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Numerical investigation of the structure factors of the Read-Rezayi series
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We numerically investigate the guiding center structure factors of several states in the Read-Rezayi family.
Using exact diagonalizations on the torus and density matrix renormalization group on an infinite cylinder,
we test a conjecture proposed in Can et al. [Phys. Rev. Lett. 113, 046803 (2014)] for the ν = 3

5 and ν = 4
6

Read-Rezayi states. Furthermore, we discuss the strong finite-size effects present in numerically accessible
wavefunctions, and provide a simple recipe to minimize them on manifolds where non-Abelian theories have
topological degeneracies.
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I. INTRODUCTION

The fractional quantum Hall (FQH) states are topological
phases of matter characterized by the emergence of exotic
quasiparticles with unusual charge and exchange statistics
[1]. In principle, their topological properties can be probed
through the determination of the Hall conductance [2,3], the
Hall viscosity [4–7]—connected to the so-called topological
spin [8,9]—and the chiral central charge [10] of the edge
theory. While the Hall conductance itself is a simple func-
tion of the density, the latter two quantities provide a more
complete characterization of the topological order [11,12].
They prove, nonetheless, difficult to estimate in the numerical
wavefunctions one has access to, due to the restricted system
sizes and the edge effects.

Structure factors (SF) are a standard way to characterize
the properties of gapped and gapless phases of matter. In
FQH systems, instead of considering the full motion of the
electrons, it is possible to separate the orbital motion induced
by the geometry of the Landau levels from the motion of
their center of mass, the guiding centers [13,14]. The SF of
the guiding centers [5,15] carry information on the fractional
topological order. Firstly, the bulk gap of topologically or-
dered states implies that the SF should decay as the fourth
power of the momentum at long wavelength [15] so that their
expansion takes the form

S(�k) = S4l4
Bk4 + S6l6

Bk6 + ... (1)

Secondly, the coefficient S4 of the dominant term should sat-
isfy a lower bound connected to the topological spin and the
Hall viscosity [16–19]. It has been conjectured—and analyti-
cally and numerically verified for the Laughlin [3] (RR13) and
Moore-Read [1,20] (RR24) states—that this bound is satu-
rated for maximally chiral conformal wavefunctions [21–25].
Finally, for this class of functions, the next-order coefficient
S6 has been conjectured to be a simple function of the chiral
central charge of the edge theory [26–29].

In this paper we investigate these structure factors in the
Read-Rezayi [30] family of states, with two main objectives.
Firstly, we verify the relations derived for S4 and S6 on more

complex non-Abelian conformal states, the third (RR35) and
fourth (RR46) states in the Read-Rezayi family. Secondly,
we investigate the finite-size effects present in numerically
achievable systems, i.e., wavefunctions obtained from actually
solving a Hamiltonian problem, and the effect of topological
degeneracies on the guiding centers structure factors. The
analytical computations in Refs. [26–29] were formally per-
formed in the bulk of an infinite system. Then, the different
non-Abelian FQH ground states are locally indistinguishable
and the guiding center SF are neither manifold nor state de-
pendent. Conversely, numerical computations can be done on
a finite torus or a semi-infinite cylinder where the ground state
is not unique and the states are not indistinguishable. We pro-
pose a simple recipe to minimize size effects and recover the
theoretical results at cheaper numerical costs. Despite being
limited to relatively small systems, our formula is enough to
extract accurate estimates of S4 and S6 in agreement with the
theoretical predictions. Our numerical results are summarized
in Table I and Fig. 1.

The paper is organized as follows. Section II gives the
global definitions of the guiding centers and their structure
factors. Section III covers the numerical methods used to
extract the states of the Read-Rezayi series from their parent
Hamiltonians and compute their properties. We also detail
how to obtain more accurate estimates of the structure factors
for non-Abelian theories. Finally, Sec. IV studies the proper-
ties of the structure factors in the Read-Rezayi series.

II. STRUCTURE FACTORS OF THE GUIDING CENTERS

A. Electronic guiding centers

The guiding centers [5,15] are a convenient way to describe
the trajectories of electrons in a magnetic field. The orbital
motion of the electron, which depends on the Landau level
(LL) in which it resides, is separated from the global trajectory
of its center of mass—the guiding center. Mathematically, the
guiding center position operator �R is defined as

Ra = ra + εa,bπb, [Ra, Rb] = −il2
Bεa,b, (2)
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FIG. 1. Structure factors for the Read-Rezayi family of states for
different cylinder width Ly. The Laughlin (RR13), Pfaffian (RR24)
and Read-Rezayi 3/5 states are well converged with Ly, while signif-
icant deviations are still visible for the Read-Rezayi 4/6 state. The
width is nonetheless sufficient to extract the long-range contributions
to the structure factors with a good accuracy.

where πa = pa + e
c Aa are the magnetic momenta and lB = h̄

eB
the magnetic length.

Already, this separation leads to a stark contrast between
integer and fractional quantum Hall states. The guiding cen-
ters of the integer quantum Hall states organize trivially, as
the LLs are either fully occupied or empty. There, topology
simply arises from the geometry of the LLs and S4 and S6

trivially vanish. Conversely, the exotic topological properties
of the FQH states are necessarily connected to the behavior
of the guiding centers. The structure factors of the guiding
centers are therefore a relevant probe of topological order.

