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Kibble-Zurek mechanism relates the domain of nonequilibrium dynamics with the critical properties at equi-
librium. It establishes a power law connection between nonequilibrium defects quenched through a continuous
phase transition and the quench rate via the scaling exponent. We present a novel numerical scheme to estimate
the scaling exponent wherein the notion of defects is mapped to errors, previously introduced to quantify
a variety of gapped quantum phases. To demonstrate the versatility of our method we conduct numerical
experiments across a broad spectrum of spin-half models hosting local and symmetry protected topological
order. Furthermore, an implementation of the quench dynamics featuring a topological phase transition on a
digital quantum computer is proposed to quantify the associated criticality.
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I. INTRODUCTION

The exploration of quantum phases at absolute zero and
transitions among them is a cornerstone of condensed matter
physics. The classification of quantum phases is an active area
of research, specially as the investigation extends beyond the
principles of Landau symmetry breaking. Essentially, there
is a comprehensive understanding of quantum phases char-
acterized by local order, yet comprehending phases that go
beyond local order poses significant challenges. The study of
associated quantum phase transitions (QPT) provides critical
insight into the universal behavior linked to the divergence
in the correlation length. This makes it possible to categorize
phases in different universality classes being identified by a
set of critical exponents.

Kibble-Zurek mechanism (KZM) provides critical insight
into the dynamics of a system driven through a continuous
phase transition [1–4]. Introduced in the context of cosmo-
logical phase transitions, the importance of the KZM lies
in its ability to elucidate the emergence of defects during
rapid phase transitions [1–5] while establishing a relationship
between nonequilibrium dynamics and the critical exponents
associated with phase transitions. Lately, this mechanism has
been extended to encompass quantum many-body systems
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[6–20], and referred to as Quantum Kibble-Zurek Mechansim
(QKZM). QKZM describes the quantitative behavior of the
defects in situations where the rate of change of the Hamil-
tonian is faster than the inverse of the spectral gap of the
underlying system. The quantity of defects evolving through
a QPT can be measured by employing the critical properties
linked to it. Specifically, the defect density follows a power-
law relationship with the quench rate, introducing a parameter
known as the scaling exponent μ.

Recent advancements in the development of several
quantum architectures has propelled significant interest in
exploring various quantum many-body phenomena [21–25].
In particular, QKZM has been validated on different quan-
tum hardware platforms by estimating the critical properties,
especially in Ising-like models [19,26–30]. Motivated by the
recent progress, in this work, we introduce a novel numerical
scheme to obtain the scaling exponent in QPTs that are in prin-
ciple accessible on a quantum device. We emphasize that the
introduced method is not limited to the scope of the Landau
symmetry breaking principle, and can be applied to a broader
range of QPTs involving phases characterized by nonlocal
order. To this extent, we further present strategies that enable
numerical and experimental observation of QKZM involving
symmetry protected topological phases. This in turn can be
used as a scheme to profile and benchmark the performance
of quantum computing devices.

We structure the rest of paper as follows: in Sec. II, we
briefly review a quench protocol that realizes the QKZM,
followed by introducing expectation value-based strategies to
determine the defect densities. In addition, we describe var-
ious components involved in estimating the scaling exponent
in the thermodynamic limit. In Sec. III, we start our numerical
investigations by studying the transverse field Ising model that
exhibits local order. In Sec. IV, we extend the analysis to
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study phase transitions involving symmetry protected topo-
logical phases by considering various model Hamiltonians.
Further, in Sec. V, we present an experimental prototype that
allows the estimation of the scaling exponent associated with
a topological phase transition on a digital quantum computer.
Toward the end, in Sec. VI, we summarize the main results
while outlining some future directions that can be explored
using the computational strategies and protocols introduced.

II. QUENCH PROTOCOL, DEFECT DENSITY,
AND CRITICAL EXPONENT

We start by presenting the quench protocol as in the con-
text of QKZM while introducing methods to compute defect
densities and to estimate the corresponding scaling exponent.

A. Revisiting the QKZM

The QKZM provides a theoretical framework for under-
standing the behavior of a system undergoing a continuous
QPT when it is driven out of equilibrium by a rapid change in a
control parameter. The mechanism relies on a quench dynam-
ics that can be generated by a time-dependent Hamiltonian,
H (t ), connecting point I to F ,

H (t ) = HF + g(t )HI , (1)

with g(t ) = −t/τQ denotes a linear quench with the rate τQ in
the time interval t ∈ (−∞, 0] [5]. Having the system prepared
in the ground state of the Hamiltonian, HI , we evolve the
system under the total Hamiltonian mentioned in Eq. (1). As-
suming that there exists a second-order QPT at some critical
strength g(tc), the correlation length ξ diverges at criticality
as ξ ∝ |g(t )|−ν with ν being the correlation-length critical
exponent. This is associated with the closing of the energy
gap or the divergence of the relaxation time as τ � �E−1 ∝
|g(t )|−zν , where z is the dynamical critical exponent; see, for
example, Refs. [8,31] on procedures to estimate the critical
exponents. The QKZM establishes a relation between the the
size of the nonadiabatic domains and the critical exponents
expressed as

ξ ∝ τ
z

1+zν
Q . (2)

Consequently, the defect density in a D-dimensional system
exhibits a power-law scaling as η ∝ τ

−μ
Q where μ = Dz/(1 +

zν) is the QKZM scaling exponent determined by the univer-
sality class of the underlying QPT [7,8,32]. In this work, we
especially focus on one-dimensional (1D) systems, however
our method can be extended to generic gapped phases, see
Appendix H where we sketch the outline for two-dimensional
(2D) systems.

To quantify the defects we propose numerical methods that
are applicable over a wide range of quantum phases character-
ized by various local and nonlocal orders. To this extent, we
introduce the notion of errors with respect to a re ference state
that have been used as a numerical probe to characterize topo-
logical orders [33,34]. In addition, these concepts have been
employed in conjugation with machine learning techniques
that further enhance the detection of various quantum phases
[35]. In the current scenario, we note that the aforementioned
errors can be interpreted as defects as in the context of QKZM.

For the purpose of demonstrating the notion of errors with
respect to a reference state, we assume the Hamiltonian, HF

in Eq. (1) is gapped and refer to the ground state of the
Hamiltonian as the reference state. In a more general context,
the reference state is given by the eigenstate of the opera-
tor corresponding to the order parameter that maximizes the
same. The errors are defined by the action of local operators
(local perturbation) on the reference state. In the following
sections, we will explicitly introduce the errors associated
with the choice of the corresponding Hamiltonian. We also
note that in the rest of our description, we interchangeably
use the terms defect (density) and error (density).

B. Methods to compute defect density

In the following, we introduce two different computational
strategies that estimate the density of errors. Given a gapped
Hamiltonian, we compute the above based on expectation
values of certain projectors in an exact and an approximate
fashion [34–36].

