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Probing spin fractionalization with electron spin resonance based on scanning tunneling microscopy
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The emergence of effective S = 1/2 spins at the edges of S = 1 Haldane spin chains is one of the simplest
examples of fractionalization. Whereas there is indirect evidence of this phenomenon, direct measurement of the
magnetic moment of an individual edge spin remains to be done. Here we show how scanning tunnel microscopy
electron-spin resonance (ESR-STM) can be used to map the stray field created by the fractional S = 1/2 edge
spin and we propose efficient methods to invert the Biot-Savart equation, obtaining the edge magnetization map.
This permits one to determine unambiguously the two outstanding emergent properties of fractional degrees of
freedom, namely, their fractional magnetic moment and their localization length ξ .

DOI: 10.1103/PhysRevB.110.045145

I. INTRODUCTION

Fractionalization is one of the most dramatic examples of
emergence in many-body systems [1–3]. It shows how new
quantized degrees of freedom, such as quasiparticles with
charge e/3, can govern the low-energy properties of a system
of interacting electrons with charge e. In the case discussed
here, a chain of interacting S = 1 spin behaves as if two
S = 1/2 spin degrees of freedom were localized at the edges.
These examples illustrate how it can not be ruled out that
the quantum numbers of the so-called fundamental particles
are actually emerging out of an interacting system made of
degrees of freedom with different quantum numbers [4].

Haldane spin chains [5,6] provide one of the simplest ex-
amples of fractionalization and emergence. Out of a model
of interacting S = 1 spins without intrinsic energy and length
scales, a Haldane gap �H , and two S = 1/2 degrees of
freedom localized at the edges with localization length ξ

emerge. Given that the building blocks of the model have
S = 1, the S = 1/2 edge states are fractional. Their emer-
gence can be rationalized in terms of the AKLT [7] valence
bond solid state, which in turn has a number of outstanding
properties, including being a resource state for measurement-
based quantum computing [8].

The fractional charge of quasiparticles in the Fractional
Quantum Hall effect was determined by an outstanding exper-
iment [9,10] that leveraged on the relation between shot noise
and charge [11]. In the case of spin fractionalization, a direct
measurement of the spin of the fractional edge states and
their localization length remains to be done. Until recently,
experimental probes of Haldane spin chains relied on bulk
probes, such as neutron scattering [12–16] and electron spin
resonance [17–19], and provided indirect evidence of the
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presence of S = 1/2 degrees of freedom and a Haldane gap.
Advances in on-surface synthesis combined with atomic-scale
resolution inelastic electron tunnel spectroscopy (IETS) based
on scanning tunnel microscopy (STM) have made it possible
to probe individual Haldane spin chains made with covalently
coupled S = 1 nanographene triangulenes [20]. IETS of tri-
angulene spin chains showed the presence of a Haldane gap
in the center of the chains as well as in-gap edge excita-
tions for short chains and zero bias Kondo peaks for longer
chains [20], consistent with the existence of emergent S = 1/2
edge spins [21]. However, a direct measurement of the edge
magnetic moment M = gμBSedge associated to the fractional
Sedge = 1/2 degrees of freedom is missing. Here we design
an experiment that exploits STM-based electron spin reso-
nance (ESR-STM) [22] to unambiguously demonstrate spin
fractionalization. We assume that a Haldane spin chain, not
necessarily made with triangulenes, is deposited on a surface,
sufficiently decoupled from the substrate so that the Kondo
effect is suppressed, the magnetic moment of the edge states
is preserved, and can be probed with ESR-STM magnetom-
etry [23]. The feasibility of this weak-coupling scenario has
been demonstrated in several ESR-STM experiments where
S = 1/2 species, such as Ti [23–26], Cu [27], and alkali atoms
[28], are deposited on a bilayer of MgO on top of an Ag
surface.

Our proposal (see Fig. 1) relies on the demonstrated ca-
pability of ESR-STM to act as an absolute magnetometer
[23,29]. To do so, an ESR-STM active spin acts as a sensor
that can be placed at several distances of a second spin or
group of spins denoted as target. At finite temperature, the
target spins can occupy different quantum states, each of
which generates its own stray field [23,30]. As a result, the
ESR-STM spectrum of the sensor spin features several peaks,
whose frequency and intensity relate to the stray-field and oc-
cupation probability of the quantum state of the target. As we
show below, this can be used to obtain a direct measurement
of the magnetic moment, and thereby the spin, of the edge
states in Haldane spin chains.
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FIG. 1. (a) Scheme of the proposed experiment to measure frac-
tionalization by means of ESR-STM. A Haldane chain is built on
a kondo-free surface. The system is described as if there were two
S = 1/2 objects at the edge. An ESR active atom (sensor atom) is
placed near the chain to infer the magnetic moments of such chain
from its stray field. (b) Spin density of the Sz = +1 triplet state for
β = 0.09.