B. Definition and properties of the structure factors

In the rest of the paper, for the sake of simplicity, we focus
on the case of a single (partially occupied), spin-polarized LL.
We denote Ne the number of electrons within the LL of choice,
and Nφ the number of orbitals forming the LL, i.e., the number
of magnetic fluxes threading the system. The filling is denoted
as ν. Formally, the following formulas are valid on a periodic
system (a torus), but can be adapted to the infinite cylinder.
The guiding center structure factors are simply defined as

S(�q) = 1

2Nφ

〈{δρ(�q), δρ(−�q)}〉, (3)

where

ρ(�q) =
Ne∑
j=1

ei �q. �Rj and δρ(�q) = ρ(�q) − 〈ρ(�q)〉. (4)

The guiding center density ρ(�q) obeys the Girvin-Macdonald-
Platzman [15] algebra

[ρ(�k), ρ(�q)] = 2i sin

(
1

2
εa,bkaqb

)
ρ(�k + �q). (5)

With these definitions, the guiding center structure fac-
tors satisfy a few remarkable relations. First, they are
directly connected to the conventional structure factors by the
convolution [5]

ν(S(�q) − 1) = | fl (�q)|2(S(�q) − S(∞) − ν2), (6)

where

S(�q) = 1

2Ne
〈{δρ(�q), δρ(−�q)}〉, ρ(�q) =

Ne∑
j=1

ei �q.�r j , (7)

fl (�q) = |〈m, l|ei �q.�r |m, l〉|, (8)

〈m, l|ei �q.�r |n, l〉 = 〈m, 0|ei �q. �R|n, 0〉 fl (�q). (9)

Here, |m, l〉 is a fermionic orbital in the lth LL under study.
The form factor fl generally decays as a Gaussian at long
distance. It captures the geometrical properties of the lth Lan-
dau level. The existence of the infinite limit S(∞) technically
implies a rotation invariance at short distances. For fermions,
it should be equal to

S(∞) = ν(1 − ν). (10)

The convolution in Eq. (6) shows that the same informa-
tion is in principle present in the conventional and guiding
center structure factors. However, extracting S4 and S6 from
S would require careful subtractions of dominant irrelevant
terms, which quickly spoil the numerical precision.

Secondly, the key property of the guiding center structure
factors [15] is that they verify

S(x �q) ∝ x4 (11)

for incompressible FQH ground states with inversion and
translation symmetry. The expression relaxes to Eq. (1) if
rotation invariance is assumed.

C. Structure factors of conformal states

FQH states can be characterized through several
“topological” quantities. In the composite-boson picture
[16,31–37], the elementary particles are made of a set of p̃
electrons occupying q̃ orbitals, at a filling ν = p̃

q̃ . Typical
examples are the Laughlin states [3] at filling 1/m with p̃ = 1
and q̃ = m, or the fermionic Moore-Read [1,20] state with
p̃ = 2 and q̃ = 4. These quantities are not enough to fully
characterize a FQH states.

Of interest for the current paper are the topological spin and
the edge central charge. The topological spin s is related to the
nontrivial braiding statistics of the quasiparticles. It measures
the difference in angular momentum between the effective
composite boson and a uniform grouping of p electrons in
q orbitals. It is related to the “shift” S of the FQH states.
Take the uniform FQH state on a sphere enclosing a magnetic
monopole of charge Nφ . The shift is defined as

S = ν−1Ne − Nφ. (12)

It verifies

S = 2s, with s =
(

l + 1

2

)
− s

p
, (13)
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where l is the Landau level under study and ν = p
q with p, q

coprime. It is also related to the Hall viscosity [4–7] through

ηH = h̄ν

4π l2
B

s. (14)

The Hall viscosity characterizes the response due to the corre-
lations of a FQH fluid to shear deformations. Quite naturally,
it will appear as a bound in the structure factor [16–19],

S4 � π l2
B

h̄
|ηH | = ν|s|

4
. (15)

Intuitively, one can understand this bound as the contribution
to the structure factors coming from the Berry curvature of
the quantum state. This bound is expected to be saturated for
maximally chiral states [21–25].

Edge modes of ideal FQH states are described by 1 + 1
conformal field theories, and therefore can be characterized
by their central charge. Here more precisely, the quantity of
interest is the signed central charge

c̃ =
∑

e edge modes

εece, (16)

where εe = 1 (resp. −1) if the edge-mode propagates (resp.
counterpropagates). It has been conjectured that [26–29], for
exact conformal states,

S6 = ν|s|
8

(
|s| − c̃ − ν

12ν|s|
)

. (17)

This conjecture has been verified analytically or numerically
for the Laughlin and Moore-Read states on the sphere or the
cylinder [21–24].

III. NUMERICAL METHODS AND STRUCTURE
FACTOR ANALYSIS

In this section, we briefly describe our numerical methods,
and the associated technical challenges.

A. Exact diagonalization on the torus

We study FQH states on a torus using exact diagonalization
(ED). The torus allows us to work with translation-invariant
wavefunctions, at the price of some technical and conceptual
difficulties. For example, the boundary conditions of the torus
implicitly break the rotation symmetry at the long distances
we are interested in. It is in principle possible to study the
guiding center SF on a sphere. However, the number of acces-
sible momenta is drastically reduced so that the extraction of
S4 and S6 is challenging for the more complex states consid-
ered in this paper.

More precisely, we consider a (twisted) torus of aspect ratio
r = Lx/Ly and denote by τ the twist parameter, such that the
system is invariant by translation under �Lx = Lx�ex and �Lτ =
τLx�ex + Ly�ey. We work in the corresponding Landau gauge
such that our orbitals have a well-defined momentum in the
direction of �Ly. Finally, we note |m〉 = c†

m|0〉 the state with an
electron at momentum ky = 2π

Ly
m, with m ∈ [0, Nφ].

The computation of the guiding center density is straight-
forward at the second quantization level. Using Eq. (9),

we obtain

ρ(�q) =
∑

n

e
iπ

nx ny
Nφ e

2iπ nx n
Nφ c†

n+ny [Nφ ]cn (18)

where we used the notation �q = nx( 2π
Lx

�ex + 2πτ
Ly

�ey) + ny
2π
Ly

�ey.