1. Method 1: Expectation value of the projectors

Let us assume that the Hamiltonian, HF , can be expressed
as a sum of k-local Hamiltonians, hi, as in Eq. (3),

H0 =
∑

i

hi. (3)

We denote the energy spectrum of the k-local Hamiltonian
hi by λi

j and the corresponding eigenstates by |λi
j〉 with the

ground state denoted by setting j = 0. For any given state |ψ〉,
the total number of local errors with respect to the reference
state |λi

0〉 for the k-sites is given by ηi, as in the Eq. (4),

ηi = 1 − 〈
P i

0

〉
, (4)

where P i
0 = |λi

0〉〈λi
0| (or in the case of degeneracy P i

0 =∑
d |λi

0d〉〈λi
0d | with d-degenerate ground states). For k sites,

since
∑ |λi

0〉〈λi
0| = 1, and P〉

′ projecting into the ground state
of the k-local Hamiltonian, results in the total number of
local errors, ηi, as in Eq. (4). Finally, we arrive at the total
defect density as the total number of defects averaged over
the system size, i.e., η = ∑

i ηi/N .

2. Method 2: Monte Carlo-based sampling

The defect densities can be obtained by measuring the
wave function in the error basis. Numerically, we simulate
the above by employing the Monte Carlo sampling. First, we
compute the expectation values of the k-local projectors P i

0.
Next, we generate a random number, r and if r < 〈P i

0〉 we
identify the k-sites with a no-error configuration and other-
wise as an error. In the case of the erroneous configuration, we
apply the projector Pi

0, else we apply 1 − Pi
0 and renormalize

the wave function. We repeat the above strategy over all the re-
maining k-local Hamiltonians and capture the corresponding
errors for a single trajectory. We obtain the defect densities
by normalizing over the system size and averaging it over
considerable number of trajectories.

We note that the above process is akin to simulating
the measurement of a wave function in an experimental
setup. However, in a real experiment it might not always be
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possible to engineer the k-local projector and further perform
a multisite measurement. To circumvent the above complex-
ity, in the later sections, we propose a model-dependent
m-local measurement operator with m < k that captures
(partial) information about errors at the same time being ex-
perimentally more accessible.

C. Extraction of the scaling exponent

Having defined two different strategies to compute the
defect density, in the following, we outline a numerical proce-
dure to determine scaling exponent, μ arising in the QKZM.

(1) We set the initial time of the quench dynamics to be
ti = βτQ, where β is some constant such that g(ti ) � g(tc)
with the final time of the dynamics as t f = 0, leading to HI

being turned off. Next, we evolve the initial state through a
QPT by employing the Hamiltonian in Eq. (1);

(2) For different quench rates, we evolve the correspond-
ing initial states. Following the above, we compute the error
densities of the final evolved state;

(3) For a given system size, we further extract μ by lin-
early fitting the defect density, η with respect to the quench
rate, τQ (on a log - log scale, i.e., log2 η ∝ −μ log2 τQ). We
then perform a finite-size scaling analysis to estimate the
scaling exponent μ in the thermodynamic limit.

III. QUANTUM PHASES WITH LOCAL ORDER

To demonstrate the protocol, in this section, we consider a
setting wherein a quantum phase characterized by local order
is driven across criticality by a time-dependent perturbation.
We begin by studying the paradigmatic model, the transverse
field Ising model (TFIM) that exhibits local order. The model
consists of linear chain of N spin-1/2’s with open boundary
condition defined by the following Hamiltonian:

HTFIM(t ) = −
N−1∑
i=1

σ i
zσ

i+1
z − g(t )

N∑
j=1

σ j
x , (5)

where the nearest-neighbor interaction is ferromagnetic in
nature with the strength of transverse field being time-
dependent, g(t ), as defined previously in Eq. (1).

The above Hamiltonian exhibits a QPT with the ground
state being a paramagnet in the low perturbed regime while
being a ferromagnet in the high perturbed regimes with a
criticality at g(−τQ) = 1. The paramagnet-ferromagnet tran-
sition belongs to the Ising universality class with the critical
exponents μ = z = 1.0 [31]. To estimate the critical exponent,
we first choose the initial state to be the ground state of
Eq. (5) at some high field strength, thereby belonging to the
paramagnetic phase. Then we evolve the system across the
QPT guided by the quench protocol. In the current context,
the reference state that leads to the construction of errors is the
ferromagnetic ground state, i.e., |0000...00〉 and |1111...11〉.
The presence of the transverse field gives rise to errors that
are recognized by neighboring spins with opposite parity
when measured in the σz basis. Having introduced the quench
dynamics and the errors associated with the ferromagnetic
ground state, we quantify the scaling exponent by employing
the strategies as outlined in Sec. II B.

1. Quantifying criticality using expectation value

As noted in Sec. II B, the local defect density is cap-
tured by Eq. (4), which in the current scenario reduces to,
P i

0 = |00〉〈00|(i,i+1) + |11〉〈11|(i,i+1). Equivalently, this can be

represented as the expectation of the projector 1−σ i
z σ

i+1
z

2 , that
detects the presence of domain walls. The total error density
is therefore given by

η = 1

N

N−1∑
i=1

(1 − 〈|00〉〈00|〉(i,i+1) − 〈|11〉〈11|〉(i,i+1)). (6)

To extract the exponent, μ, for a given system size N , we
deploy the procedure as outlined in Sec. II C. To gain access
to significantly higher system sizes we consider the Matrix
Product State (MPS) representation of the quantum states in
the rest of the analysis. The initial state, i.e., the ground state
is computed using the density matrix renormalization group
(DMRG) algorithm and the time evolution is performed using
the time evolution block decimation (TEBD) algorithm [37]
by choosing the Trotter scheme wherein the total error scales
quadratically in the time step. We note that both the above
implementations are realized by employing the ITensor library
[38]. From the numerical simulations, see Fig. 1, we obtain the
critical exponent to be μ = 0.502(1) that agrees well with the
results obtained in Refs. [26,39]. We note that the error can
be further suppressed by choosing higher-order Trotterization
schemes.

2. Quantifying criticality using Monte Carlo sampling

In the following, we employ the Monte Carlo-based sam-
pling to obtain the errors using single-site measurements as in
Ref. [35]. That is, we sample the final evolved wave function
in the σz basis and identify the errors by the presence of
different parity bits on the neighboring sites. In other words,
the simulation of Monte Carlo sampling generates the so
called shot data as in the context of quantum computing.
The tensor network-based simulation in conjugation with the
Monte Carlo sampling leads to the critical exponent to be μ =
0.504(2) which is in good agreement with the value obtained
earlier. The projector, P i

0, in the TFIM is a diagonal operator
and therefore is easier to access in an experimental setting.
However, in the next sections, we explore systems that involve
nondiagonal projection operators. Thereby, Monte Carlo sam-
pling techniques introduced here provide a means to estimate
the defect density experimentally in a feasible manner.

