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We present an all-electron, four-component relativistic implementation of electric field gradients (EFGs) at
the nuclei using Gaussian-type orbitals and periodic boundary conditions. This allows us to include relativistic
effects variationally, which is important for compounds containing heavy elements and for a property dependent
on the electronic structure close to the nuclei. The all-electron approach ensures an accurate treatment of both
core and valence orbitals, as both are important in the evaluation of EFGs. Computational efficiency is achieved
through the use of a recent implementation of density fitting in combination with quaternion algebra and
restricted kinetic balance. We use the relativistic approach to calculate the EFGs in different arsenic, antimony,
and bismuth halides and oxyhalides, and explore the importance of relativistic effects on EFGs in solids and
compare these with results obtained for molecular species. Our calculations contribute to establishing a reliable
estimate for the nuclear quadrupole moment of 209Bi, for which our best estimate is −428(17) mb, in excellent
agreement both with molecular data and a recent reevaluation of the nuclear quadrupole moment obtained from
atomic data and ab initio calculations. Our results suggest that there is a need to revisit the experimental data for
the EFGs of several bismuth oxyhalides.
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I. INTRODUCTION

Nuclear electric quadrupole moments (NQMs) are im-
portant parameters providing fundamental information about
nuclear structure, in particular whether the nuclear structure is
spherically symmetric or not. A prerequisite for the existence
of a nonvanishing NQM is a nuclear spin larger than 1/2. The
nuclear quadrupole moments interact with the electric field
gradients (EFGs) at the nuclei, leading to a splitting of atomic
or molecular energy levels that can be observed for instance in
nuclear quadrupole resonance spectroscopy [1] or rotational
spectroscopy [2,3] and correspond to excitation energies in
the microwave region. Through measurements of the coupling
of NQMs and EFGs, one can also obtain information about
the electron density close to the nuclei, provided that accurate
values of the NQMs are available. Much effort has therefore
been devoted to determine NQMs [4].

One way of determining NQMs is to combine accurate
ab initio calculations of EFGs with highly accurate transition
energy data obtained from different experiments, and derive
the NQMs using the relation between the EFGs and transition
energies. A number of NQMs have been determined with very
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high accuracy using this hybrid experimental/computational
approach. For further information on various methods of de-
termining NQMs, their expected accuracy, and the most up-to-
date list of NQMs, we recommend the review by Pyykkö [4].

EFGs probe the electron density close to the nuclei, making
relativistic effects crucial, particularly for heavier nuclei [5].
The calculation of EFGs is relatively straightforward, since
the EFGs are first-order molecular properties. They can be
evaluated either as expectation values for variational wave
functions or by employing Z-matrix or Lagrangian techniques
for highly correlated, nonvariational wave functions [6,7],
such as coupled-cluster or configuration interaction meth-
ods. The incorporation of relativistic effects is also fairly
straightforward, even at the fully relativistic level of the-
ory using highly correlated wave functions [8,9]. However,
when relativistic effects are approximated using a transformed
Hamiltonian, significant picture-change effects must be ac-
counted for [10]. We also note that special care must be taken
if a finite-field approach is applied as an alternative way of
calculating EFGs [11].

Compounds containing heavy elements often exist as
solids. In the field of computational materials modeling,
a plane-wave description of the valence electrons is often
combined with the pseudopotential technique where the os-
cillatory core electronic orbitals are effectively substituted
with pseudo-wavefunctions that mimic the effect of the core
electrons on the valence electrons without the intricate oscil-
latory pattern. The use of pseudopotentials allows relativistic
effects on the core electrons to easily be included, but the
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approximate description of the core electron density makes
them unsuited for evaluating properties such as the EFGs. The
projector augmented wave method allows for calculations of
EFGs at the nuclei [12,13], but reaching accurate results can
require that the EFGs are corrected using molecular calcu-
lations at a more advanced theory level (e.g., with a hybrid
exchange-correlation functional) [14]. Alternative relativis-
tic approaches include the use of four-component numerical
[15–17] or two-component Slater-type atomic orbitals [5,18]
or techniques that combine plane waves with auxiliary func-
tions for explicit treatment of core electrons, while potentially
also including relativistic effects [4,12,19]. Nevertheless, such
hybrid approaches are inherently implementationally com-
plex and computationally intensive, necessitating meticulous
convergence settings and a profound understanding of the
methods to ensure the accuracy of the calculated results in
complex systems.

