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We study entanglement entropy of unusual ZN topological stabilizer codes which admit fractional excitations
with restricted mobility constraint in a manner akin to fracton topological phases. It is widely known that the
subleading term of the entanglement entropy of a disk geometry in conventional topologically ordered phases is
related to the total number of the quantum dimension of the fractional excitations. We show that, in our model,
such a relation does not hold, i.e., the total number of the quantum dimension varies depending on the system
size, whereas the subleading term of the entanglement entropy takes a constant number irrespective to the system
size. We give a physical interpretation of this result in the simplest case of the model. More thorough analysis
on the entanglement entropy of the model on generic lattices is also presented.
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I. INTRODUCTION

Since their discovery, topologically ordered phases have
had a tremendous impact on the condensed matter physics
community [1–4]. These phases have drawn a lot of attention
mainly because of the exotic fractionalized excitations they
carry, called anyons [2,5]. For practical purposes, they may
find application in quantum computers [6–8].

While a lot of efforts have been made to understand these
phases from both a theoretical and experimental point of
view, recently new types of topologically ordered phases have
been introduced, referred to as the fracton topological phases
[9–11]. These phases cannot be described by the preexisting
frameworks of the topologically ordered phases, due to the
distinctive feature that the phases are sensitive to the local
geometry of the system. Key insight to intuitively understand
these phases is that a mobility constraint is imposed on the
fractional excitations, giving rise to the subextensive ground-
state degeneracy (GSD). Establishing a complete theoretical
framework of these phases is an active research topic.

One of the attempts to handle this problem is to introduce
new types of symmetries, multipole symmetries. The multi-
pole symmetry, in particular, the U(1) multipole symmetry,
is the generalization of the global U(1) symmetry; a theory
is invariant under the global phase rotation depending on
the spatial coordinate in polynomial form. As an example,
in the case of a scalar theory which respects the global and
dipole U(1) symmetries, the Lagrangian is invariant under
� → eia+ibx�, where a and b represent constants, and x does
the spatial coordinate [12]. Investigating topological phases in
this viewpoint of the new symmetry has been recently started
[12–18].

Motivated by this new interest in the interplay between
topological phases and multipole symmetries, in [19], a sim-
ple stabilizer model of unconventional topological phases
with dipole symmetry (which is one of the multipole sym-
metries) was studied. As we review in the next section, a
unique feature of the model is that each term of the stabilizer

model involves next-nearest-neighboring qubits, which is in
contrast with the stabilizer models of conventional topological
phases where each term acts on nearest-neighboring qubits.
As a consequence, a pair of dipole of fractional charges are
created [see (12)] as an excited state. Also, the model has a
unit cell consisting of N lattice site spacing, corresponding
to the dipole symmetry [see (13)]. Due to this unusual fusion
rule, the model admits dipole of the Wilson loops (viz., Wilson
loops whose charge intensity changes linearly as function
of x coordinate) of the fractional excitations, giving rise to
the unusual ground-state degeneracy (GSD) dependence on
the system size, as opposed to the conventional topological
phase which admits homogeneous Wilson loops (i.e., Wilson
loops which does not depend on position.). In this work, we
dub topological phases with multipole symmetries higher-
rank topological phases. Note that the higher-rank topological
phases are distinct from previous fracton models in that these
models stem from another type of symmetry, subsystem sym-
metry, a symmetry acting on a submanifold.

While the GSD has been thoroughly investigated in the
model in [19] as well as other higher-rank topological phases,
other physical properties of the models have yet to be ex-
plored. To address this problem, in this paper, we investigate
the interplay between the higher-rank topological phases and
the entanglement entropy, which is an important physical
quantity to diagnose the quantum entanglement.

A plethora of progress has been made in understanding
quantum entanglement of conventional topologically ordered
phases. It is well known that the entanglement entropy of the
two-dimensional (2D) topologically ordered phases in the disk
bipartite geometry A, SA scales as [20,21]

SA ∼ αl − γ + · · · . (1)

The first term, which is the leading term, is the so-called
area-law term, proportional to the perimeter of the disk ge-
ometry l with α being nonuniversal constant, whereas the
second constant term, which is the subleading term, is of
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TABLE I. Summary of the entanglement entropy SA of various subsystem geometries with respect to the ground state |ξ00,00〉 and the one
with the generic ground state (45). Here, � = N × gcd(N, nx ) and (Area) represents the number of clock states with type 1 surrounding the
disk geometry.

|ξ00,00〉 Generic ground state |ζ 〉 [Eq. (45)]

Single row I [Fig. 4(a)] nx log N − log � nx log N − log � + μ1 [Eq. (47)]
Single row II [Fig. 4(b)] nx log N nx log N + μ2 [Eqs. (49) and (50)]
Single column [Fig. 4(c)] 2ny log N − log N 2ny log N − log N + μ3 [Eqs. (56) and (57)]
Disk geometry [Fig. 5(a)] (Area) log N − 2 log N (Area) log N − 2 log N

particular importance as it is universal number, referred to as
the topological entanglement entropy. It is rewritten as

γ = log

(√∑
a

d2
a

)
, (2)

where da represents the quantum dimension of the anyon
labeled by a. The ellipsis in (1) represents terms that vanish
in the limit of l → ∞.]

We study entanglement entropy of various geometries of
the subsystems in the unconventional topological phase with
the dipole symmetry. By making use of the formalism of the
entanglement entropy for stabilizer codes [22], jointly with
the one in the graph theory, we show that the entanglement en-
tropy is described by the same form as (1), yet Eq. (2), which
is an important relation between entanglement entropy and
the total quantum dimension of fractional excitations, does
not hold. Indeed, while the total quantum dimension varies
depending on the geometry of the lattice, the topological en-
tanglement entropy γ takes the constant number, irrespective
to the lattice. We give an intuitive interpretation of the result
by focusing on the simplest case by setting N = 2. We further
study the entanglement entropy of the higher-rank topological
phase on the generic lattices. We show that the entanglement
entropy of the subgraph consists of the two types of the terms,
the leading-order area-law term and the subleading constant
term, both of which depend on the the number of vertices
surrounding the subgraph and the invariant factors of the
Laplacian, which is the matrix describing how the vertices are
connected in the graph. The result is summarized in Table I
and Theorem 1.

There has been an intimate relation between quantum
entanglement and graph theory. For instance, multiparty en-
tangled states are described by a graph and its properties are
studied based on graph theory (see, e.g., [23,24]). This work
addresses the interplay between graph theory and quantum en-
tanglement in the context of (new type) topological stabilizer
models by studying the Laplacian. Our work would com-
ply with recent interest in unconventional topological phases,
in particular, higher-rank topological phases with multipole
symmetries, from the viewpoint of the quantum entanglement
and graph theory.

The rest of the paper is organized as follows. In Sec. II,
we review the model and its properties studied in [19]. After
reviewing the model, in Sec. III, we calculate entanglement
entropy of various geometries of subsystems. In Sec. IV,
we give an intuitive understanding of our result on the en-
tanglement entropy. In Sec. V, we further investigate the
entanglement entropy of a subgraph in the case where the

model is defined on a generic lattice. We make a brief
comment on other cases of topological phases in Sec. VI.
Finally, we conclude our work in Sec. VII. Technical details
are relegated to Appendixes.

II. STABILIZER MODEL

In this section, we review the model constructed by sta-
bilizers given in [19]. Also, we go over physical properties
of the model. As we mentioned in the previous section, the
model exhibits unusual behavior of the excitations compared
with the conventional topologically ordered phases, yielding
the unusual GSD dependence on the lattice.

A. Hamiltonian

To start, we introduce 2D square lattice where we place two
types of N-qubit state (ZN clock states) on each vertex and
vertical link. The first clock states are located at vertices of the
lattice whereas the second ones are at vertical links. We label
the coordinate of the first clock states by (x, y) and the ones
of the second clock states are denoted by (x, y + 1

2 ), where
the second element corresponds to the links between vertices
located at (x, y) and (x, y + 1). We term these two types of
the clock states clock state with type 1 and clock state with
type 2.

We represent basis of the two types of the clock states as
|ω〉1 and |ω〉2 with ω being N th root of unity, i.e., ω = e2π i/N

[red square and blue dot in Fig. 1(a)], and ZN shift and clock
operators (they become Pauli operators when N = 2) of the
first and second clock states as {Zi, Xi} (i = 1, 2). Here we
have introduced the subscript i = 1, 2 to distinguish operators

FIG. 1. (a) Two types of ZN clock states, defined on each vertex
(red square) and vertical link (blue dot). (b), (c) Two types of terms
introduced in (4).

045146-2



ENTANGLEMENT ENTROPY OF TOPOLOGICAL … PHYSICAL REVIEW B 110, 045146 (2024)

FIG. 2. (a) Two terms defined in (7) constituting the Hamiltonian in the case of N = 2. (b) Configurations of stabilizers corresponding to
(8) in the case of nx even. In this case, the model is decomposed into two Z2 toric codes. The periodic boundary condition is imposed in the
x direction so that left and right edges are identified. The left (right) geometry corresponds to configuration of the vertex and plaquette terms
which belong to (i) [(ii)] defined in (8). Such decomposition is not possible in the case of nx being odd. We set the coordinate of the vertex at
the bottom left to be (1,1).

that act on the clock clock states with type 1 and the ones
with type 2. These operators satisfy the following relation
(Ii denotes the identity operator):

X N
i = ZN

i = Ii, Zi|ω〉i = ω|ω〉i, XiZ j = ωZjXiδi, j . (3)

With these notations, we define the following two types of
operators at each vertex and link:

V(x,y) := X2,(x,y+1/2)X
†
2,(x,y−1/2)(X

†
1,(x,y) )

2

× X1,(x+1,y)X1,(x−1,y),

P(x,y+1/2) := Z1,(x,y+1)Z
†
1,(x,y)(Z

†
2,(x,y+1/2))

2

× Z2,(x−1,y+1/2)Z2,(x+1,y+1/2). (4)

These terms are portrayed in Figs. 1(b) and 1(c). We inter-
changeably call these two terms V(x,y) and P(x,y+1/2) vertex
and plaquette operators, respectively. It is straightforward to
check that each term in (4) commute, forming the stabilizer
group. The Hamiltonian is defined by

H = −
∑
(x,y)

V(x,y) −
∑

(x,y+1/2)

P(x,y+1/2) + H.c. (5)

This model shares the same feature as the ZN toric code [7].
The ground state is the stabilized state: the ground state |�〉
satisfies

V(x,y)|�〉 = P(x,y+1/2)|�〉 = |�〉 ∀ V(x,y), P(x,y+1/2). (6)

Also, our model admits two types of fractional excitations
when the condition V(x,y) = 1 or P(x,y+1/2) = 1 is violated at
a vertex or link. The crucial difference between our model
and the toric code is that each terms in the Hamiltonian
involves not only nearest-neighboring sites but also next-
nearest-neighboring ones. As a consequence, the fractional
excitations are subject to mobility constraint, giving rise to
unusual GSD dependence on the system size. We dub the
topological phases with this feature higher-rank topological
phases. Throughout this paper, we consider the model placed
on the torus geometry with length in the x (y) direction being
nx (ny).