II. METHODS

A. Modeling Haldane spin chain

We assume that a Haldane spin chain with N spins S = 1
is placed on a surface. Recent experimental work reports the
deposition of graphene ribbons on the MgO(100)/Ag(100)
surface [31], suitable for STM-ESR. Given that Haldane spin
chains have been made with nanographenes [20], this is a
promising step. We also assume that the Haldane chain can
be described with the Hamiltonian

H =
∑

n=1,N−1

J[�Sn · �Sn+1 + β(�Sn · �Sn+1)2]

+
∑

n=1,N

gμB �Sn · �B. (1)

We take values of β in the range 0 < β < 1
3 . The low energy

manifold is conformed by a singlet with S = 0 and a S = 1
triplet. The singlet-triplet splitting is given by the sum of the
effective interedge coupling and the Zeeman energy:

E (S, Sz ) = S�ST (N ) + gμBSzBz, (2)

where μB is the Bohr magneton, g = 2 and S = 0, 1, and
Sz = ±1, 0. We choose the quantization axis of the spin to
be parallel to the external magnetic field.

The singlet-triplet splitting shows an exponential decay
given by �ST ∝ e−N/ξ , where N is the system size and ξ

represents the localization length. This quantity remains sig-
nificantly smaller than the Haldane gap, the energy splitting
between the low-energy manifold and the bulk states. The
exponential dependence of �ST closely resembles what would
be expected if two S = 1/2 spins were localized at the edges
of the chain, with a localization length on the order of ξ . This
characteristic is illustrated in Fig. 1(b), where we calculate
the expectation value of the Sz

n operators for the low-energy
states with S = 1 and Sz = +1. Clearly, these states form

a magnetic texture localized at each edge, with a combined
magnetic moment of Sz = ∑

n=1,N/2〈±1|Sz
n| ± 1〉 = ±1/2.

B. STM-ESR magnetometry

We now consider that an STM-ESR-active spin picks
up the straight field generated by a nearby Haldane spin
chain. In ESR-STM experiments, the DC current across the
STM-surface junction is measured as a function of the fre-
quency of the driving voltage. The ESR-STM spectrum for
this lateral-sensing setup can be described by the following
equation [23,30]:

IDC ( f ) =
∑

�

p�L( f − f (�)), (3)

where the sum runs over the eigenstates of the Hamiltonian
[Eq. (1)] of the spin chain, H|�〉 = E�|�〉, p� = 1

Z e−E�/(kBT )

are the thermal occupations of each eigenstate and L( f − f�)
is a Lorentzian type resonance curve centered around the
frequency f�. We assume that the external magnetic field is
perpendicular to the sample so that the stray field created by
the chain at the sensor location is also perpendicular to the
substrate.

Since both the external field and the exchange interactions
are much larger, it is safe to neglect the backaction effect of
the stray field of the sensor on the Hamiltonian of the spin
chain [35]. As a result, the resonant frequency of the sensor
shifts linearly with the stray field:

f (�) = μBgs

h
(B + b(�)), (4)

where h = 2π h̄, and gs is the gyromagnetic factor of the
sensor, and B and b� denote the external field and the stray
field generated by the target spins in the state �, respectively,
both along the off-plane direction.

In turn, the stray field is given by

bz(�) = − μ0

4π

N∑
n=1

mz
n(�)

(dn)3
, (5)

where dn is the distance between the sensor and the spin n.
The magnetic moment vector mz

n(l ) is generated by the spin n
in each state �, and its components are given by

mz
n(�) = −gμB〈�|Sz

n|�〉. (6)

Equations (3)–(6) relate the expectation value of the magnetic
moments in a given Haldane-chain state |�〉 to the ESR-STM
spectrum of a nearby sensor.