We have adopted an alternative, efficient all-electron ap-
proach that incorporates relativistic effects variationally at the
four-component level of theory and which utilizes Gaussian-
type basis sets with periodic boundary conditions, enabling
systematic improvements in the results as the basis set is
expanded. Computational efficiency is ensured by the use of
quaternion algebra and restricted kinetic balance [20,21], as
well as the resolution-of-the-identity approximation [22,23]
for the Coulomb integrals in combination with multipole ex-
pansion of the far-field contributions [24]. Our previous study
has shown that our method reliably achieves accurate band
gaps already with double-zeta quality basis sets, and that
smooth convergence of the density is assured without issues
even when diffuse functions are incorporated into the basis set
[21]. Indeed, we have established that retaining diffuse func-
tions is essential for rapid basis set convergence; conversely,
the more commonly employed “reduced” basis sets (where the
diffuse functions are removed) [25–27] yield inferior results
and slower basis set convergence.

We note here that the use of Gaussian-type orbitals (GTOs)
for computational studies of periodic solids has an extensive
history at the nonrelativistic level of theory, pioneered by
the study of Pisani and Dovesi [28,29], followed by several
more recent implementations [30–35]. Some of these GTO-
based codes also reported calculations of EFGs for solid-state
systems [36–40], albeit without the full consideration of rela-
tivistic effects.

Here, we extend our relativistic all-electron approach based
on GTOs to the calculation of EFGs in solids and use the
first-principles calculations in combination with experimental
data to determine the NQM of As, Sb, and Bi from the EFGs
in their halides and oxyhalides. Furthermore, we investigate
the discrepancy between the atomic and molecular values of
the NQM of 209Bi by using solid-state nuclear quadrupole
resonance (NQR) data.

The remainder of the paper is organized as follows: In
Sec. II, we provide the basic theory for the calculation of
EFGs in solids at the four-component level of theory using
Gaussian-type orbitals. In Sec. III, we give the computational
details for the calculations presented in this paper. In Sec. IV,
we explore the importance of relativistic effects and choice
of basis sets on the EFGs in a series of pnicogen halides
and oxyhalides, with a particular focus on bismuth-containing

systems. We obtain an estimate of the NQM of 209Bi and
compare it with atomic and molecular data. Finally, in Sec. V,
we give some concluding remarks and an outlook.

II. THEORY

NQR utilizes the interaction of the nuclear charge density
with the surrounding electric field. The quadrupole interaction
is the leading contribution, i.e., the interaction between the
nuclear quadrupole moment and the electric field gradient
tensor. A detailed discussion can be found in Ref. [41]. This
leads to the NQR Hamiltonian in the eigensystem of the EFG,
given by

HNQR = Q

2I (2I − 1)
(V xxIx + V yyIy + V zzIz )

= qQ

4I (2I − 1)

(
3Iz − I2 + η

2
(I2

+ + I2
−)

)
. (2.1)

We have here introduced the eigenvalues of the electric field
gradient components defined according to |V zz| > |V yy| >

|V xx|, the asymmetry parameter η = (V xx − V yy)/V zz and the
nuclear spin I . Q denotes the nuclear quadrupole moment
(NQM) and q is the largest eigenvalue V zz and is often referred
to as just the EFG. Diagonalization then leads to different
spin energy levels, with the magnitude depending on q and
Q, while the general structure depends on η and the total spin
of the nucleus I . In the following, only the traceless part of the
EFG is calculated; the traced part leads to a constant shift in
the spectra [42] that is not considered in this paper.