B. Simplest case: N = 2

Before discussing the model for generic case of N , we
consider the simplest case by setting N = 2 to make a more

intuitive understanding of our model (5). The argument pre-
sented here will be useful to interpret our result on the
entanglement entropy (Sec. IV). In this case, the terms defined
in (4) become

V(x,y) = X2,(x,y+1/2)X2,(x,y−1/2)X1,(x−1,y)X1,(x+1,y),

P(x,y+1/2) = Z1,(x,y+1)Z1,(x,y)Z2,(x−1,y+1/2)Z2,(x+1,y+1/2). (7)

One can regard each term as the plaquette term in a rhom-
bus shape, as portrayed in Fig. 2(a). The Hamiltonian (5)
with (7) resembles the Z2 toric code. However, there is a
crucial difference between the two: each term (7) involves
next-nearest-neighboring Pauli operators in the x direction, as
opposed to the regular toric code where each term consists
of nearest-neighboring Pauli operators. Due to this property,
one can separate the mutually commuting terms (7) into two
groups without considering the boundary:

(i) {V(2m,y), P(2m′−1,y′+1/2)},
(ii) {V(2m−1,y), P(2m′,y′+1/2)} (m, m′ ∈ Z). (8)

Hence, without thinking the boundary, the model that we
describe with N = 2 amounts to be two decoupled Z2 toric
codes. Now we impose the boundary condition on the lattice.
We impose the periodic boundary condition in both of x and y
directions, assuming the length of the lattice in the x direction
is even. In this case, the Hamiltonian (5) consists of two
decoupled Z2 toric codes on the torus. Such decomposition
is portrayed in Fig. 2(b). In each Z2 toric code, there are
two types of Z2 excitations: electric and magnetic charge.
The nonlocal string of these charges yields logical operators,
giving rise to fourfold GSD on the torus [7,25]. Therefore, the
GSD of our model is found to be 42 = 16. On the contrary,
the situation is drastically different when the length of the
lattice in the x direction is odd, instead of even. In this case,
one cannot separate the terms (7) into two groups, thus the
decomposition (8) is no longer true. Indeed, the terms belong-
ing to (i) in (8) are “connected” with the ones belonging to
(ii). For instance, the terms V(nx−1,y) which belong to (i) in
(8) and Vnx+1,y = V1,y belonging to (ii) (equality follows from
the periodic boundary condition) are located adjacent to each
other. Therefore, the model is equivalent to one Z2 toric code
on torus, giving GSD = 4.
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To summarize the argument presented in this subsection, in
the simplest case by setting N = 2, we learn that our model is
identified as the Z2 toric code where each plaquette term is in
a rhombus shape and that its GSD on torus drastically changes
depending on the length of the lattice in the x direction, i.e.,

GSD =
{

16 (nx even),
4 (nx odd). (9)

Such behavior can be understood by the fractional excitations
with mobility constraint, analogously to the fracton topolog-
ical phases. (See [19] for more details.) In the subsequent
subsections, we turn to the generic cases of N and discuss its
topological properties.

C. Fusion rules

To get a handle on our model (5), we also review the
behavior of the fractional excitations via fusion rules [19]. The
ground state |�〉 of the model is the projected state, satisfying
(6). When acting an operator Z1,(x,y) on the ground state, it
violates the condition V(x,y) = 1, namely,

V(x,y)(Z1,(x,y)|�〉) = ω−2(Z1,(x,y)|�〉),

V(x±1,x)(Z1,(x,y)|�〉) = ω(Z1,(x,y)|�〉) (10)

giving rise to electric charges. This indicates that by acting on
an operator Z1,(x,y), an electric charge is induced at the coor-
dinate (x ± 1, x) and two conjugates of the electric charges
are obtained at (x, y). Denoting the ZN eclectic charge as
e(x,y) (and its conjugate as e(x,y)), (10) can be described by
the following fusion rule:

I → e(x−1,y) ⊗ e2
(x,y) ⊗ e(x+1,y), (11)

which can be rewritten as

I → (e(x−1,y) ⊗ e(x,y) ) ⊗ (e(x,y) ⊗ e(x+1,y) ) (12)

indicating that a pair of dipoles (i.e., the term in the big
parentheses) of electric charges are created, which is distinct
from conventional fusion rules where a pair of single charges
is generated. Also, from the fusion rule (12), it can be shown
that by applying a string of Z1 operators

∏N−1
a=1 (Z1,(x+a,y) )a to

the ground state, we have

I → e(x,y) ⊗ e(x+N,y), (13)

indicating that an electric charge can hop in the x direction in
the unit of N lattice sites rather than a single site. This corre-
sponds to the fact that the U(1) dipole symmetry is reduced
to ZN , as alluded to in [18,26,27]. Likewise, by acting on a
single Z2,(x,y+1/2) on the ground state, we have electric charges
subject to the following fusion rule:

I → e(x,y+1) ⊗ e(x,y), (14)

which is identical to the one in the conventional toric code.
The fusion rule of the magnetic charges can be similarly
discussed.

To recap the argument, while fusion rules of the charges in
the y direction are the same as the conventional ones, we have
an unusual fusion rule in the x direction, mirroring the fact that
each stabilizer involves next-nearest-neighboring sites. By the
fusion rules, one can evaluate the form of Wilson loops, which

are noncontractible loops of fractional excitations (in the con-
text of the stabilizer model, they are also known as logical
operators), contributing to GSD. We defer the discussion on
this point to Appendix A.

D. Logical operators and ground-state degeneracy

In this subsection, we discuss our model in the generic
cases of N . As opposed to the case with N = 2, identifying
the GSD and the logical operators is not so immediate in the
generic case of N . Thus, we employ an alternative approach to
accomplish this task. We adopt an algebraic tool of the graph
theory, which will play a pivotal role in the subsequent discus-
sion on the entanglement entropy. As we mentioned below (5),
each term of the Hamiltonian involves the clock states in the
next-nearest-neighbor as well as the nearest-neighbor ones.
Such a feature can be succinctly described by the Laplacian
matrix (Laplacian, in short), the graph theoretical analog of
the second-order derivatives [28].

At each y on the lattice, we define the Laplacian L as
the nx × nx matrix indexed by vertices (x, y) (1 � x � nx ) ∃y
running in the x direction, which has the following form:

L =

⎛
⎜⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1

−1 2 . . .
. . .

. . . −1
−1 −1 2

⎞
⎟⎟⎟⎟⎟⎠. (15)

Equivalently,

(L)x,x′ =
⎧⎨
⎩

2 (x = x′),
−1 (x = x′ ± 1),
0 (else),

(16)

where we have conventionally defined x = nx + 1 = 1 due
to the periodic boundary condition. The term V(x,y) at given
y, constituting the Hamiltonian (4), now can be rewritten in
terms of the matrix element of the Laplacian (16) via

V(x,y) = X2,(x,y+1/2)X
†
2,(x,y−1/2)X

−(L)x,x

1,(x,y) X −(L)x+1,x

1,(x+1,y) X −(L)x−1,x

1,(x−1,y) ,

(17)
where we conventionally set X −1

1,(x,y) = X †
1,(x,y). Likewise, each

term of P(x,y+1/2) can be rewritten in the similar manner as

P(x,y) = Z1,(x,y+1)Z
†
1,(x,y)Z

−(L)x,x

2,(x,y+1/2)Z
−(L)x−1,x

2,(x−1,y+1/2)Z
−(L)x+1,x

2,(x+1,y+1/2).

(18)
With this preparation, we now turn to counting the GSD

on the torus geometry. The GSD is obtained by the number
of total clock states divided by the number of independent
stabilizers. The number of the clock states is found to be
N2nxny . Also, the total number of the stabilizers (4) is given
by N2nxny . However, we have overcounted the number of sta-
bilizers; we need to take into account the constraint on the
stabilizers as multiplication of some of stabilizers becomes
identity. To find such constraint, we resort to the formalism
of the Laplacian (15). At given y, introducing nx-dimensional
vector r := (r1, . . . , rnx )T ∈ Znx

N , we consider the following
product of the vertex operators in the x direction:

nx∏
x=1

V rx
(x,y).
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FIG. 3. (a) (Left) Configuration of the product of the operators V(x,y) (blue stars) given in (19),
∏nx

x=1 V rx
(x,y) with s = 0. Since s = 0, it does

not have X1 operators in the horizontal direction, leaving X2’s in the vertical links (dots). (Middle) If we multiply the product (19) with the
adjacent one in the y direction, some of X2’s are canceled out. (Right) Iterating the similar procedure, one obtains the product of (19) all along
in the y direction,

∏ny
y=1(

∏nx
x=1 V rx

(x,y) ), which is identity due to the periodic boundary condition. (b) (Top) Configurations of the logical operators
constructed by noncontractible loops of X1 or X2 operators defined in (29) in the case of N = 3 and nx = 6. (Bottom) Logical operators defined
in (31) with N = 3 and nx = 6. The periodic boundary condition is imposed so that the left and right edges are identified.

Referring to (17), we transform it by using the Laplacian L as

nx∏
x=1

V rx
(x,y) =

[
nx∏

x=1

{X †
2,(x,y+1/2)X2,(x,y−1/2)}rx

]

×
nx∏

x=1

X sx
1,(x,y) (sx ∈ ZN ) (19)

with

s := (
s1, . . . , snx

)T = −Lr. (20)

Suppose s = 0 (modN ). Then, multiplying the operators (19)
along the y direction gives [see also Fig. 3(a)]

ny∏
y=1

(
nx∏

x=1

V rx
(x,y)

)
=

ny∏
y=1

[
nx∏

x=1

{X †
2,(x,y+1/2)X2,(x,y−1/2)}rx

]
= I,

(21)
where the last equation holds due to the periodic boundary
condition. Therefore, to find constraints of the stabilizers, we

need to evaluate the solution of

Lr = 0 mod N, (22)
i.e., the kernel of the Laplacian.

To proceed, we transform the Laplacian into the diagonal
form, known as the Smith normal form. Introducing invertible
integer matrices P and Q, one can transform the Laplacian
(15) as

PLQ = D, D = diag(1, . . . , 1︸ ︷︷ ︸
nx−2

, nx, 0). (23)

With this transformation, one can rewrite (22) as

(22) ⇔ P−1DQ−1r = 0 mod N

⇔ Dr̃ = 0 mod N. (24)

When moving from the second to the third equation, we have
used the fact that P is the integer matrix. Also, we have defined
r̃ := Q−1r. From (23) and (24), it follows that

r̃i = 0 (1 � i � nx − 2), nxr̃nx−1 = 0 mod N. (25)

The last entry of the vector r̃, r̃nx takes N distinct values since
the last diagonal element of the matrix D is zero [Eq. (23)].
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Taking this fact as well as (25) into account, we have

r̃ = (0 · · · , 0︸ ︷︷ ︸
nx−2

, N ′α1, α2)T , N ′ := N

gcd(N, nx )
,

(α1 ∈ Zgcd(N,nx ), α2 ∈ ZN ). (26)

Here, gcd stands for the greatest common divisor. By evaluat-
ing the form of the matrix Q [19], one finds

r = Qr̃ = N ′α1

⎛
⎜⎜⎜⎜⎝

nx − 1
nx − 2

...

1
0

⎞
⎟⎟⎟⎟⎠+ α2

⎛
⎜⎜⎜⎜⎝

1
1
...

1
1

⎞
⎟⎟⎟⎟⎠ mod N. (27)

Therefore, there are gcd(N, nx ) × N constraints on the stabi-
lizers V(x,y).

One can analogously discuss the number of the con-
straints on the stabilizers P(x,y+1/2), yielding that there are
gcd(N, nx ) × N constraints. Overall, there are [gcd(N, nx ) ×
N]2 constraints on the stabilizers, hence, the GSD is given by

GSD = N2nxny

N2nxny/[gcd(N, nx ) × N]2
= [gcd(N, nx ) × N]2.

(28)
It is emphasized that our model exhibits unusual GSD de-
pendence on the system size which was not seen in fracton
topological phases which exhibit the subextensive GSD. Also,
it is known that the Wen’s Z2 plaquette model exhibits the
similar gcd dependence of the GSD [29]. However, our model
discussed in this paper is qualitatively different from the one
in [29] as our model admits the dipole of the fractional charges
due to the multipole symmetries.

