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Transport theory in non-Hermitian systems
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Non-Hermitian systems have garnered significant attention due to the emergence of novel topology of
complex spectra and skin modes. However, investigating transport phenomena in such systems faces obstacles
stemming from the nonunitary nature of time evolution. Here, we establish the continuity equation for a general
non-Hermitian Hamiltonian in the Schrödinger picture. It attributes the universal nonconservativity to the anti-
commutation relationship between particle number and non-Hermitian terms. Our paper derives a comprehensive
current formula for non-Hermitian systems using Green’s function, applicable to both time-dependent and
steady-state responses. To demonstrate the validity of our approach, we calculate the local current of models
with one-dimensional and two-dimensional settings, incorporating scattering potentials. The spatial distribution
of local current highlights the widespread non-Hermitian phenomena, including skin modes, nonreciprocal
quantum dots, and corner states. Additionally, we revisit a recent experiment within the quantum Hall regime
and propose a set-up for experimentally detecting non-Hermitian current. Our findings offer valuable insights
for advancing theoretical and experimental research in the transport of non-Hermitian systems.
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I. INTRODUCTION

Current in physical systems is a response to the external ex-
citation. Being accurately measured in transport experiments,
the current-voltage characteristic and current fluctuations
faithfully reflect intrinsic physical properties both statically
and dynamically [1–5]. Notably, in recently reported topo-
logical systems, such as the quantum Hall insulator or the
quantum anomalous Hall insulator [6–8], a precisely quan-
tized current signature shows the robust edge mode protected
by the topology of bands [9,10]. In these Hermitian quantum
systems, the unitary nature of the time-evolution operator
ensures the conservation of both the particle number n and
current j, i.e., the continuity equation ∂n

∂t + ∇ · j = 0 [11,12].
Non-Hermitian systems are in hot spots for their exotic

properties [13–16], including non-Hermitian topology, un-
usual bulk-edge correspondence, skin modes and possible
unidirectional amplification [17–31]. For non-Hermitian open
chains, skin modes manifest as bulk eigenstates localized at
boundaries, exhibiting exponential-decay behavior [25]. Re-
cent progress has focused on the properties of eigenstates,
which have been observed in both classical and quantum sys-
tems including optics and photonics, topoelectrical circuits,
metamaterials, cold atom systems, and quantum walk systems
[32–39]. Beyond their stationary properties, transport tech-
niques can reveal the dynamical response of bulk eigenmodes
in non-Hermitian systems. However, exploring the transport
properties of these systems remains challenging due to the
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nonunitary nature of the time-evolution operator [40]. This
nonunitarity further leads to a significant issue during time
evolution: The traditional continuity equation requires reeval-
uation. Given these intricacies, it is crucial to establish the
transport theory for non-Hermitian systems.

Addressing the challenges outlined, we investigate the
continuity equation for non-Hermitian systems based on the
Schrödinger picture. We introduce a modified continuity
equation, applicable to non-Hermitian Hamiltonians, which
incorporates a critical anticommutation term. The anticom-
mutator indicates a clear distinction from Hermitian systems
and directly leads to the phenomenon of nonconservation in
non-Hermitian scenarios, affecting physical quantities such
as particle number and local current. Employing Green’s
function approach, we derive a generalized current formula
that captures both temporal and steady-state responses of
non-Hermitian systems. Applied to one-dimensional (1D) and
two-dimensional (2D) non-Hermitian Hatano-Nelson (HN)
models, particularly under the effect of scattering potentials,
the current formula reveals the unique features of skin modes,
nonreciprocal quantum dots, and corner states. Besides, we re-
examine a recent experiment in the quantum Hall (QH) regime
and propose the experimental detection of the non-Hermitian
current. Our findings pave the way for further exploration into
the dynamic behaviors of non-Hermitian systems.

The paper is organized as follows. Section II begins by
deriving the general form of the continuity equation for non-
Hermitian systems, highlighting its distinct characteristics
compared to Hermitian systems. Following this, the explicit
formula of local current in terms of Green’s function is de-
rived in Sec. III, including the time-dependent current and
stead-state current in both the continuous and discrete form.
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Subsequent sections, Secs. IV to VI, illustrate specific ex-
amples of local current calculations. These range from the
analytical expressions of 1D HN model (Sec. IV), the numer-
ical transport result through a scattering potential in 1D case
(Sec. V), and extending to the 2D HN model (Sec. VI). An
experimental proposal related to these findings is discussed
in Sec. VII. The paper concludes with a summary and future
outlook in Sec. VIII.

II. CONTINUITY EQUATION

For any non-Hermitian system, the Hamiltonian can al-
ways be decomposed into Hermitian and anti-Hermitian parts,
denoted as Ĥ = ĤH + ĤA, where Ĥ† = ĤH − ĤA. Given a
state |�(t )〉 and the particle number density operator defined
as n̂(r) = ψ̂†(r)ψ̂ (r), its expectation value at time t is given by
〈n̂(r)〉t := 〈�(t )|n̂(r)|�(t )〉 [39,41,42]. Although the density
of particle number n may not be conservative, it still serves
as a physical observable in non-Hermitian systems, which
can be measured in experiments, such as the dissipative cold
atom system in Ref. [38] or the single-photon quantum walk
system with loss terms in Ref. [39]. Provided that the state
evolves according to the Schrödinger equation, i ∂

∂t |�(t )〉 =
Ĥ |�(t )〉, the time evolution of the particle number density is
expressed as

∂

∂t
〈n̂(r)〉t = 1

ih̄
〈[n̂(r), ĤH]〉t + 1

ih̄
〈{n̂(r), ĤA}〉t , (1)

This represents the general form of the continuity equation in
the second quantization form in the Schrödinger picture.
The terms on the right-hand side of Eq. (1) correspond
to the commutator/anticommutator between n̂(r) and the
Hermitian/anti-Hermitian parts of the Hamiltonian, ĤH/ĤA,
respectively.

In the Hermitian case, the local current operator ĵ(r) can
be derived straightforwardly from the time derivative of n̂(r)
in the Heisenberg picture, even when interaction terms are
present [43–45]. However, this approach is not applicable to
non-Hermitian Hamiltonians due to the absence of a closed
and unitary time-evolved operator. Therefore, we employ
the Schrödinger picture when deriving the general continuity
equation.

We consider the Hamiltonian in the form of Ĥ = Ĥ0 +
Ĥint + ĤA where the Hermitian part is divided into non-
interacting (Ĥ0) and interacting (Ĥint) parts. Let Ĥ0 =∫

dr ψ̂†(r)(a p̂2 + V̂ (r))ψ̂ (r) represent the noninteracting
part. For the anti-Hermitian part, two common non-
Hermitian ingredients are considered, ĤA = ∫

dr ψ̂†(r)(iβ ·
p̂ + iγ )ψ̂ (r). By inserting Ĥ into Eq. (1), the continuity equa-
tion becomes

∂

∂t
〈n̂(r)〉t + ∇ · 〈 ĵ(r)〉t = 2γ

h̄
〈n̂(r)〉t + β

a
· 〈 ĵ(r)〉t , (2)

where the local current operator is directly obtained from the
first term of [n̂(r), Ĥ0] in Eq. (1),

ĵ(r) = a

ih̄
(ψ̂†(r)∇ψ̂ (r) − (∇ψ̂†(r))ψ̂ (r)). (3)

Remarkably, both non-Hermitian β and γ impact and mod-
ify the continuity equation Eq. (2), ultimately leading to exotic
non-Hermitian phenomena. Unlike non-Hermitian spectra or
eigenstates, which are sensitive to boundary conditions, it is
essential to emphasize that the continuity equation remains ro-
bust regardless of boundary conditions (refer to Appendix A).