The expression of S follows straightforwardly. To extract the
long-range contributions S4/6, we rely on finite differences or
fits at small �q. Due to the finite size of the torus, we have
access to only a limited subset of momenta, such that the
smallest accessible q is inversely proportional to Lx and Ly.
To get sufficient data, we need to vary Nφ = LxLy

2π
, r or τ . We

discuss in the next section the different approaches.
Finally, on the torus, even Abelian (and nontopological)

states have degeneracies. As a brief reminder, the alge-
bra of magnetic translations divides the Hilbert space into
Nd × Nφ symmetry sectors where Nd = gcd(Ne, Nφ ). We note
the corresponding symmetry sectors (s, t ). The q sectors
(s, t + nNd ), n ∈ [0, q − 1] are strictly equivalent, as they are
mapped onto each others by global translations. Due to the
degeneracy, we have in principle a choice on how to compute
the structure factors. We show below that all possible choices
are equivalent here. Firstly, the guiding center structure factors
are trivially diagonal in momentum space, such that [noting
|GS(s, t )〉 the ground state in the sector (s, t )]

〈GS(s, t )|S(�q)|GS(s′, t ′)〉 = 0 if s 	= s′ or t 	= t ′.
(19)

Secondly, denoting T the operator shifting all orbitals by 1
magnetic length,

T ρ(�q)T −1 = e
2iπ nx

Nφ ρ(�q). (20)

Consequently, upon a global translation of the state, the guid-
ing center structure factors themselves are left unchanged.
Taken together, assuming we have a unique ground state at
(s0, t0) (i.e., Abelian excitations), up to the trivial degeneracy,
we obtain

〈GS(s0, t0)|S(�q)|GS(s0, t0)〉 ≡ Ss0,t0 = 1

q

q−1∑
j=0

Ss0,t0+ jNd , (21)

i.e., we can indifferently evaluate the structure factors in a
single ground state, in the translation-invariant density matrix

ρ = 1

q

q−1∑
j=0

|GS(s0, t0 + jNd )〉〈GS(s0, t0 + jNd )| (22)

or in any statistical or quantum superposition of the degener-
ate ground states.

The case of non-Abelian degeneracies will be discussed in
Sec. III C.

B. Infinite DMRG on the cylinder

We use infinite DMRG (iDMRG) to compute the ground
states of the parent Hamiltonians [16,38–41] of the Read-
Rezayi family. Our code is based on the ITensors.jl [42,43]
library and its subpackage ITensorInfiniteMPS.jl [44].

We note that it is possible to compute analytically the
matrix product state (MPS) representations of all the states
that we study in this article [45–48]. As our goal is also
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to verify that we are able to extract the correct topological
information from states obtained numerically, i.e., within the
allowed precision on both MPS and Hamiltonians, we chose
not to employ this approach.

We consider an infinite cylinder periodic in the Ly

direction, and implemented both particle and momentum con-
servation, following the pioneering studies of Refs. [8,49].
For the infinite cylinder, we denote Nφ the number of orbitals
in the unit cell. Due to the two U (1) symmetries, two-site
DMRG cannot explore the full phase-space. We use subspace
expansion [50,51] to alleviate this problem without resorting
to expensive larger DMRG steps. We found that it is advan-
tageous to use random Hamiltonians to perform the subspace
expansion given the large bond dimension (up to 2200) of our
models.

To obtain the relevant Hamiltonians, we first use a fac-
torized form of the N − body pseudopotentials [16,52–56]
and compute their translation-invariant second-quantized rep-
resentation. The largest Hamiltonians we consider in this
paper are sums of millions of elementary operators. To keep
their matrix product operator (MPO) representation under
check, we compress them at several stages. We first compute
the (quasi)exact representation of the translation-invariant
Hamiltonian as a finite MPO. We use this MPO to build a
corresponding, exact, infinite MPO (iMPO) using a matrix
of tensors representation. Finally, we implemented the iter-
ative compression algorithm proposed in Ref. [57]. To give
a concrete order of magnitude, the largest Hamiltonians we
consider have of the order of five millions terms larger than
10−7. After truncating singular values below floating preci-
sion, we obtain an iMPO of bond dimension χMPO ≈ 2200.
We are able to obtain a ground state iMPS with χMPS � 8192
whose energy per site is correct at 10−5 (the bulk gap is of
order 1). At a fixed bond dimension χMPS, we converge the
energy per site and the entropy with a precision better than
10−6. More details on the optimization schemes and numerics
can be found in Appendix A.

There is a trade-off for such parent Hamiltonians between
χMPO and χMPS. On one hand, an approximate iMPS repre-
senting the exact Read-Rezayi states [30] has a lower bond
dimension than for more generic ground states at a given
precision due to the sparsity and structure of the entanglement
spectrum. On the other hand, approximating the Hamiltonian,
either by discarding small coefficients or through the com-
pression scheme we used, is equivalent to introducing a small
perturbation. The true ground state of the approximate MPO
consequently has a nonuniversal part, and requires a larger
χMPS when χMPO is reduced. Given that the nonuniversal
contributions can significantly affect the quantities of interest
in the paper, for the more complex states, we pushed the
precision of the iMPO.

Finally, we take advantage of the infinite length of the
cylinder and only evaluate S(qx, 0). The small �q behavior is
obtained either using numerical fits or

S2n = (−1)n

Nφ (2n)!

Nφ∑
l=1

∑
m∈Z

(
2mπ

Ly

)2n

〈δnl nl+m〉. (23)

The infinite sum can be truncated as the expectation value
decays exponentially at large distance [25]. We note that the

convergence of these series can be extremely slow with m, and
can show significant instabilities.

C. Structure factors for non-Abelian states

Non-Abelian states on the torus and infinite cylinder have
nonequivalent, degenerate ground states. On the torus, this de-
generacy is connected to the nontrivial genus of the manifold.
On the cylinder, the different states correspond to differ-
ent boundary conditions with non-Abelian excitations at the
edges.

In the thermodynamic limit, the structure factors should
not depend on the state under consideration, at least at finite
momenta. Indeed, the different ground states are not locally
distinguishable. Nonetheless, for finite systems, there is no
reason for these different states to have the same structure
factors. The conjectures for S4 and S6 do not consider this
topological degeneracy, as the coefficients are evaluated in
the thermodynamic limit only. Note that considering a sphere,
where non-Abelian models are nondegenerate, does not solve
the question of the finite-size effects and strongly limits the
accessible momenta.