The EFG tensor V i j is defined as the second derivative of
the electric potential at the position of the reference nucleus
K (using the notation ∂ i ≡ ∂/∂ri),

V i j
K = ∂ i∂ j

∫
dr′ρ(r′)

1

|r′ − r|
∣∣∣∣
r=rK

=
∫

dr′ρ(r′)vi j (r′ − rK ), (2.2)

with

vi j (r) = 3rir j − δi j r2

r5
, (2.3)

and the total charge density of the infinite periodic system

ρ(r) =
∑

m

ρm(r) =
∑

m

ρ0(r − rm), (2.4)

where m labels the unit cell centered at rm. In applying the
derivative in Eq. (2.2), the Poisson term is neglected. This
has no effect on the traceless part of V [42]. Equation (2.2)
can be evaluated as stated by keeping the nucleus K fixed
and summing over the charge densities of every unit cell.
Alternatively, the summation can be shifted to the nucleus by
using translation symmetry

V i j
K =

∫
dr′ρ0(r′)

∑
m

vi j (r′ − rK + rm)

=
∑

m

∫
dr′ρ0(r′)vi j

m,K (r′). (2.5)
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The EFG consists of contributions from the electronic charge
density and from all other nonreference nuclei.

Expressing the electron density using the one-electron re-
duced density matrix D and Gaussian-type basis functions χμn
centered on each unit cell n, the electronic part of the EFG
tensor is obtained as

V i j
e,K = −

∑
m

∑
μνn

∫
drTr

[
χ

†
μ0(r)vi j

m,K (r)χνn(r)Dνn,μ0]

= −
∑
mu

Tr
[
I i j
m,K,uDū

]
, (2.6)

where u ≡ (μνn), ū ≡ (νnμ), and the EFG integrals are
labeled as I . Note here that the basis functions χνn are four-
component Dirac bispinors, and the trace Tr needs to be
introduced to sum over the four components, i.e., four diag-
onal matrix elements in the product of I and D. More details
about the implementation of the calculation of the relativistic
electronic structure of solids in the ReSpect program is found
in Ref. [21]. Similarly, the nuclear part is given by

V i j
n,K =

∑
m

∑
A

ZA

× 3(rA − rm,K )i(rA − rm,K ) j − |rA − rm,K |2δi j

|rA − rm,K |5 .

(2.7)

In the summations over all atoms A and unit cells m, the
reference nucleus term A = K must be excluded for m = 0.

For sufficiently large values of m, the charge density of the
unit cell m = 0 has no significant overlap with the reference
nuclei in the cell m [43]. Therefore the lattice sum in Eq. (2.5)
can be split into near and far-field (NF and FF) parts. The NF
is calculated directly using Eqs. (2.6) and (2.7). The FF terms
can be expanded using a multipole expansion. This is based on

∂ i∂ j 1

|r′ − rK − rm|
= ∂ i∂ j 1

|(r′ − rC ) − (rK + rm − rC )|
=

∑
lm

∂ i∂ jRlm(r′ − rC )I∗
lm(rK + rm − rC )

=
∑
lm

Rlm(r′ − rC )∂ i∂ j I∗
lm(rK + rm − rC ). (2.8)

The center of the unit cell is chosen as the center of the
multipole expansion rC and R and I refer to the scaled regular
and irregular solid harmonics as defined in Ref. [44]. The
derivative in (2.8) acting on r′ is equivalent to a derivative on
rm up to a minus sign. This can be used to shift the derivatives
between R and I . Recursive expressions for the derivatives are
defined in Ref. [45], albeit using a different sign convention.
The solid harmonics defined above are complex functions.
However, in practical calculations, it is more convenient to
use real harmonics [44]. Thus, the FF contribution to the EFG

becomes

V i j
K,FF =

∑
lm

2
1

2δm0
Qlm(rC )∂ i∂ j

∑
m∈FF

Ilm(rK + rm − rC )

=
∑
lm

Qlm(rC )I i j
K,FF,lm(rC ), (2.9)

with the total multipole moments of the unit cell defined as

Qlm(rC ) =
∫

drρ0(r)Rlm(r − rC ). (2.10)

Equation (2.9) contains both electronic and nuclear contribu-
tions and is evaluated in a similar manner as the NF terms in
Eqs. (2.6) and (2.7). The additional factor compensates for the
switch to real harmonics and is absorbed into I . The multipole
moments are independent both of the lattice vector m and the
specific nucleus K and only need to be calculated once for a
given system. To evaluate the lattice sum, the renormalization
scheme from Ref. [46] is used, with additional details
provided in Ref. [21]. This scheme only needs to be employed
once per system as it can be shifted to the position of a
different nucleus K ′ using the translation properties of I .
Hence, the computational cost of evaluating the FF terms is
negligible, and the entire computational effort comes from
the direct calculation of the NF contributions in Eq. (2.6).