IV. QUANTUM PHASES WITH SYMMETRY PROTECTED
TOPOLOGICAL ORDER

In this section, we extend the analysis to the context
of topological phases, phases that are beyond the Landau
symmetry breaking principle thereby being characterized by
nonlocal order parameters. We restrict our analysis to topo-
logical phases hosting short-range entangled states with a
given symmetry, also know as symmetry protected topolog-
ical (SPT) states. The short-range entanglement implies that
they can smoothly deformed into a product state unless the
deformation preserves the symmetry. In other words, SPT
states cannot be mapped to a product state using finite-depth
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FIG. 1. QKZM with the quench protocol driven across a paramagnetic-ferromagnetic QPT as in the transverse field Ising model. Defect
density, η, as a function of the quench rate, τQ, with η computed using the strategy based on (a) expectation value of the projector and (b) Monte
Carlo sampling. The linear scaling remains indistinguishable for progressively increasing values of N indicating convergence to the behavior
in the thermodynamic limit. We note that in the rest of the figures, we consider the y axis on a decimal logarithm scale for better representation
but the actual fit is made with respect to log2 on both axes. (Inset) By performing finite-size scaling analysis we estimate the critical exponent
μ to be (a) 0.502(1) and (b) 0.504(2) in the thermodynamic limit.

symmetry preserving local unitaries [40]. In the following,
we consider three different time-dependent Hamiltonians that
host SPT phases along with a quench protocol that drives these
phases across a QPT. We further employ the computational
methods introduced earlier to estimate the scaling exponent
associated with the topological phase transition.

A. Su–Schrieffer–Heeger (SSH) model

The SSH model was introduced in the context of a particle
hopping on 1D-lattice [41] and is known to host phases that
exhibit SPT order. We consider a time-dependent hardcore
bosonic version of the above model, whose Hamiltonian is
described by the following:

HSSH(t ) = v(t )
N/2∑
i=1

σ 2i−1
− σ 2i

+ + w

N/2−1∑
i=1

σ 2i
− σ 2i+1

+ + H.c., (7)

with v(t )/w = −t/τQ, t ∈ (−∞, 0] with τQ being the quench
rate. The time-independent version of Eq. (7) with v(t ) = v is
exactly solvable in the case of periodic boundary conditions.
It hosts gapped phases in the extremal limits of v 	 w and
v � w with the gap closing at v = w. In the case of open
boundaries, in the limit of v 	 w it is known that the topo-
logical phase is identified by the presence of edge modes,
characterized as nontrivial SPT phase. While in the other limit
the phase remains topological with no edge modes, character-
ized as trivial SPT phase with the phase transition occurring
at v = w [34,42]. For the rest of the analysis we consider the
SSH Hamiltonian on a 1D chain, i.e., with open boundaries.

The quench protocol to validate QKZM involves driving
an initial state belonging to the trivial SPT phase, i.e., the
ground state of Hamiltonian in Eq. (7) at some v � w. With
the final state belonging to the nontrivial SPT phase, we set
the reference state as ground state of the above Hamiltonian
at v = 0, given by the singlet configuration in each of the BA

unit cells, i.e.,

|φ〉BA = 1√
2

∏
i∈B

(|0〉i|1〉i+1 − |1〉i|0〉i+1), (8)

where BA unit cells are as in Fig. 2. Therefore, deviations
from the singlet configuration in Eq. (8) give rise to local
errors in the corresponding unit cell, that are characterized as
density fluctuations, |0〉 = |00〉, |1〉 = |11〉 and phase fluctua-
tions, |+〉 = 1√

2
(|01〉 + |10〉).

In the following, we compute the error density and de-
termine the critical exponent by employing techniques as
outlined in earlier sections. We assume the state mentioned
in Eq. (8) as the reference state and first estimate the local
error density by setting P i

0 = |−〉〈−| in Eq. (4). This further
results in the total defect density given by

η = 1

N

∑
i∈B

(1 − 〈|−〉〈−|〉(i,i+1)), (9)

which is due to the fact that each unit cell satisfies the fol-
lowing relation:

∑
λ |λ〉〈λ| = I for λ ∈ {0, 1,+,−}. Further,

by computing the defect density using the above equation, we
estimate the scaling exponent as μ = 0.509(1); see Fig. 3.

FIG. 2. The SSH model describes the hopping of a particle be-
tween distinct neighboring sites A and B with alternating bond
strengths v and w identified by the unit cells AB and BA. In the
hardcore boson variant, we consider a half-filled lattice of N sites
with each unit cell hosting a single particle in the limits of v = 0 and
w = 0. We note that when v = 0 we observe N/2 dimerized unit cells
while in the other limit w = 0 we notice N/2 − 1 dimers in addition
to unpaired edge sites giving rise to the so called edge modes.
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FIG. 3. Quench dynamics crossing a QPT involving symmetry protected topological phases as in the SSH model. Numerically obtained
defect density scales linearly with the quench rate with the former computed using (a) expectation value of the projector and (b) Monte Carlo
sampling. (Inset) Finite-size scaling analysis to obtain the scaling exponent, μ = (a) 0.509(1) and (b) 0.498(2).

Furthermore, it is also possible to determine the critical
exponent by employing Monte Carlo sampling. To this extent,
we sample the final evolved state in the excitation basis given
by {|0〉, |1〉, |+〉, |−〉} with respect to the earlier defined
reference state; see Eq. (8). With the total number of errors
given by the sum of density fluctuations, {0, 1} and phase
fluctuations, {+} results in the critical exponent μ = 0.498(2)
shown in Fig. 3. The trivial-SPT transition of the SSH model
belongs to BDI universality class with the critical exponents
μ = z = 1.0 [43–45]. Therefore, our method is capable of
estimating the expected critical exponent (1/2 for this case)
across a topological phase transition [46].

B. Extended SSH model

In this section, we extend the analysis to the case of the
extended SSH model whose Hamiltonian is given by

HeSSH = v

2

N/2∑
i=1

σ 2i−1
x σ 2i

x + σ 2i−1
y σ 2i

y + δσ 2i−1
z σ 2i

z

+ w

2

N/2−1∑
i=1

σ 2i
x σ 2i+1

x + σ 2i
y σ 2i+1

y + δσ 2i
z σ 2i+1

z . (10)

We note that setting δ = 0 recovers the SSH model discussed
in the previous section. The phase diagram of the extended
SSH model has been discussed in Refs. [34,35,42] and is
known to host trivial and nontrivial SPT phases along with an
antiferromagnetic (AFM) phase (as δ → ∞), see Fig. 4, for a
qualitative sketch of the same. Given the rich phase diagram,
we obtain the associated critical exponents by driving across
various QPTs. To this extent, we consider two time-dependent
variants of the Hamiltonian in Eq. (10) where: (i) v is replaced
by a time-dependent function, with δ and w being a constant,
(ii) v and w remain a constant, with δ being replaced by a
time-dependent function. We proceed by presenting a quanti-
tative analysis of the critical behavior using the expectation
value of the ground-state projector, while the Monte Carlo
sampling approach has been analyzed in Appendix A.