For both manifolds under consideration, we propose a
simple recipe: We should average the structure factors over
the different topological sectors. Indeed, on a finite torus, by
analogy to the computation of topological invariants, we can
compute the structure factors on the (normalized) projector
to the ground-state manifold. We verify below that it does
indeed reduce finite-size oscillations. On the infinite cylinder,
it is similarly natural to average over all the different ways to
split an infinite, periodic state with zero anyonic total charge
in a nonperiodic state with open boundary conditions. To give
a more concrete example, let us consider the Moore-Read
state, i.e., a non-Abelian model where the local excitations are
Majorana fermions (denoted γ ). The Moore-Read state can
be understood as a gapped p-wave unconventional supercon-
ductor [6] composed of pairs of coupled Majorana fermions
in the bulk. When splitting the system, we either cut the
state between two uncoupled pairs, leading to standard open
boundary conditions 1 × 1, or cut through a pair, such that
the boundary conditions are γ × γ . In the latter case, a single
Majorana excitation is present at each extremity. The relevant
structure factors will then be the average of the two possible
boundary conditions.

The Moore-Read Pfaffian is studied in more details in
Sec. IV B. We extend nontrivially our formula to richer non-
Abelian states in Secs. IV C and IV D.

IV. STRUCTURE FACTORS IN THE READ-REZAYI SERIES

The Zk Read-Rezayi family [30] is a sequence of FQH
states, which sustains non-Abelian topological order for k >

1. In this article, we focus on their fermionic versions, whose
filling is ν = k

k+2 for k ∈ N∗. They are the ground states
of the simplest nontrivial, momentum-conserving repulsive
pseudopotentials at k + 1 particles, given for fermions by

Vk =
k∏

j=1

∇2 j
�r j

k∏
j=1

δ(�rk+1 − �r j ). (24)
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TABLE I. Properties of the Read-Rezayi state k at filling ν.
The total central charge for the edge modes is given by c = 1 +
c0, where c0 is the contribution of the chargeless modes. DT is
the degeneracy of the ground state on a finite torus, expressed as
the trivial degeneracy times the non-Abelian degeneracy. Dcyl counts
the number of nonequivalent states that appear on an infinite cylinder.
It corresponds to the number of nonequivalent root configurations.
The last four columns summarize our numerical results, listing the
theoretical expected values of S4/6 and the best absolute and relative
precision obtained using our numerical methods. For reference, for
all these models, a precision of 0.1 on the extracted central charge
correspond to a relative precision of ≈1.5% on S6.

k ν c0 DT Dcyl S
theo
4 |δS4| δS4/S4 S

theo
6 |δS6| δS6/S6

1 1
3 0 3 × 1 1 1

12 <1e−4 <0.1% 5
144 5e−5 0.15%

2 1
2

1
2 2 × 3 2 1

8 6e−4 0.5% 5
96 1e−4 0.2%

3 3
5

4
5 5 × 2 2 3

20 8e−4 0.5% 1
16 2e−4 0.3%

4 2
3 1 3 × 4 3 1

6 8e−3 5% 5
72 4e−4 5%

The root configurations [58] of the corresponding ground
states follow the simple rule of “no more than k particles
in k + 2 consecutive orbitals”. The k = 1 state is nothing
but the Laughlin [3] state at filling 1/3. The k = 2 state is
the Moore-Read Pfaffian [1] whose quasiparticles are non-
Abelian Majorana fermions. The quasi-excitations for k = 3
(resp. k = 4) are the Z3 (resp. Z4) parafermions. All these
states have topological spin s = 1. The edge central charge
and the degeneracy of these states on the torus and infinite
cylinder are listed in Table I. The summary of our numerical
results are also indicated in the table, while the different
interpolation methods are discussed in the rest of the paper.
Finally, representative guiding center structure factors of the
different states are displayed in Fig. 1. In particular, we are
able to obtain high-precision estimates of S4 and S6 for the
Read-Rezayi states at filling ν = 4/6 even though the function
is not fully converged with Ly at intermediate distances.

A. Laughlin ν = 1/3

This section briefly studies the guiding center structure
factors of the Laughlin [3] state at filling 1

3 , as a benchmark.
It is an Abelian state and therefore does not present any
topological degeneracy. We follow the procedure detailed in
Sec. III, using ED on a finite torus and iDMRG on an infinite
cylinder with Ly up to 25. In the latter case, we work with a
unit cell of size 3 and it is sufficient to consider the ground
state obtained using the starting root configuration 100.

Our numerical results on both manifolds are summarized
in Fig. 2. We recover the predictions that

S4 = 1

12
, S6 = 5

144
. (25)

On the torus, varying the number of electrons from Ne = 8
to 12 and the aspect ratio from 0.8 to 1, S4 can already be
obtained with a precision better than 1% and S6 within 5%.
Computations on the infinite cylinder are more precise. For
the largest system sizes we study (Ly = 25), the relative error

FIG. 2. Guiding centers for the Laughlin state. (Top) Structure
factors obtained from iDMRG for Ly = 25, and from ED for several
values of Ne, r = 1.0 and τ = 0. We observe already a very good
agreement. In the inset, we zoom on small �q. The dotted lines are
guides to the eyes showing the predicted curves using only the
theoretical S4 and S6, with c taken to be 0, 1 and 2. (Bottom) S4 and
S6 obtained from iDMRG for Ly ranging from 10 to 25. We observe
a quick convergence towards the theoretical values.

on S4 is of order 5 × 10−5. The relative error on S6 is of
order 2 × 10−3.

B. Moore-Read Pfaffian state

The second state in the Read-Rezayi series is the Moore-
Read [1] Pfaffian at filling ν = 2

4 . It is characterized by the
presence of Majorana excitations.

We start by discussing exact diagonalization on the torus.
With Nφ = 0 mod 4, it has three nonequivalent ground states
in the sectors (Nd/2, nNd ), (0, (n + 1

2 )Nd ), and (Nd/2, (n +
1
2 )Nd ). As these states belong to different symmetry sectors,
the discussion on degeneracy in Sec. III A is still valid. Before
considering the effect of the degeneracy, we investigated the
systematic finite-size effects arising from the different ways
to evaluate the small q behavior of the structure factors. As
discussed previously, we can vary the size, the aspect ratio,
or the boundary twist of our torus to have access to more
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momenta. Varying the system sizes introduce larger finite-size
effects. Varying the aspect ratio or the twist angle breaks the
rotation invariance at large distances. We found that focusing
on the largest systems (Nφ = 32 here) and varying the twist
angle leads to the best estimations of S4 and S6. Interestingly,
significant deviations to the theoretical predictions are ob-
served for the smallest momenta available, which we naturally
interpret as an effect of the boundary.

