sites labeled by
different m, a closed-form solution for conductivity σ (k) can
be given in terms of continued fractions. This representation
is derived from the analysis of the angular dependence of δ fp

on the Fermi surface, and the couplings between harmonics
m and m ± 1 originating from the term v · ∇r in the kinetic
equation.

As a first step, we express the electric field term

through carrier velocity as E∇p f (0)
p = Ev

∂ f (0)
p

∂ε
. Since v =

v(cos θ, sin θ ), the term evE, when rewritten in the angular
harmonics basis, has nonzero matrix elements only for har-
monics m = ±1. This is made apparent by the identities

evE = ev

2
(Ex + iEy)e−iθ + ev

2
(Ex − iEy)eiθ

= Ee−iθ + Ēeiθ , (23)

where we introduced complex-valued quantities E, Ē =
ev(Ex ± iEy)/2. Likewise, the angular dependence of the
streaming term vk indicates that, when transformed to the
angular harmonics basis, it also has nonzero matrix elements
only between m and m ± 1. Indeed,

vk = ζe−iθ + ζ̄eiθ , ζ , ζ̄ = v(kx ± iky)/2. (24)

Accordingly, the Boltzmann equation becomes a system of
coupled linear equations:

(γm − iω)δ fm + ζ δ fm+1 + ζ̄ δ fm−1 = sm,

sm = ∂ f (0)
p

∂ε
(Eδm,−1 + Ēδm,1), (25)
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where from now on we suppress, for conciseness, the de-
pendence on p in δ fm. This problem describes a response of
variables δ fm to the “source term” sm describing the electric
field.

While our main focus is the dc transport problem, it is
instructive to consider a more general problem describing the
response at a finite frequency. With this in mind, in Eqs. (25),
we replace the rates γm with γm − iω. This allows us to
determine the nonlocal conductivity while maintaining full
frequency dependence and then specialize to the dc case,
ω = 0, at the end.

To solve these equations, we first consider the source term
sm with m = 1, adding the contribution of the m = −1 source
term later. By introducing notation αm = iδ fm+1/δ fm, we can
write equations with m > 1 as

γ̃m + ζαm − ζ̄

αm−1
= 0, γ̃m = γm − iω. (26)

These equations can be rewritten as recursion relations
αm−1 = ζ̄

γ̃m+ζαm
and solved by iterations over m + 1, m +

2, . . . , yielding a continued fraction,

αm−1 = ζ̄

γ̃m + |ζ |2
γ̃m+1+ |ζ |2

γ̃m+2+...

. (27)

Likewise, for −∞ < m < 1 we define α′
m = iδ fm−1/δ fm and

obtain

α′
m+1 = ζ

γ̃m + |ζ |2
γ̃m−1+ |ζ |2

γ̃m−2+...

. (28)

Now, the harmonic δ f1 describing the current density can be
found from the m = 1 equation,

γ̃1δ f1 + iζ δ f2 + iζ̄ δ f0 = ∂ f (0)
p

∂ε
E . (29)

From now on, we impose the quasineutrality condition by
suppressing the density harmonic δ f0. This quantity is small
due to the space charge screening effects discussed in Sec. III
and, in what follows, will be set to zero.

After eliminating δ f0, the result in Eq. (29) takes the form

δ f1(γ̃1 + ζα1) = ∂ f (0)
p

∂ε
E . Then substituting the continued frac-

tion for α1 yields

δ f1 = ∂ f (0)
p

∂ε

Ē
γ̃1 + |ζ |2

γ̃2+ |ζ |2
γ̃3+ |ζ |2

γ̃4+...

. (30)

A similar result can be obtained for δ f−1 in terms of γ−m and
E . Current components can now be calculated from Eq. (8).
Introducing, for conciseness, the complex-valued quantities
jx − i jy and vx(p) − ivy(p) = v(p)e−iθ gives the relation

jx − i jy = 〈e[vx(p) − ivy(p)](δ f1eiθ + δ f−1e−iθ )〉, (31)

where 〈...〉 denotes
∫ d2 p

(2π )2 .... Taking the integral over d2 p and
noting that the contribution of δ f−1 vanishes after integra-
tion over θ , we obtain conductivity expressed as a continued

fraction:

σ (k, ω) = D

γ̃1 + z
γ̃2+ z

γ̃3+ z
γ̃4+...

, z = v2
F k2/4, (32)

where D = ne2/m is the Drude spectral weight. This result
is identical to that in Eq. (5), with the carrier density n =
gk2

F /4π h̄2, where g is the spin or valley degeneracy and kF is
Fermi momentum. As discussed above, the term γ̃1 describes
the ordinary ohmic contribution, whereas the second term [de-
noted R(k) in Eq. (5)] describes a hydrodynamic contribution
to dissipation due to the momentum transported by carriers
lost outside the system.

Here we focus on a simple model for dc conductivity in
which all rates γm�2 are equal (γ2 = γ3 = γ4 = · · · = γ ) and
we set ω = 0. In this case the quantity R(k) can be obtained
in a closed form. From the recursion relation R(k) = z/[γ +
R(k)] we find

R(k) =
√

γ 2 + k2v2 − γ

2
, (33)

which gives a k-dependent dc conductivity

σ (k) = D

γp + 1
2 (

√
v2k2 + γ 2 − γ )

. (34)

Here for consistency with notation used in Eq. (5) and
throughout the text, we replaced γ1 with the momentum re-
laxation rate γp. This model, which describes the viscous
and ballistic regimes, as well as the crossover between these
regimes at the lengthscales such that kv ∼ γ , will be used
below to obtain vortical flows and analyze their stability in
the presence of disorder scattering.