1. Trivial-to-SPT transition

We dynamically traverse across the trivial to nontrivial SPT
topological transition by employing a quench protocol, i.e.,
by setting v to be v(t ) = −t/τQ, t ∈ (−∞, 0] and δ to be a
constant belonging to the set {0.5, 1, 3} in Eq. (10). The initial
state is chosen as the ground state of the Hamiltonian in the
regime of v � w with the final evolved state belonging to
the nontrivial SPT phase. The reference state is as introduced
in the earlier section via Eq. (8). The above setting leads us
to a final evolved state with total defect density given by η,
as in Eq. (9). In Fig. 4, we estimate the critical exponents
corresponding to δ in {0.5, 1, 3}. Our numerical experiments
show that with interactions turned on, the value of the scaling
exponent deviates significantly from 0.5 as in the noninter-
acting case. We also notice that the value decrease along the
transition line w/v = 1 up to the point where the three phases
co-exist and then recovers to 0.5 beyond that. To the best of
our knowledge, our studies is one of the first to report such
estimates.

2. AFM-to-SPT transition

The phase diagram allows for the exploration of critical
exponent associated with the AFM-SPT phase transition. To
this end, the quench protocol is defined by δ(t ) = −t/τQ with
t ∈ (−∞, 0] while fixing w/v = 2 in Eq. (10). The initial
state for evolution is chosen to be the ground state of HeSSH

in the limits of δ � w/v, thereby being smoothly connected
to an antiferromagnet. As the system is driven into a nontrivial
SPT phase, the reference state remains the same. It might be
intuitive to conclude that the total error density is given by
Eq. (9). However, on the contrary this is not the case as there
are additional corrections involved. It is important to note that
the final evolved state encapsulates the errors of the ground
state at finite w/v that need to be subtracted from Eq. (9) to
obtain the accurate defect densities. To be more precise, let
us denote the final evolved state by |ψ〉 f and the ground state
at w/v = 2 by |ψ〉g, with the corresponding defect density
given by η f and ηg, respectively. The true defect density
involving the additional corrections terms is therefore given
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FIG. 4. (a) Qualitative ground-state phase diagram of the extended SSH model with arrows indicating the quench dynamics through
different QPTs (b), (c), (d) from trivial to SPT phase by fixing δ/w to be (b) 0.5, (c) 1.0, (d) 3.0, and (e) from antiferromagnetic (AFM) to SPT
phase by fixing w/v = 2. In the former, the linear scaling of defects (on a log - log scale) is in accordance with the QKZM (inset) resulting
in the critical exponent, μ to be (b) 0.4767(1), (c) 0.4328(1), and (d) 0.521(1). (e) The finite-size effects in the AFM-SPT quench are more
predominant and are reflected in the deviations from the linear scaling included in the error-estimation of (inset) critical exponent, μ = 0.50(2).

by the following:

ηeff = 1

N

∑
i∈B

|〈ψg|−〉(i,i+1)|2 − |〈ψ f |−〉(i,i+1)|2.

It is clear to see that ηeff is nonnegative as the overlap of the
|ψg〉 with the reference state |−〉 is more in comparison to the
final evolved state, |ψ f 〉 that involves additional excitations. In
Fig. 4, we note that by incorporating the additional correction
terms we substantiate the predictions as in the QKZM and
further obtain the scaling exponent.

C. Cluster-state model

One other paradigmatic model that hosts SPT phase is the
1D cluster-state model, whose Hamiltonian in the presence of
time-dependent perturbation is given by

HCS = −
N−2∑
i=1

σ i
zσ

i+1
x σ i+2

z − g(t )
N∑

j=1

σ j
x , (11)

where g(t ) is as defined in Eq. (1). For the rest of the analysis,
we consider the Hamiltonian on a 1D spin chain, i.e., with
open boundary conditions. In the case of time-independent
perturbation, the Hamiltonian hosts a SPT phase at low pertur-
bation strength and a paramagnetic phase at high perturbation
strength with a QPT at some perturbation strength [47]. In the
absence of perturbation, the ground state of the Hamiltonian is

short-range entangled and protected by a Z2 × Z2 symmetry
[48]. The ground state is also referred to as 1D cluster state
with applications in measurement-based quantum computing
[49,50].

The quench dynamics is performed by choosing the initial
state to be the ground state of the Hamiltonian belonging to the
trivial phase. Further, we evolve the above state to a final time
wherein the perturbation is completely turned off resulting in
a final state belonging to the SPT phase. We further compute
the local error density of the final evolved state by setting

P i
0 = 1+σ i

z σ
i+1
x σ i+2

z

2 in Eq. (4). P i
0 projects a given quantum state

into the ground state of the cluster-state Hamiltonian, thereby
resulting in the total defect density given by

η = 1

N

N−2∑
i=1

(
1 −

〈
1 + σ i

zσ
i+1
x σ i+2

z

2

〉)
.

Our numerical analysis shows the critical exponent to be
μ = 0.493(2); see Fig. 5. This establishes that the numeri-
cal methods introduced here work for wider class of gapped
phases that demand multisite interactions. Estimates for the
critical exponents are obtained for different perturbed model
involving the cluster-state Hamiltonian leading to the same
scaling exponent as in our case [51].

045140-6



KIBBLE-ZUREK MECHANISM AND ERRORS OF GAPPED … PHYSICAL REVIEW B 110, 045140 (2024)

FIG. 5. Steering across a trivial-SPT phase transition with the
latter characterized by the cluster-state Hamiltonian. The predictions
of the QKZM remain valid as the logarithm of the defect densities
scale linearly with the quench rate in log scale. We attribute minor
deviations from linearity to the finite size of the system resulting in
the (inset) critical exponent, μ = 0.493(2).