Our method fixed, we return to the question of the ground-
state degeneracy. Because all ground states belong to different
symmetry sectors, it is equivalent to consider statistical mix-
ing or quantum superpositions of the different ground states.
The oscillations around the theoretical prediction are strongly
reduced when we average the structure factors over the differ-
ent ground states, confirming the intuition of Sec. III C. The
relevant numerical data are available in Appendix B.

Finally, we show the structure factors averaged over all
states for Nφ = 32 and τ = 1 in Fig. 3. After a careful inter-
polation, we are able to extract the correct S4 and S6 within a
few percent.

On the infinite cylinder, we perform a similar analysis. The
two root configurations 1100 and 1010 correspond to the two
sectors of the Z2 Majorana fermions, as detailed in Sec. III C.
In Fig. 3, we show the structure factors for both ground states
for different values of Ly. In both states, S4 and S6 appear to
converge exponentially towards the theoretical prediction on
the sphere. In fact, we can extract very accurate estimates of
these two coefficients with a simple naive fit of the form

Sn = Sn(∞) + Ae− Ly
ξ cos(ωLy + φ). (26)

The exponential decay in Ly is characteristic of finite-width
effects for two-dimensional gapped states. Note that it should
not come as a surprise: in the strict thermodynamic limit,
the two ground states should be locally indistinguishable and
also locally indistinguishable from the wavefunctions on the
sphere. We should therefore recover the predicted scaling of
S(�q) at least for intermediate distances.

Despite the relatively large cylinder width, the variations
around the theoretical values remain significant. Following
our proposed recipe in Sec. III C, we should average the
structure factors over the different topological sectors. The
root configuration 1100 on the infinite cylinder can be un-
derstood as the Pfaffian state with trivial boundary conditions.
Conversely, the configuration 1010 corresponds to a state with
edge Majorana excitations. The entropy difference [48,59–61]
between the two states indeed converges to log

√
2 in the ther-

modynamic limit (see Appendix C). We therefore compute
the averaged structure factor Sav = 1

2 (S1100 + S1010), which
shows a remarkable suppression of the oscillations. We obtain
S4 and S6 with a precision better than 1%, without any fit.

C. The Read-Rezayi 3/5 state

The third state in the Read-Rezayi series at ν = 3
5 admits

Z3 non-Abelian parafermionic excitations.
Starting on the torus, in addition to the trivial fivefold

degeneracy, it admits two ground states in the sector (0, 0) for
Nd odd and (Nd/2, Nd/2) for Nd even for a total of 10 ground
states. As the ground states are in the same momenta sectors,

FIG. 3. (Top) averaged structure factors in the Moore-Read state
on an infinite cylinder with Ly = 20 (black line) and on a finite torus
with Nφ = 32 and r = 1.0 (dots). In inset, we represent S(q)/q4 at
small q. The two gray lines are the individual contributions of the
two ground states on the cylinder, while the dotted lines are guides to
the eyes showing the predicted curves using only the theoretical S4

and S6, with c taken to be 1
2 , 3

2 , and 5
2 . (Bottom) S4 and S6 extracted

from iDMRG as a function of Ly. Even at Ly > 20, we observe
exponentially decaying oscillations in each sectors,. Remarkably,
averaging over the two ground states nearly entirely cancels these
oscillations, such that the relative error for both coefficients is
below 1%.

the structure factors now depend in principle of the chosen
superposition of ground states. Given our previous results on
the Pfaffian, and by analogy with the standard computations of
topological invariants, we work with the equal-weight density
matrix

ρ 3
5

= 1
2 (|GS1〉〈GS1| + |GS2〉〈GS2|) (27)

describing the ground-state manifold. The corresponding
structure factors are simply the average of the structure factors
obtained for the two orthogonal ground states. They are shown
in Fig. 4 for Nφ = 30 and different twist angles. We are able
to extract a relatively accurate prediction for S4 (within ≈5%
of its theoretical value), and therefore we can reliably extract
the topological spin. The strong finite-size effects prevent us
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FIG. 4. (Top) Averaged structure factors for the Read-Rezayi
state ν = 3

5 on an infinite cylinder with Ly = 18 (black line) and
on a finite torus with Nφ = 30 and r = 1.0 (dots). In the inset, we
represent S(q)/q4 at small q. The dotted lines indicates the small q
behavior for c = − 1

5 , 4
5 , and 9

5 . (Bottom) S4 and S6 extracted from
iDMRG as a function of Ly. While large macroscopic oscillations
can be seen for the individual ground states, their weighted average
shows remarkably small boundary effects.

from concluding on S6. Note that the main limiting factor
for ED computations here is not the dimension of the Hilbert
state, but the lack of sparsity of the Hamiltonians. Due to this
lack of sparsity, the standard matrixless iterative algorithms to
compute eigenvalues are largely inefficient.

We now turn to the infinite cylinder. There are now two
inequivalent root configurations 11100 and 11010. The root
configuration 11100 corresponds to a state with trivial bound-
ary conditions while 11010 can be interpreted as having edge
parafermionic excitations. Using appropriate starting states,
we are able to converge to the two ground states. We verified
convergence by measuring the difference in entropy in the
thermodynamic limit δγ = log φ, with φ the golden ratio [48]
(see Appendix C for more details). In Fig. 4, we show the
structure factors for both ground states for different values of
Ly. The structure factors still converge exponentially towards
their theoretical values. The finite-size effects are signifi-
cantly larger than for the Moore-Read states due to the larger

correlation lengths. A naive fit of the oscillations using
Eq. (26) is also enough to get S4 within 1% and S6 within
≈2%.