The calculation of EFGs for molecules is significantly sim-
pler. Equations (2.6) and (2.7) can then be used directly by
removing the lattice indices and the summation over m. The
NF-FF split is in this case not needed. Our implementation in
ReSpect agrees for four-component molecular systems with
DIRAC [47] and for one-component solids with CRYSTAL
[48].

III. COMPUTATIONAL DETAILS

We use the four-component Dirac–Coulomb Kohn–Sham
level of theory together with the generalized gradient approx-
imation (GGA) for the nonrelativistic exchange–correlation
functional (PBE) [49]. The fully uncontracted triple-ζ (TZ)
Dyall basis sets are used unless otherwise noted [50,51]. To
accelerate the calculation of the Coulomb electrostatic inter-
actions, we employed the resolution-of-the-identity approach
for the Coulomb term (RI-J) [22–24]. A detailed discussion of
the implementation and accuracy of the RI-J approximation
used in this paper will be provided elsewhere [24], but cal-
culations on BiOCl lead to errors of the order of 10−3 V/m2

in the EFG both at the nonrelativistic and relativistic levels of
theory, a relative error that is less than 0.01%.

The momentum space was sampled with a 9×9×9 mesh
of k points for the bismuth oxyhalides and a 5×5×5 mesh for
the other systems. The convergence with respect to the k-point
mesh was assessed by comparing the EFG results obtained
from calculations across a progressively increasing sequence
of meshes.

IV. RESULTS AND DISCUSSION

In order to demonstrate the importance of relativistic ef-
fects for EFGs, we will have a particular focus on 209Bi,
as there until recently was a rather significant discrepancy
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TABLE I. Basis set convergence of Bi EFGs. Results for a basis
set X reported as EFG(X )/EFG(QZ). For details, see text.

System tDz DZ tTz TZ tQZ QZ

BiCl3 0.979 0.997 1
BiOCl 0.879 0.938 0.984 0.986 1.0003 1

between the NQMs established based on comparing experi-
mental and computed data between molecular [52] and atomic
studies [53]. This discrepancy was, however, recently resolved
[54,55], bringing the atomic NQMs into very good agreement
with the molecular NQMs. We also note that nuclear calcula-
tions by Karayonchev et al. support the molecular NQM, with
a NQM of −428 mbarn [56]. It would be of interest to see
whether our solid-state implementation would confirm these
predictions.

In order to better assess the accuracy of our calculated
results, we have performed benchmark calculations on molec-
ular BiCl3 and solid BiOCl using Dyall’s uncontracted double
(DZ), triple (TZ), and quadrupole-ζ (QZ) basis sets [50,51].
We have also included truncated versions of these basis sets
for the solid, in which we apply the commonly used approx-
imation of removing all basis functions with exponents <0.1
when calculating properties of periodic systems using GTOs
[25–27].

The value of the Bi EFG for the different basis sets are
reported in Table I relative to the Bi EFG obtained using
the QZ basis set. BiCl3 uses the isolated molecular struc-
ture (vide infra), whereas for BiOCl we use the experimental
solid-state structure of Ref. [57]. For the molecular system,
both the DZ and TZ results are very close to the QZ value,
being 97.9% and 99.7% of the QZ value, respectively. For the
solid, convergence becomes worse, with the DZ results clearly
being of inferior quality, with only 93.8% of the QZ value,
whereas TZ is performing reasonably well with 98.6% of the
QZ value. The Dyall basis sets are optimized for molecular
calculations, and therefore a poorer basis set convergence in
solids is not surprising. The truncated DZ basis set performed
poorly, whereas for the TZ basis, the truncated result is only
0.2% off the full basis, and they are identical at the QZ level.