One can make use of the formalism of the Laplacian to
identify the form of the logical operators. By evaluating the
kernel and cokernel of the Laplacian (see [19] for derivation
and Appendix A), one can introduce logical operators consist-
ing of noncontractible loops of X1 or X2 operators as

ηx
1 =

nx∏
x=1

X px

2,(x,y+1/2), γ x
1 =

nx∏
x=1

X qx

2,(x,y+1/2),

ηx
2 =

⎛
⎝ ny∏

y=1

X1,(nx−1,y+1/2)

⎞
⎠×

⎛
⎝ ny∏

y=1

X †
1,(nx,y+1/2)

⎞
⎠,

γ x
2 =

ny∏
y=1

X1,(nx,y+1/2) (29)

with

p = (
p1, p2, . . . , pnx

)T = N ′α1

⎛
⎜⎜⎜⎜⎝

nx − 1
nx − 2

...

1
0

⎞
⎟⎟⎟⎟⎠,

q = (q1, q2, . . . , qnx )T = α2

⎛
⎜⎜⎜⎜⎝

1
1
...

1
1

⎞
⎟⎟⎟⎟⎠ mod N. (30)

We portray them in Fig. 3(b) in the case of N = 3 and nx = 6.
These operators are represented as ηx

m, γ x
m (m = 1, 2), where

two types of the loop are labeled by η and γ , whereas the
index m denotes the direction of the loops (x or y). In addition
to the logical operators, γ x

1 , γ x
2 that one can find in the toric

code, there are new forms of the logical operators in our
model, ηx

1, ηx
2. In the horizontal direction, ηx

1 is formed by the
inhomogeneous string of X2’s whereas in the vertical direc-
tion, the model admits the “dipole of the loops,” i.e., a pair
of the noncontractible loops of X1’s in the vertical direction
with opposite sign located adjacent to each other, giving ηx

2.
The logical operators ηx

1 and γ x
1 can be deformed upward or

downward in the y direction and any logical operator can be
generated by the combination of ηx

1 and γ x
1 . Also, any logical

operator consisting of the product X2’s can be generated by
ηx

2 and γ x
2 . In Appendix A, we give more details of these log-

ical operators by investigating the behavior of the fractional
charges.

Analogously to (29), logical operators involving Z1 or Z2

operators are defined by [Fig. 3(b)]

ηz
1 =

nx∏
x=1

Z px
1,(x,y), γ z

1 =
nx∏

x=1

Zqx
1,(x,y),

ηz
2 =

⎛
⎝ ny∏

y=1

Z2,(nx−1,y)

⎞
⎠
⎛
⎝ ny∏

y=1

Z†
2,(nx,y)

⎞
⎠,

γ z
2 =

ny∏
y=1

Z2,(nx,y), (31)

where the integers px and qx are determined by (30). One can
check that

ηx
1η

z
2 = ωN ′

ηz
2η

x
1, γ x

1 γ z
2 = ωγ z

2 γ x
1 , ηx

2η
z
1 = ωN ′

ηz
1η

x
2,

γ x
2 γ z

1 = ωγ z
1 γ x

2 ,
(
ηx

1

)gcd(N,nx ) = (
ηx

2

)gcd(N,nx )

= (
ηz

1

)gcd(N,nx ) = (
ηz

2

)gcd(N,nx ) = I,(
γ x

1

)N = (
γ x

2

)N = (
γ z

1

)N = (
γ z

2

)N = I (32)

with commutation relation between other combinations of
the logical operators being trivial. Logical operators with the
commutation relation (32) yield the GSD [gcd(N, nx ) × N]2.

Ground states with such GSD can be constructed by the
logical operators. Labeling stabilizers involving X1 or X2 op-
erators that are obtained by the product of vertex operators
V(x,y) as

G =
⎧⎨
⎩g|g ∈

∏
x,y

V
ax,y

(x,y), ax,y ∈ ZN

⎫⎬
⎭,

we define the following ground state:

|ψ〉 := 1√|G|
∑
g∈G

g|0〉, (33)

where |0〉 is the trivial state in the diagonal basis of the Z1 and
Z2 operators, satisfying Z1,(x,y)|0〉 = Z2,(x,y+1/2)|0〉 = |0〉 (the
generalization of the “spin-up state” to the clock state). Also,
|G| denotes the total number of the stabilizers G. One can
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verify that this state is the stabilized state. The [gcd(N, nx ) ×
N]2 ground states are labeled by

|ξab,cd〉 := (ηx
1

)a(
γ x

1

)b(
ηx

2

)c(
γ x

2

)d |ψ〉[0 � a, c � gcd(N, nx )

− 1, 0 � b, d � N − 1]. (34)

It is known that the number of distinct fractional excitations
in a topological phase on torus geometry is identical to GSD
[30]. Moreover, in our model, all of the fractional excitations
are Abelian, implying that quantum dimension da of any exci-
tation is one. Taking these into account, one can evaluate the
total quantum dimension as√∑

a

d2
a = N × gcd(N, nx ), (35)

where we have used the fact that there are [N × gcd(N, nx )]2

distinct fractional excitations, all of which carry quantum
dimension one.

In the next section, we calculate the entanglement entropy
of our model with respect to the ground states. In particu-
lar, we investigate whether the total quantum dimension (35)
enters in the form of the entanglement entropy in the disk
geometry.

III. ENTANGLEMENT ENTROPY

Now we come to the main part of this paper. In this section,
we study entanglement entropy of our model defined in the
previous section. Our calculations rely on the formulation of
the entanglement entropy in the stabilizer codes, invented in
[22].

A. Review of the bipartite entanglement in lattice spin systems

Before we systematically discuss the entanglement entropy
of the higher-rank topological phases, let us review the for-
malism of the bipartite entanglement in lattice spin systems
proposed in [22]. Readers familiar with this formalism may
skip this subsection.

1. Reduced density matrix

For a qubit system, the Hilbert space is H = ⊗ jH j , where
H j = span{|0〉 j, |1〉 j, . . . , |N − 1〉 j} in the σ z

j basis, where σ z
j

is generalized Pauli matrix in the N-clock model. We define
a reference state |0〉 := ⊗ j |0〉 j , namely, all-spin-up state. We
define E := ⊗ j{1, σ x

j , . . . , (σ x
j )N−1} to be the Abelian group

that rotates spins in an onsite manner. Any state in the Hilbert
space can be written as g|0〉 for some g ∈ E with gN = 1. A
generic state can be written as

|ψ〉 =
∑

g∈G⊂E

agg|0〉,
∑

g

|ag|2 = 1. (36)

Here G is a subgroup of E and ag is the wave function of |ψ〉
in the computational basis, namely, ag = 〈0|g|ψ〉. Given the
state |ψ〉, we can define the corresponding density matrix as

ρψ := |ψ〉〈ψ | =
∑
g,g′

agāg′g|0〉〈0|g′†

=
∑
g,g′

agāgg′g|0〉〈0|(gg′)†, (37)

where in the last equality we redefined g′ → gg′. Once a
bipartition of the lattice into subsystem A and its complement
B, any element g can be unambiguously decomposed into the
product form g = gA ⊗ gB, where gA/B only acts nontrivially
on subsystems A and B, respectively. With the decomposition
of the reference state |0〉 = |0〉A ⊗ |0〉B, we obtain the reduced
density matrix of subsystem A by tracing over subsystem B as

ρA =
∑

n

B〈n|ρ|n〉B =
∑

n

∑
g,g′

agāgg′gA|0〉AA〈0|(gAg′
A)†

B

× 〈n|gB|0〉BB〈0|(gBg′
B)†|n〉B

=
∑
g,g′

agāgg′gA|0〉AA〈0|(gAg′
A)†

B〈0|g′†
B |0〉B, (38)

where we used the completeness relation
∑

n |0〉BB〈0| = I . It
is easy to see that nonzero contributions only come from g′

B =
IB. Define

GA := {g ∈ G|g = gA ⊗ IB}, GB := {g ∈ G|g = IA ⊗ gB}.
(39)

Then g′
B = IB implies g′ ∈ GA. The reduced density matrix is

rewritten as

ρA =
∑

g∈G,g′∈GA

agāgg′gA|0〉AA〈0|(gAg′
A)†. (40)

The equivalences between the following statements are
proven [22]: (1) ρA is diagonal, (2) GA = {1}, (3) �g = gAgB

with both gA ∈ GA, gB ∈ GB nontrivial for g ∈ G.

2. Entanglement entropy of a subsystem

We will study the entanglement entropy of subsystem A:

SA = −tr ρAlog ρA. (41)

Without loss of generality, we can assume the total den-
sity matrix ρ is a pure state. Let S be the stabilizer group,
which contains mutually commuting operators formed from
G that are called stabilizers. The codeword space is defined as
L = {|ψ〉 ∈ H |U |ψ〉 = |ψ〉, ∀ U ∈ S}. Let us take |ψ〉 =

1√|G|
∑

g∈G g|0〉 for the moment. We will study the generic
ground states in the Appendix C. Apparently, |ψ〉; ∈ L as
g|ψ〉 = |ψ〉, ∀ g ∈ G. From (40), we have

ρA = 1

|G|
∑

g∈G,g′∈GA

gA|0〉AA〈0|(gAg′
A)†. (42)

Let G/GB and GAB := G/(GA · GB) be quotients that contain
elements that act freely on A and A ∪ B, respectively. It is
shown that for the ground state (42), the entanglement entropy
is described by [22]

SA = log |GAB|. (43)

The details are given in Appendix B. The entanglement en-
tropy of the subsystem A is given by

SA = log |G| − log |GA| − log |GB|, (44)

where |G| denotes the total number of independent stabiliz-
ers containing X1 and X2, whereas |GA| (|GB|) represents the
number of stabilizers containing X1 and X2 that have support
on A (B).
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FIG. 4. (a) The subsystem A is a single row on the horizontal sites (clock states inside the red frame). (b) The subsystem A is a single row
on the vertical links (red dots inside the red frame). The blue triangles represent one of the nx constraints along the horizontal direction. (c) The
subsystem A is a single column (red dots and squares inside the frame). The blue triangles represent one of the ny constraints along the vertical
sites. (d) Multiplication of the vertex operators (represented by black stars) that act within B. (e) Such product of the stabilizers is redundant
due to the constraint that the product of all of the vertex operators becomes identity (52).

In the following subsections, we study the entanglement
entropy of various geometries based on the formula (44).

B. Single-row and -column geometry

After reviewing formulation of the entanglement entropy,
we calculate it in various geometries of subsystems in our
model. We evaluate the entanglement entropy with respect to
the ground state |ξ00,00〉 given in (34). One could study the
entanglement entropy for more generic ground state |ζ 〉 which
is superposition of |ξab,cd〉, defined by

|ζ 〉 =
gcd(N,nx )−1∑

a,c=0

N−1∑
b,d=0

αab,cd |ξab,cd〉

×
(∑

abcd

|αab,cd |2 = 1, αab,cd ∈ U(1)

)
. (45)

In this case, depending on the geometry of the subsystem A,
there is an additional contribution to (44). While we focus
on the entanglement entropy with respect to the ground state
|ξ00,00〉, we make a brief comment on the case of the generic
ground state (45), deferring the details to Appendix C.

In this subsection, we consider the single-row or-column
subsystem geometries which go around the torus in the x or
y direction, as shown in Fig. 4. When calculating the entan-
glement entropy based on (44), there is a technical caveat:
when evaluating |GA| and |GB|, we need to take into account

the product of vertex operators which have support only on A
and B.