Finally, we verify nontrivially our recipe for non-Abelian
states. As the excitations are composed of Z3 parafermions,
the possible boundary configurations are now 1 × 1, τ × τ̄ ,
and τ̄ × τ (τ denotes a Z3 parafermions and τ is the cor-
responding antiparticle). The two configurations τ × τ̄ and
τ̄ × τ have identical contributions to the structure factors
(both due to inversion symmetry and due to the structure of
the Z3 parafermionic space). The root configuration 11100
corresponds to the trivial boundary conditions, while 11010
corresponds to τ × τ̄ . The weighted-average structure factor
to study is therefore

S 3
5

= 1
3 (S11100 + 2S11010). (28)

Using S 3
5
, we are able to verify the conjectured formula for

S4 and S6 within 1% even for relatively small cylinder of size
Ly = 18.0 without any fitting.

D. The Read-Rezayi 4/6 state

Finally, the fourth state in the Read-Rezayi series at ν = 4
6

admits Z4 non-Abelian parafermionic excitations. It is the
ground state of a five-body parent Hamiltonian. On the torus,
the lack of sparsity of the Hamiltonian largely prevents us
from reaching relevant system sizes. The topological spin can
still be evaluated using S4 if we assume that the formula
Eq. (15) is correct, but S6 is out of reach.

We therefore focus on the infinite cylinder. The complexity
of the Hamiltonian still limits us to relatively small cylinders,
as at Ly = 15.0, the translation invariant Hamiltonian already
includes ≈5 × 106 terms larger than 10−7. It is nonetheless
enough to obtain good estimates of the structure factors. There
are now three distinct root configurations that satisfy the mini-
mal constraints: 111100 (trivial boundary conditions), 111010
(a Z4 parafermion and its antiparticle), and 110110 (two Z4

parafermions at each extremities). Both excitations lead to
significantly higher entanglement (quantum dimension

√
3

and 2). The configuration 110110 is especially challenging
to obtain numerically: the local momenta can be identical
to 111100′s, while its entanglement entropy is significantly
higher. Simulations therefore tend to relax to the root configu-
ration 111100 if we allow large changes in the wavefunctions
at each iDMRG iteration. In practice, we verify that we ob-
tain the correct ground states by computing the difference in
topological entanglement entropy, which appear to converge
towards log

√
3 and log 2 in the thermodynamic limit. We

refer to Appendix C for the numerical data.
In Fig. 5, we show the structure factors for the three ground

states for different values of Ly. Following our recipe, the
oscillations are largely suppressed if we consider the averaged
structure factor

SRR46 = 1
4 (S111100 + 2S111010 + S110110). (29)

Due to the small Ly and the strong finite-size effects, we still
need to proceed to a numerical fit of SRR46 using Eq. (26) to
extract reliable estimates of S4 and S6. Note that this fit is here
possible because we are in a regime where the main source of
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FIG. 5. (Top) S4 and S6 as a function of Ly in the Read-Rezayi
state at ν = 4

6 . The large oscillations are reduced once the correct
superposition is chosen. (Bottom) We can also fit the averaged con-
tributions with exponentially decaying oscillations.

error on SRR46 is the finite width. If we increase the system
size, the effect of the iMPO truncation dominates and SRR46

deviates from the theoretical predictions. Nonetheless, we ob-
serve a similar phenomenology as in the previous examples,
with a decent agreement between theoretically expected and
extracted coefficients (within ≈5%).

V. CONCLUSIONS

In this paper, we have shown that the conjectured formulas
connecting the first coefficients S4 and S6 of the guiding center
structure factors to the topological spin and the central charge
of the edge theory are valid for conformal wavefunctions be-
yond the Laughlin and Moore-Read states. The finite-system
sizes accessible by diagonalization are enough to evaluate
these coefficients for the Laughlin or the Moore-Read wave-
functions. Yet, they are insufficient to tackle more complex
topological orders due to the larger correlation lengths. We
showed that states obtained from numerical infinite MPOs can
be used to verify the conjecture for the Read-Rezayi states
at ν = 3

5 and ν = 4
6 . We are able to verify this conjecture

within a few percent, even given the approximations and the
relatively small cylinders we are limited to.

On the way, we have shown that to efficiently recover the
thermodynamic, bulk predictions, one needs to average over
the different topological sectors. In particular, on the torus,
we need to average the structure factors over the topologi-
cally degenerate ground states. Moreover, the optimal strategy
appears to be to use different boundary conditions to probe
different sublattices in momentum space. Nonetheless, the
smaller momenta accessible show systematic deviations from
the thermodynamic prediction due to boundary effects. MPS
on an infinite cylinder allow us to reach larger systems, al-
though the circumference of the cylinder remains limited.
The structure factors predicted in the thermodynamic limit
on a sphere or an infinite torus do not take into account the
degeneracy induced by the open boundary conditions. For
finite circumferences, we showed that finite-size effects were
strongly reduced if we average observables over the differ-
ent boundary conditions compatible with zero total anyonic
charges.

Beyond the Read-Rezayi series, these results show that it
is possible to obtain the long-distance behavior of the guiding
center structure factors in numerical wavefunctions. In partic-
ular, they allow us to distinguish between gapped and gapless
states. In the latter, the dominant contributions to the structure
factors generally scale as k2 instead of k4. Moreover, for
gapped states, the inequalities verified by S4 and conjectured
for S6 translate into bounds on the possible topological order.
This should prove useful for the studies of more complex
model Hamiltonians of the FQHE where the characterization
of topological order proves challenging.
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APPENDIX A: APPROXIMATING INFINITE MATRIX
PRODUCT OPERATORS AND NUMERICAL DETAILS

In this Appendix, we provide more details on our nu-
merical approach. The compression scheme is included in
ITensorInfiniteMPS.jl, and the codes are also available upon
request to L.H.

The iMPO approximation scheme used in this paper can be
divided into three independent steps.

Step 1. The translation invariant MPO. We derive the
second-quantized form of the translation-invariant Hamilto-
nian HTI. We denote by T the translation operator such that

H =
∑
n∈Z

T nHTIT −n. (A1)

The choice of HTI is not unique. For simplicity, we work with

HTI =
∑

m1<m2<...

∑
n1<n2<...