III. FRACTIONALIZATOIN VERIFICATION

We now discuss how to determine the magnetic moment
of these states and verify fractionalization. Importantly, we
assume that the temperature is much smaller than the Hal-
dane gap [36], so that only the four states of the ground
state manifold of the chain contribute to the sum in Eq. (3).
Only two of these states, with S = 1 and Sz = ±1, have a
nonvanishing expectation value of the spins. The correspond-
ing magnetic profile of the Sz = +1 states calculated using
DMRG [37–40], is shown in Fig. 1(b), for β = 0.09, relevant
for triangulene spin chains [20,41]. It corresponds to two
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FIG. 2. (a) The top panel shows the 〈Sn
z 〉 in the Sz = 1 state of the low-energy manifold for the first half of a Haldane chain of 100 spins

with S = 1. The lower panel illustrates the z component of the stray field generated by the magnetic moments from the spins in the top panel
(represented as white dots) on the xy plane. In this example, the chain is located spanning from (x = 0, y = 0, z = 0) to (x = +Na, y = 0,

z = 0). Here, a represents the physical spacing between the S = 1 spins, treated as point particles. We choose g = 2 and a spacing of 0.3nm
from each other. The contour lines highlight regions where the stray field has a magnitude of ±0.1mT. (b) ESR spectra produced by the
low-energy manifold states of the spin array described in panel (a), measured by sensors at different locations (red dots in the inset scheme).
The sensors are located at a distance of 0.5 nm from the array. In this example, J = 18 meV, T = 1 K, Bz = 1, T, and β = 0.09.

physically separated objects with Sz = 1/2 localized at the
edges. The Sz = −1 has analogous properties. In contrast,
the expectation value of the spin operators is identically zero
when calculated with the Sz = 0 states. Consequently, the four
low-energy states of the Haldane spin chain correspond to
three distinct magnetic states, with a vanishing stray field for
the S = 0 and S = 1, Sz = 0 states, and a finite stray field
of opposite sign for the Sz = ±1 states (see Fig. 2(a). As a
result, the ESR-STM spectrum of the spin-sensor has three
distinct peaks corresponding to three different stray fields (See
Fig. 2(b). Expectedly, the stray fields of the Sz = ±1 have the
same magnitude and opposite sign. From the splitting of these
peaks, it is possible to pull out the value of the stray field at
the location of the sensor:

bz(±1) = h

gsμB
( f0 − f±1) (7)

here, f±1 represents the resonant frequencies measured at the
sensor when the Haldane spin chain occupies the states with
Sz = ±1 within the ground state manifold.

A. Inversion of the Biot-Savart equation

In order to determine the magnetic moments of the N/2
spins of one half of the chain, that define a vector M ≡
(m1(±), ..., mN/2(±)), we need to measure the stray field in
a set of different locations NM , that yields a vector in the
readout-location space, B ≡ (b1(±), ..., bNM (±)). We have
considered two methods to pull out the vector M out of B.
The first method is the full inversion of the Biot-Savart’s equa-
tion (FIBS), that can be written down as B = −(μ0/4π )DM,
where the elements of the matrix D are |dn

nm
|−3. In this case,

it is apparent that the number of necessary readouts equals
half of the chain length, NM = N/2. The second method in-
volves the use of machine learning models and requires a

dramatically smaller number of measurements to determine
the magnetization map (Figs. 3(c) and 3(d).

B. Inversion of the Biot-Savart equation
and estimation of sensitivity

The finite magnetic sensitivity of the readouts, denoted by
δB, imposes an uncertainty in the determination of the edge
magnetic moment. The sensor spectral resolution is ultimately
limited by the shot noise [35]:

δBmin = 4

3

hδ f

gsμB

√
e

I0�t
, (8)

where δ f is the linewidth, I0 is the maximal current in the
resonance peak, and �t is measurement time, which may
be limited by factors such as thermal drift of the tip. The
associated minimal shift in the sensor frequency given by
� f min = gμBδBmin/h in the range of 1 MHz have been re-
ported in STM-ESR magnetometry [23].

In the case of the FIBS, the uncertainty of the edge mag-
netic moments is given by

δ〈Sz〉 =
⎛
⎝ 4π

μ0μBg

∑
n,nm

∣∣(D−1)n
nm

∣∣
⎞
⎠δBmin. (9)

In Fig. 3(a), we show that assuming the reported resolution,
� f min = 1 MHz [23], the uncertainty in the determination of
the edge spin, δ〈Sz〉, is an order of magnitude lower than 〈Sz〉.
In principle, longer readout times would make it possible to
decrease δ f , and thereby, δ〈Sz〉.