We recently demonstrated that the removal of diffuse
functions is not necessary and inhibits basis-set convergence
[21,58] and prevents convergence to the basis-set limit alto-
gether for band gaps and structures. Even though EFGs are a
core-electron property, this is not the reason for the reduced
basis sets not affecting the quality of the calculated results.
Instead, only two diffuse basis functions are removed on Bi,
whereas in our previous paper, as many as six basis functions
were removed in the case of tungsten. This highlights that
truncation is highly dependent on the systems studied and the
basis sets used, and should in general be applied with care and
ideally not at all. In this paper, all exponents of the original
basis set are retained.

For BiOCl, we have also performed test calculations with
the BLYP functional [59–61]. The results are in good agree-
ment with those obtained using the PBE functional, being less
than 3% larger than the PBE results both at the nonrelativistic
and relativistic levels of theory for the EFG at the Bi nucleus
using the TZ basis set.

Considering the possible uncertainty in the NQM of the
209Bi nucleus, we have included a few arsenic and antimony
halides and oxyhalides for which there exist experimental
data, in order to benchmark our results against reliable ex-
perimental data. This also allows us to explore the relative
importance of relativistic corrections as we go down in the pe-
riodic table. All our results are collected in Table II. We report,
in addition to the calculated EFG value and the corresponding
value for the asymmetry parameter η, also the derived value
for the NQM using the experimental resonance frequencies.
The reference values for the 75As, 121Sb, 123Sb, and 209Bi
NQMs are −311, −543, −692, and −420 mbarn, respectively
[62–64], and we also report the ratio between the calculated
and reference values for the NQM.

For all As and Sb compounds, we observe good agreement
with experimental data. The differences are between 14 and
20% for the NQMs, which is in agreement with the error for
DFT calculations on EFGs in the literature [12]. The error
also includes temperature and other effects. For β-121SbBr3,
experimental data is only available at 300 K instead of at 77 K.
If we assume a similar temperature behavior as α-121SbBr3,
the ratio between theoretical and experimental NQMs should
increase to about 1.15. The agreement for η is generally good,
although this quantity potentially benefits more from error
cancellation. The only exception is α-121SbBr3, with a mea-
sured value of 0.08 compared to the calculated value of 0.155.

Turning now to the bismuth compounds, the results for
BiCl3 are in good agreement with experiment. An overshoot
of 17% is within expectations and η differs by only 0.02. For
BiBr3, neither the calculated EFG nor the asymmetry param-
eter are in agreement with experiment. However, if we used a
different assignment of the experimental data, as discussed be-
low, the differences disappear and the agreement between the-
ory and experiment is comparable to that of BiCl3. Both BiCl3

and BiBr3, assuming the different frequency assignment, sup-
port a value of −420 mb [54,64] for the NQM of 209Bi.

The results for the bismuth oxyhalides are worse. The cal-
culated EFGs decrease for the heavier halides, following the
same trend as observed for the other systems. However, when
combined with the experimental data, the resulting NQMs for
209Bi are erratic. BiOF yields an expected error of 10%, but the
other three systems are much worse, without any discernible
trend. Cl and Br have an overshoot of almost 50%, while
I is only off by 36%. These are beyond expected variation
both in relative accuracy as well as variation between the
different oxyhalides, and we are currently unable to resolve
these discrepancies. Whereas BiOF also supports a value of
−420 mb for the NQM, it’s reliability is questionable given
the differences observed for the other three BiOXs. We note
previously calculated EFGs of BiOX by Hamaed et al. [78].
Similarly, they also report no systematic behavior, when com-
paring calculated EFGs with measured frequencies. However,
their calculated values also differ significantly and unsystem-
atically from the ones reported here. This is likely caused
by their use of pseudopotentials, which furthermore makes a
direct comparison difficult.

As seen from Table II, the agreement between the calcu-
lated and experimental values for η is good for all compounds,
except for BiBr3, which shows a large disagreement. This gen-
eral agreement may be due to error cancellation considering
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TABLE II. Calculated EFGs [1021 V/m2], asymmetry parameters η, and resulting 75As, 121Sb, 123Sb, and 209Bi quadrupole moments Q [mb]
for various solid-state compounds.

Nonrelativistic Relativistic Exp.

Compound geoma EFG η Q Qcalc/Qref EFG η Q Qcalc/Qref
b ηexp Ref.