δmin(n1,m1 ) = 0

× V n1,n2,...
m1,m2..

c†
m1

c†
m2

...cn2 cn1 . (A2)
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The coefficients V n1,n2,...
m1,m2..

decay exponentially. We discard the
terms below a cutoff 10−12 and obtain an operator with finite
support l + 1. We therefore can use conventional methods to
build a finite MPO representation of HTI. It can in principle
be exact, but we use the standard approximation schemes of
ITensors (with a cut-off of order 10−12) to already decrease
the numerical cost of the procedure. We denote the MPO
representation

H̃TI = M0M1...Ml ≈ HTI, (A3)

where Mj is the tensor acting at site j.
Step 2. The matrix of tensors. From the finite MPO repre-

sentation H̃TI, one can straightforwardly build an exact infinite
MPO representation of

H̃ =
∑
n∈Z

T nH̃TIT −n. (A4)

We work with lower-triangular MPOs and introduce a matrix
of tensor representation,

Wj =

⎛
⎜⎜⎜⎜⎝

I 0 ... ... ...

Ml 0 ... ... ...

0 Ml−1 0 ... ...

... ... ... ... ...

... ... 0 M0 I

⎞
⎟⎟⎟⎟⎠, (A5)

where the tensors Mk now act on site j. I are identity tensors.
We straightforwardly derive that

H̃ = L

⎛
⎝∏

j∈Z
Wj

⎞
⎠R., (A6)

where L = (0, ..., 0, 1) and R = (1, 0, ..., 0)T . This first con-
struction has the advantage of simplicity, but has two
drawbacks: It is generally not optimal and requires adjustment
to deal with finite-size systems, such as padding the bound-
aries. Instead we can do a minor modification using the gauge

Mj =
⎛
⎝ I 0 0

Cj Aj 0
Dj Bj I

⎞
⎠ ∀ 0 < j < l (A7)

to define

Wj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 ... ... ... ... ...

Ml 0 ... ... ... ... ...

Cl−1 Al−1 0 ... ... ... ...

Cl−2 0 Al−2 0 ... ... ...

... ... ... ... ... ... ...

C1 0 ... 0 A1 0 ...∑
j D j Bl−1 ... ... B1 M0 I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A8)

This tensor, with the previous boundary vectors L and R, can
now be used to build Hamiltonian of arbitrary size. It also
keeps the strictly lower-triangular form (except on the two
corners) which is convenient for VUMPS [62] and its variants.
In this work, we worked solely with iDMRG due to the large
bond dimensions of the MPOs and the existence of edge states
leading to an additional unstability in the computation of the
fixed point environments.

Step 3. Compression. At this point, the local form of the
Hamiltonian has been optimized, but we do not take any
advantage of repeating patterns in the V tensors. A worst case
scenario would be a simple exponentially-decaying Coulomb
style interaction of the form

∑
i, j

λi− jnin j (A9)

whose optimal representation has bond dimension 3 while
ours would be of order log ε/ log λ, with ε our chosen cutoff.
We therefore convert the matrices W into standard tensors
and use the algorithm proposed in Ref. [57]. We refer to
the original paper for more details, and point out that one
also needs to update the initial L and R tensors during the
optimization process. Note that the optimization can also be
directly done using the matrix form of W . We truncate our
iMPOs with a precision of around 10−10.

Compared to the original approach of Ref. [45], our com-
pression scheme has the advantage of being systematic and
completely interaction-agnostic. In particular, we do not need
to adapt to the structure of the four and five body interactions
we studied. It is especially well suited for models where there
is a large gain in optimizing the finite MPO, i.e., models
with tens of thousand of operators in the translation-invariant
Hamiltonian. For more standard Hamiltonians, e.g., Coulomb
interactions, the method of Ref. [45] or an hybrid between the
two might be preferable.

Some practical difficulties. Before concluding this section,
we would like to mention two practical details. Due to the
current MPO creation algorithm of ITensors, it is highly inef-
ficient to create finite MPOs with thousand of operators with
overlapping support. This is a reasonable limit for standard
lattice models, but it is limiting for the Hamiltonians we
consider. Conveniently, adding optimized iMPOs is extremely
fast, so we simply split up the Hamiltonian into Hermitian
subparts we can build in parallel before fusing them together.

The Hamiltonians studied in this paper are all positive, with
a ground-state energy exactly at 0. This is, in theory, not a
problem. In practice, it can lead to numerical instability if the
left and right environments are not perfectly invertible. This
can happen when the left-normalized and right-normalized
tensors we put in the environments are not unitary, either due
to floating point precision (largely negligible) or due to the
subspace expansion and its padding. If their kernel happens
to be nonzero, one may converge towards unphysical states.
To solve this issue, we shift the Hamiltonians by a finite
chemical potential so that the ground-state energy is strictly
negative. We also adapt the order of operations such that
tensors put in the environments are always properly left- and
right-normalized despite the subspace expansion.

Finally, due to the gapless edges and the complex structure
of the states, we have to strongly restrict the amplitude of the
subspace expansion at the beginning of the iDMRG sweeps.
This is an issue specific to infinite systems: we have to ensure
that after several steps of subspace expansion, there still exists
physical states with a correct total quantum number. As our
unit cell is periodic, it is perfectly possible to end in the
situation where there is no such configuration if the random
noise dominates the states. Beyond working with small noise,
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FIG. 6. Structure factors and their scalings obtained through dif-
ferent variations of the torus. Dots represent data obtained with ED.
The black line, included for reference, is the average structure factors
obtained from an iDMRG simulation with Ly = 20.0. The dotted
lines are guides to the eyes showing the predicted curves using only
the theoretical S4 and S6, with c taken to be 1

2 , 3
2 , and 5

2 . (Top left)
We vary the twist angle for Nφ = 32, r = 1. (Top right) We vary the
system size Nφ . (Bottom left) We vary the aspect ratio of the torus.
In all cases, we observe significant finite size effects, though the
twisted data is more convenient. In particular, the smaller accessible
momenta has strong boundaries effect. (Bottom right) Instead of
averaging over ground states, we can compute the structure factors
separately in each sector. We observe larger oscillations around the
theoretical values.

we also take advantage of adiabaticity and initialize our iMPS
at a given Ly using a previous simulation with a smaller
cylinder. This has the added advantage of helping stabilize the
higher-entropy ground states.