C. Inversion of the Biot-Savart using machine learning

We now discuss a second method to invert the Biot-Savart
equation that makes use of machine learning-based numerical
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FIG. 3. (a) δ〈Sz〉 as a function of both the perpendicular dis-
tance of the Nm sensors to the chain (d) and the spectral resolution
� fmin for a S = 1/2 sensor, with Nm = N/2 different locations from
(x = 0, y = d ) to (x = +Nma, y = d ). (b) Error comparison between
linear inversion of the Biot-Savart’s equation (FIBS) in the top panel
and linear regression model (LRM) using Nm = 7 sensor positions
(d = 0.5 nm) in the bottom panel. (c) Location of the sensor po-
sitions of the NN configuration (red dots) near the spin chain (black
dots). (d) LRM prediction of the expectation values of the spins using
a magnetic profile with noise compared to the original values.

methods to invert Biot-Savart’s equation. This method comes
with two advantages. First, it reduces the number of ESR-
STM measurements. Second, it yields a smaller uncertainty
in the determination of the fractional spin. Our approach in-
volves two different machine learning methods. The first one
is a neural network model that classifies magnetic profiles
derived from ESR readouts, confirming the presence of the
characteristic Haldane spin chain edge magnetization [see
Fig. 1(b)].

The second is a linear regression model (LRM) with ma-
chine learning trained coefficients to convert Haldane-type
magnetic profiles, with a specific number of measurements,
into spin expectation values. The training set incorporates sev-
eral thousand spin distributions obtained varying β between
0 and 1/3, each with its characteristic magnetic profile. In
addition, we added random noise with amplitude bounded by
the magnetic sensitivity range (see the Supplemental Mate-
rial [35]). The synergistic use of these two machine learning
methods together allows it to be trained in a few minutes on
a conventional laptop. This is crucial since a distinct model
needs to be trained for each experimental layout, considering
factors such as spin arrangement, sensor positions, sensor
type, and spectral resolution.

In Fig. 3(b), we used NM = 7 strategically positioned mea-
surements [35], as shown in Fig. 3(c). Our calculations reveal
that, with a number of ESR readouts much smaller than
N/2, it is possible to obtain the magnetization maps and,

therefore, the total magnetic moment of half of the chain with
uncertainty as low as δ〈Mz〉/� fmin ≈ 10−2μB/MHz (see the
Supplemental Material [35]), as shown in Fig. 3(b). Conse-
quently, this methodology proves sufficient for determining
the presence of an S = 1/2 object and its localization length,
using state-of-the-art ESR-STM instrumentation.

D. Determination of localization length

We now discuss how to infer another important prop-
erty of the edge spins, namely, their localization length ξ .
This is based on two facts. First, the inversion of the Biot-
Savart equation yields the value of the magnetic moment
at many sites close to the edge. Second, our numeric work
shows that we can parametrize the spins with the following
equation: 〈

Sz
n

〉
± = ±(−1)nAe− n

ξ , (10)

where A represents the maximum value of 〈Sz
n〉 at the edge

spin, ensuring that
∑N/2

n=1〈Sz
n〉 = 1

2 [42]. Our numerical cal-
culation (see the Supplemental Material [35]) shows that the
second moment of the magnetization field 〈n〉 =

∑
n |〈Sz

n〉|·n∑
n |〈Sz

n〉| is
proportional to ξ in an almost one-to-one relation (〈n〉 ≈
1.02 ξ ), which permits one to determine this quantity with
an uncertainty associated to δ〈Sz

n〉. For the reported spectral
resolution of 1 MHz and d=0.5 nm, the relative errors would
be δξ

ξ
≈ 10−1 for FIBS and δξ

ξ
≈ 10−3 for LRM. [35].

IV. CONCLUSION

In conclusion, we propose a method to measure the two
outstanding properties of the S = 1/2 fractional degrees of
freedom that emerge at the edges of Haldane S = 1 chains:
their fractional magnetic moment M = gμBS and their local-
ization length or spatial extension, ξ . Our theoretical analysis
shows that our method can be implemented with state-of-
the-art ESR-STM magnetometry. Our proposal permits one
to go beyond previous work, where the presence of frac-
tional degrees of freedom is inferred indirectly, but the actual
fractionalization of the magnetic moment is not measured
directly. This approach could be used to probe fractional edge
spins expected to occur in two-dimensional AKLT models and
could also inspire similar experiments using related atomic
scale magnetometers, such as NV centers [43–48] and ESR-
AFM [49]. We also note that recent work [50], reporting the
implementation of STM-ESR with the resonating spin located
at the tip, rather than on the surface as considered here, would
simplify the determination of fractionalization significantly,
removing the need to carry out on-surface atomic manipula-
tion of the sensor.
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