The continuity equation (2) can accommodate inter-
acting terms, such as the Coulomb interaction Ĥint =
1
2

∫
drdr′v(r, r′)ψ̂†(r)ψ̂†(r′)ψ̂ (r′)ψ̂ (r). Since the commuta-

tor [n̂(r), Ĥint] vanishes, these interactions maintain both the
form of the continuity equation and the definition of the local
current even in the presence of a nonzero HA. When the non-
Hermitian terms are absent, the continuity equation in Eq. (2)
reduces to its Hermitian form, ∂

∂t 〈n̂(r)〉t + ∇ · 〈 ĵ(r)〉t = 0.
The unique manner of nonconservation of current as indi-

cated by Eq. (1) is specific to non-Hermitian systems. While
the nonconservative current also exists in Hermitian systems,
its underlying cause significantly differs from the scenario
presented here. In a Hermitian system, the nonconservation
term arises from the nonzero commutator between the particle
number operator and the Hamiltonian; for instance, the non-
conservative phonons current [46,47]. But for non-Hermitian
systems, the correct form of the continuity equation requires
the incorporation of anticommutation relationships, like the
two terms on right-hand side of Eq. (2) under consideration.
Our approach specifically targets the unique correction proto-
col for the continuity equation when non-Hermitian terms are
present, which distinguishes it from the established Hermitian
paradigm. Up to this point, the phenomena of nonconserva-
tion in both Hermitian and non-Hermitian systems have been
integrated into a unified framework, as presented in Eq. (1).

III. NON-HERMITIAN CURRENT FORMULAS VIA
GREEN’S FUNCTION: TIME-DEPENDENT AND

STEADY-STATE

Green’s function is an extremely powerful technique in
transport theory, especially for calculating the time-dependent
and steady-state current regardless of the system’s geometric
shape and even in the presence of interactions [43–45,48,49].
For non-Hermitian mesoscopic systems, we are to derive a
general current formula expressed by Green’s function in both
the continuous and discrete forms.

A. Time-dependent current formula

For an arbitrary wavefunction |�(t )〉, the local current
〈 ĵ〉t is calculated as the expectation value of the operator
derived from Eq. (1). Subsequently, we turn to the trans-
port phenomena where the wave function |�(t )〉 is evolved
from an injected state, |�0(t ′)〉 at time t ′. Given an arbi-
trary Hamiltonian H = H0 + HA + Hint, the time-dependent
Green’s function is defined as [50]

(
i
∂

∂t
− H

)
G(r, r′; t, t ′) = δ(r − r′)δ(t − t ′), (4)

where G(r, r′; t, t ′) is the Green’s function of the Schrödinger
equation, (i ∂

∂t − H )�(r, t ) = 0. Whether the Hamiltonian H
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is time dependent, one can solve the corresponding G and ob-
tain the evolved state, |�(t )〉 = i[Ĝr (t, t ′) − Ĝa(t, t ′)]|�0(t ′)〉
with Gr/a(r, r′; t, t ′) = 〈r|Ĝr/a(t, t ′)|r′〉. The subscripts r/a
denotes the retarded/advanced function, Gr/a, respectively.
Then, substitute it into Eq. (3) and compute the local current j
at (r, t ), which is decomposed as j(r, t ) = ∑d

μ=1 jμeμ with d
the dimensionality of the system and eμ being the unit vector
in real space. The temporal local current is

jμ(r; t ) = −2a

h̄

∫
dr′dr′′Im[Gr (r, r′′; t, t ′)�0(r′′, t ′)

× ∂

∂rμ

(�∗
0(r′, t ′)Ga(r′, r; t ′, t ))]. (5)

This formula represents a main result of this paper. It offers
an exact expression for the local current in terms of Green’s
functions of the non-Hermitian regime. It remains valid in
the presence of various interactions, scattering potentials or
random disorder.

B. Steady-state current formula

We further consider the steady-state transport when the
Hamiltonian H is time independent. We consider a constant
injection state |�0(t ′)〉 ≡ |�0〉 at any time t ′ before the ob-
serving time t . For any time t ′, there is a response current at
time t , jμ(r; t, t ′) as in Eq. (5). Thus, the local current at t is
the sum of all the response with the injection time before t ,
expressed as Iμ(r) = ∫ t

−∞ dt ′ jμ(r; t, t ′).
Within a steady state, local current in Eq. (5) together

with Green’s functions in Eq. (4) depend only on the time
difference t − t ′ and thus can be Fourier transformed into
energy domain, yielding Iμ(r) = ∫ +∞

−∞ dε jμ(r, ε) (refer to
Appendix B). Therefore, for an injection state characterized
by certain energy ε, the steady-state local current along the
μ-direction at position r is

jμ(r, ε) = −a

π h̄

∫
dr′dr′′Im

[
Gr (r, r′′; ε)�0(r′′)

× �∗
0(r′)

∂

∂rμ

Ga(r′, r; ε)

]
. (6)

Here, we discuss the steady-state condition of Eq. (6). In a
Hermitian system, if the Hamiltonian is time independent, it
can always reach a steady state wherein energy and current are
conserved [43]. However, for non-Hermitian systems, a time-
independent Hamiltonian hardly guarantees a steady state, as
the presence of nonzero imaginary parts in the energy spec-
trum obviously disrupts the particle number conservation. We
reveal that achieving a steady state requires that energy spectra
possess nonpositive imaginary parts; otherwise, achieving a
steady state might not be possible. Consequently, the derived
steady-state current in Eq. (6) is applicable to non-Hermitian
systems with energy spectra possessing nonpositive imaginary
components.

In transport research, the continuous model provides the-
oretical foundations, while the discrete model offers greater

numerical flexibility in modeling realistic non-Hermitian sys-
tems. Building on this, we derive the discrete form of the
steady-state local current in Eq. (6) (for details refer to
Appendix B),

j

(
R + 1

2
aμ, ε

)
= −a

π h̄a0

∑
R′,R′′

Im
[
Gr

R,R′′ (ε)�0(R′′)

× �∗
0(R′)Ga

R′,R+aμ
(ε)

]
. (7)

Equation (7) represents the local current from site R to its
neighboring site R + aμ. Here a0 is the discretized lattice
constant and aμ is the unit lattice vector in the μ direction.