This result for conductivity does not depend on the an-
gle between electric field and the wave vector. As discussed
above, accounting for the fact that the electric field component
parallel to the wave vector k is screened out by space charge
buildup and does not produce a dc current, yields an additional
tensor structure δαα′ − k̂α k̂α′ and leads to a conductivity tensor
given in Eq. (4). The significance of this tensor structure
depends on the system and current flow geometry. In a long
strip with Poiseuille-type current flow directed along the strip,
this tensor structure is irrelevant since the field and current
are both perpendicular to the characteristic wave vector (see
Refs. [38,42]). However, the tensor structure δαα′ − k̂α k̂α′ will
be key in the analysis of vortical flows below. It is also crucial
in other geometries of interest, such as transport through a
constriction [5,6,15] or in a Corbino disk geometry.

Before concluding the discussion on the general properties
of σ (k), it is interesting to note that, as mentioned in the
discussion following Eq. (25), this analysis can be adapted
with minimal changes to describe current response at a finite
frequency. In that, the general symmetry-enforced decom-
position of the conductivity tensor into the longitudinal and
transverse components, given in Eq. (3), remains unchanged,
however both σ (k) and σ ′(k) become functions of frequency.
Frequency dependence of σ (k) can be obtained as discussed
above. The end result is Eq. (5) in which the rates γm are
replaced with γm − iω. In this form, it provides an extension
of the Drude-Lorentz model to the hydrodynamic domain. The
longitudinal conductivity σ ′(k) changes in a different way,
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acquiring a plasmonic pole. This leads to a number of effects
of interest for the ac response that will be discussed elsewhere.

V. CONDUCTIVITY σ(k) AND VORTICAL FLOWS

While nonlocal conductivity is a key prerequisite for vor-
tices, the geometry specifics are of course no less important,
e.g., the strip geometry supports vortical flows [3,47], whereas
the extensively studied open half-plane geometry supports
vortex-free flows [34,37]. It is therefore of interest to identify
a simple framework in which the general properties of vortical
flows can be understood.

Here we develop an approach through which the nonlocal
conductivity introduced above for a flow in an infinite plane
can be used to find the flow in a system with boundaries.
Namely, rather than specializing to specific system geome-
tries, we continue to work in an infinite plane and mimic
boundary conditions by adding to an externally applied field
a fictitious field E (fic) concentrated on a line, or a system
of lines, representing system boundary and chosen such that
currents vanish at this “boundary.” For instance, to tackle
the boundary value problem for the strip geometry pictured
in Fig. 1, we solve the nonlocal conductivity problem in an
infinite plane assigning high resistivity to the impenetrable
parts of the strip boundary in Fig. 1. Field and current dis-
tributions are then determined from a self-consistent solution
to the transport problem in an infinite plane augmented by a
fictitious boundary field E (fic). Namely, we employ Eq. (1)
with E corrected by a fictitious field E (fic) defined at the
boundary and proportional to local current:

Eα′ (r) = E (ext)
α′ (r) − E (fic)

α′ (r), E (fic)
α′ (r) = λ jα′ (r), (35)

with λ a “boundary resistivity” parameter. This yields a self-
consistent integral equation for currents,

jα (r) = j (ext)
α (r) − λ

∫
B

d�′σαα′ (r − r′) jα′ (r′), (36)

with the line integral taken along the system boundary B. We
solve this equation by a method applicable for any λ, setting
it at the end to a large-enough value to mimic an impenetrable
boundary (here a value λ = 105v/Dw was used). The exter-
nally applied current is taken to be uniform, j (ext)(r) = j0.

The condition of zero currents at the boundary, enforced by
a large λ, mimics the no-slip boundary condition in fluid me-
chanics. In this framework, more general boundary conditions
can be introduced by using a symmetric 2 × 2 tensor quantity
λαα′ with major axes normal and tangential to the boundary.
Physically, the tensor λαα′ describes anisotropic resistivity at
the boundary line. A large eigenvalue λ⊥ will enforce zero
current normal to the boundary, whereas the tangential cur-
rent component can be varied by tuning the eigenvalue λ‖.
Here, however, we focus on the isotropic case, where λ⊥ and
λ‖ are equal and large. Other methods to tackle boundary
conditions in electron hydrodynamics have been discussed in
Refs. [39–41].

The integral equation given in Eq. (36), which links quan-
tities in the system interior and at the boundary, can be tackled
in two steps. We first restrict r to system boundary. This
yields a 1D integral equation for the boundary currents, a
closed-form problem that can be solved directly. Next, the
relation in Eq. (36) between currents in the system interior and

at the boundary can be used to predict currents in the entire 2D
plane.

This approach has been established in previous literature.
Recent examples are Refs. [5,6,15,38,42], and the first usage
goes back as far as Ref. [48]. Furthermore, Ref. [5] provided
a detailed comparison to other methods by using analytic
solutions for the limiting cases. We note that, while the anal-
ysis below focuses on a simple strip geometry, the method
outlined above is applicable to systems with arbitrary curved
boundaries.