V. QUANTIFYING CRITICALITY USING DIGITAL
QUANTUM COMPUTERS

The recent advancement in quantum hardware has enabled
the exploration of several quantum many-body phenom-
ena [21,22,52–55] using noisy intermediate scale quantum
(NISQ) devices [56]. QKZM has been validated on both ana-
log [26] and digital architectures [19]. The former provides
efficient implementation of quench dynamics while the latter
is applicable in a more general setting. For instance, a digital-
based experiment as well as intensive numerical investigation
of the QKZM in TFIM was explored in recent work; see
Ref. [19]. Motivated by the above work, we slightly alter our
quench protocol that maps two Hamiltonians, HI and HF , as
follows:

H (t ) = (1 − t/τQ)HI + (1 + t/τQ)HF . (12)

We emphasize our method is capable of estimating the critical
exponent in models with quantum phases that are beyond the
Landau symmetry breaking principle. To exemplify, in this
section, we supplement the analysis to the case of the extended
SSH Hamiltonian. To this extent, we map the hopping terms
in Eq. (10) with strengths v and w to HI and HF , respectively,
resulting in

HeSSH(t, δ) = v′(t )

2

N/2∑
i=1

σ 2i−1
x σ 2i

x + σ 2i−1
y σ 2i

y + δσ 2i−1
z σ 2i

z

+ w′(t )

2

N/2−1∑
i=1

σ 2i
x σ 2i+1

x + σ 2i
y σ 2i+1

y

+ δσ 2i
z σ 2i+1

z , (13)

with v′(t ) = 1 − t/τQ, w′(t ) = 1 + t/τQ, t ∈ [−τQ, τQ] and
set δ = 3 to be a constant; see Fig. 4(a). The initial state
that is evolved is identified by the singlet configuration in
the AB unit cells, i.e., a state belonging to the trivial SPT
phase [ground state of HeSSH(−τ, 3)]. The key advantage of

using such a protocol is that initial state can be expressed
analytically. That is, the ground state can be expressed as a
tensor product of the 2-qubit Bell state ( 1√

2
(|01〉 − |10〉)) that

can be further prepared by using a sequence of single and two
qubit gates. With the dynamics driving the above state into a
nontrivial SPT phase, the reference state is set to the singlet
configuration in the BA unit cells. To simulate the dynamics,
as earlier we employ the TEBD protocol, see Fig. 6(a) that
involves a two-qubit unitary, U , of the form

U = exp[i(ασx ⊗ σx + βσy ⊗ σy + γ σz ⊗ σz )]. (14)

The above can be realized on a digital quantum architecture by
decomposing it further into single-qubit Pauli rotations and
two-qubit Controlled-NOT (CNOT) gates [21,57], We note
that the procedure outlined in this section and the simulations
thereof, assume an ideal quantum computing architecture.
Relaxing the above constraints involves employing additional
techniques, for instance, fine-tuned finite-size scaling analy-
sis, employing circuit depth reduction techniques to achieve
the required evolution in shorter time, and integrating error
mitigation strategies, to mention a few. We leave this explo-
ration in the context of topological phases to the future.

In the following, by employing different methods we esti-
mate the defect density. Further, we establish that the scaling
exponent determined using partial defect density is in good
congruence with that obtained using the total defect density.
Importantly among the above methods, the former remains
more accessible in an experimental setup.

A. Simulating local measurements

In the earlier sections, we have introduced strategies to
compute the defect densities based on the expectation value
of certain projectors. These projectors in the case of the
(extended) SSH model involve two-sites thereby requiring
two-qubit measurements that are relatively difficult to real-
ize on digital computing architectures. We relax the above
requirement by measuring the final evolved wave function
belonging to the nontrivial SPT phase in σz basis alone. As
noted earlier, this refers to the shot data in a real experiment
setting and can be numerically simulated by employing the
Monte Carlo sampling in the σz basis. However, we note that
from the above measurement data it is possible to partially
capture the error density in terms of the density fluctuations
with no access to phase fluctuations due to the single-qubit
measurement. Crucially, the partial error density still scales
linearly with the quench rate (on the log - log scale) further
validating the prediction of the QKZM. The critical exponent
in the current scenario is given by μ = 0.509(3) as shown
in Fig. 6 which is in good agreement with the one obtained
earlier in Fig. 4(d). From our numerical experiments, we con-
clude that single qubit measurements suffice to estimate the
critical exponent in the case of topological phase transitions
as in the extended SSH model.

B. Computing partial and total defect densities

To cross-validate the above results, we compute the expec-
tation value of the final evolved state with respect to different
error projectors that are given by {|0〉〈0|, |1〉〈1|, |+〉〈+|}. The
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FIG. 6. Simulating the quench dynamics involving a topological phase transition as in the extended SSH model on a digital quantum
computer. (a) The TEBD protocol comprising the two-qubit unitary, U ; see Eq. (14). The decomposition of U (α, β, γ ) in terms of single
qubit rotations and CNOTs is as in Refs. [21,57]. The predicted power law scaling in the QKZM is recovered by considering (b) partial
defect density, i.e., density fluctuations estimated by sampling in σz basis similar to shot data in experiments, (c) partial defect density by
computing the expectation value of the density fluctuations, and (d) total defect density determined using the projector expectation value.
(Inset) The scaling exponent, μ obtained by performing finite-size scaling resulting in (b) 0.504(2), (c) 0.505(1), and (d) 0.507(1) that are in
good agreement among themselves while also to the quench protocol employed in Sec. IV.

total defect density is the sum of the expectation values of the
above projectors resulting in Eq. (9). One other quantity that
provides an approximation is the partial defect density given
by considering only the projectors of density fluctuations sim-
ilar to the simulated local measurements.

By considering the total defect density, our numerical
simulation shows the scaling exponent to be μ = 0.508(1),
while scaling analysis of partial defect density results in μ =
0.507(1); see Fig. 6. We highlight the fact that the partial
defect density has substantially higher errors as in Figs. 6(c)
and 6(d) while performing the finite-size scaling analysis in
comparison to that of the total defect density as in Fig. 6(e).
However, the values of the scaling exponent obtained in three
cases agree up to three decimals.

C. Estimating critical exponent under error invariant
noisy evolution

In this section, we show that access to the errors of gapped
phases allow the exploration of noisy dynamics (in this case
coherent noise) that respect the QKZM. In the current sce-
nario, we note that the gapped errors given by {|0〉, |1〉, |+〉}
remain invariant under the action of a SWAP gate. This further

leads us to the notion that dynamics of the extended SSH
model driven across a trivial nontrivial topological phase in-
terspersed with SWAP unitaries leave the scaling exponent
invariant as in the noiseless scenario thereby recovering the
prediction of the QKZM. To validate the above, we consider
the evolution as in the TEBD protocol and inject SWAPs
unitaries leading to noisy evolution. We study two differ-
ent SWAP injection protocols and label them as half-swap
and full-swap injection. To motivate the above protocols we
consider the TEBD algorithm as in Fig. 6(a) with a half
(full)-swap injection implying a SWAP is prepended to all
the unitaries in block identified by 2 (1 and 2 blocks). In
both the scenarios, we recover the scaling exponent as in the
noiseless evolution obtained by computing the expectation
value as in Eq. (9); see Figs. 7(a) and 7(c). In addition, we
also note that this can be achieved on a digital quantum
computer as the density fluctuations, i.e., shot measurement
in the σz basis, also recover the expected scaling exponent;
see Figs. 7(c) and 7(f). In summary, we observe that unitaries
that leave the error space invariant, when injected into the
quench dynamics retain the prediction of the QKZM thereby
leading to same scaling exponent as in the absence of unitary
injection.
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FIG. 7. Estimating the scaling exponent by introducing SWAP noise. We recover the power law scaling and the associated exponent in the
case of half-swap noise by computing the defect density using projector expectation value of (a) all errors and (b) density fluctuations resulting
in μ = (a) 0.5081(1) (b) 0.5037(5), respectively. Similarly, in the context of full-swap noise, the predictions of QKZM remains valid as we
recover the scaling exponent as in the noiseless evolution by computing the defect density using projector value of (c) all errors and (d) density
fluctuations resulting in μ = (c) 0.5075(3), (d) 0.5023(8), respectively.