Further, for a pulse-like injection in position space,
|�0(R)|2 = |A|2/a0 δR,R0 , at certain position R0 with ampli-
tude A, Eq. (7) can be simplified as

j

(
R + 1

2
aμ, ε

)
= 2

h
tH
R,R+aμ

|A|2Im
[
Gr

R,R0
(ε)Ga

R0,R+aμ
(ε)

]
,

(8)

with tH
R,R+aμ

= −a/a2
0. The coefficient tH

R,R+aμ
picks the hop-

ping term between neighboring sites in the Hermitian part,
H0. The non-Hermitian features of the system are captured in
Green’s functions, as derived from Eq. (4), which lead to the
emergence of nonconservation in the local current. When H is
Hermitian, it reverts to the conventional local current expres-
sion [51]. Further, when considering only two terminals, such
expression reduces to the two-terminal conductance (refer to
Appendix C).

In the following sections, we utilize the derived current
formula in Eqs. (6) and (7) to analyze the transport properties
of some specific non-Hermitian models.

IV. ANALYTICAL STEADY-STATE CURRENT
OF 1D HN MODEL

The general current formula in Eqs. (6) and (7) is appli-
cable to various non-Hermitian system and the only required
ingredients are Green’s functions. Here, we take the 1D HN
model, which is a prototypical non-Hermitian system, as an
example to analytically derive the steady-state local current.

A. Local current of the continuous 1D HN model

We first discuss the steady-state current of a continuous 1D
HN model of which the Hamiltonian is given by [52–54]

Ĥ1DHN =
∫

dx ψ̂†(x)
(
ap̂2

x + iβ p̂x + iγ
)
ψ̂ (x). (9)

Two non-Hermitian terms, β and iγ , correspond to a non-
reciprocal hopping term and homogeneous on-site gain/loss
term, respectively. When considering the steady-state trans-
port, γ is taken to be nonpositive, i.e., Eq. (9) is dubbed
as “dissipative HN model”. For an infinite HN chain with a
continuous injection, |�0(x)|2 = |A|2 δx,x0 , at certain position
x0 with amplitude A, we solve the Green’s function in Eq. (4),
substitute it into Eq. (6), and thereby the analytical current is
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FIG. 1. (a) Schematic diagram of an infinite HN chain. The near-
est hopping tLR and tRL being discretized from the nonreciprocal
term. [(b)–(d)] Steady-state local current j of an infinite HN chain
with a continuous injection at position X = 0. The dashed line with
γ = 0 in (b) presents the exponentially growing | j| of skin modes.
The nonreciprocality in (b) and (c) signifies the existence of skin
modes as compared with (d). Parameters are the nonreciprocal term
β = 0.2 for (b) and (c), β = 0 for (d), the injecting energy E = 0.563
in (b) and (d), the on-site loss term γ = −0.15 in (c).

derived as

j(x, ε) = ∓ a

π h̄
|A|2 cos ϕ

2

4
√|zp|

e( β

a ±2
√

|zp| sin ϕ

2 )(x−x0 ), (10)

where zp = |zp|eiϕ = (ε − β2/4 − iγ )/a assuming Rezp > 0
and Im

√
zp > 0. Here, the upper and lower parts in ∓(±)

correspond to the cases x > x0 and x < x0. When the in-
jecting energy exceeds the bottom of the energy spectrum,
ε > β2/4, a finite current is observed in both left (x < x0) and
right (x > x0) directions. For β = γ = 0, j remains constant
on both sides, thereby adhering to Hermitian current con-
servation. However, when β is nonzero, the current exhibits

an exponential growth/decay, j ∝ e(β/a±2
√

|zp| sin ϕ/2)x. This
spatial variation breaks the current conservation but fulfills
the newly derived continuity equation in Eq. (2) (refer to
Appendix D).

B. Local current of the discrete 1D HN model

From the continuous to the discrete model, we consider the
1D HN lattice model with the Hamiltonian being discretized
from the continuous model in Eq. (9) as follows:

HHN =
∑

i

εonc†
i ci + tLRc†

i ci+1 + tRLc†
i+1ci. (11)

Here, εon = 2a
a2

0
+ iγ , tLR = − a

a2
0
+ β

2a0
, and tRL = − a

a2
0
− β

2a0

with a0 being the lattice constant. Note that for a steady-state
response, γ is required to be nonpositive.

The local current of the HN lattice model in Fig. 1(a) is
also analytically calculated by Eq. (7) with the injection at
x0 = 0. Local current in Fig. 1 is analytically calculated by the
Green’s function based on a discretized lattice Hamiltonian,
following the procedure in Appendix E. Other parameters are

a = 1 and the lattice constant a0 = 0.5. The local current
| j| with β > 0 spatially grows with β being the exponential
factor in Fig. 1(b) (see the dashed line). Here, the steady-
state current with the exponential distribution differs from
the constant current of a Hermitian chain in Fig. 1(d), which
matches Eq. (10) and also fits the continuity equation. Consid-
ering the on-site loss term γ , the reciprocity of local current
distinguishes the non-Hermitian system with/without skin
modes, i.e., | j(−x)| �= | j(x)| in Figs. 1(b) and 1(c) contrast-
ing | j(−x)| = | j(x)| in Fig. 1(d). With moderate loss, the
energy-dependent spatial distribution further highlights such
nonreciprocality in Fig. 1(b). Away from the injection point,
| j(x < 0)| consistently decays, while | j(x > 0)| can be de-
caying, constant or even growing based on injection energy.
Thus, the local current characterizes non-Hermitian transport
and identifies skin modes through nonreciprocity.

Compared to the continuous model, the derivation of local
current in the discrete model presents more complexities. The
core ingredients lie in the analytical expression of Green’s
function for a lattice model. Therefore, we have provided
a detailed derivation framework in the Appendix E, which
includes the semi-infinite lattice Green’s function, the transfer
matrix method, and the analytical expressions for local current
within the discrete model. We also showcase the fulfillment
of the discrete continuity equation. This derivation, while
originating from Hermitian systems, requires additional con-
sideration due to the inherent non-Hermiticity of the systems
under study. The methods outlined are applicable across vari-
ous non-Hermitian lattice models.

V. SCATTERING BETWEEN A DOUBLE
POTENTIAL BARRIER

Beyond the homogenous structure, scattering phenomena
hold crucial significance within quantum systems. Functional
devices can utilize the double barrier setup to form a quantum
dot with discrete energy levels accompanied by the resonant
tunneling phenomena [2,3,55]. A symmetrical double barrier
is introduced to the 1D non-Hermitian HN model with poten-
tial configuration, V (x) = V0[�(x − b1 − L) − �(x − b1)] +
V0[�(x − b2 − L) − �(x − b2)], V0 is the height of barriers,
L is the length of barriers, and b1 and b2 mark the left po-
sitions of the potential barriers. In the calculation of Fig. 2,
the length of HN chain is 40. Other Parameters are b1 = 17,
b2 = 23, L = 2, and V0 = 3.5. Under open boundary condi-
tions, the eigenfunction in Fig. 2(a) showcases characteristic
skin modes. Simultaneously, a bundle of isolated bound states
emerges within the spatial constraints of the double barrier,
notably with their distribution primarily extending towards the
right.