On a more general note, this method provides a simple,
general, and versatile framework for tackling boundary-value
problems for nonlocal conductivity, not limited to the trans-
port models discussed in Refs. [5,42]. While being heuristic,
it is physically well motivated and intuitive. Though perhaps
at present time this method is lacking rigorous justification,
it gives results that agree with other approaches and, notably,
with analytic solutions when these are available. An added
value of this method is that it is versatile, flexible, and insen-
sitive to microscopic details, as will be made clear in Sec. VI.

Using this approach and focusing on the k-dependent
conductivity given in Eq. (34), we will establish nonlocal
conductivity as the key property responsible for the formation
of vortices. As we will see, vortical flows emerging in a very
general manner regardless of the specifics of the transport
mechanism. In comparison, for a k-independent conductivity,
which defines ohmic transport with a local current-field rela-
tion, the flow is potential and vortex free.

One interesting aspect of vortical flows that will be elu-
cidated by this study is that different transport mechanisms
(viscous, ballistic, or else) result in different sensitivity of
vortical flows to carrier momentum relaxation due to disorder
or phonons. Properties of vorticity such as its robustness under
the influence of disorder can be inferred directly from the
conductivity k dependence at small k. This is well illustrated
by the k-dependent conductivity σ (k), Eq. (34), which defines
a scale-dependent linear response that features different char-
acter at different lengthscales.

The scale dependence and its relation to vorticity sup-
pression by disorder is made more clear by writing σ (k) =
D/[γp + R(k)], where R(k) is given in Eq. (33). At small k
such that R(k) < γp it describes ohmic dissipation. At large k
such that R(k) > γp it describes dissipation due to particles
transporting momentum out of the system. The large-k be-
havior can be either ballistic or viscouslike, depending on the
ratio of γ and kv. Namely, as discussed above, for γ � vk
we have R(k) = |k|v/2, whereas for γ � vk we have R(k) =
k2v2/4γ . This gives two models of dispersive conductivity :

(a) σball(k) = D

γp + v|k|
2

; (b) σvisc(k) = D

γp + νk2
(37)

with D = ne2/m the Drude weight and ν = v2/4γ the
kinematic viscosity. Here γp is the momentum relaxation rate
due to disorder, γ is the electron-electron collision rate that
governs viscosity, and in the viscous case the long-wavelength
limit kv � γ is assumed. The quantity in the denominators
is the disorder scattering rate γp corrected by a k-dependent
contribution describing momentum relaxation due to
momentum spreading over the lengthscales � ∼ 1/k. The
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k values for which this contribution becomes smaller than γp

define the lengthscales at which the conductivity becomes
effectively local, yielding a current flow that is potential and
vortex free.

For transport in a system of size w, the wave numbers
describing the flow that carries momentum out of the system
are on the order k ∼ 1/w. Compared to Eq. (37), this predicts
threshold values for disorder scattering above which the k
dependence of conductivity is suppressed:

(a) γ ′
p ≈ v/w; (b) γ ′′

p ≈ ν/w2, (38)

respectively, for the ballistic and viscous regimes. Condition
(a) states that vorticity is suppressed when the disorder mean
free path is smaller than the system size. Condition (b) states
that the momentum relaxation time is shorter than the time
momentum diffuses across viscous fluid in a system of size
w, which is a considerably more stringent condition than (a).
These two threshold values are related as

γ ′′
p /γ ′

p ≈ �ee/w, (39)

where �ee = v/γ is the el-el collision mean free path. We see
that in a hydrodynamic regime, �ee � w, the sensitivity of
vortices to momentum-relaxing collisions is orders of mag-
nitude stronger than in the ballistic regime.

Physically, the reason for this difference is that in the
viscous phase particles move along zigzagging paths that are
considerably longer than the straight paths in the ballistic
regime. Indeed, for vorticity to be insensitive to disorder the
travel time over a typical path must be shorter than momen-
tum relaxation time. We therefore expect ballistic vortices
to be considerably more resilient under momentum-relaxing
scattering than the viscous vortices. The general character of
these conclusions, valid for a general dispersion σ (k), will be
confirmed by the numerical results presented in Sec. VI.

VI. THE INFLUENCE OF DISORDER

Here we consider electron flow in an infinite strip of
width w,

−∞ < x < ∞, 0 < y < w, (40)

with a pair of slits on opposite sides serving as the injector
and drain contacts, Fig. 1. For transport in a strip of width
w the relevant wave number is k ≈ 1/w. Accordingly, in our
simulation we use γ = 0.1 and 100 v/w to model the ballistic
and hydrodynamic regimes; the values γ = 1 and 10 v/w are
used to model the crossover between these regimes.

We first consider the results for the disorder-free case
[γp = 0 in Eq. (34)]. After solving for currents at the strip
boundary y = 0 we use Eq. (36) to find currents in the strip
bulk. Vortices are revealed by current profile on a line in the
middle of the strip y = w/2, pictured in Fig. 2(a). The key
feature is the flow sign reversal: Outside the middle region
where current flows from injector to drain there are regions
where current flows against the applied field, signaling the
presence of vortices. Interestingly, vortices are present in both
the ballistic and viscous regime and have similar intensities
with a little change at the crossover.