VI. SUMMARY AND DISCUSSION

In summary, we have briefly reviewed the QKZM that
establishes a relationship between defect density and quench
rates via a critical exponent when a quantum system is driven
across a QPT. In the current scenario, in the context of gapped
quantum phases, we recast the notion of errors with respect
to a given reference state as defects. Further, we computed the
defect density based on the expectation value of the projection
operators with respect to a predefined reference state. The val-
ues from the exact computation provide a means to estimate
the critical exponent numerically. In addition, we showed that
Monte Carlo-based sampling, akin to measurement in real
experiments, provides an alternative to determine the critical
exponent.

We adopted the introduced computational strategies to dif-
ferent spin models with QPTs involving local and topological
orders. To this extent, we reproduced the scaling critical expo-
nent in the TFIM and SSH models while effectively estimating
the same in the extended SSH model and the cluster-state
model. Toward the end, we proposed a strategy to determine
the scaling critical exponent on a digital quantum computer.
As an illustration, we have considered the extended SSH
model across a QPT involving topological phases.

It is important to note that the methods investigated in
this work, can be extended to a wide range of gapped quan-
tum phases. Possible future applications of the computational
strategies developed in the current context could include the

exploration of (a) QPTs involving intrinsic topological order
driven by external fields [58,59], (b) landscape of QKZM in
the context of open quantum systems and the phase transi-
tions thereof [59], and (c) possible relations between QKZM
and measurement induced entanglement phase transitions
[60,61]. It would also be interesting to quantify criticali-
ties associated with QPTs involving other gapped quantum
phases that are easily realizable on upcoming quantum hard-
ware platforms, further allowing us to benchmark their
performance.
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FIG. 8. Monte Carlo sampling to obtain defect densities estimated by considering (a) all errors, (b) density errors, and (c) phase errors for
the extended SSH model driven into the nontrivial SPT phase. (Inset) Estimating the corresponding critical exponents by performing finite-size
analysis leading to μ = (a) 0.433(1), (b) 0.434(1), and (c) 0.435(2) that exhibit agreement with each other and also with the critical exponent
obtained based on projector expectation values as in Sec. IV.

APPENDIX A: MONTE CARLO SAMPLING OF ERRORS
IN THE EXTENDED SSH MODEL

We consider the time-dependent extended SSH Hamilto-
nian, as in Eq. (10), and set v(t ) = −t/τQ, t ∈ (−∞, 0], i.e.,
we drive an initial state belonging to the trivial topological
phase to a final state in the nontrivial topological phase across
the topological phase transition. In Sec. IV B 1, we determine
the criticality by considering the defect density obtained using
the strategy based on expectation values of projectors, while
in this section, we estimate the criticality by employing the
Monte Carlo method, for the case of δ = 1. The main mo-
tivation is to benchmark and compare the scaling exponent
obtained using only the density errors and only the phase error
with that of the full error profile.

As earlier, we drive the system into a nontrivial SPT phase
and further sample the final evolved wave function in the exci-
tation basis. We compute the total defect density to be the sum
of density and phase fluctuations. Further, we determine the
critical exponent as shown in Fig. 8. The total defect densities
can be approximated by considering either the defect densities
or the phase densities. It is crucial to note that predictions
of the QKZM still hold in the approximate limit of the total
defect densities. In other words, it is possible to estimate the
scaling exponent up to good accuracy based on partial defect
density as illustrated in Fig. 8.

APPENDIX B: CROSS-VALIDATING THE RESULTS
BY REVERSING THE QUENCH

One other way to cross-validate the estimation of the scal-
ing exponent is to reverse the quench direction. For instance,
in Sec. III, we evaluated the scaling exponent by quenching
a paramagnetic state to a ferromagnet. It should be possible
to obtain the same scaling exponent by reversing the quench
from a ferromagnet to a paramagnet as we drive through
the same point of criticality as above. In this section, we
validate the above notion by retrieving the scaling exponent
for the phase transitions involving both local order and SPT
order.

We begin by considering the case of quenching a ferro-
magnet to a paramagnet. In the protocol introduced in the
main text the key to computing the defect density is the notion
of errors with respect to a reference state. As we are driving
into a paramagnetic phase, we define the errors with respect
to the reference state given by the paramagnetic ground state
|+〉⊗N , where |+〉 = 1√

2
(|0〉 + |1〉). Therefore, the total defect

density can be estimated by defining P i
0 = |+〉〈+|i in Eq. (4),

leading to the estimation of the scaling exponent that is in
good agreement with one obtained earlier in the main text;
see Fig. 9(a). We note that the quench protocol adapted for
this particular case is as in Eq. (12) with HI being mapped to
−∑N−1

i=1 σ i
zσ

i+1
z and HF being mapped to −∑N

j=1 σ
j

x .

FIG. 9. Defect densities as a function of the quench rates for (a) Ising model, (b), (c) extended SSH model with δ/w = 0.5 and δ/w = 3.0
by reversing the direction of the quench. In panels (a) and (b) we compute the defect densities using the expectation value of the appropriate
projector, while in panel (c) we employ the Monte Carlo sampling in the error basis. (Inset) Estimating the corresponding scaling exponent,
μ by performing finite-size scaling analysis (a) 0.503(1), (b) 0.4767(3), and (c) 0.518(1) which are in good agreement with the corresponding
scaling exponents obtained in the main text as in Figs. 1, 4(b), and 4(d), respectively.
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FIG. 10. Defect densities, η as a function of the quench rates, τQ for (a) TFIM, (b) SSH, and (c) ZXZ model. Across all the three models
we note considerable finite-size scaling effects for system sizes N < 300; however, beyond the above limit the scaling of the defects follows
the power-law (linear on log-scale) prediction of the QKZM.

We also cross-validate the scaling exponent in the context
of SPT phases by evolving in the reverse direction, i.e., from
an initial state in the nontrivial SPT phase to a state in the
trivial SPT phase. We consider the extended SSH Hamiltonian
as in Eq. (10) and employ the quench protocol as in Eq. (1).
As we are driving into the trivial SPT phase, we compute the
defect density with respect to the reference state given by

|φ〉AB = 1√
2

∏
i∈A

(|0〉i|1〉i+1 − |1〉i|0〉i+1),

resulting in the total defect density given by

η = 1

N

∑
i∈A

(1 − 〈|−〉〈−|〉(i,i+1)), (B1)

We retrieve the scaling exponent for the reverse quench and
note that is in good agreement with the results as in Fig. 4 by
computing the projector expectation for the case of δ/w = 0.5
and Monte Carlo sampling in the error basis for δ/w = 3.0,
see Figs. 9(b) and 9(c), respectively.