APPENDIX B: FINITE-SIZE EFFECTS ON THE TORUS
FOR THE MOORE-READ STATE

We consider the Moore-Read state on a finite torus. With
Nφ = 0 [4], there are three nonequivalent ground states in the
sectors (Nd/2, nNd ), (0, (n + 1

2 )Nd ), and (Nd/2, (n + 1
2 )Nd ).

Before considering the effect of the degeneracy, we investigate
the systematic finite-size effects arising from the different
ways to evaluate the small | �q| behavior of the structure factors.
As discussed previously, we can vary the size, the aspect ratio,
or the boundary twist of our torus to have access to more
momenta. In Fig. 6, we compare these different ways to obtain
the structure factors (averaged over the three sectors) and the
corresponding small | �q| behavior for the Moore-Read state
with up to Nφ = 32 orbitals. For r = 1, it corresponds to a
square torus of length L ≈ 14.2 � ξP f the correlation length
of the Pfaffian. The structure factors are, as expected, mostly
a function of |�k| only, up to some finite size effects. The S(∞)
is approximately correct in all cases, but the best estimation of
S4 and S6 are obtained by varying the twist. It should not come

FIG. 7. Scaling of the entanglement entropy for the Moore-Read
(top), RR35 (middle), and RR46 (bottom) states depending on the
root configuration. Note that we represent the entanglement entropy
averaged over all cuts in the unit cell. In the inset, we represent
the difference in entropy between states with nontrivial boundary
configurations and the reference trivial state. The large dots are the
numerical data, the full line a fit using Eq. (26), the dashed line the
extracted topological entanglement entropy, and the dotted line the
theoretical value. In all cases, we are able to extract the thermody-
namic value with good precision. The small discontinuity in the inset
for the Moore-Read Pfaffian is due to the iMPO truncation. It serves
as a clear estimator on the precision of the obtained entanglement
entropy.
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as a surprise: in that case, we do not need to consider smaller
systems or to explicitly break rotation invariance to obtain our
data. It is interesting to note the significant finite-size devia-
tion at the lowest available momentum. We naturally interpret
it as the effect of the boundaries. The variations of �S(�q) at the
smallest momenta when varying τ or r are connected to the
significant fluctuations of the Hall velocity in (r, τ ) space at
system sizes accessible to ED.

Our method fixed, we return to the question of the ground-
state degeneracy. Because all ground states belong to different
symmetry sectors, it is equivalent to consider statistical mix-
ing or quantum superpositions of the different ground states.
In Fig. 6, we compare the translation invariant contributions
of the different ground states. More precisely, we compare

Ss,t = 1

q

q−1∑
n=0

Ss,t+nNd (B1)

to the global average S. We see significant deviations and
oscillations from the global contributions even at larger sys-
tem sizes, though they appear to decay slowly with Nφ . This
confirms our intuition that the predictions in the bulk in the
thermodynamic limit are best approximated by averaging the
structure factors over all ground states.

APPENDIX C: TOPOLOGICAL ENTANGLEMENT
ENTROPY FOR THE READ-REZAYI SERIES

In a pure state, the entanglement entropy S (A) quantifies
the quantum entanglement between a subsystem A and the
rest of the system. Let |ψ〉 be a state in the Hilbert space H =
HA ⊗ HA where HA is the Hilbert space of the degrees of
freedom in A. Its Schmidt decomposition is

|ψ〉 =
∑

j

λ j |α j〉 ⊗ |α j〉, (C1)

where |α j〉 ∈ HA and |α j〉 ∈ HA. Its von Neumann entangle-
ment entropy is given by

SvN(A) = −
∑

j

λ2
j log λ2

j . (C2)

The ground states of gapped, local Hamiltonians follow the
area law, i.e., their entanglement grows with the boundary of
A. In this paper, we consider states on an infinite cylinder, and
A includes all orbitals to the left of a chosen cut. Note that it is
not a cut in real space, but in orbital space. The entanglement
entropy scales as

SvN(A) = αLy − γ + o(1). (C3)

γ is the topological entanglement entropy [59,60], which
partially characterizes long-range topological order. On a
cylinder, γ = log D/da where D is the total quantum di-
mension of the theory (D2 = ∑

a d2
a ) and da is the quantum

dimension of the edge excitation. The quantum dimensions
of the Zk parafermions that appear in the Read-Rezayi
series are

dm,k = sin
[
(m + 1) π

k+2

]
sin π

k+2

, with m ∈ [0, k − 1]. (C4)

For the Moore-Read state and the Majorana excitation γ , the
entropies verify in the thermodynamic limit SvN

γ×γ − SvN
1×1 =

log
√

2. For the RR35 state and the Z3 excitation τ , SvN
τ×τ −

SvN
1×1 = log φ where φ is the golden ratio [48]. Finally, for the

RR46 state and the Z4 excitation τ4, SvN
τ4×τ4

− SvN
1×1 = log

√
3

and SvN
τ 2

4 ×τ4
2 − SvN

1×1 = log 2. We verified that we recovered the

expected values of the topological entanglement entropy for
the different root configurations and the different Read-Rezayi
states as shown in Fig. 7. Due to the finite width of the
cylinders, oscillations around the thermodynamic value are
significant. Correct estimates of the topological entropy can
nonetheless be extracted using a fitting formula similar to
Eq. (26). The residual errors are a combination of higher-order
finite-size effects not taken into account in our fitting formula
and of the truncation of the MPOs.
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[39] C. H. Lee, Z. Papić, and R. Thomale, Phys. Rev. X 5, 041003

(2015).
[40] L. Chen, S. Bandyopadhyay, and A. Seidel, Phys. Rev. B 95,

195169 (2017).
[41] S. Bandyopadhyay, G. Ortiz, Z. Nussinov, and A. Seidel, Phys.

Rev. Lett. 124, 196803 (2020).
[42] https://itensor.github.io/ITensors.jl/stable/index.html.

[43] M. Fishman, S. R. White, and E. M. Stoudenmire, SciPost Phys.
Codebases, 4 (2022).

[44] https://github.com/ITensor/ITensorInfiniteMPS.jl.
[45] M. P. Zaletel and R. S. K. Mong, Phys. Rev. B 86, 245305

(2012).
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