One difference between vortices in the two regimes is in
their spatial extent: Ballistic vortices are about ∼2 times wider

than viscous vortices. Another (minor) difference is that cur-
rent undergoes multiple sign reversals, indicating the presence
of several vortices of opposite orientation (so-called Moffatt
vortices [47,49]). This confirms the presence of multiple vor-
tices in the viscous regime pictured in Fig. 1. However, Fig. 2
also indicates that the secondary vortices are extremely weak,
illustrating that Fig. 1 predicts correctly the flow geometry but
misrepresents the magnitude of vorticity.

To gain more insight, we consider the stream function de-
fined through u = ∇ × [φ(r)ẑ] = (∂yφ(r),−∂xφ(r))T , where
j = enu [see Fig. 2(b)]. This quantity has a number of use-
ful properties. In particular, it quantifies the net integrated
backflow regardless of how far from the slit the backflow
occurs and the details of its spatial distribution and, as such,
provides a meaningful comparison between different regimes.
This quantity, shown in Fig. 2(b) on the line in the middle of
the strip, φw/2(x) = ∫ x

0 jy(ξ,w/2)dξ indicates a larger swing
for the ballistic flow (blue curve) than the viscous flow (red
curve), i.e., the backflow is actually somewhat stronger in the
ballistic case than in the viscous case. Yet, in the absence of
disorder scattering, the predicted differences between ballistic
and viscous vortices are probably not strong enough to unam-
biguously differentiate these regimes experimentally.

To the contrary, the ballistic and viscous vortices behave
very differently in the presence of disorder scattering (ohmic
dissipation). Specifically, as illustrated in Fig. 3, relatively
weak disorder scattering proves sufficient to suppress viscous
vortices, while having a relatively small impact on ballis-
tic vortices, as discussed above. Electron-electron scattering
is strongly temperature-dependent, behaving as ∼T 2 in 3D
Fermi liquids [44] (also see recent work on 2D Fermi liquids
[22,42,43,45,46]). Momentum relaxing scattering features lit-
tle temperature dependence when it is due to scattering by
disorder, and a linear T dependence for electron-phonon
scattering. Consequently, the parameters γ and γp can be
adjusted by varying temperature, which makes the flow pat-
terns sensitive to temperature. To illustrate this effect, we
set γp = 5 v/w and vary γ as shown in Fig. 3(a). Notably,
this γp value is sufficient to fully suppress viscous backflow
(indicated by the red line), while reducing ballistic backflow
(depicted by the blue line) by only about 5 times. The prop-
erty of ballistic vortices being more resilient than viscous
vortices in the presence of ohmic dissipation suggests a sim-
ple diagnostic for discriminating between the two regimes in
experiments.

It is also instructive to consider how ballistic and viscous
vortices, which have approximately equal intensity in the
absence of ohmic dissipation, are suppressed as the disorder
scattering rate γp increases; see Figs. 3(b) and 3(c). In both
cases we observe a transition to the ohmic flow regime that
shows no backflow. Yet, the characteristic values of γp above
which the flow becomes effectively ohmic are very different
for the two cases. Vortices in ballistic regime are quite robust
in the presence of ohmic dissipation and can sustain disorder
scattering as high as γp = 103 v/w. For example, dissipation
as small as γp = 2 × 10−2 v/w results in a loss of the second
(Moffatt) vortex and weakens the backflow amplitude 2 times,
while for the ballistic case a similar reduction of the backflow
happens for γp = 1 v/w. These values are in agreement with
the simple estimates given above in Eq. (37).
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FIG. 3. Suppression of current backflow and vorticity by ohmic
dissipation in different regimes. (a) Current in the middle of the
strip at a fixed disorder scattering rate γp = 5 v/w and varying γ .
The backflow and vorticity survive in the ballistic regime but are
completely suppressed in the viscous regime. [(b) and (c)] Illustra-
tion of weakening of the backflow on increasing ohmic scattering
in the ballistic and viscous regimes (realized at γ = 0.1 v/w and
γ = 100 v/w, respectively). Ballistic backflow is weakened roughly
2 times for γp = 1 v/w and totally suppressed for γp = 103 v/w.
Viscous backflow is considerably more fragile, being weakened
roughly 2 times for γp = 2 × 10−2 v/w and completely suppressed
for γp = 5 v/w.

Systems in which electron hydrodynamics is currently be-
ing investigated, such as graphene and GaAs 2D electron
gases [25–30,33,50], feature very low disorder concentra-
tion. Consequently, electron-phonon scattering becomes the
primary mechanism for momentum relaxation, described by
the rate γp scaling linearly with temperature, γp ∼ T . The
electron-electron (ee) scattering rates behave as γ ∼ T 2 with
a relatively large prefactor, giving an ee collision mean
free path which is shorter than the el-ph mean free path
at low T . As temperature grows, this creates a range of
lengthscales at which viscous regime sets in. It is interest-
ing to note that 2D electron systems support a family of
long-lived excitations with long memory times that feature
decay rate γ ∼ T 4 [22,42,43,45,46]. The occurrence of such
excitations makes electron hydrodynamics non-Newtonian,
featuring scale-dependent viscosity [22,38]. This impacts the
behavior at low temperatures and modifies the ballistic-to-

viscous crossover, but, as we presently believe, has little
impact on vortices. Then, as temperature continues to rise
and the el-ph mean free path becomes shorter, eventually the
ohmic regime takes over. Therefore, we expect ballistic trans-
port and strong vortices at low and intermediate temperatures.
As temperature rises, vortices initially persist when entering
the viscous regime, but at higher temperatures, they are sup-
pressed by momentum-relaxing electron-phonon scattering.