1. Single row I

Let us first look at the subsystem A in Fig. 4(a): we have
|G| = Nnxny/�, |GA| = 1, |GB| = Nnxny−nx , where the factor
� corresponds to the two independent constraints from (27),
� := N × gcd(N, nx ). Thus, (44) gives us

SA = nx log N − log N − log[gcd(N, nx )]

= nx log N − log �. (46)

For the generic ground state (45), there is an additional con-
stant μ1 in (46):

SA = nx log N − log � + μ1,

μ1 = −
∑
c,d

⎡
⎣
⎛
⎝∑

a,b

|αab,cd |2
⎞
⎠ log

⎛
⎝∑

a,b

|αab,cd |2
⎞
⎠
⎤
⎦. (47)

Derivation of (47) is given in Appendix C.

2. Single row II

For the subsystem A in Fig. 4(b), we have

|GA| = 1, |GB| = (|G|/N2nx )Nnx = |G|/Nnx ,

When evaluating |GB|, the Nnx in the first equality comes from
the nx-independent constraints, one of which is labeled by the
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blue triangles in Fig. 4(b). Following (44), we have

SA = nx log N. (48)

In the case of the generic ground state (45), we have an
additional contribution to (48):

SA = nx log N + μ2, μ2 = −
gcd(N,nx )−1∑

p=0

N−1∑
q=0

λp,q log λp,q

(49)
with (ν = e2π i/ gcd(N,nx ), ω = e2π i/N )

λp,q = 1

�

gcd(N,nx )−1∑
k=0

N−1∑
l=0

ν pkωqlσkl ,

σkl =
∑

a,a′,b,b′,c,d
a−a′=k mod gcd(N,nx )

b−b′=l mod N

αab,cd ᾱa′b′,cd . (50)

The derivation of this constant is relegated to Appendix C.

3. Single column

Let us turn to subsystem A in Fig. 4(c). The total number of
the independent vertex operators is given by |G| = Nnxny/�,
where we take the constraint discussed in the previous section
into consideration (Sec. II D). Next we evaluate |GB|. Naively,
the number of stabilizers that act within B is given by

Nnxny−3ny . (51)

However, this counting is incorrect, as one has to take into
account the multiplication of the stabilizers that act trivially
on A. There are two types of such product. The first type
is the product of the vertex operators on both sides of the
vertical line. One of such configuration is indicated by the blue
triangles in Fig. 4(c). There are Nny such products. Another
type is multiplication of the vertex operators which are located
inside A and the ones surrounding A, as shown in black stars
in Fig. 4(d). Having identified these products of the stabilizers
that contribute to |GB|, one has to check whether these prod-
ucts are “redundant” to the constraint of the stabilizes that we
have already considered.

To be more specific to what we have just said, we look
at the second type of the product of the stabilizers that are
depicted in Fig. 4(d). We schematically write this product
as
∏

� V(x,y) in accordance with Fig. 4(d). As we discussed
in Sec. II D, the multiplication of all of the vertex operators
becomes identity, i.e.,∏

�
V(x,y) ×

∏
�

V(x,y) = I, (52)

where
∏

� V(x,y) denotes the product of the vertex operators
defined on the complement of � [see Fig. 4(e)]. Hence,
the product in question,

∏
� V(x,y), is redundant: it can be

generated by the vertex operators belonging to B. Likewise,
regarding the first type of the product, one of which is depicted
in Fig. 4(c), combination of some of them is redundant due to
the constraint.

Overall, the multiplication of the vertex operators that act
on B is found to be

Nny × N

[gcd(N, nx ) × N]
. (53)

Therefore, |GB| is obtained by multiplying this number with
(51), that is,

|GB| = Nnxny−3ny × Nny × N

[gcd(N, nx ) × N]
. (54)

There is no stabilizer that acts within A, giving |GA| = 1.
Referring to (44), the entanglement entropy is given by

SA = 2ny log N − log N. (55)

In the case of the generic ground state (45),

SA = 2ny log N − log N + μ3, μ3 = −
N−1∑
b=0

N−1∑
q=0

λ(b)
q log λ(b)

q ,

(56)
where

λ(b)
q = 1

N

N−1∑
k=0

ωkqσ
(b)
k , σ

(b)
k =

∑
a,c,d,d ′

d−d ′=k mod N

αab,cd ᾱab,cd ′ .

(57)
The derivation is given in Appendix C.

C. Disk geometry

Let us calculate entanglement of the contractible disk ge-
ometry, as portrayed in Fig. 5(a). We assume that the width
of the disk is more than one. We set the width and height of
the disk to be lx(� 2) and ly, respectively. Accordingly, the
coordinate of ZN clock states with type 1 (i.e., clock states
located at vertices) inside the disk is denoted as (x, y) (x0 �
x � x0 + lx − 1, y0 � y � y0 + ly − 1) and the ones with type
2 (i.e, clock states at vertical links) inside the disk as (x, y +
1/2) (x0 � x � lx − 1 + x0, y0 � y � y0 + ly − 2). See also
Fig. 5(a).

In this setting, we have |G| = Nnxny/�, |GA| =
N (lx−2)(ly−2). As for |GB|, the number of individual stabilizers
that have support only on B is

Nnxny/Nly (lx+2). (58)

In addition to this number, we need to take the product of
the vertex operators that act within B into consideration. To
find such product, it is useful to resort to the formalism of
the Laplacian that we have discussed in Sec. II D. Consider
the following product of V(x,y)’s in the horizontal direction at
given y (y0 � y � y0 + ly − 1) [purple triangles in Fig. 5(a)]:

x0+lx−1∏
x=x0

V tx
(x,y) (tx ∈ ZN ), (59)

which can be rewritten as

(59) =
⎡
⎣x0+lx−1∏

x=x0

{X †
2,(x,y+1/2)X2,(x,y−1/2)}tx

⎤
⎦

×
nx∏

x=1

X ux
1,(x,y) (ux ∈ ZN ). (60)
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FIG. 5. (a) Disk geometry. The clock states inside the disk are marked by red squares and dots. Purple triangles represent the product given
in (59). (b) Decomposition of the Laplacian into submatrices, corresponding to (62) and (66). We need to find multiplication of the vertex
operators corresponding to the vector t which does not have X1 operators inside the disk, yielding the condition (65). (c) Configuration of
the product given in (64) (purple triangles). With the condition (63), it exclusively acts on B. (d) The number of the clock states marked by
light-blue squares gives rise to the area-law term (Area), given in (73), which is (Area) = 4ly + 2(lx − 2) in the present case.

Analogously to the discussion in the previous sec-
tion (Sec. II D), ZN numbers tx and ux that appear in (59)
and (60) are related via the Laplacian. Defining (lx + 2)- and
nx-dimensional vectors by t := (tx0−1, . . . , tx0+lx︸ ︷︷ ︸

lx+2

)T and u :=

(u1, . . . , unx︸ ︷︷ ︸
nx

)T , respectively, and referring to (15) and (16), we

have

u = −L̃t. (61)

Here, L̃ represents a submatrix of the Laplacian L (16). It is
obtained by decomposing the Laplacian into three matrices as

L = (L′ L̃ L′′), (62)

where L′, L̃, L′′ is nx × (x0 − 2), nx × (lx + 2), nx × (nx −
x0 − lx ) submatrix, respectively, and concentrating on the
middle matrix L̃ [see also Fig. 5(b)].

Suppose the product we consider, Eq. (60) with (61), has
no X1 operators within the disk A, that is,

u = (u1, . . . , ux0−1, 0, . . . , 0︸ ︷︷ ︸
lx

, ux0+lx , . . . , unx )T . (63)

Then, multiplying the product (60) along the y direction gives

y0+ly−1∏
y=y0

⎡
⎣x0+lx−1∏

x=x0

V tx
(x,y)

⎤
⎦ (64)

which yields the stabilizers that have support only on B [see
Fig. 5(c)]. Therefore, to find the product of stabilizers that acts
within B, we need to evaluate (61) with (63). Such condition
can be rewritten as

L̃subt = 0, (65)

where L̃sub denotes the submatrix of L̃, which is obtained by
decomposing the matrix L̃ into three via

L̃ =

⎛
⎜⎜⎝

L̃1

L̃sub

L̃2

⎞
⎟⎟⎠, (66)

where L̃1, L̃sub, and L̃2 is the (x0 − 1) × (lx + 2), lx × (lx + 2),
and (nx − lx − x0 + 1) × (lx + 2) matrix, respectively, and fo-
cusing on the middle matrix L̃sub [Fig. 5(b)]. From (15), (62),
and (66), the explicit form of L̃sub is given by

L̃sub =

⎛
⎜⎜⎜⎜⎜⎝

−1 2 −1
−1 2 −1

−1 2 . . .
. . .

. . . −1
−1 2 −1

⎞
⎟⎟⎟⎟⎟⎠. (67)

Introducing lx × lx and (lx + 2) × (lx + 2) invertible matri-
ces, P̃ and Q̃, whose matrix elements are integers, one can
transform the matrix L̃sub into a diagonal form (i.e., the Smith
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normal form) as P̃L̃subQ̃ = D̃ with

D̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1

1
. . .

1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠. (68)

The lx × (lx + 2) matrix D̃ contains diagonal entries
diag(1, . . . , 1︸ ︷︷ ︸

lx

) with other entries being zero. With this form,

it follows that

L̃subt = 0 ⇔ D̃t̃ = 0 mod N, (69)

where t̃ := Q̃−1t and 0 represents lx-dimensional zero vector.
We rename the entries of the vector t̃ as t̃ = (t̃1, . . . , t̃lx+2)T .
From the Smith normal form (68) and (69), the first lx entries
of the vector t̃ are subject to

t̃i = 0 (1 � i � lx ), (70)

whereas there is no constraint on the last two entries t̃lx+1,
t̃lx+2, giving

t̃lx+1 = β1, t̃lx+2 = β2 (β1, β2 ∈ ZN ). (71)

Hence, there are N2 solutions of (65).
One has to check that such N2 product of vertex operators

which have support only on B is redundant to the constraint of
the stabilizers, analogously to the discussion presented around
(52). Thus, the number of products of the stabilizers that act
within B is given by N2

�
.

Overall, we obtain |GB| by multiplying this number with
(58):

|GB| = Nnxny

Nlx (ly+2)
× N2

�
. (72)

From (44), we finally arrive at

SA = (Area) log N − 2 log N. (73)

Here, (Area) is the number of vertex operators that have
support on both A and its complement B, which can be re-
garded as the number of clock states with type 1 (i.e., clock
states located at vertices) surrounding the disk geometry A
[see Fig. 5(d)]. In the present case, it is given by (Area) =
4ly + 2(lx − 2). One can check that the entanglement entropy
of the disk geometry for the generic ground state (45) gives
the same answer as (73).

The first term in (73) is nothing but the area-law term and
the second term, which is the subleading term of the entangle-
ment entropy, is of particular importance. It is “topological”;
one can confirm that the second term remains the constant
when we deform the shape of the disk geometry retaining
its topology. Therefore, we have found the same scaling
behavior of the entanglement entropy as the one obtained
in conventional topologically ordered phases (1). However,
there is a crucial deference between the two. In the case of
the conventional topologically ordered phases, the topolog-
ical entanglement entropy γ is related to the total quantum
dimension via γ = log

√∑
a d2

a , where a labels the distinct
types of fractional excitations. On the contrary, in our case,

FIG. 6. Example of the tripartition ABC. The clock states be-
longing to A, B, and C are marked by red, blue, and green color,
respectively.

such a relation does not hold as the number of distinct number
of fractional excitations varies depending on the system size
[Eq. (35)] and the topological entanglement entropy takes
a constant number γ = −2 log N irrespective to the system
size, implying the incapability to associate γ to the total
quantum dimension. In the next section, we give a physi-
cal interpretation of this result in the simplest setting, i.e.,
N = 2. We summarize the results obtained in this section in
Table I.