APPENDIX C: DEPENDENCE ON SYSTEM SIZE

As the method described in the main text used to estimate
the critical exponent, μ relies on finite-size scaling analysis,
in this section, we present defect densities as a function of
quench rates for different system sizes. We compute the above

for the three models discussed in the main text, i.e., the TFIM,
SSH and the cluster-state models as in Fig. 10. We adapt the
quench protocol as in Eq. (1) for all the three models while
estimating the defect densities by computing the projector ex-
pectation value. We reiterate the use of DMRG for computing
the initial state and TEBD for time evolution from the ITensor
library.

APPENDIX D: SCALING OF DEFECTS
AS A FUNCTION OF TIME

In this section, we present the defect density as a function
of time by employing the quench protocol as in Eq. (1) for
a fixed system size of N = 500. We compute the initial state
using the DMRG protocol of the ITensor library. Further, we
compute the defect density at each time-step by evaluating
the expectation value of the appropriate projection operator
outlined in the main text for the three models of TFIM, SSH,
and the cluster state, while also recording the maximum bond
dimension, χm for each of the quench rates, τQ; see Fig. 11.

APPENDIX E: PERFORMANCE METRICS—EXACT
EXPECTATION, MONTE CARLO

In this Appendix, we report the performance of different
methods deployed in computing the defect density. We con-
sider the case of the extended SSH model and the quench

FIG. 11. Density of defects, η, as a function of the time steps with the maximum bond dimension, χm in the total evolution with error fixed
to 10−8 for (a) TFIM, (b) SSH, and (c) cluster-state model for a fixed system size of N = 500. We note that we fix the job run time on the
cluster to be the same for the three models. The accessible time steps (varying with δt = 0.05) in the quench rates, τQ for the (a) TFIM in
the same job run time is higher compared to (b) SSH further is higher compared to (c) cluster-state model. We attribute this to the fact that the
projector operator is two site and diagonal in the context of TFIM while is two site off-diagonal in the SSH model and is three site off diagonal
in the context of cluster-state model limiting the computation of expectation value for time steps of longer quench rates.
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FIG. 12. Performance profiling of various routines used to compute the defect density of the extended SSH model as a function of the
system size, N for various fixed τQ. We note that for fairness of comparison all the performance runs are done using a single core. We observe
that for a given τQ the computation of defect density using the expectation value of two-site off-diagonal projector is faster compared to the
expectation value of two-site diagonal projection operator. The performance of the latter can be further optimized by considering the clubbed
two-site diagonal projection operator (in the current scenario, we report the unclubbed version that involves evaluating the expectation value
of two diagonal operators independently). We note that the Monte Carlo sampling methods are considerably slower and also can gain in
performance by using parallelization techniques. In comparing both the Monte Carlo techniques, the two-site sampling is faster in comparison
to the single-site sampling as the effective system size is halved in the former leading to gain in performance. We also note that time to solution
for computing defect density decreases with increase in τQ. In other words, computing projector expectation value/sampling the evolved state
is computationally easier at longer quench rates compared to shorter quench rates, τQ.

protocol as on a digital quantum computer as in Eq. (13).
For the rest of the analysis we further consider the case of
δ/w = 3 and report the time to solution of computing the
defect densities using the Julia macro @elapsed . We profile
the following four different strategies that compute the de-
fect density: (a) expectation value of the projector operator
|−〉〈−|, (b) expectation value of the density fluctuations, (c)
Monte Carlo sampling in the full-error basis, and (d) Monte
Carlo sampling in the σz basis and report the profiling as a
function of the system size, N , for different quench rates, τQ,
as in Fig. 12, while we report the profiling as a function of
the quench rate, τQ for different system sizes, N ; see Fig. 13.
For fairness of comparison, we benchmark all the runs using a
singlethread. However, we note that the Monte Carlo simula-
tion can be made run faster by utilizing parallelization routines
(multinode multicore spread using the macro @parallel).

APPENDIX F: STATISTICS OF DEFECTS AND SCALING
OF CUMULANTS

In Ref. [63], the authors establish that the statistics of the
defect number corresponding to the final evolved state ob-
tained by quenching across a quantum phase transition respect

the power law scaling as in the QKZM. In this section, we
extend the above to the context of quantum phase transitions
with SPT order while also reproducing the results in the con-
text of quantum phase transitions with local order.

To this extent, we observe that the Monte Carlo-based pro-
tocol used to estimate the defect density can also be extended
to study the statistics of the number of defects. That is, the
Monte Carlo sampling can be used to generate error strings,
further leading to the construction of the defect/error num-
ber distribution. We begin by considering the TFIM model
as in Eq. (5) and quench a paramagnetic initial state to a
final state belonging to the ferromagnetic phase. We employ
the Monte Carlo-based sampling as introduced in the main
text to construct the probability distribution of the number of
defects, i.e., for each trajectory we sample over the N sites
in the σz basis and compute the number of defects and repeat
for many trajectories, resulting in the probability distribution
as in Fig. 14(a). We note that the probability distribution
of the number of defects is qualitatively in agreement with
the results in Ref. [63]. Further, we compute the first and
second cumulants (mean and variance) of the distribution and
note that they exhibit a power law scaling with the quench
rate; see Figs. 14(b) and 14(c). In a similar fashion it is

045140-12



KIBBLE-ZUREK MECHANISM AND ERRORS OF GAPPED … PHYSICAL REVIEW B 110, 045140 (2024)

FIG. 13. Profiling the performance of defect density computation as a function of the quench rate, τQ for a given system size, N . In contrast
to the above, it is tough to observe generic trends except for the fact that across all system sizes the time to compute the projector expectation
value/sampling the errors is smaller at longer quench rates in comparison to shorter quench rates that demand longer computational time.

possible to compute the scaling of higher cumulants and we
leave this exercise to the future as more data points at inter-
mediate quench rates are required to accurately capture the
scaling.

In a similar fashion, we extend the analysis to the quench
protocol of the SSH model as in Eq. (7), wherein we quench
a state belonging to the trivial SPT phase to a state belonging
to the nontrivial SPT phase. We deploy the Monte Carlo sam-
pling procedure and sample the final evolved state in the error
basis given by |0〉, |1〉, |+〉. We further construct the probabil-
ity distribution of the number of defects as in Fig. 15(a) and
further compute the higher-order cumulants, see Figs. 15(b)

and 15(c), that exhibit a power-law scaling as in the previous
scenario.