VII. BOUNDARY VALUE PROBLEM FOR VORTICAL
FLOWS IN A STRIP GEOMETRY

Here we detail the procedure used to evaluate the nonlocal
response in the strip geometry. This is done by solving the
integral equation for nonlocal transport, Eq. (36), derived by
replacing boundary conditions with a fictitious electric field.
In this case, Eq. (36) reads:

jα (r) = j0δα,y − λ

∫
B1∪B2

dx′σαα′ (r − x′) jα′ (x′), (41)

where B1 and B2 denote strip boundaries with the intervals of
the slits excluded,

B1,2 = {|x′| > w/2}y′=0,w. (42)

The term j0δα,y in Eq. (41) represents an externally applied
current which is perpendicular to the strip [see Eq. (36) and
discussion beneath it].

In our analysis, we employ two spatial mirror symmetries.
The horizontal mirror positioned at the strip middle line y =
w/2 maps the upper and lower edges of the strip and the
slits onto one another. The vertical mirror positioned at x = 0
maps each of the edges and the slits onto themselves. These
symmetries impose relations between the current components
within the strip:

jy(y, x) = jy(y,−x), jy(y, x) = jy(w − y, x); (43)

jx(y, x) = − jx(y,−x), jx(y, x) = − jx(w − y, x). (44)

We will focus on the currents at the edges and use these
symmetry relations to simplify the problem by expressing
variables on one edge through those on the other edge.

We first consider the y component of the current. Although
Eq. (41) can, in principle, be solved directly in position space,
it is more convenient here to switch to a mixed representation.
This approach uses Fourier components along the strip (the
x direction) while retaining the direct-space representation
perpendicular to the strip (the y direction). By replacing the
nonlocal conductivity with its Fourier transform, as in Eq. (2),
the equation for the y component of the current becomes

jy(x, y) = j0 − λ

∫
dx′χ (x′) jy(x′, 0)〈eikx (x−x′ )σyy(k)〉+

− λ

∫
dx′χ (x′) jx(x′, 0)〈eikx (x−x′ )σyx(k)〉−, (45)

where 〈. . .〉± is a shorthand for
∫ dkxdky

(2π )2 . . . F±(ky), with

F±(ky) = eikyy(1 ± e−ikyw ). For conciseness, we have ex-
tended the integral over x′ to the entire axis −∞ < x′ < ∞,
introducing a window function defined as χ (x′) = 1 when
x′ � w/2, and zero for x′ < w/2. Also, we have used spatial
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mirror symmetries of the current components, Eqs. (44) and
(43).

Next, we carry out a Fourier transform over x, jy(q, y) =∫
jy(x, y)e−iqxdx, to obtain

jy(q, y) = 2π j0δ(q) − λ

∫
dx′χ (x′) jy(x′, 0)e−iqx′

×
∫

dky

2π
[eikyy + eiky (y−w)]σyy(q, ky )

− λ

∫
dx′χ (x′) jx(x′, 0)e−iqx′

×
∫

dky

2π
[eikyy − eiky (y−w)]σyx(q, ky).

Here δ(q) is a 1D delta function, and we used that the
quantities σαα′ (q, ky) are ky-even for α = α′ and ky-odd for
α 	= α′. Because of this property, in the second term eikyy +
eiky (y−w) can be replaced with cos(kyy) + cos[ky(w − y)],
whereas in the third term eikyy − eiky (y−w) can be replaced with
i{sin(kyy) + sin[ky(w − y)]}, as the remaining parts vanish
due to parity of the expressions under the integrals. Further,
we use the fact that the integrals over x′ can be expressed as a
convolution in the q space, such as∫

dx′χ
(
x′) jy(x′, 0)e−iqx′ = χ̃ (q) ∗ jy(q, y = 0). (46)

In a similar way equations for the x component of current
can be derived. Passing to the mixed representation as above,
and introducing the quantity jx(q, y) = ∫

dxe−iqx jx(x, y), we
obtain a full set of equations:

jα (q, y) = 2π j0δ(q)δα,y − λ�αα′ (q)[χ̃ (q) ∗ jα′ (q)y=0],
(47)

where jα′ (q)y=0 is current on the strip edge and the depen-
dence on y comes through the quantities

�yy(q) =
∫

dky

2π
][eikyy + eiky (w−y)]]

σ (κ )q2

κ2
;

�yx(q) = −
∫

dky

2π
][eikyy − eiky (w−y)]]

σ (κ )qky

κ2
(48)

�xx(q) =
∫

dky

2π
][eikyy − eiky (w−y)]]

σ (κ )k2
y

κ2
;

�xy(q) = −
∫

dky

2π
][eikyy + eiky (w−y)]]

σ (κ )qky

κ2
, (49)

where we introduced notation κ =
√

q2 + k2
y . When using

these relations to evaluate �αα′ (q), it is important to account
for the parity of the quantities integrated over ky. This parity is
such that only the ky-even and ky-odd parts of eikyy ± eiky (w−y)

contribute to �xx(q), �yy(q) and �xy(q), �yx(q), respectively.
Accordingly, we can replace the quantities of eikyy ± eiky (w−y)

with

cos kyy ± cos ky(w − y) (50)

under the integrals giving �xx(q), �yy(q) and with

i sin kyy ± i sin ky(w − y) (51)

in the integrals giving �xy(q), �yx(q). The significance of this
property is that some of the integrals that technically diverge

are nulled by parity, and the sine and cosine versions of the
expressions for �αα′ (q) know about it.