D. Topological entanglement entropy

In this subsection, we resort to the prescription to suppress
the area-law term of the entanglement entropy to extract the
topological subleading term in our model. It was found that
in 2D topologically ordered phases, for a tripartite disk ge-
ometry ABC, the topological entanglement entropy is given
by [20]

Stop = SA + SB + SC + SABC − SAB − SAC − SBC . (74)

The sign in front of each term is designed so that the area-law
term cancels out. To carry out this prescription in our model
(5), we envisage the disk geometry ABC in the square lattice
as portrayed in Fig. 6. We set the height of the disk A and the
one of the B and C to be l1y and l2y. Here, the height of the disk
represents the number of pairs of a clock state on a vertex and
the one on a link just above it along each column inside the
disk. (In Fig. 6, we portray a geometry with l1y = 3, ll2y =
4.) We also set the width of the disks B and C to be l1x and
l2x, respectively (width denotes the number of the clock states
along each row inside the disk), with lx = l1x + l2x, where lx
is the width of the disk A.

In this configuration, recalling that the entanglement en-
tropy of a disk geometry is given by (73), where the (Area)
denotes the number of stabilizers V(x,y) that act on both the
clock states inside the disk and the ones in its complement

045146-11



HIROMI EBISU PHYSICAL REVIEW B 110, 045146 (2024)

FIG. 7. (a) In the case of nx being even. One can decompose the lattice into two. The periodic boundary condition is imposed so that the
left and right edges are identified. (b) In the case of nx being odd. We double the lattice by going around the torus twice, and omit vertices and
links as explained in the main text. The red frame corresponds to the subsystem A with disk shape considered in the previous section.

around the border, we have

SA = (2lx + 4l1y − 2) log N − 2 log N,

SB = (2l1x + 4l2y − 2) log N − 2 log N,

SC = (2l2x + 4l1y − 2) log N − 2 log N,

SAB = (2lx + 4l1y + 4l2y − 3) log N − 2 log N,

SAC = (2lx + 4l1y + 4l2y − 3) log N − 2 log N,

SBC = (2lx + 4l2y − 2) log N − 2 log N,

SABC = (2lx + 4l1y + 4l2y − 2) log N − 2 log N. (75)

Therefore, the topological entanglement entropy is given by

Stop = −2 log N. (76)

IV. ALTERNATIVE INTERPRETATION OF THE RESULT
IN THE SIMPLEST CASE

In this section, we give an intuitive understanding of the
topological entanglement entropy found in the second term of
(73) by focusing on the simplest case of N , i.e., N = 2. To this
end, discussion presented in Sec. II B is of usefulness.

Recalling the argument in Sec. II B, in the case of N = 2,
depending on whether the length of the lattice in the x direc-
tion is even or odd, the GSD, accordingly, the total quantum
dimension changes whereas the topological entanglement en-
tropy gives −2 log 2. Even though we have the topological
entanglement entropy −2 log 2 irrespective to the length of
the lattice in the x direction being even or odd, its topological
origin to have such a number is rather different in these two
cases.

As seen from (18), in the case of N = 2 and nx being even,
the mutually commuting terms of Hamiltonian get simplified,
allowing us to decompose the Hamiltonian into two sectors,
each of which describes the Z2 toric code. Such decompo-
sition is shown in Fig. 7(a) where we separate vertices with
even number x coordinate (white squares) and the ones with
odd number (black squares) as well as vertical links with odd
number x coordinate (white dots) and the ones with even num-
ber (black dots). Correspondingly, the entanglement entropy
SA is decomposed into two, each of which is the one of the
disk geometry in the Z2 toric code. Since the topological
entanglement entropy of the disk geometry in the Z2 toric
code is known to be − log 2 [20,21], in total, the topological
entanglement entropy gives 2 × (− log 2) = −2 log 2.
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On the contrary, in the case of nx being odd, such de-
composition (8) is not valid, thus the Hamiltonian describes
one Z2 toric code. To see this more clearly, recalling the
fact that each commuting term of the Hamiltonian involves
next-nearest-neighboring Pauli operators in the x direction,
we think of doubling the lattice, obtained by going around the
torus in the x direction twice and rearranging the vertices and
links.

To be more specific to what we have just mentioned, con-
sider a geometry portrayed in Fig. 7(b). We double the lattice
obtained by traveling around the torus in the x direction twice.
In the first half of the doubled lattice, we omit the vertices
with even number x coordinate and vertical links with odd
number x coordinate whereas in the latter half, we discard
the vertices with with odd number x coordinate and vertical
links with even number x coordinate. Recalling (7), one is
convinced that the Hamiltonian describes one Z2 toric code
on the torus. By this rearrangement, the entanglement entropy
SA amounts to be the one of two spatially separated disks
in the Z2 toric code. The topological entanglement entropy
is found to be −2 log 2, the same value as the case of nx

even.

V. GENERIC LATTICES

As we have seen in the previous argument, our model
contains the second-order spatial derivative, involving the
next-nearest-neighboring sites. Such a property can be
straightforwardly described by the Laplacian, the graph the-
oretical analog of the second-order spatial derivatives with
which one can evaluate the entanglement entropy. In this sec-
tion, we further explore the entanglement entropy of the model
on generic lattices, rather than standard square one to see the
interplay between quantum entanglement and geometry of the
system.

A. Laplacian and Hamiltonian

To this end, let us start with reviewing a few terminologies
in the graph theory. A graph G = (V, E ) which is a pair
consisting of a set of vertices V and a set of edges E comprised
of pairs of vertices {vi, v j}. In the rest of the work, we assume
that the graph is connected, meaning there is a path from a
vertex to any other vertex, and that the graph does not have
an edge that emanates from and terminates at the same vertex.
We also introduce two quantities, deg(vi ) and li j . The former
one, deg(vi ), denotes the degree of the vertex vi, i.e., the
number of edges emanating from the vertex vi and the latter
one li j represents the number of edges between two vertices vi

and v j . (We have li j = 0 when there is no edge between two
vertices vi and v j .). Using these two quantities, the Laplacian
matrix of the graph, which is the analog of the second-order
derivative operator ∂2

x on a graph, is defined. For a given graph
G = (V, E ), the Laplacian matrix L (which we abbreviate as
Laplacian in the rest of this work) is the matrix with rows and
columns indexed by the elements of vertices {vi} ∈ V , with

Li j =
{

deg(vi ) (i = j),

−li j (i �= j).
(77)

The Laplacian is singular due to the connectivity of the
graph. (Summing over all rows or columns gives zero.) As
an example, the Laplacian of the cycle graph C4 (i.e., a
square) consisting of four vertices and four edges, where
there is a single edge between a pair of vertices, is
given by

L =

⎛
⎜⎜⎝

2 −1 −1
−1 2 −1

−1 2 −1
−1 −1 2

⎞
⎟⎟⎠.

It is known that by introducing invertible matrices over in-
teger P, Q corresponding to linear operations on rows and
columns of the Laplacian, respectively, the Laplacian of any
connected graph can be transformed into a diagonal form
(Smith normal form)1

PLQ = diag(u1, u2, . . . , un−1, 0). (78)

The diagonal entries ui are referred to as the invariant
factors.

With these terminologies, we introduce generic 2D lat-
tice on which the higher-rank topological phase is placed.
We consider 2D lattices constructed by the product of the
graph G(V, E ) and 1D line. An example of such a lattice
is shown in Fig. 8, left. The lattice is constructed in such a
way that copies of the graphs are stacked along the vertical
direction.2

We introduce two types of the generalized N-qubit states
(ZN clock states) on this 2D lattice. The first type of the clock
states is located on the vertices of the graph in the horizontal
direction, whereas the ones with the second type are on the
vertical links. We denote the coordinate of the first clock states
by (vi, y) where vi represents a vertex of the graph and y
does the height taking integer values in the unit of lattice
spacing. Analogously, the coordinates of the second clock
states are denoted by (vi, y + 1

2 ), where the second element
corresponds to the edge between vertices located at (vi, y) and
(vi, y + 1).

Having defined the 2D lattice, we introduce the Hamil-
tonian which is generalization of the one studied in the
previous sections to an arbitrary graph. We represent the local
Hilbert space of the two types of the clock states as |a〉(vi,y)
and |b〉(vi,y+1/2) (a, b ∈ ZN ). Further, we define operators
X1,(vi,y), Z1,(vi,y), and X2,(vi,y+1/2), Z2,(vi,y+1/2) that act on these
states as

Z1,(vi,y)|a〉(vi,y) = ωa|a〉(vi,y),

Z2,(vi,y+1/2)|b〉(vi,y+1/2) = ωb|b〉(vi,y+1/2),

X1,(vi,y)|a〉(vi,y) = |a + 1〉(vi,y),

X2,(vi,y+1/2)|b〉(vi,y+1/2) = |b + 1〉(vi,y+1/2) (79)

1The last entry is zero, mirroring the fact that the graph is con-
nected.

2Note that the lattice obtained this way is not embeddable in flat 2D
space. Rather, it is defined on an abstract 2D cell complex. Indeed,
the graph consists of vertices and edges, corresponding to 0- and
1-simplices. Due to this reason, we regard our lattice as 2D.
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FIG. 8. Left: One example of the 2D lattice consisting of a connected graph Gx and the 1D line. Right: One of the terms V(vi,y) defined in
(80) is shown in the same example of the lattice.

with ω = e2π i/N . With these notations, we define the follow-
ing two types of operators that we dub vertex and plaquette
operators at each vertex and vertical link:

V(vi,y) := X2,(vi,y+1/2)X
†
2,(vi,y−1/2)(X

†
1,(vi,y) )

deg(vi )

×
∏

j

(X1,(v j ,y) )
li j ,

P(vi,y+1/2) := Z†
1,(vi,y+1)Z1,(vi,y)Z

deg(vi )
2,(vi,y+1/2)

∏
j

(Z†
2,(v j ,y+1/2))

li j .

(80)

Here, deg(vi ) is the number of edges in the x direction which
emanate from the vertex vi whereas li j gives the number of
edges in the x direction between two vertices with coordinates
(vi, y) and (v j, y), in accordance with the matrix element
of the Laplacian (77). It is straightforward to check terms
given in (80) commute with each other. We demonstrate one
example of the term in Fig. 8, right. The Hamiltonian is
defined by

H = −
∑
(vi,y)

V(vi,y) −
∑

(vi,y+1/2)

P(vi,y+1/2) + H.c. (81)

When we impose the periodic boundary condition in the y
direction, by the same reasoning presented in Sec. II D, one
finds that the GSD is given by [19]

GSD = [N × gcd(N, u1) × · · · × gcd(N, un−1)]2. (82)

Here, positive integers ui denote the invariant factors of the
Laplacian (78).

B. Entanglement entropy

Now we are in a good place to study the entanglement
entropy of our model on a graph. We set the subsystem A
as the “cylinder geometry” consisting of the subgraph of G
and the vertical line with length ly, i.e., the cylinder encloses
ly copies of the subgraphs. The clock states belonging to
the subsystem A are the ones located on the vertices of the
subgraph within the cylinder and the ones on the vertical links
inside the cylinder and vertical links that cross the top and
bottom faces of the cylinder. We also denote the complement

of the subsystem A as B. For simplicity, we set the subgraph
to be connected. An example is shown in Fig. 9(a). We set
the y coordinate of vertices inside the subsystem A to be
(y0 � y � y0 − 1 + ly).