For transport measurements, we couple the system to two
terminal leads, enabling electron injection with energy E from
the left and calculate the steady-state current by Eq. (7). Local
current emerges only when the incident energy aligns with the
discrete levels of bound states in the quantum dot, consistent
with quantum resonant tunneling characteristics [Figs. 2(b)
and 2(c)]. Interestingly, unlike its Hermitian counterpart, the
local current along the non-Hermitian chain does not remain
constant in real space, as evidenced by the different magnitude
between j(X = 10) and j(X = 30). This nonconservation is

045138-4



TRANSPORT THEORY IN NON-HERMITIAN SYSTEMS PHYSICAL REVIEW B 110, 045138 (2024)

FIG. 2. (a) Distribution of eigenstates |�(X )|2 for a finite HN
chain featuring double potential barriers (two shaded regions) re-
veals an accumulation of skin modes at the right end, while the
discrete states formed between the barriers signify nonreciprocal
energy levels characteristic of a quantum dot. The corresponding
discrete eigenenergies (ReEn, ImEn) are plotted as colorful scatters
in (b) and (c) in the complex plane–horizontal for real parts and the
right vertical axis for imaginary parts. The steady-state local current
j versus injecting energy E in (b) and (c) is extracted at sites X = 10
and X = 30, respectively. The peaks of the local current precisely
coincide with the discrete levels of bound states in the quantum dot.
Parameters are tRL = 1.03, tLR = 0.97 and εon = 0.

encoded in the positive nonreciprocal term β, causing the
local current to amplify exponentially from the left injection.
Conversely, local current attenuates exponentially from the
right injection (refer to Fig. 3). As the length of HN chain
approaches its thermodynamic limit, unidirectional conduc-

FIG. 3. Local current of a finite-HN chain with double potential
barriers where the injection is from the right side. The steady-state
local current j vs injecting energy E in (a and b) is extracted at
sites X =10 and X =30, respectively. The peaks of the local current
precisely coincide with the discrete levels of bound states in the
quantum dot, which is the same as the Fig. 2.

FIG. 4. (a) Schematic diagram of a 2D finite-HN square with
nonreciprocal hopping along the x/y direction. (b) Distribution of
eigenstates |�(X,Y )|2 of the 2D HN square reveals the corner
mode at the top right. (c) A streamline plot depicting the steady-
state local current | j(X,Y )| showcases continuous injection from
(X,Y ) = (1, 1) and at a certain energy E = 0.12. The color reflects
the absolute value at each site, while arrows with wavy lines denote
the corresponding current direction. Parameters are tx = ty = 1, t s

x =
t s
y = 0.1, and γ = −0.1.

tivity only emerges at these resonant tunneling energies. This
behavior highlights the features of the nonreciprocal quantum
dot, confined by double barriers along a non-Hermitian chain:
not only does it resonate, but it also selectively amplifies or
attenuates signals in a unidirectional manner.

VI. TWO-DIMENSIONAL NON-HERMITIAN REGIME

The application of the current formula in Eq. (7) can also
extend to 2D systems. In a 2D HN model, nonreciprocal
hopping terms are present along both x and y directions,
as depicted in Fig. 4(a). To investigate the steady-state dis-
tribution of local current within the system, we uniformly
introduce a dissipation term of iγ to each site on the 2D
finite-square lattice. Under open boundary condition (OBC),
the eigenstates are localized at the top right [refer to Fig. 4(b)],
serving as a hallmark of the non-Hermitian corner-skin effect
in high-dimensional systems [56]. Considering the injection
of particles with specific energies E from the lower left corner,
we proceed to compute the local current of the 2D finite
system based on Eq. (7). As illustrated in Fig. 4(c), the local
current presents with a pronounced increase in magnitude
towards the upper right corner. This observation distinctly
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FIG. 5. Experimental detection set-up and non-Hermitian transport. [(a), (c)] Schematic diagram of QH-based HN model with 2N − 1
sites where the contacts connected by chiral edge modes serve as lattice cite with natural nonreciprocal hopping. [(b), (d)] Steady-state local
current | j(X )| showcase the continuous injection from X0 and with certain lossy strength γ = −2.5, −3, −3.5, −4, −4.5 in (b) and with certain
injection energy E = 0, 0.5, 1, 1.5, 2 in (d). X0 picks the value 11 in (b) and values 6, 11, 16 in (d). Local current flowing left/rightward is
plotted with a linear/logarithmic axis.

showcases the characteristics of the non-Hermitian corner
state.

VII. EXPERIMENTAL SET-UP FOR DETECTING
THE NON-HERMITIAN TRANSPORT

The experimental applicability of our theory can be
testified across diverse physical platforms [32–39,57]. In par-
ticular, the recent experimental realization of the HN model
within the quantum Hall (QH) regime, as reported in Ref. [57],
demonstrates non-Hermitian topology through the observa-
tion of skin modes with exponential profiles. Despite the
pronounced results, such experiment still measures the static
properties of the system of which the conductance matrix
stimulates a non-Hermitian Hamiltonian, rather than the time
evolution of a non-Hermitian Hamiltonian. However, it pro-
vides a fantastic platform to actually measure the transport of
non-Hermitian signature.

We propose a current measurement set-up based on the QH
regime in Fig. 5. By adding 2N contacts to a Cobino ring
structure, the HN lattice model with extremely nonreciprocal
hopping is achieved as in Fig. 5(a). The former 2N − 1 con-
tacts serve as the lattice site, which are connected via chiral
edge modes in QH status, i.e., tn,n+1 = 2 �= 0 and tn+1,n = 0.
Here, each contact-n (n < 2N) is grounding and connects with
an ammeter, which further serves as dissipation sources in
a reduced non-Hermitian Hamiltonian, iγ . The last contact
label by 2N is always grounding, ensuring the OBC of the

HN chain. Applying the formula in Eq. (7), the steady-state
local current is plotted in Fig. 5(b). At the site right from
the injection point (X0 = 11), i.e., current flowing towards
the direction the same as the chirality of QH mode, the local
current decays exponentially, as predicted by the analytical
formula in Eq. (8) and numerical results in Fig. 1(b). At the
left side, the local current always keeps zero since propagation
is totally forbidden by the QH chirality. The set-up in Fig. 4(a)
is very similar to that in Ref. [57], excepting contacts are
set to be grounding instead of floating. In experiments, since
each branch of current leaking via contact-n is measurable, the
local current can therefore be observed.