The relations in Eqs. (47) provide bulk-to-boundary rela-
tions that link currents in the interior of the strip 0 < y < w

and currents at the lower edge y = 0. To determine currents
in the strip interior we first solve for currents at the edge and
then use the above bulk-to-boundary relations to find currents
in the entire strip. This procedure is detailed and illustrated in
Sec. VIII.

VIII. FINDING CURRENTS AT THE STRIP BOUNDARY

Here we detail the approach used for solving Eq. (47). The
right-hand sides of these equations contain only the currents
at the lower boundary y = 0. Therefore, we set y = 0 to obtain
a pair of coupled linear integral equations for jx(q, 0) and
jy(q, 0). For conciseness, in this section we will suppress the
“0” label, denote current components simply as jx,y(q).

To solve these equations we need to address several techni-
cal issues. First, in the absence of ohmic dissipation (γp = 0)
the conductivity σ (k) has a divergence at k = 0 [see Eq. (37)].
This translates into a divergence in the mixed representation.
In particular, the quantity �yy(q) diverges when q → 0,

�yy

∣∣
q→0 ≈

∫
dky

2π

8γ D

v2
(
k2

y + q2
) q2

k2
y + q2

= 2Dγ

v2

1

|q| . (52)

One way to eliminate this problem in numerical analysis is
to introduce an infinitesimal γp. Another way is to multiply
the y component of Eq. (47) by �−1

yy (q), which provides a
regularization since �−1

yy (0) = 0 (see Ref. [5]). In order to
treat all the regimes on equal footing here we adopt the latter
approach.

However, as noted in Ref. [5], where this approach has
been successfully used to analyze transport in a constric-
tion, there is a subtle point to be considered. Namely, since
�−1

yy (0) = 0, the term

j0�
−1
yy (q)δ(q) (53)

appears to vanish at all q, both zero and nonzero, due to
the properties of the δ function. Naively, this poses a conun-
drum, because the equations appear to loose the information
about the injected current. To circumvent this issue, we
make the system size L finite, which transforms 2πδ(q) into
2 sin(qL/2)/q as a Fourier transform of the external current
which is constant within our system and nulls outside of
it. Now, we are left with an expression of the form |q| ·
2 sin(qL/2)/q, which we want to transform back into a suit-
ably normalized delta function. We can find the normalization
constant by integrating this function over q:∫

dq|q| 2 sin(qL/2)/q = 8/L, (54)

where the integral
∫ ∞

0 sin(qL/2)dq was evaluated by intro-
ducing an exponentially decaying factor exp(−εq) and then
subsequently taking the limit ε → 0. Finally, after all manip-
ulations, we can legitimately write:

2π j0�
−1
yy (q)δ(q) = 2πμδ(q), μ = 2

πL

v2

Dγ
j0. (55)
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The quantity μ defined here corresponds to the parameter μ

introduced in Ref. [5], taking the same value. This derivation
elucidates its natural emergence in this context and proves its
finiteness. We also note that in the presence of ohmic losses,
the problem with divergence in �yy(q) does not occur, and the
equations can be treated without multiplying by �−1

yy (q).
The second issue that needs to be addressed is that with

�xx(q). This quantity, for y = 0, diverges logarithmically for
arbitrary q. The divergence originates from ky → ∞, i.e., the
small lengthscales. From physical perspective, a UV diver-
gences can be treated by introducing a suitable regularization.
In this case, a UV regularization is implemented by assum-
ing that the boundary is a blurred-out line that has a finite
thickness a. In this case, for a small-enough a, we identify
jx(q, a) ≈ jx(q, 0), which allows us to evaluate �xx(q) by
plugging into Eq. (49) y = a instead of y = 0:

�xx(q) =
∫

dky

2π
[cos(kyy) − cos[ky(w − y)]]}∣∣y=a

× σ (κ )k2
y

κ2
, κ =

√
q2 + k2

y . (56)

This integral converges for large ky and shows a logarithmic
dependence on the scale a.

The origin of this logarithmic dependence is the well-
known effect of a log-divergent mean free path in clean
metals, which occurs when carrier momentum relaxation is
dominated by surface scattering [51,52]. This divergence
arises from “grazing electrons” traveling at small angles to the
surface, allowing them to avoid surface collisions for extended
periods. In metals, the upper cutoff for this divergence is
determined by the Fermi momentum kF , represented here by
the quantity a−1. The lower cutoff is due to large lengthscales
set by the system length, represented here by the inverse wave
number k−1

x .
Continuing with the analysis, after making the adjust-

ments described above, we proceed to solve the integral
equations for current, Eq. (47). Because of the convolution,
these equations cannot be solved analytically, and a numeri-
cal approach is required. We therefore introduce an interval
−L/2 < x < L/2 on the x axis, discretized with a spacing
�x = L/N with a large-enough N , here taken to be N = 571.
For the functions in this interval we assume periodic boundary
conditions. In Fourier representation, these functions are sums
of harmonics with discrete wave numbers on the dual lattice,

qi =
(

i − N + 1

2

)
2π

L
, i = 1, 2, . . . , N, (57)

with a step size 2π/L. In our numerical calculation, when
treating Eq. (56), we take a = �x/10.