FIG. 9. (a) Example of the subsystem A in a shape of a cylinder
geometry consisting of the subgraph and the 1D line. The clock states
belonging to the subsystem A are marked by red colors. (b) Classi-
fication of the vertices of the graph at (y0 � y � y0 − 1 + ly ). Inside
the subsystem A, the vertices which are (are not) connected with the
ones outside A are represented by AI (A0), marked by pink (red) color.
Also, outside A, the vertices which are (are not) connected with the
ones in A are denoted by BI (B0), marked by light blue (blue).
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For later convenience, at each y, (y0 � y � y0 − 1 + ly), we label vertices of the graph classified by the following four
groups:

A0 = {vertices inside A which are not connected with the ones outside A},
AI = {vertices inside A which are connected with the ones outside A},
BI = {vertices outside A which are connected with the ones inside A},
B0 = {vertices outside A which are not connected with the ones inside A}. (83)

An example is demonstrated in Fig. 9(b). We denote the number of such vertices by nA0 , nAI , nBI , and nB0 . In accor-
dance with the vertices of the four classes [Eq. (83)], we rearrange the order of the vertices so that vertices of A0 come
first, followed by the ones of AI , BI , and B0. In this order of the vertices, we write the Laplacian of the graph in
the form

L =

⎛
⎜⎜⎝

LA0A0 LA0AI

LAI A0 LAI AI LAI BI

LBI AI LBI BI LBI B0

LB0BI LB0B0

⎞
⎟⎟⎠, (84)

where L∗∗ describes the submatrix of the Laplacian. For instance, the matrix LA0A0 is the nA0 × nA0 matrix in-
dexed by vertices which belong to A0. After preparing terminologies, we are going to show the following
theorem:

Theorem 1. Entanglement entropy of a subgraph. Consider the stabilizer model on the 2D lattice (81) obtained by the product
of the graph and one-dimensional (1D) line with periodic boundary condition in the vertical direction. The entanglement entropy
of the subsystem A with cylinder geometry, constructed by a subgraph and the 1D line with length ly with respect to the ground
state |ψ〉, is given by

SA =
[

(Area) log N − 2ly log

(∏
i

gcd(N, ri )

)
− ly|nAI − nBI | log N

]
− log

(
Nmin(nAI ,nBI )∏

i gcd(N, ri )

)
− 2 log

⎛
⎝∏

j

gcd(N, s j )

⎞
⎠.

(85)

Here, (Area) represents the number of the vertex operators that have support on both of A and B, which is associated with the
number of the clock states located around the border of A and B. Also, the numbers ri and s j represent invariant factors of the
submatrix of the Laplacian via (SNF represents the Smith normal form)

LAI BI

SNF−−→

⎛
⎜⎜⎜⎜⎜⎜⎝

r1
. . .

rp

⎞
⎟⎟⎟⎟⎟⎟⎠,

(
LA0A0 LA0AI

LAI A0 LAI AI LAI BI

)
SNF−−→

⎛
⎜⎝s1

. . .

snA0 +nAI

⎞
⎟⎠. (86)

Proof. In order to find the entanglement entropy, we resort
to the formula (44). Generically, it is cumbersome to evaluate
|GA| and |GB| due to the constraint on the stabilizers. As we
have seen in Sec. III, the complication stems from the fact
that there is nontrivial GSD when we impose the periodic
boundary condition on the lattice, giving rise to constraints
on the multiplication of the stabilizers on the entire lattice.
While it is still possible to implement a similar approach as
the one discussed in Sec. III to identify the entanglement
entropy, here we employ an alternative simpler way to obtain
the entanglement entropy. We accommodate an appropriate
boundary condition on the system in the vertical direction,
instead of the periodic boundary condition. Consider the 2D
lattice that we introduced in (81) with finite length in the
vertical direction so the bottom boundary terminates with a
graph G and the top boundary ends with vertical links (see
Fig. 10). With this boundary condition, one can check that the
GSD is trivial and there is no constraint on the multiplication

of stabilizers on the entire lattice, simplifying the problem.
The boundary that we consider here is intriguing in its own
right. It is reminiscent of smooth and rough boundary of the
toric code, where anyons with magnetic and electric charge
are condensed [31].

After accommodating the boundary, now we turn to calcu-
lation of the entanglement entropy based on (44) assuming
nBI � nAI . (The proof in the case of nBI > nAI is similarly
discussed.). From (44), one needs to evaluate the number of
products of vertex operators that act exclusively on A or B. We
denote the number of individual vertex terms that act within
A and B as |G̃A| and |G̃B|. To find |GA| and |GB|, we also need
to think of the multiplication of the vertex terms which act
exclusively on A and B. Representing these numbers as �A

and �B, |GA| and |GB| are written as

|GA| = |G̃A| × �A, |GB| = |G̃B| × �B. (87)

Below we identify �A and �B.
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FIG. 10. We accommodate the boundary condition on the lattice
so that in the bottom the lattice terminates the graph whereas on
the top, the lattice terminates with the vertical links. One can verify
that the there is no constraint on the stabilizer on the entire lattice,
simplifying the problem.

At given y (y0 � y � y0 − 1 + ly), we consider the follow-
ing product of the vertex terms:∏

vi∈AI

V αi
(vi,y) (αi ∈ ZN ), (88)

which can be rewritten as

∏
vi∈AI

V αi
(vi,y) =

⎡
⎣∏

i∈AI

X −αi
2,(vi,y+1/2)X

αi
2,(vi,y−1/2)

⎤
⎦

×
∏

j∈A0+AI +BI

X
β j

1,(v j ,y) (β j ∈ ZN ). (89)

Defining a nAI - and nA0+AI +BI -dimensional vectors α and β

whose element is given by αi and β j , respectively, and refer-
ring to (84), it follows that the vectors α and β are related via
submatrix of the Laplacian as

β =

⎛
⎜⎜⎝

LA0AI

LAI AI

LBI AI

⎞
⎟⎟⎠α. (90)

Suppose the last nBI entries of β are zero. Then the product
(89) is what we want: multiplication of the vertex opera-
tors that act exclusively on AI , contributing to �A. Thus,
the number of such product amounts to be the number of
solutions of

LBI AI α = 0 mod N. (91)

Introducing nBI × nBI and nAI × nAI invertible integer matrices
U and V , one can transform the nBI × nAI matrix LBI AI into the
Smith normal form as

ULBI AIV =

⎛
⎜⎜⎜⎜⎜⎜⎝

r1
. . .

rnAI

⎞
⎟⎟⎟⎟⎟⎟⎠. (92)

From this form (92), we have

LBI AI α = 0 ⇔

⎛
⎜⎜⎜⎜⎜⎜⎝

r1
. . .

rnAI

⎞
⎟⎟⎟⎟⎟⎟⎠α̃ = 0 mod N, (93)

where α̃ := V −1α. The ith element of α̃ is subject to

riα̃i = 0 mod N, (94)

from which it follows that ri takes gcd(N, ri ) distinct values,
where gcd stands for the greatest common divisor. Therefore,
the number of the solution of (91) is given by

nAI∏
i=1

gcd(N, ri ).

Since we have considered the product of the vertex operators
defined on AI that act trivially on BI at given y (y0 � y � y0 −
1 + ly), there are in total[ nAI∏

i=1

gcd(N, ri )

]ly

(:= �1) (95)

of the product of the vertex operators defined on AI which acts
exclusively on AI , contributing to �A.

We can analogously discuss the number of product of
the vertex operators located on BI which act trivially on AI ,
contributing to �B. Suppose the following product at given
y (y0 � y � y0 − 1 + ly)∏

j∈BI

V
η j

(v j ,y) (η j ∈ ZN ) (96)
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acts trivially on AI . By the similar augment presented around
(91), the number of such product amounts to be the number of
solution of

LAI BI η = 0 mod N, (97)

where η denotes nBI -dimensional vector whose entry is given
by η j . Similarly to (92), we transform the matrix LAI BI into
the Smith normal form. Introducing nAI × nAI and nBI × nBI

invertible integer matrices U ′ and V ′, the Smith normal form
reads as

U ′LAI BIV
′ =

⎛
⎜⎝ r1 0

. . .
. . .

rnAI
0

⎞
⎟⎠. (98)

Since LT
BI AI

= LAI BI , the smith normal form of the nAI × nBI

matrix LAI BI contains the same diagonal entries as (92). Equa-
tion (97) is rewritten as

⎛
⎜⎝ r1 0

. . .
. . .

rnAI
0

⎞
⎟⎠η̃ = 0 mod N (99)

with η̃ := V ′−1η. The first nAI entries of η̃ are subject to
η̃i = ri (1 � i � nAI ) whereas there is no constraint on the
last nBI − nAI entries of η̃. Hence, the number of solution
satisfying (97) is given by

nAI∏
i=1

gcd(N, ri ) × N (nBI −nAI ). (100)

Taking into account the y direction, we have

[ nAI∏
i=1

gcd(N, ri ) × N (NBI −nAI )

]ly

(:= �2) (101)

product of the vertex operators defined on BI which act triv-
ially on AI , contributing to �B.

In addition to (95) and (101), there are products of the
vertex operators along both horizontal and vertical directions,
which contributes to �A and �B. At given y, let us consider the
following product:

∏
i∈A0+AI

V δi
(vi,y) (δi ∈ ZN ). (102)

Suppose (102) does not have X1 operators in the horizontal
direction. Recalling the previous argument presented around
(91) and (97), such a condition is described by

⎛
⎝LA0A0 LA0AI

LAI A0 LAI AI

LB0AI

⎞
⎠δ = 0 mod N. (103)

By transforming the matrix on the left-hand side of (103) into
the Smith normal form as

⎛
⎝LA0A0 LA0AI

LAI A0 LAI AI

LB0AI

⎞
⎠ →

⎛
⎜⎜⎜⎜⎝

s1
. . .

snAI +A0

⎞
⎟⎟⎟⎟⎠, (104)

there are

�3 :=
nAI +AI∏

i=1

gcd(N, si ) (105)

solutions. Multiplying (102) along the vertical direction gives
rise to stabilizers, which contribute to �A and �B. Indeed,

y0+ly∏
y=y0−1

⎡
⎣ ∏

i∈A0+AI

V δi
(vi,y)

⎤
⎦ (106)

has support only on B, which contributes to �B (Fig. 11, left).
Likewise, the product

y0∏
y=1

⎡
⎣ ∏

i∈A0+AI

V δi
(vi,y)

⎤
⎦ (107)

acts exclusively on A, contributing to �A (Fig. 11, right).
We also consider the product of the vertex operators de-

fined on A0 + AI + BI : ∏
i∈A0+AI +BI

V σi
(vi,y), (108)

assuming it does not have X1 operators on A0 + AI . Such a
condition can be described by(

LA0A0 LA0AI

LAI A0 LAI AI LAI BI

)
σ = 0 mod N. (109)

Multiplying (108) along y,

y0−1+ly∏
y=y0

∏
i∈A0+AI +BI

V σi
(vi,y), (110)

yields the stabilizer that acts within B, contributing to �B.
Thus, we need to evaluate the number of solutions satis-
fying (109). However, some of solutions are redundant to
what we have already identified previously [Eqs. (100) and
(105)]. Therefore, the number of products in question which
contribute to �B [Eq. (110)] is equivalent to the number of
solutions of (109) divided by the numbers given in (100) and
(105):

The number of solutions of (109)∏nAI
i=1 gcd(N, ri ) × N (NBI −NAI ) ×∏nAI +nA0

j=1 gcd(N, s j )
. (111)
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FIG. 11. Left: Multiplication of the stabilizer Vvi,y with blue stars
gives rise to the operators X1 and X2 that act exclusively on B. Right:
Multiplication of the stabilizer Vvi,y with blue stars gives rise to the
operators X1 and X2 that act exclusively on A. The clock states with
red color belong to the subsystem A.