We also notice that another set-up is proposed in Ref. [57]
of which the results can be exactly reproduced via our non-
Hermitian transport theory. The set-up in Fig. 5(c) added
additional floating voltage probes within the current probes.
Given the chiral nature of QH edge modes, such floating con-
tacts induces equal current dividing, one half leaking into the
grounding while the other half flowing to the next site. We re-
vise the HN model by adding an energy-dependent dissipation
term, iγ (E ) = −i

√
8 − (E − Eon)2 with E being the injecting

energy and Eon = 2 being the on-site energy. The calculated
local current shows chirality and nonconservativity in Fig.
5(d). Notably, no matter where the injection point lies and
the injecting energy becomes, the local current showcases a
consistent decaying ratio, In+1 = 1/2In, (n > X0), which pre-
cisely produces the measurement result in Ref. [57].
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VIII. CONCLUSIONS

Our research introduces a transport theory, focusing specif-
ically on the current response, through the reestablishment
of the continuity equation for non-Hermitian Hamiltonians
within the Schrödinger picture. We contend that the incor-
poration of anticommutators involving non-Hermitian terms
plays a fundamental role, leading to a distinctive revision
of the continuity equation that sets it apart from its Her-
mitian counterparts. Owing to its universal applicability,
this approach allows for a robust examination of the in-
herent nonconservative current phenomena in non-Hermitian
systems. Employing the Green’s function method, we sys-
tematically derive an explicit formula for the local current
in both temporal and steady-state cases. The universality of
this approach is demonstrated across various dimensional
examples, unveiling prominent skin modes, nonreciprocal
quantum dots, and corner states. This theoretical framework
not only enables a deep investigation into nonconservative
current phenomena inherent in non-Hermitian systems but
also sets the stage for experimental validation and exploration
of non-Hermitian quantum dynamics. The advancements in
material growth, device fabrication, and electrical transport
measurement techniques highlight the potential of various
experimental platforms to validate our theoretical predic-
tions and emphasize the importance of further research into
quantum non-Hermitian dynamical evolution. Our research
would inspire experimental investigations and contribute to
the advancement of non-Hermitian device technology and
functionality of non-Hermitian quantum devices.
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APPENDIX A: THE CONTINUITY EQUATION HOLDS
REGARDLESS OF BOUNDARY CONDITIONS

Here, we showcase the invariance of the continuity
equation regardless of different boundary conditions, open
boundary conditions (OBC) and periodic boundary conditions
(PBC), emphasizing its universal applicability.

We first discuss on the HN model in Eq. (9) under OBC
[52–54] in which case skin modes appear [24,25]. The skin
mode |φR

n 〉 satisfies H |φR
n 〉 = εn|φR

n 〉, where the wavefunction
is φR

n (x) = √
2/Leβx/(2a) sin (nπx/L) and the eigenenergy is

εn = an2π2/L2 + β2/4a + iγ with L being the finite length.
For each skin mode, the corresponding n(x, t ) exponentially
increases or decreases with time t when γ > 0 or γ < 0. That
is, the particle number

∫ L
0 n(x, t )dx does not conserve. The

nonreciprocal term β does not affect the particle number but
changes its spatial distribution: the skin mode accumulates at
the right or left side with β > 0 or β < 0. It is remarkable

that such inhomogeneous distribution would not lead to any
net current when substituting φR

n (x) into Eq. (3). Here, the
continuity equation Eq. (2) holds but simplifies to ∂t n(x, t ) =
(2γ /h̄)n(x, t ).

Since the conventional bulk-boundary condition no longer
holds for the non-Hermitian system [19,21,23], we shall also
discuss the HN model under PBC. Here, the eigenstate is
in the form of Bloch wave φk (x) = eikx, k = 2nπ/L and the
eigenenergy is εk = ak2 + ikβ + iγ . Given one eigenstate
φk , the density of particle number exponentially varies over
time, ∂t n = 2(βk + γ )n, where both γ and β play a role.
The current density is j = (2ak/h̄)n. When k �= 0, there is
a current in the HN ring, the magnitude of which is propor-
tional to the specific wave vector k. Such current is evenly
distributed in space, ∂

∂x j = 0, meeting with the translational
invariance requirement of the PBC. But the current j changes
over time, in sync with n. As to the continuity equation,
the aforementioned intuitive understanding should be revised
so that the non-Hermitian terms γ and β have a direct
impact on n and indirect impact on j. In a Hermitian sys-
tem, given a stationary state, both n and j do not change
over time. In a non-Hermitian system, n and j vary over
time but the relative values ( n(x2 )

n(x1 ) and j(x2 )
j(x1 ) ) remain constant,

that is, n and j synchronously increase or decrease as a
whole.

In both boundary conditions, OBC and PBC, the continuity
equation Eq. (2) always holds, as stated in Sec. II.

APPENDIX B: STEADY-STATE CURRENT FORMULA
EXPRESSED IN TERMS OF GREEN’S FUNCTION

Below, we derive the steady-state current in details for a
time-independent non-Hermitian system. Despite the complex
eigenenergies, the non-Hermitian system owning an energy
spectrum with nonpositive imaginary parts can also reach a
steady state. The (inverse) Fourier transform of Green’s func-
tions is defined as follows:

Gr/a(ε) =
∫ ∞

−∞
Gr/a(t, t ′)eiε(t−t ′ )dt, (B1)

Gr/a(t, t ′) = 1

2π

∫ ∞

−∞
Gr/a(ε)e−iε(t−t ′ )dε. (B2)

Recall that Gr (t, t ′) = −i�(t − t ′)
∑

n e−iεn (t−t ′ )|φR
n 〉〈φL

n | and
Ga(t, t ′) = i�(t ′ − t )

∑
n eiε∗

n (t ′−t )|φL
n 〉〈φR

n |. When the imagi-
nary part of any eigenenergy εn is nonpositive, both Gr (ε)
and Ga(ε) are well defined. Thus, we can derive the steady-
state current in the following. When the imaginary part
of an eigenenergy εn is positive, Gr (ε) and Ga(ε) are ill-
defined and the non-Hermitian system may not reach a steady
state.

For a non-Hermitian system owning an energy spectrum
with nonpositive imaginary parts, we consider a constant
injection |�0(t ′)〉 ≡ |�0〉 for any time before the observing
time, t ′ < t . For any time t ′, there is a response current at
time t , jμ(r; t, t ′), i.e., Eq. (5) in the main text. Thus, the
total local current at t is the sum of all the response with the
injection time before t . The local current Iμ(r) at position r
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in the continuous coordinate representation is

Iμ(r) =
∫ t

−∞
dt ′ jμ(r; t, t ′)

=
∫ t

−∞
dt ′ −2a

h̄

∫
dr′

∫
dr′′Im

(
Gr (r, r′′; t, t ′)�0(r′′)

∂

∂rμ

�∗
0(r′)Ga(r′, r; t ′, t )

)

= − a

π h̄

∫ ∞

−∞
dε

∫
dr′

∫
dr′′ Im

(
Gr (r, r′′; ε)�0(r′′)�∗

0(r′)
∂

∂rμ

Ga(r′, r; ε)

)
, (B3)

where Gr/a(ε) is inserted and 1
2π

∫ +∞
−∞ dt ′e−i(ε−ε′ )t ′ = δ(ε − ε′) is used. Such equation shows that the local current at position r,

Iμ(r) is time independent and reaches the steady state.
Rewrite the steady-state current as Iμ(r) = ∫ +∞

−∞ dε jμ(r, ε). Given an injection with energy ε (here, suppose the injection
energy is real), the local current per energy is obtained, jμ(r, ε), as shown in Eq. (6).