After this discretization, the current components jx(q)
and jy(q) become N-component vectors, and the convolution
becomes a linear operator representing the corresponding in-
tegral by a N × N matrix: χ̃ (q) ∗ jy(q) = M̂χ jy(q). We solve
our equations on the dual lattice, Eq. (57), approximating
integrals as Riemann sums. An inverse Fourier transform
is then carried out to find the currents in interval −L/2 <

x < L/2 in real space. This allows us to rewrite the current
equations as:

jy(q) = 2π j0δq,0 − λ�yα′ (q)M̂χ jα′ (q), (58)
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FIG. 4. Current distributions at the boundary y = 0 in the
dissipationless dynamics γp = 0 for the viscous, ballistic and inter-
mediate regimes. [(a) and (b)] Coordinate dependence of the current
components along the y and x axes, respectively

jx(q) = −λ�xα′ (q)M̂χ jα′ (q). (59)

From Eqs. (59) we express

jx(q) = −λ[1 + λ�xx(q)M̂χ ]−1�xy(q)M̂χ jy(q). (60)

Plugging it into Eq. (58) multiplied by �−1
yy (q), gives

jy(q) = 2πμ
{
�−1

yy (q) + λM̂χ − λ2�−1
yy (q)

× �yx(q)M̂χ [1 + λ�xx(q)M̂χ ]−1�xy(q)M̂χ

}−1
δq,0.

(61)

This result is then combined with Eq. (60) to find the x com-
ponent. Last, an inverse Fourier transform of the currents is
carried out to obtain the behavior in direct space.

The results of this calculation are presented in Fig. 4 and
Fig. 5. Current at the boundary vanishes outside the slit, as
expected, and has a profile within the slit that reflects the
miscroscopic scattering mechanisms. The dependence jy(x) is
nearly flat in the ballistic regime, as expected from Sharvin’s
phase space argument [53,54], and acquires a convex profile
as the el-el collision rate grows; see Fig. 4(a). In this limit,
current drops as x approaches the slit edges, as expected for
a viscous flow with no-slip boundary conditions, resembling
velocity profile for Poiseuile flow.

The component jx(x) exhibits a sign-changing profile
which indicates that within the slit on the y = 0 boundary
the current flows towards x = 0 vertical axis; see Fig. 4(b).
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FIG. 5. Current distributions along the y axis at the boundary y =
0 for increasing disorder scattering (a) ballistic to ohmic crossover
and (b) viscous to ohmic crossover

As can be seen in Fig. 1, at a slightly larger y, manifested
through the flow lines spreading out. This behavior persists
in the strip interior up to the middle line y = w/2; above this
line the current flow is a mirror image of that below the line
y = w/2, such that jx(x, y) = − jx(x,w − y) and jy(x, y) =
jy(x,w − y).

Further, the profile jy(x) within the slit undergoes a
peculiar transformation when ohmic losses are introduced,
developing a double-horn structure in both the ballistic and
viscous regimes as the disorder scattering increases; see
Figs. 5(a) and 5(b). This behavior reflects the familiar effect
of current crowding near sharp corners expected for ohmic
transport, and is in agreement with previous work [6,15].

Current density at the strip boundary, found as described
above, is then used to find current distributions within the
strip using Eq. (47) with suitably chosen y. Figure 6 shows
the overall current distribution on the line y = w/2 for the
ballistic, viscous, and crossover regimes and highlights vor-
tices. This can be compared to Figs. 2(a) and 2(b), which
detail the backflow effect for these current distributions. The
circle in the left inset of Fig. 6(a) marks the secondary vor-
tex for the viscous regime (γ = 100 v/w). As discussed in
Sec. VI, the current in the viscous regime undergoes multiple
sign reversals due to the presence of several vortices with
opposite signs. In general, viscous flows feature trains of in-
finitely many higher-order vortices (Moffatt vortices) [47,49].
However, these vortices are extremely weak compared to the
primary vortices, making them insignificant from a practical
standpoint.
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FIG. 6. (a) Current distributions on the strip middle line in the
absence of ohmic dissipation. The line at which the distributions are
calculated is shown in the right inset superimposed with the flow in
the strip. Circles in the main panel and the left inset highlight sign
reversals due to vortices. The lower circle highlights the primary
vortex present for all the regimes, and the upper circle in the left
inset highlights the second vortex of an extremely small amplitude
present only in for γ = 100v/w, corresponding to an extreme vis-
cous regime. (b) Same as in (a) in the presence of finite ohmic
dissipation γp = 5v/w the same for all γ values. The inset in (b) is
a zoom-in on the backflow region due to the primary vortex. While
in the viscous regime vorticity is completely suppressed at this level
of ohmic dissipation, in the ballistic regime it is reduced roughly 5
times but remains finite.