We further extend the analysis to the case of the dynamics
of the extended SSH model as in Eq. (13) that allows for
the realization of the dynamics on a digital quantum com-
puter, i.e., we evolve across a tivial to nontrivial topological
phase transition with δ/w = 3. As earlier, we sample the final
evolved wave function in the error basis to construct the prob-
ability distribution of the number of defects, see Fig. 16(a),
and further obtain the scaling properties of its cumulants, see
Figs. 16(b) and 16(c), that exhibit a power-law scaling with
respect to the quench rate, τQ as previously. The truncated

FIG. 14. Defect number probability distribution and its related properties in the case of TFIM dynamics. (a) Defect number distribution
for different quench rates τQ for a given system size (top) N = 600, (middle) N = 800, and (bottom) N = 1000. (b) first cumulant, κ1/N
(c) second cumulant, κ2/N , both scale as power-law of the quench rate, τQ with the scaling exponent obtained by performing finite-size scaling
analysis, μ = (b) 0.507(1) and (c) 0.513(4).
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FIG. 15. Probability distribution of number of defects and higher-order cumulants in the case of SSH dynamics. (a) Defect number
distribution for different quench rates τQ for a given system size (top) N = 600, (middle) N = 800, and (bottom) N = 1000. We note the
distribution is dominated by even number of defects, a potential reason being the equal number of density fluctuations, a validation of which
we leave for future exploration. We observe that the first and the second cumulant, (b) κ1/N (c) κ2/N exhibit power-law scaling with μ =
(b) 0.504(1) and (c) 0.517(4) as in the QKZM.

sampling in the σz basis instead of the entire error basis al-
lows for the study of the probability distribution of number
of defects (density defects) and the scaling properties of its
cumulants; see Fig. 17. We note that even in the case of the
truncated sampling in σz basis we observe that the QKZM
scaling is respected. However, in both the above scenarios we
notice that scaling exponent of the second cumulant deviates
from the value of 0.5 by a considerable amount yet respects
the power law scaling.

APPENDIX G: INHOMOGENOUS ISING MODEL

In Ref. [64], the authors study the QKZM in an inhomoge-
nous setup. They estimate the scaling exponent for short and
long quench rates, denoted by μsq and μlq, respectively, in the
TFIM. The Hamiltonian governing the dynamics is given by

HIFTIM = −
L−1∑
i=1

Jq(n)σ i
zσ

i+1
z − h(t )

L∑
j=1

σ j
x ,

where the nearest-neighbor interaction is modulated by Jq(n),

Jq(n) = J (0)(1 − α|n|q),

where n are the sites of nearest-neighbor interaction, J (0)
being the interaction at the end of the chain, α is a constant
such J (0) = J recovers the homogeneous interaction at the
ends of the open chain. For a more detailed description of
Jq(n), we refer the interested reader to Fig. 1 in Ref. [64]. We
consider the quench dynamics given by

h(t ) = J (0)

(
1 − t

τQ

)
, t ∈ [−τQ, τQ], (G1)

i.e., we quench a initial state in the paramagnetic phase to
a state in the ferromagnetic phase. In Fig. 18, we study the
QKZM for short and long quench rates and further estimate
the scaling exponent by computing the defect density using
the projector expectation value as in Eq. (6) in both regimes
for the case of q = 2. We note that the results obtained using
our method are in good agreement with the results obtained
in the Ref. [64]. Further, for a fixed system size of N = 500,
in Fig. 18(c), we also present the scaling of defect density,

FIG. 16. Defect number probability distribution and the scaling of its cumulants for the case of the dynamics of the extended SSH model
with δ/w = 3. We sample the defects in the error basis given by {|0〉, |1〉, |+〉}. (a) Defect number distribution for different quench rates, τQ

for a given system size (top) N = 600, (middle) N = 800, and (bottom) N = 1000. As opposed to the previous case where the distribution
was dominated by even number of errors, here we observe a more continuous distribution. The scaling of the (b) first cumulant, κ1/N , and
(c) second cumulant, κ2/N , both exhibiting a power-law scaling with μ = (b) 0.508(1) and (c) 0.542(4).
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FIG. 17. Defect number probability distribution for the case of the dynamics of the extended SSH model as on a digital quantum computer.
We sample the defects in the truncated basis, i.e., σz basis and report the (a) probability distribution of the number of defects, (b) first cumulant,
κ1/N, and (c) second cumulant, κ2/N both retrieving the QKZM scaling with μ = (b) 0.503(1) and (c) 0.549(7).

computed using Eq. (6) for short and long quench rates for
increasing q whose behavior is qualitatively in agreement with
the results in the above reference. We note that the critical
exponents estimated in the current scenario are sensitive to the
finite-size scaling analysis, and we postpone this and related
analysis on the critical exponents for various q to a future
work.

APPENDIX H: EXTENSIONS TO SYSTEMS
IN HIGHER DIMENSIONS

In this Appendix, we briefly sketch an outline for estimat-
ing the scaling exponent of systems in higher dimensions by
considering two paradigmatic models: the TFIM with local
order and the toric code with topological order [65], both in
two dimensions. Errors being central to the above estimation,
we will introduce the errors for the above models and leave
the numerical estimation to the future.

In Ref. [18], the authors have not only studied the phase
diagram of the 2D TFIM with ferromagnetic interaction
but also estimate the scaling exponent by considering the

perturbed dynamics. With reference to the above model, the
errors can be estimated using the Eq. (6) by considering all the
nearest-neighbor interactions. We also note that the dynamics
of the 2D TFIM can be simulated by techniques as listed in
the above reference.

One of the well-known models exhibiting topological order
in 2D is the toric code model. To describe the perturbation
free Hamiltonian of the toric code, we consider a 2D square
lattice with spins on the edges of the lattice. Next, we intro-
duce the vertex/face operator, Av/Bp given by

∏
i σ

i
x/

∏
i σ

j
z

where i/ j are the spins attached to the vertices and the
faces, respectively. The Hamiltonian is thus given by H =
−∑

v Av − ∑
p Bp. Recent works, for instance, Refs. [33,35],

have characterized topological order using errors of the toric
code, given by the violations of the Av and Bp operators,
i.e., (1 − Av )/2 and (1 − Bp)/2. Therefore, by considering
a time-dependent perturbation that drives a trivial state into a
nontrivial topological state and estimating the defect density
using the above projection operators provides a pathway for
the estimation of the scaling exponent.

FIG. 18. Estimating the scaling exponent in the inhomogenous TFIM. (a) Defect density, η, as a function of the quench rate, τQ. The regions
marked in (blue) red are used to estimate the scaling exponent for (short) long quench rates for a given system size. (b) Finite-size scaling
analysis to obtain the scaling exponent in the thermodynamic limit for (top) shorter quench rates, μsq = 0.528(4) (bottom) longer quench rates,
μlq = 1.50(6) which are in good agreement with the values obtained in Ref. [64]. (c) Defect density, η as a function of the quench rates, τQ

with increasing q as in the interaction function, given by Jq(n) as in the second equation in Appendix G. We note that with increase in q the
behavior of the defect density approaches the homogenous case where Jq(n) = J , a constant. We also note that the qualitative behavior of the
defect density remains similar as in the above reference.
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