In the context of lattice models typically used in numerical calculation, the discrete form of the local current can also be
obtained using the finite difference method.

Take the expectation value of the local current operator in Eq. (3) with respect to a quantum state at time t , |�(t )〉, and we get

〈 ĵ(r)〉t = 〈�(t )| ĵ(r)|�(t )〉

= a

ih̄
(〈�(t )|r〉∇〈r|�(t )〉 − (∇〈�(t )|r〉)〈r|�(t )〉)

= a

ih̄
(�∗(r, t )∇�(r, t ) − (∇�∗(r, t ))�(r, t )). (B4)

Thus, the μ component of the local current is

jμ(r, t ) = a

ih̄

(
�∗(r, t )

∂

∂rμ

�(r, t ) −
(

∂

∂rμ

�∗(r, t )

)
�(r, t )

)
. (B5)

Denote the local current from lattice R to R + aμ as j(R + 1
2 aμ), and it can be discretized as follows:

j

(
R + 1

2
aμ, t

)
= a

ih̄

(
�∗

(
R + 1

2
aμ, t

)
∂

∂rμ

�

(
R + 1

2
aμ, t

)
−

(
∂

∂rμ

�∗
(

R + 1

2
aμ, t

))
�

(
R + 1

2
aμ, t

))

= a

ih̄

(
�∗

(
R + 1

2
aμ, t

)
1

a0
[�(R + aμ, t ) − �(R, t )] − 1

a0
[�∗(R + aμ, t ) − �∗(R, t )]�

(
R + 1

2
aμ, t

))

= − 2a

h̄a0
Im(�(R, t )�∗(R + aμ, t )). (B6)

Here, a0 is the lattice constant and �(R + 1
2 aμ, t ) is substituted by 1

2 [�(R + aμ, t ) + �(R, t )].
In terms of the Green’s function, the temporal local current as a response to the excitation at time t ′ is

j

(
R + 1

2
aμ; t ′, t

)
= − 2a

h̄a0
Im(〈R|iGr (t, t ′)|�0(t ′)〉〈�0(t ′)|[−iGa(t ′, t )]|R + aμ〉)

= − 2a

h̄a0

∑
R′

∑
R′′

Im(〈R|Gr (t, t ′)|R′′〉〈R′′|�0(t ′)〉〈�0(t ′)|R′〉〈R′|Ga(t ′, t )|R + aμ〉)

= − 2a

h̄a0

∑
R′

∑
R′′

Im(Gr (R, R′′; t, t ′)�0(R′′, t ′)�∗
0(R′, t ′)Ga(R′, R + aμ; t ′, t )). (B7)

As to the steady state, Eq. (B7) can obtained by the Fourier transformed Green’s function denoted as Eq. (B1). Thus, the
steady-state local current per energy, j(R + 1

2 aμ, ε), from lattice R to lattice R + aμ is obtained as Eq. (7).
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APPENDIX C: CURRENT EXPRESSION REDUCED TO
THE TWO-TERMINAL TRANSMISSION COEFFICIENTS

FOR THE HERMITIAN CASE

Here, we will show how the local current expression in
Eq. (8) ties to the two-terminal transmission coefficient for
the Hermitian case.

Suppose a noninteracting Hamiltonian can be separated
into two parts H = H0 + V . When H is time independent, the
total Green’s function in the energy space can also be rewrit-
ten as G(ω) = 1

ω−H . For the Hamiltonian H0, the isolated
Green’s function is g(ω) = 1

ω−H0
. The connection between

two Green’s function g(ω) and G(ω) can be derived as

1

ω − H
= 1

ω − H0
+ 1

ω − H0
V

1

ω − H
.

Rewrite the above equation in terms of Green’s function and
it recovers the Dyson equation,

G(ω) = g(ω) + g(ω)V G(ω). (C1)

We assume there is one point-injection at x0. For the
comparison with the two-terminal current expression, we con-
sider a semi-infinite chain with the Hamiltonian Hsemi−inf =
Hcen + Hright + Hc. Hcen is the targeted central region where
two end points are labeled by xL and xR. Hright describes a
normal lead connected with the central region of which the
left end is labeled as xR+1. Hc denotes the coupling, i.e.,
Hc = tR,R+1c†

RcR+1 + tR+1,Rc†
R+1cR. Then, let g be the Green’s

function of two isolated regions Hcen and Hright and let G be
the Green’s function of the whole system Hsemi−inf . Based on
the equation in Eq. (C1), the elements of these two Green’s
functions are connected by the equation,

Gr
R,L = gr

R,L + gr
R,RtR,R+1Gr

R+1,L,

Gr
R+1,L = gr

R+1,R+1tR+1,RGr
R,L,

where gr
R,R+1 = gr

R+1,R = gr
R+1,L = 0 is used.

Considering a constant injection at the left end
point xL of the central region, the local current
from xR to xR+1 (i.e., from the center region to the
right lead) is j(ε) = 2

h Im(tR,R+1Gr
R+1,L�LGa

L,R) = 2
h Im

(tR,R+1gr
R+1,R+1tR+1,RGr

R,L�LGa
L,R) = 2

h Im(�r
RGr

R,L�LGa
L,R )

with the self-energy from the coupling between the center
region and the right lead �r

R ≡ tR,R+1gr
R+1,R+1tR+1,R.

Then j(ε) = −i
h {�r

RGr
R,L�LGa

L,R − [�r
RGr

R,L�LGa
L,R]∗} =

−i
h {(�r

R − �a
R)Gr

R,L�LGa
L,R} = 1

h�RGr
R,L�LGa

L,R with �R ≡
−i(�r

R − �a
R). Thus, the current from the center region

to the right lead exactly corresponds to the two-terminal
transmission coefficient.

APPENDIX D: THE FULFILLMENT OF THE CONTINUITY
EQUATION IN CONTINUOUS HN MODEL

Given the continuous HN model in Eq. (9), we will show
that the steady-state local current in Eq. (10) satisfies the con-
tinuity equation. The retarded and advanced Green’s functions

defined in Eq. (4) are solved as

Gr (x, x0; ε) = e
1
2

β

a (x−x0 )ei
√

zp|x−x0|

2i
√

zp
,

Ga(x, x0; ε) = e− 1
2

β

a (x−x0 )e−i(√zp)∗|x−x0|

−2i(
√

zp)∗
.

Here, zp =|zp|eiϕ with |zp|=
√

(ε/a − β2/4a2)2 + (γ /a)2,
tan ϕ = −γ /a

ε/a−β2/4a2 . The particle number at x propagating from
the injecting site x0 is

n(x, ε) = 1

2π
|A|2Gr (x, x0; ε)Ga(x0, x; ε) (D1)

= 1

2π
|A|2 1

4|zP|e
β

a (x−x0 )e−2
√

|zp| sin ϕ

2 |x−x0|. (D2)

Note, here, 1/2π inside n(x, ε) comes from the Fourier trans-
form from time space to energy space.