We transform the matrix in (105) into the Smith normal form
as(

LA0A0 LA0AI

LAI A0 LAI AI LAI BI

)

SNF−−→

⎛
⎜⎝ s1 0

. . .
. . .

snA0 +nAI
0

⎞
⎟⎠, (112)

from which it follows that the the denominator of (111) is
given by

∏nAI +AI
j=1 gcd(N, s j ) × NnBI . Substituting it into (111)

yields

(111) = NnAI∏nAI
i=1 gcd(N, ri )

(:= �4). (113)

Overall,

�A = �1 × �3, �B = �2 × �3 × �4. (114)

Referring to (44) and (87), we finally arrive at

SA =
[

log

( |G|
|G̃A||G̃B|

)
− 2ly log

( nAI∏
i=1

gcd
(
N, ri )

)

− ly(nBI − nAI ) log N

]

− log

(
NnAI∏nAI

i=1 gcd
(
N, ri )

)

−2 log

⎛
⎝nAI +nA0∏

j=1

gcd(N, s j )

⎞
⎠ (nAI � nBI ). (115)

Proof of the theorem (85) is completed by rewriting |G|
|G̃A||G̃B| =

N (Area), where (Area) denotes the number of vertex operators
that have support both on A and B, which is interpreted as the
number of vertices surrounding the subsystem A. Analogous
argument leads to (85) in the case of nBI < nAI . �

The first three terms in (85) depend on the system size,
whereas the subleading-order terms corresponding to the last
two terms depend on the number of clock states inside A
which are connected with B (i.e., nAI ) and invariant factors
of the Laplacian of the subgraph.

While we corroborate that the subleading-order term of the
entanglement entropy (73) in the case of the square lattice is
topological by an intuitive argument given in Sec. IV, one can
understand the topological origin of the subleading term in the
case of the square lattice from a different perspective based
on the result (85). In the case of the square lattice, for a disk
geometry, we have nAI = nBI = 2 and invariant factors of the
subgraph (i.e., disk geometry) become trivial (namely, ri =
s j = 1). Thus, (85) is identical to (73). The subleading term
−nAI log N = −2 log N retains the same value, regardless of
the width of the disk as the number nAI is always constant 2.

VI. BRIEF COMMENTS ON OTHER CASES OF THE
HIGHER-RANK TOPOLOGICAL PHASES

We have studied entanglement entropy of the higher-rank
topological phases defined in (5) by making use of formalism
of the stabilizers [22] jointly with the one of the Laplacian.
One could study entanglement entropy of other higher-rank
topological phases by resorting to a similar approach.

One example is the model studied recently in [32], which
is introduced as follows. At each vertex of the square lattice,
we introduce two clock states |a〉(x,y)|b〉(x,y), a, b ∈ ZN . Also,
we define operators acting on these states as (recall that ω =
e2π i/N )

Z1,(x,y)|a〉(x,y)|b〉(x,y) = ωa|a〉(x,y)|b〉(x,y),

Z2,(x,y)|a〉(x,y)|b〉(x,y) = ωb|a〉(x,y)|b〉(x,y),

X1,(x,y)|a〉(x,y)|b〉(x,y) = |a + 1〉(x,y)|b〉(x,y),

X2,(x,y)|a〉(x,y)|b〉(x,y) = |a〉(x,y)|b + 1〉(x,y). (116)
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FIG. 12. Two types of terms defined in (117).

Introducing the following terms by (Fig. 12)

V(x,y) := X1,(x+1,y)X1,(x−1,y)(X
†
1,(x,y) )

2X2,(x,y+1)X2,(x,y−1)

× (X †
2,(x,y) )

2,

P(x,y) := Z†
1,(x,y+1)Z

†
1,(x,y−1)Z

2
1,(x,y)Z2,(x+1,y)Z2,(x−1,y)

× (Z†
2,(x,y) )

2, (117)

the Hamiltonian reads as

HZN = −
∑
x,y

(V(x,y) + P(x,y) ) + H.c. (118)

The GSD of the phase on the torus geometry with length of
the lattice in the x and y directions being nx and ny, is found
to be [32]

GSD = [N × gcd(N, nx ) × gcd(N, ny) × gcd(N, nx, ny)]2.

(119)
By making use of the similar line of thoughts outlined in
Sec. III, one obtains the entanglement entropy of the disk
geometry as

SA = (Area) log N − 4 log N. (120)

Here, Area is the number of vertices surrounding the disk.
Compared with the result (73), the absolute value of the
topological entanglement entropy is increased. Also, the to-
tal quantum dimension of the model is given by

√∑
a d2

a =
[N × gcd(N, nx ) × gcd(N, ny) × gcd(N, nx, ny )], thus, anal-
ogously to (73), the relation between total quantum di-
mension and the topological entanglement entropy does
not hold.

It would be interesting to study other higher-rank topo-
logical phases, such as the ones studied in [26,33–36].
Generically, we make a conjecture that one cannot asso-
ciate the topological entanglement entropy in the higher-rank
topological phases with the total quantum dimension of the
fractional excitations and also that the absolute value of
the topological entanglement entropy becomes larger when
the model contains the terms which involve clock states in
the longer range. We leave confirmation of this speculation
for future studies.

VII. CONCLUSION

In this work, we study entanglement entropy of unusual
topological stabilizer models with dipole symmetry, which
is one of the multipole symmetries, admitting dipole of the
fractional charges. As opposed to the entanglement entropy
of the fracton topological phases, where it is not immediate
to identify the entanglement entropy due to the subsystem
symmetries [37–39], entanglement entropy of our model is
easily obtained based on the formulation of the combina-
torics. While the GSD and the total quantum dimension of the
fractional excitations drastically changes depending on the
system size, topological entanglement entropy γ takes a
constant, given by γ = −2 log N . Due to this result, the well-
known relation between the topological entanglement entropy
and the total quantum dimension is not valid in the case
of the higher-rank topological phases. Such a result can be
understood by decomposition of the model into two or rear-
rangement of the lattice in the simplest case N = 2. We further
study the entanglement entropy of the model on generic lat-
tices and have found that the entanglement entropy depends
on the number of clock states surrounding the system and
invariant factors of the Laplacian of the subgraph. The result
presented in this work complies with the growing interests
in topological phases with multipole symmetries in view of
quantum entanglement and combinatorics.

It would be interesting to see if our model can be de-
composed into layers of the toric codes since such a way
of thinking is crucial in understanding physics of the frac-
ton topological phases. Indeed, it is known that the X-cube
model, which is the prototype of the fracton topological phase
realized on a cubic lattice is decomposed into layers of the
toric codes via unitary operations [40,41]. Furthermore, based
on this fact, a new type of topological field theories (foli-
ated topological field theories) have been recently introduced,
where layers of the (2 + 1)D BF theories are stacked, giving
rise to quasiparticle excitations with mobility restriction [42].
In our model, one can see that a single fractional charge
can hop in the x direction in the unit of N lattice spacing
rather than a single site [see the discussion around (13) and
[18,26,27]], tantalizing to decompose the model into N layers
of the toric codes. Also, it is proved that for prime p, all
translation-invariant Zp stabilizer codes in 2D are equivalent
to copies of toric codes by a local Clifford circuit of constant
depth [43]. On the other hand, based on the recent study of
multipole symmetries [44], one can show that the effective
field theory description of the model (5) turns out to be a
foliated topological field theory constructed by two layers
of the BF theories. It would be intriguing and important to
see whether these facts reconcile with each other and, in
particular, to identify a proper unitary quantum circuit to de-
compose our model into layers of the toric codes in the case of
N > 2.

Regarding the issue in the previous paragraph, it was
recently discussed that a model which exhibits the same
GSD of the the model (13) is introduced by preparing two
copies of the toric codes with arrays of Dijkgraaf-Witten
(DW) twist terms (gauged symmetry-protected topologi-
cal phases) [45,46]. This consideration is consistent with
our result (73). Generally, the DW twist terms change the
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fractional statistics of excitations, yet do not alter the to-
tal quantum dimension. (Indeed, it was investigated that
topological entanglement entropy of a contractible disk in
quantum double with DW twist is the same as the one without
DW twist [47].) Hence, regardless of the presence of the
DW twist, the topological entanglement entropy amounts to
the one of layers of toric codes – 2 log N , which is con-
sistent with (73). More detailed discussions can be found
in [46].

There are several future research directions regarding this
study. It is known that capability of the error correction of the
toric code is characterized by the classical Ising universality
class [6]. It would be interesting to study how our model (5)
can be utilized for quantum error corrections, in particular,
to identify what kind of universality class characterizes the
capability of the error correction in our model. One naively
expects that due to the fact that the model has the multipole
symmetries, such a universal class is qualitatively different
from the one in the conventional toric code. While we focus
on the entanglement entropy in the higher-rank topological
phases, one would be curious to elucidate behavior of other
observable to quantify the quantum entanglement. One candi-
date would be entanglement negativity [48,49], an important
observable to extract quantum correlation rather than a classi-
cal one. It would be intriguing to investigate the entanglement
negativity of our model to see how different it is com-
pared with the case of the conventional topologically ordered
phases [50].
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APPENDIX A: DERIVATION OF THE LOGICAL
OPERATORS (WILSON LOOPS)

In this Appendix, we present an intuitive understanding
of the logical operators of the model (29) and (31) by in-
vestigating the behavior of the fractional excitations (i.e.,
fusion rules) following [19]. Based on the fusion rules, one
can study the logical operators which are the noncontractible
Wilson loops when the model is placed on a torus geome-
try. To this end, we consider the model (5) on a 2D lattice
with periodic boundary condition and the system size be-
ing nx × ny. In this lattice, we first focus on the logical
operators consisting of a string of Z1 operators in the x di-
rection. We think of a closed loop of the electric charge
in the horizontal direction at y, described by

∏nx
x=1 Zax

1,(x,y)
with ax ∈ ZN . From (12), the electric charges induced by
acting this operator on the ground state are described by the
fusion rule

I →
nx∏

x=1

⊗erx
(x,y) (rx ∈ ZN ) (A1)

with

r = −La. (A2)

Here, a := (a1, . . . , anx )T , r := (r1, . . . , rnx )T , and nx × nx

matrix L is the Laplacian (15). Since the closed non-
contractible loop

∏nx
x=1 Zax

1,(x,y) has to commute with the
Hamiltonian, the fusion rules (A1) and (A2) have to be trivial,
i.e., r = 0 mod N . Thus, the closed loops of the electric
charges are characterized by the kernel of the Laplacian,
which is derived in (27):

a = N

gcd (nx, N )
α1

⎛
⎜⎜⎜⎜⎝

nx − 1
nx − 2

...

1
0

⎞
⎟⎟⎟⎟⎠

+ α2

⎛
⎜⎜⎜⎜⎝

1
1
...

1
1

⎞
⎟⎟⎟⎟⎠ mod N (α1 ∈ Zgcd(N,nx ), α2 ∈ ZN ).

Based on this result, the logical operators consisting of the
closed string of the Z1 operators are described by

ηz
1 =

nx∏
x=1

Z px
1,(x,y), γ z

1 =
nx∏

x=1

Zqx
1,(x,y)

with

p = (p1, p2, . . . , pnx )T = N

gcd (nx, N )
α1

⎛
⎜⎜⎜⎜⎝

nx − 1
nx − 2

...

1
0

⎞
⎟⎟⎟⎟⎠,

q = (q1, q2, . . . , qnx )T = α2

⎛
⎜⎜⎜⎜⎝

1
1
...