AsCl3 [65] –19.11 0.0 –341.7 1.10 –18.47 0.0 –353.5 1.14 0c [66]
AsBr3 [67] –14.47 0.076 –349.7 1.12 –13.65 0.082 –370.7 1.19 0a [66]
121SbCl3 [68] –26.87 0.151 –590.6 1.09 –25.60 0.170 –619.9 1.14 0.184 [69]
α-121SbBr3 [70] –22.63 0.114 –604.9 1.08 –20.76 0.155 –659.3 1.21 0.080 [71]
β-121SbBr3

d [72] –23.31 0.178 –560.7 1.03 –21.50 0.202 –607.9 1.12 0.180 [71]
123Sb4O5Cl2 [73] –32.81 0.261 –805.0 1.16 –33.37 0.302 –791.5 1.14 0.307 [57]

–34.77 0.380 –805.0 1.16 –35.40 0.411 –791.4 1.14 0.396 [57]

BiCl3 [74] –31.95 0.362 –421.3 1.00 –27.36 0.565 –492.1 1.17 0.583 [75]
BiBr3 [76] –26.90 0.446 –523.5 1.25 –21.81 0.850 –645.8 1.54 0.553 [77]
BiBr3

e [76] –387.1 0.92 –477.6 1.14 0.840

BiOF [57] –29.90 0.000 –410.1 0.98 –26.70 0.000 –459.3 1.09 0 [57]
BiOCl [57] –15.39 0.000 –424.8 1.01 –10.62 0.001 –615.8 1.47 0 [57]
BiOBr [57] –12.56 0.001 –410.5 0.98 –8.22 0.002 –627.1 1.49 0 [57]
BiOI [57] –10.69 0.001 –372.5 0.89 –7.00 0.002 –569.4 1.36 0 [57]

aExperimental crystal structures.
bReference values for the 75As, 121Sb, 123Sb and 209Bi NQMs are −311, −543, −692, and −420 mb, respectively.
cAssumed to be zero.
dExp. data only available at 304 K.
eRefitted experimental data, see text.

that η involves a ratio between different EFG components.
Furthermore, across all other compounds the EFG decreases
for heavier halides. In contrast, the experimental data for
BiBr3 suggest a small increase in the EFG compared to BiCl3.

To investigate this conundrum, we have reoptimized the
values for the nuclear quadrupole coupling constant and
η from the experimentally measured frequencies. For most
systems, we obtain a better agreement with the measured fre-
quencies with a pure quadrupole spectrum from this refitting
process. While the actual values of the EFGs do not change
significantly, the refitting leads to a reduction in the experi-
mental uncertainties. For example, for BiCl3, the agreement
is below 0.1%. The only major change is for 121Sb in the
α structure, where the value changes from 343.95 MHz to
331.41 MHz, which appears to be due to a mistake in one
of the tables of Ref. [71].

The agreement is also excellent for BiBr3, however, only
three out of the four frequencies were observed. Therefore, the
frequency assignment is ambiguous, and different choices are
possible. We find a different assignment for η = 0.840. This
value of η agrees with our calculated value for η, gives a good
agreement for the NQM of 209Bi with the same overshoot as
seen for the arsenic and antimony compounds, and follows the
trend of lowering the EFG for heavier halides. However, this
fit has a significantly higher χ2 value of 4×10−1 compared to
the experimental fit of 6×10−4. For the other compounds, we
obtain χ2 values ranging from 2×10−2 to 4×10−6, making
this fit an outlier. We are at this point unable to provide an
decisive conclusion on the origin of this discrepancy.

To estimate a value for the NQM of 209Bi based on the
BiCl3 data, we apply a scaling factor to the calculated value.
The scaling factor is taken as the the average ratios of cal-
culated and experimental NQMs for AsCl3, AsBr3, 121SbCl3,

and the two sites in 123Sb4O5Cl2, as the temperature is the
same for all these studies, and good agreement between cal-
culated and measured η is observed. We then obtain a NQM of
−428(17) mbarn, with the number in parenthesis representing
the standard deviation, heavily influenced by the result for
AsBr3.