The local current in Eq. (9) is related to the density of
particle number in Eq. (D2) by

j(x, ε) = −2a

h̄
(±)

√|zp| cos
ϕ

2
n(x, ε). (D3)

Take the derivative of local current j(x, ε), insert Eq. (D3)
and we get the continuity equation,

∂

∂x
j(x, ε) = β

a
j(x, ε) + 2γ

h̄
ρ(x, ε).

The steady-state local current of continuous HN model
satisfies the continuity equation, which is exactly the Fourier
transform of Eq. (2) under the steady-state condition.

APPENDIX E: ANALYTICAL LOCAL CURRENT
DERIVATION AND THE FULFILLMENT OF THE

CONTINUTITY EQUATION IN DISCRETE HN MODEL

Given the discrete HN model in Eq. (11), we will show that
the steady-state local current in Eq. (7) satisfies the continuity
equation.

In the main text, we calculated the steady-state local cur-
rent of the HN lattice chain with a continuous pulse-like
injection at a certain position x0.

In this Appendix, we comprehensively outline the deriva-
tion process for the analytical expression of the local current
in an HN lattice model, which proceeds through the fol-
lowing steps: (1) Discretize the continuous Hamiltonian. (2)
Derive the surface Green’s function for a non-Hermitian semi-
infinite lattice. (3) Obtain the analytical expression for the
local current. (4) Derive the continuity equation in the lattice
framework. (5) Verify the local current’s compliance with the
continuity equation.

This structured approach allows for a systematic explo-
ration of the analytical derivation of the local current within
the HN lattice model.

1. Green’s function of a semi-infinite non-Hermitian chain

Based on a semi-infinite chain set-up, we can derive the
analytical expression for the local current within a lattice
model exhibiting non-Hermitian characteristics. In Hermitian
systems, many approaches exist for computing the surface
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Green’s function of a semi-infinite chain. Some methods in-
herently rely on the boundary condition that necessitates the
convergence of the Green’s function at an infinite distant
point. However, this convergence condition does not always
apply to non-Hermitian systems.

To accommodate non-Hermitian systems, where eigen-
functions may not maintain orthonormal relationships, we
employ the transfer matrix method to obtain the surface
Green’s function. We adopt the procedural framework initially
introduced in Refs. [58,59] for Hermitian systems.

We divide the translational-invariant lattice chain into prin-
cipal layers. Within each layer, the degree of freedom is M.
The principal layers are labeled by ..., 2, 1, 0, 1, 2, ... with
the same Hamiltonian H00, a M × M matrix. The hopping
between adjacent principal layers is H01 and H10. For the non-
Hermitian model, it is necessary to keep the subscripts of H01

and H10 since H01 is not necessary the Hermitian conjugate
of H10.

The retarded Green’s function of a non-Hermitian chain
satisfies (ε + iη − H )Gr = I . Note that Gr is a function of ε

and η is a positive infinitesimal. When we focus on the zeroth
layer, there comes

(ε + iη − H00)Gr
00 − H01Gr

10 − H10Gr
10

= IM×M , (E1)

where Gr
00, Gr

10, and Gr
10

are the matrix element of Gr . And
IM×M is an identity matrix. Also

(ε + iη − H00)Gr
n0 − H01Gr

n−1,0
− H10Gr

n+1,0
= OM×M ,

(E2)

(ε + iη − H00)Gr
n0 − H01Gr

n+1,0 − H10Gr
n−1,0 = OM×M ,

(E3)

with n = 1, 2, .... The transfer matrix T is introduced as

T =
(

H−1
01 (ε + iη − H00) −H−1

01 H10

IM×M OM×M

)
. (E4)

By induction, the Green’s function meets with the iterative
relation(

Gr
n+1,0

Gr
n,0

)
= T n

(
Gr

10

Gr
00

)
,

(
Gr

n,0

Gr
n+1,0

)
= T −n

(
Gr

00

Gr
10

)
, (E5)

and thus these Green’s functions can be expressed in terms
of the eigenvector of the transfer matrix T . Sort the 2M
eigenvalues of T to satisfy |λ1| � |λ2| � . . . |λM | � |λM+1| �
· · · � |λ2M |, arrange the corresponding eigenvectors into a
matrix � ≡ (−→v1 , . . . ,−→v 2M ) and divide � into four blocks
� = (S2 S4

S1 S3
).

The Green’s function of the 0th-layer of a infinite chain is
given as

Gr
00 = [

(ε + iη − H00) − H01S2S−1
1 − H10S3S−1

4

]−1
. (E6)

The surface Green’s function of the zeroth layer of a left
or right semi-infinite chain is obtained by setting either H01 =
OM×M or H10 = OM×M in Eq. (E6).

Note that, the upper right block of the transfer matrix
defined in Eq. (E4) requires the inverse of H01. It can be
satisfied either by picking a suitable configuration of principal

layers or by introducing the multiplication of several transfer
matrices as in [58].

2. Obtain the analytical expression for the local current

For the HN model defined in Eq. (11), we have H00 =
εon = 2a

a2
0

+ iγ = ε0 − iδ, H01 = tLR, H10 = tRL. Here, iγ is
replaced by −iδ. For the steady-state transport, δ is required
to be δ � 0. Substitute them into the transfer matrix defined
in Eq. (E3). The eigenvalues are

λ±(ω) = 1

2tLR
((ω + iδ) ±

√
(ω + iδ)2 − 4tLRtRL), (E7)

where ω = ε − ε0 and the relation holds λ+λ− = tRL
tLR

.
Let zq = 4tLRtRL − (ω + iδ)2. Consider the injection

energy range satisfies ω2 < 4tLRtRL + δ2, which means
Re(zq) > 0. Denote zq = |zq|eiϕ and

√
zq = |zq|eiϕ/2. Corre-

spondingly, the two eigenvalues are λ±(ω) = 1
2tLR

((ω + iδ) ±
i
√

zq), where Re(i
√

zq) = −√|zq| sin ϕ

2 and Im(i
√

zq) =√|zq| cos ϕ

2 .

The corresponding eigenvectors are v± = (λ±
1 ). Thus, � =

(S2 S4
S1 S3

) = (λ1 λ2
1 1 ), where |λ1| < |λ2|.