1
1

⎞
⎟⎟⎟⎟⎠ mod N

which correspond to the first two terms in (31). One can check
that the loops are deformable in the y direction, and that any
form of the logical operators comprised of the product of the
Z1 operators in the x direction is generated by the combination
of the two ηz

1, γ z
1 .

As for the logical operators comprised of product of the
Z2 operators in the y direction, from the fusion rule (59),
which is identical to the one in the toric code, where a pair of
excitations are created. From this feature, one can construct
a noncontractible closed loop of magnetic charge formed by
string of Z2 operators defined by

Wey(x) :=
ny∏

y=1

Z2,(x,y+1/2). (A3)

Although the loop (A3) resembles the one in the toric
code, the way it is deformed is crucially different. To see
this, we think of the product of the operators P(x,y+1/2) by
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∏ny

y=1 P(x,y+1/2), and acting it on the loop as

ny∏
y=1

P(x,y+1/2)Wey(x) = Wey(x − 1)[W †
ey(x)]2Wey(x + 1), (A4)

which can be understood that the loop Wey(x) is transferred to
the adjacent x coordinate (i.e.,±1), compensated by loop with
opposite charge at x. In order to find the number of distinct
logical operators consisting of Z2’s, we need to evaluate the
distinct configuration of the loop Wey(x) up to the deformation
(A4). To do this, let us consider composite of the loops in the
y direction described by

nx∏
x=1

W bx
ey (x) (bx ∈ ZN ). (A5)

Also, we introduce product of the operators P(x,y+1/2) by

nx∏
x=1

⎛
⎝ ny∏

y=1

P(x,y+1/2)

⎞
⎠cx

(cx ∈ ZN ). (A6)

Acting [Eq. (A6)] on the loops
∏nx

x=1 W bx
ey (x) (bx ∈ ZN ),

jointly with (A4) gives rise to the loops in the form of

nx∏
x=1

W b′
x

ey (x) (b′
x ∈ ZN ) (A7)

with

b′ = b − Lc. (A8)

Here, the vector b := (b1, . . . , bnx )T with other vectors being
similarly defined, and L represents the Laplacian (15). The
number of the distinct configuration of the loops is equiva-
lent to the configuration of b under the identification b ∼ b′.
Hence, we need to evaluate f ∈ ZN/Im(L), which is cokernel
of the Laplacian. It can be shown that the cokernel is labeled
by [19]

f = β1

⎛
⎜⎜⎜⎜⎝

0
0
...

1
−1

⎞
⎟⎟⎟⎟⎠+ β2

⎛
⎜⎜⎜⎜⎝

0
0
...

0
1

⎞
⎟⎟⎟⎟⎠

× mod N (β1 ∈ Zgcd(N,nx ), β2 ∈ ZN ). (A9)

It is interesting to note that depending on N and the system
size, the model admits the dipole of the loops (corresponding
to the first term), i.e, a pair of the loops with opposite charges
located at adjacent sites. Based on this result one finds that
any logical operator consisting of the Z2’s in the y direction is
generated by

ηz
2 =

⎛
⎝ ny∏

y=1

Z2,(nx−1,y)

⎞
⎠×

⎛
⎝ ny∏

y=1

Z†
2,(nx,y)

⎞
⎠, γ z

2 =
ny∏

y=1

Z2,(nx,y)

with condition (ηz
2)gcd(nx,N ) = (γ z

2 )N = 1. These are nothing
but the last two terms in (31). By a similar line of thought,
one can derive the logical operators comprised of X1’s or X2

[Eq. (29)].

APPENDIX B: PROOF OF EQ. (43)

Given g, g′ ∈ G, we have g′
A = gA ⇔ g′ = hg, h ∈ GB.

Then (42) is reduced to

ρA = |GB|
|G|

∑
g∈G/GB,g′∈GA

gA|0〉AA〈0|(gAg′
A)†. (B1)

We have

ρ2
A =

( |GB|
|G|

)2 ∑
g,g̃∈G/GB,g′,g̃′∈GA

gA|0〉AA

× 〈0|(gAg̃A)†g′
A|0〉AA〈0|(g′

Ag̃′
A)†

=
( |GB|

|G|
)2 ∑

g∈G/GB,g̃,g̃′∈GA

gA|0〉AA〈0|(gAg̃Ag̃′
A)†

=
( |GB|

|G|
)2

|GA|
∑

g∈G/GB,g̃∈GA

gA|0〉AA〈0|(gAg̃A)†

= |GB|
|G| |GA|ρA, (B2)

from which one finds

ρn
A =

( |GA||GB|
|G|

)(n−1)

ρA. (B3)

The entanglement entropy is obtained as

SA = lim
n→1

1

1 − n
log trρn

A = log
|G|

|GA||GB| . (B4)

APPENDIX C: ENTANGLEMENT ENTROPY WITH
RESPECT TO THE GENERIC GROUND STATE

In this Appendix, we give a derivation of the entanglement
entropy of three subsystems discussed in Sec. III B in the case
of the generic ground state (45). The density matrix ρ

ζ
A of a

subsystem A in our model with respect to the generic ground
state (45) reads as

ρ
ζ
A = TrB|ζ 〉〈ζ |, (C1)

where |ζ 〉 is given by (45). From (34), it is explicitly written
as

ρ
ζ
A =

∑
a,b,c,d

a′,b′,c′,d ′

αab,cd ᾱa′b′,c′d ′TrB

× [(
ηx

1

)a(
γ x

1

)b(
ηx

2

)c(
γ x

2

)d
ρ0
(
ηx

1

)a′(
γ x

1

)b′(
ηx

2

)c′(
γ x

2

)d ′]
(C2)

with ρ0 = |ζ00〉〈ζ00|. Below we look at the three cases corre-
sponding to Figs. 4(a)–4(c).

1. Single row I

In Fig. 4(a), recalling the form of the logical operators (29)
[see also Fig. 3(b)], the logical operators ηx

1 and ηx
1 act within

subsystem B, hence the term TrB[. . . ] in (C2) is transformed
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as

1

|G|
∑

g,g′∈G

(
ηx

2A

)c(
γ x

2A

)d
gA|0〉AA〈0|(gAg′

A)†
(
η

x†
2A

)c′(
γ

x†
2A

)d ′
B

× 〈0|g′†
B

(
ηx

1

)a−a′(
γ x

1

)b−b′(
ηx

2B

)c−c′(
γ x

2B

)d−d ′ |0〉B, (C3)

where we rewrite the logical operator by the product form
ηx

2 = ηx
2A ⊗ ηx

2B, and similarly for γ x
2 . From the inner product

of the state |0〉B in (C3), one finds that

g′
B = IB, a = a′, b = b′, c = c′, d = d ′. (C4)

Hence, the density matrix ρ
ζ
A becomes

ρ
ζ
A =

∑
c,d

∑
g∈G,g′∈GA

1

|G|
∑
a,b

|αab,cd |2
(
ηx

2

)c(
γ x

2

)d
gA|0〉AA

× 〈0|(ηx†
2

)c(
γ

x†
2

)d
(gAg′

A)†. (C5)

From this form we obtain

TrA
[(

ρ
ζ
A

)n] =
∑
c,d

⎡
⎣∑

a,b

|αab,cd |2
⎤
⎦n

×
( |GA||GB|

|G|
)n−1

.

(C6)
The entanglement entropy is given by

SA = lim
n→1

1

1 − n
log trA

(
ρ

ζ
A

)n

= log
|G|

|GA||GB| −
∑
c,d

⎡
⎣
⎛
⎝∑

a,b

|αab,cd |2
⎞
⎠

× log

⎛
⎝∑

a,b

|αab,cd |2
⎞
⎠
⎤
⎦. (C7)

Therefore, (47) follows.

2. Single row II

In the case of Fig. 4(b), from (29) [see also Fig. 3(b)], it
follows that two logical operators running in the y direction,
ηx

2 and γ x
2 exclusively act on B. Regarding the other two, ηx

1
and γ x

1 which go around in the x direction, one can deform
these operators so that they act within A. Therefore, the term
TrB[. . . ] in (C2) becomes

1

|G|
∑

g,g′∈G

(
ηx

1

)a(
γ x

1

)b
gA|0〉AA〈0|(gAg′

A)†
(
η

x†
1

)a′(
γ

x†
1

)b′
B

× 〈0|g′†
B

(
ηx

2

)c−c′(
γ x

2

)d−d ′ |0〉B, (C8)

from which one finds

g′
B = IB, c = c′, d = d ′. (C9)

The density matrix is then rewritten as

ρ
ζ
A =

∑
a,b,a′,b′

∑
c,d

∑
g∈G,g′∈GA

αab,cd ᾱa′b′,cd

|G|

× (
ηx

1

)a(
γ x

1

)b
gA|0〉AA〈0|(ηx†

1

)a′(
γ

x†
1

)b′
(gAg′

A)†. (C10)

Introducing orthogonal states by

|p, q〉A := 1√
N × gcd(N, nx )

gcd(n,nx )−1∑
a=0

N−1∑
b=0

ν paωqb

× (
ηx

1

)a(
γ x

1

)b|0〉A [0 � p � gcd(N, nx )

− 1, 0 � q � N − 1] (C11)

with ν = e2π i/ gcd(N,nx ), ω = e2π i/N , Eq. (C10) is transformed
as

ρ
ζ
A = 1

|G|
∑

g∈G,g′∈GA

gcd(N,nx )−1∑
p=0

N−1∑
q=0

(
1

�
σklν

kpωlq

)

× gA|p, q〉AA〈p, q|(gAg′
A)†, (C12)

where

σkl :=
∑

a,a′,b,b′,c,d
a−a′=k mod gcd(N,nx )

b−b′=l mod N

αab,cd ᾱa′b′,cd . (C13)

Recall that we have defined � = N × gcd(N, nx ). Defining
λp,q := 1

�
σklν

kpωlq, we have

TrA
[(

ρ
ζ
A

)n] =
∑
p,q

λn
p,q ×

( |GA||GB|
|G|

)n−1

. (C14)

Substituting this into

SA = lim
n→1

1

1 − n
log trA

(
ρ

ζ
A

)n
(C15)

yields (49).

3. Single column

In the case of Fig. 4(c), one can deform the logical oper-
ators (29) so that ηx

1 and ηx
2 act exclusively on B and γ x

2 acts
within A, with γ x

1 acting on both A and B. The term TrB[. . . ]
in (C2) is described by

1

|G|
∑

g,g′∈G

(
γ x

1A

)b(
γ x

2

)d
gA|0〉AA〈0|(gAg′

A)†
(
γ

x†
1A

)b′(
γ

x†
2

)d ′
B〈0|g′†

B

× (
ηx

1

)a−a′(
γ x

1B

)b−b′(
ηx

2

)c−c′ |0〉B. (C16)

The inner product gives a constraint

g′
B = IB, a = a′, b = b′, c = c′. (C17)

We define orthogonal states by

|b, q〉A := 1√
N

N−1∑
d=0

ωqd
(
γ x

1A

)b(
γ x

2

)d |0〉A, (C18)

and the density matrix ρ
ζ
A is rewritten as

ρ
ζ
A = 1

|G|
∑

g∈G,g′∈GA

∑
b,q

λ(b)
q gA|b, q〉AA〈b, q|(gAg′

A)† (C19)

with

λ(b)
q = 1

N

N−1∑
k=0

ωkqσ
(b)
k , σ

(b)
k =

∑
a,c,d,d ′

d−d ′=k mod N

αab,cd ᾱab,cd ′ .

(C20)
By calculating (C15), one obtains (56).
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