We have also implemented the calculation of EFGs in the
molecular ReSpect program. As we have a uniform level of
theory for molecules and solids, and many of the pnicogen
halides are molecular solids, we have also explored the effects
of crystal packing as well as the geometry effects arising from
differences in bond lengths and bond angles going from the
gas-phase structure to the structure observed in the solid state.
We have thus performed calculations on individual molecules
by taking the positions of one pnicogen and its three nearest-
bonding halides from the respective solid-state structures to
study solid-state effects, as well as optimized the molecular
structure in the gas phase to explore the relaxation effects. All
computational details are the same, including XC functional
and basis sets. The calculated EFGs and asymmetry parame-
ters are collected in Table III.

There are significant effects both from changing the bond
length going from gas phase to the isolated molecule retaining
the solid-state structure, as well as due to neighboring atoms
in the solid. Only the solid state calculations give results
for both EFGs and η that are in agreement with experiment,
illustrating the need to use both a proper geometry as well
as include the solid-state effects. The increasing difference
in EFGs from isolated solid-state structure molecules to
the solid phase for the heavier compounds is not directly
caused by relativity. This is rather due to the closer crystal
packing, leading to larger crystal-packing effects. Both the
pnicogen-pnicogen distances as well as the distance to the
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TABLE III. Results for EFGs [1021 V/m2] and asymmetry pa-
rameters η in gas phase, for isolated molecular structures using
solid-state geometries (“molecule”), as well as for solids. For details,
see text.

EFG η

Compound gas “molecule” solid gas “molecule” solid

AsCl3 –16.95 –19.22 –18.47 0 0.012 0.027
AsBr3 –13.86 –14.79 –13.65 0 0.048 0.082
SbCl3 –25.15 –28.71 –25.60 0 0.090 0.170
α-SbBr3 –21.36 –24.99 –20.76 0 0.100 0.155
β-SbBr3

a –24.61 –21.50 0.110 0.202
BiCl3 –30.95 –39.77 –27.36 0 0.229 0.565
BiBr3 –25.55 –32.67 –21.81 0 0.171 0.850

aOnly one configuration in gas phase.

nearest nonbonding halides are for these heavier congeners
smaller. η in the gas phase is zero due to the trigonal
pyramidal geometry [79], whereas the value of η for isolated
solid-state structures and the solids show that it depends
strongly on the environment and is not only a results of the
distorted trigonal pyramid in solids.

V. CONCLUDING REMARKS

We have presented the theory for calculating EFGs in
solids within the all-electron, four-component framework us-
ing GTOs as implemented in the RESPECT program. For As
and Sb, these values are well established and we can use
them to determine the accuracy of EFGs calculated using
our approach, and in particular the inherent error of the
DFT approximation applied in this paper. We have obtained
good agreement for various systems, with errors in the range
14–20%, in line with other findings in the literature.

We have demonstrated that our solid-state approach for
calculating electric field gradients is reliable enough to
determine the nuclear quadrupole moment from observed nu-
clear quadrupole coupling constants. For Q(Bi), our current,

independent, result is −428(17) mb. It is comparable to
the published “world average” of −420(17) mb of Barzakh
et al. [64] or the “molecular” values of Teodoro and Haiduke
[–420(8) mb] [52] or Dognon and Pyykkö [–422(3) mb] [54]
and others, as well as with recent nuclear calculations by
Karayonchev et al. (–428 mb) [56]. Note that the old atomic
value of Bieron and Pyykkö [–516(15) mb] [53] suffered from
a too limited electron correlation space. Further values and a
new world average Q(Bi) should be proposed later. We see the
main merit of the present paper, apart from the methodology,
in providing a Q(Bi) based on totally independent q calcu-
lations and totally independent measurements of the nuclear
quadrupole coupling constant (NQCC) in solids. Although the
error limit is slightly higher, the obtained Q agrees with the
quoted recent atomic, molecular, and nuclear theory values.

However, the nuclear quadrupole moments derived from
bismuth oxyhalides behave erratically, even though the calcu-
lated EFGs appear reasonable. Although the results for BiOF
also supports the molecular value for the NQM of 209Bi, its
reliability is in question until the disagreements for the other
oxyhalides are resolved. We recommend that new experimen-
tal studies are performed for bismuth oxyhalides.
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