For the left semi-infinite chain, set H01 = tLR = 0 and sub-
stitute into Eq. (E6) so that we obtain the surface Green’s
function. After some simplification, it becomes gr

sL = λ1
tRL

.
Therefore, the left surface Green’s function is

gr
sL(ε) = 1

2tLRtRL
((ω + iδ) ± i

√
zq),

Re
(
gr

sL(ε)
) = 1

2tLRtRL

(
ω ∓ √|zq| sin

ϕ

2

)
,

Im
(
gr

sL(ε)
) = 1

2tLRtRL

(
δ ± √|zq| cos

ϕ

2

)
. (E8)

Since λ2λ1 = tRL
tLR

, let |λ2| = α|λ1|, α|λ1|2 = tRL
tLR

. α =
ω pm

√
|zq| sin ϕ

2

ω mp
√

|zq| sin ϕ

2

= − δ pm
√

|zq| cos
ϕ

2
δ mp

√
|zq| cos ϕ

2

, with pm follow the sign

of λ2.
The local current from site i to site i + 1 defined in

Eq. (8) is

j(xi, ε) = a

h̄a2
0

2Im
[
tLRgr

sL

] 1

2π
|A|2 ∣∣gr

sL

∣∣2(∣∣tLRgr
sL

∣∣2)i
, (E9)

where |gr
sL|2 = | λ1

tRL
|2 = 1

αt2
RL

tRL
tLR

= 1
tRLtLR

1
α

, |tLRgr
sL|2 = tLR

tRL

1
α

,

and 2Im[tLRgr
sL] = 1

tRL
(δ ± √|zq| cos ϕ

2 ).
This is the analytical expression of the steady-state local

current of HN lattice model. In the main text, the injection
point is set to be x0 = 0 and curves in Fig. 1 with x < 0 are
plotted according to Eq. (E9). Also, the curves with x > 0 can
also be derived in a similar procedure by solving a right semi-
infinite chain.
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3. The continuity equation of a discrete HN lattice model

To derive the explicit form of the continuity equation of
the discrete Hamiltonian of a HN model in Eq. (11), we first
separate it into three parts, H = H0 + Hanti1 + Hanti2,

H0 =
∑

i

ε0c†
i ci + tHc†

i+1ci + tHc†
i ci+1,

Hanti1 =
∑

i

tAc†
i+1ci − tAc†

i ci+1,

Hanti2 =
∑

i

iγ c†
i ci,

where tH = 1/2(tLR + tRL) and tA = 1/2(−tLR + tRL).
Then the time derivative of the particle number at site i is

expressed via the (anti)commutation relation, i.e., the concrete
form of the continuity equation in Eq. (1),

∂

∂t
〈n̂i〉t =

〈
1

ih̄
[n̂i, H0]

〉
t

+
〈

1

ih̄
{n̂i,Hanti1}

〉
t

+
〈

1

ih̄
{n̂i,Hanti2}

〉
t

. (E10)

The first commutator reads

1

ih̄
[n̂i, H0]

= 1

ih̄
[n̂i, tHc†

i ci+1 + tHc†
i+1ci + tHc†

i−1ci + tHc†
i ci−1]

= 1

ih̄
((tHc†

i ci+1 − tHc†
i+1ci ) − (tHc†

i−1ci − tHc†
i ci−1))

= − ĵ(i → i + 1) + ĵ(i − 1 → i),

where the local current operator from site i to site i + 1 and
that from site i − 1 to site i are denoted as

ĵ(i → i + 1) = − 1

ih̄
(tHc†

i ci+1 − tHc†
i+1ci ),

ĵ(i − 1 → i) = − 1

ih̄
(tHc†

i−1ci − tHc†
i ci−1).

The first anticommutator reads

1

ih̄
{n̂i, Hanti1}

= 1

ih̄
{n̂i,−tAc†

i ci+1 + tAc†
i+1ci − tAc†

i−1ci + tAc†
i ci−1}

= 1

ih̄
(−tAc†

i ci+1 + tAc†
i+1ci ) + 1

ih̄
(−tAc†

i−1ci + tAc†
i ci−1)

= tA

tH
ĵ(i → i + 1) + tA

tH
ĵ(i − 1 → i).

The second anticommutator term reads

1

ih̄
{n̂i, Hanti2} = 1

ih̄

{
n̂i,

∑
i

iγ c†
i ci

}
= 2γ

h̄
n̂i.

Therefore, the continuity equation in Eq. (E10) becomes

∂

∂t
〈n̂i〉t = −〈 ĵ(i → i + 1)〉t + 〈 ĵ(i − 1 → i)〉t

+ tA

tH
〈 ĵ(i → i + 1)〉t + tA

tH
〈 ĵ(i − 1 → i)〉t

+ 2γ

h̄
〈n̂i〉t .

Redefine that ∂
∂x 〈 ĵ(x = i)〉t = 〈 ĵ(i → i + 1)〉t − 〈 ĵ(i −

1 → i)〉t and 〈 ĵ(x = i)〉t = 1
2 (〈 ĵ(i → i + 1)〉t + 〈 ĵ(i − 1 →

i)〉t ). The continuity equation turns to a compact form as
follows:

∂

∂t
〈n̂i〉t + ∂

∂x
〈 ĵ(x = i)〉t = 2tA

tH
〈 ĵ(x = i)〉t + 2γ

h̄
〈n̂i〉t ,

(E11)

which is similar to the continuous version.

4. Verify the local current’s compliance
with the continuity equation

Now check the continuity equation of HN model in the
discrete version. Based on the surface Green’s function in
Eq. (E8) and Dyson equation in Eq. (C1), we can derive the
density of particle number at site i,

n(xi, ε) = 1

2π
|A|2gr

sL

(
tLRgr

sL

)i
t∗
LRga

sL

= 1

2π
|A|2|gr

sL|2(∣∣tLRgr
sL

∣∣2)i
.

So we have the relation between j and n, i.e., j(xi, ε) =
χ n(xi, ε), with the coefficient χ = − tH

h̄ 2Im[tLRgr
sL].

Let abbreviate the variables as ni = n(xi, ε), ji→i+1 =
j(xi, ε). Then, the difference of local current at site i is

ji→i+1 − ji−1→i = χ
(
1 − ∣∣tLRgr

sL

∣∣−2)
ni,

and the redefined the local current at site i is

ji→i+1 + ji−1→i = χ
(
1 + ∣∣tLRgr

sL

∣∣−2)
ni.

Label the following expression as fl := ( ji→i+1 −
ji−1→i ) − 2tA

tH
1
2 ( ji→i+1 + ji−1→i ), and its explicit form is

fl = χ
(
1 − ∣∣tLRgr

sL

∣∣−2)
ni − tA

tH
χ

(
1 + ∣∣tLRgr

sL

∣∣−2)
ni.

By comparing fl with ni, and employing simplification, we
arrive at the relationship fl = − 2δ

h̄ ni, that is,

ji→i+1 − ji−1→i = 2tA

tH

1

2
( ji→i+1 + ji−1→i ) − 2δ

h̄
ni.

Redefine that ∂
∂x 〈 ĵ(x = i)〉ε = 〈 ĵ(i → i + 1)〉ε − 〈 ĵ(i −

1 → i)〉ε and 〈 ĵ(x = i)〉ε = 1
2 (〈 ĵ(i → i + 1)〉ε + 〈 ĵ(i − 1 →

i)〉ε ), and replace −δ by γ , so the continuity equation turns to
a compact form as follows:

∂

∂t
〈n̂i〉ε + ∂

∂x
〈 ĵ(x = i)〉ε = 2tA

tH
〈 ĵ(x = i)〉ε + 2γ

h̄
〈n̂i〉ε .
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It is the steady-state continuity equation for HN model
where the left semi-infinite chain is connected with a source

at the rightmost side. As expected, it recovers the Fourier
transform of Eq. (E11).
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