IX. QUASIHYDRODYNAMICS FOR
SMALL-ANGLE SCATTERING

The examples discussed above show that vortices tran-
scend the boundaries between different phases, occurring not
only in the viscous phase but also in the ballistic phase.
Are there other nonviscous regimes, in which carrier col-
lisions do not play a dominant role, that support vortices?
One such regime is small-angle carrier scattering originating
from either long-wavelength disorder or phonons. In this case,
perhaps surprisingly, the nonlocal conductivity mimics that
of a viscous fluid. As a result, despite electron-electron col-
lisions being absent or weak, small-angle scattering defines
a quasihydrodynamic regime that can support vortices. These
observations provide a likely explanation for recent reports
of vortices in high-mobility electron systems, observed far
outside the hydrodynamic regime—at low temperatures in
Ref. [25] and at room temperature in Ref. [26].
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Small-angle scattering processes, regardless of their origin,
lead to a random walk in momentum space, described as
angular diffusion at the Fermi surface. In this regime, the
nonlocal conductivity in Eq. (5) can be described by the rates
γm that scale as m2:

γm>1 = γ m2, γm=1 = γp. (62)

For γp = γ , these rates define a collision operator that de-
scribes transport governed by small-angle scattering, where
relaxation occurs through angular diffusion of the carrier dis-
tribution along the Fermi surface,

I f (θ ) = −γ ∂2
θ f (θ ), (63)

where θ is the angle on the Fermi surface. The case γp 	= γ

models the regime in which momentum relaxation rate γm=1

is not directly linked to the angle-diffusion rates for higher
angular harmonics m. Evaluating the quantity R(k) in Eq. (5)
for these γm yields

σ (k) = D

γp + R(k)
, R(k) = z

4γ + z
9γ+ z

16γ+...

. (64)

In the long-wavelength limit kv � γ we can expand R(k) to
leading order in k2 to obtain

σ (k) = D

γp + k2v2

16γ
+ O(k4)

. (65)

To study the flow we have used the approach described in
earlier sections. We found that the flow obtained for the model
given in Eq. (34) features vortices of comparable strength for
γ and γp both large and small compared to v/w. This confirms
that vorticity is a robust quantity taking similar values in the
ballistic and viscous phase.

The observed independence of flow patterns from the
specifics of the σ (k) model is not particularly surprising.
Indeed, the σ (k) dispersion in the ballistic regime (γ � kv)
is identical for the models in Eqs. (34) and (64), matching
the scaling law given in Eq. 37(a). Meanwhile, in the viscous
regime, Eq. (34) can be approximated by the dependence
given in Eq. 37(b), whereas Eq. (64) can be approximated by
Eq. (65). These expressions are of the same form, differing
only in the choice of coefficients. In particular, in the absence
of ohmic dissipation (γp = 0) the conductivities differ only by
a multiplicative constant factor. This explains why, on chang-
ing the model, the macroscopic behavior of the flow remains
the same in the ballistic and viscous limits. The differences
between these models are present only in the intermediate
regime, however, these differences are quite small. The only
visible change is in the position of the More broadly, these
boundary between the ballistic and viscous phases, originating
from the factor of sixteen in Eq. (65): The crossover in the
angular diffusion model [Eq. (64)] takes place roughly 4 times
faster with the rise of γ than in the model used above, Eq. (34);
namely the dynamics become effectively viscous for γ � 25
and γ � 100, respectively.

In addition, as a consistency check, we consider the
extreme ohmic regime (γp � γ2, γ3 . . .). In this regime, con-
ductivity is approximately k independent, providing a useful
comparison with the ballistic and viscous regimes discussed

FIG. 7. Current distribution in the ohmic regime obtained by the
same procedure as the results for the ballistic and viscous regimes
discussed above. In the ohmic regime, current flow is potential and
thus features no vortices.

above. We can use a constant conductivity σ (k) = D/γp to
evaluate the integrals �αα′ except for �xx, for which we still
need to include the k dependence in order to control the con-
vergence of the integrals. This leads to the current distribution
shown in Fig. 7. As expected, in the ohmic regime the flow is
potential and thus vortex free.

X. CONCLUSIONS

This article aims to develop a broad framework linking
macroscopic vorticity in electron systems with microscopic
interactions and scattering mechanisms. This is achieved by
employing a wave-number-dependent conductivity, σ (k), that
accounts for realistic microscopic scattering processes. As
an application of this approach, we clarify the relationship
between nonlocal response and vortices across ballistic and
hydrodynamic phases, illustrating it with vortical flows in
a strip geometry. The qualitative behavior predicted by this
analysis—such as similar vorticity intensity in ballistic and
viscous regimes, the resilience of ballistic vortices to ohmic
dissipation, and the comparatively fragile nature of viscous
vortices—is expected to hold in any realistic geometry. Re-
cent reports of vortices observed outside the viscous regime
[25,26] confirm the prediction of nonhydrodynamic electronic
vortices. The relatively weak dependence of vortical flows on
electron-electron scattering and their strong dependence on
ohmic dissipation serves as a clear indicator to differentiate
the origins of vorticity in electron fluids. More broadly, these
findings establish the general relationship between vortices
and nonlocal current-field response, highlighting the universal
character of vortical flows in electron fluids.
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