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In this paper we study gapped boundary states of ZN bosonic symmetry-protected topological (SPT) phases in
(4+1)d, which are characterized by mixed ZN -gravity response, and the closely related phases protected by CN

rotation symmetry. We show that if N /∈ {2, 4, 8, 16}, any symmetry-preserving boundary theory is necessarily
gapless for the root SPT state. We then propose a (3+1)d Z2 gauge theory coupled to fermionic matter as a
candidate boundary theory for N = 2, 4, 8, 16, where the anomalous symmetry is implemented by invertible
topological defects obtained from gauging (2+1)d chiral topological superconductors. For the CN case, we
present an explicit construction for the boundary states for N = 2, 4, 8, 16, and argue that the construction fails
for other values of N .
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I. INTRODUCTION

The concept of bulk-boundary correspondence is fun-
damental to the theory of topological phases. It is best
understood when the bulk is an invertible symmetry-protected
topological (SPT) phase, where the boundary has a ’t Hooft
anomaly of the symmetry group that protects the bulk SPT
phase [1]. The presence of a ’t Hooft anomaly puts nontrivial
constraints on the low-energy dynamics, and in particular
excludes a trivially gapped symmetric ground state. More
generally, any low-energy theory realized in the system must
have the given anomaly. Generally, three options are possible
for the boundary theory: gapless, symmetry breaking, or a
symmetry-preserving topologically ordered phase (when the
boundary has spatial dimension D greater than 1).

The last possibility, namely the boundary forming a
symmetry-enriched topological (SET) phase [2,3] with the
’t Hooft anomaly, has been extensively investigated in the
past few years. In particular for D = 2, general theories of
SET phases in both bosonic and fermionic systems have been
formulated [4–9]. Systematic methods to compute ’t Hooft
anomalies given a SET phase. It is also known that certain
’t Hooft anomalies cannot be matched by any SET in D = 2,
thus any symmetry-preserving theory must be gapless. Known
examples of “symmetry-enforced gaplessness” involve con-
tinuous and anti-unitary symmetry group [10], such as a
bosonic anomaly for SO(5) × ZT

2 symmetry [11,12].
The focus of this paper is D = 3, where a full theory

of SET phases is not available yet. A necessary ingredi-
ent of such a theory is a complete understanding of the
structure of ’t Hooft anomaly. It is well known that ’t
Hooft anomalies are classified by SPT phases in one di-
mension higher. Interestingly, in (4+1)d there is a class of
bosonic SPT phases protected by unitary symmetry, that goes
beyond the well-known “group-cohomology” classification.
Such “beyond-cohomology” SPT phases can be understood
as decorating lower-dimensional invertible topological phases
on symmetry defects. The physical characterization of these
beyond-cohomology SPT phases turns out to be rather subtle.

An argument based on topological quantum field theory
(TQFT) consideration suggests that for N = 2, the nontrivial
phase can be characterized by the ground state having an
odd Z2 charge when put on the CP 2 manifold. However, a
commuting-projector model Hamiltonian, unitarily equivalent
to a group-cohomology SPT model in flat space, can also ex-
hibit the same phenomenon [13]. Therefore a definite invariant
of the phase requires considering the boundary anomaly
(or the closely related defect decoration) [14].

We will study the boundary theory of the root ZN beyond-
cohomology SPT phase, using two complementary points of
view. First of all, we use a theorem proven by Cordova and
Ohmori to show that only when N = 2, 4, 8, 16, there can
be ZN symmetry-preserving TQFT boundary states. We then
propose a boundary TQFT for such allowed values of N : a
(3+1)d Z2 gauge theory with a fermionic Z2 charge (which
will be referred to as a fermionic Z2 gauge theory from
now on). Secondly, we provide an explicit construction of
the symmetry-preserving boundary state for N = 2, 4, 8, 16.
However, given that solvable models for ZN BC SPT phases
are still lacking for N > 2, we turn to a different but related
system, that is a (4+1)d SPT phase protected by CN rota-
tion symmetry. Following the dimensional reduction approach
[15], we show that our construction of gapped boundary
topological orders for N = 2, 4, 8 preserves the boundary CN

symmetry, while surprisingly fails for N = 16. Yet, a slight
modification yields a similar boundary state.

II. BOSONIC ZN SPT IN (4+1)d

First we review the classification of (4+1)d bosonic SPT
phases, following [16,17]. Let G be a compact unitary
group. The “group-cohomology” SPT phases are classified
by H5[G, U(1)], and the “beyond-cohomology” SPT phases
are classified by H2[G,Z], as we will argue below. The
total group of SPT phases is an extension of H2[G,Z] by
H5[G, U(1)]. We show that for 3 � N , the group structure is
Z2

N , while for 3 | N , it is Z3N × ZN/3. Details to determine the
group structure of ZN SPT are given in Appendix A. For finite
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G, exactly solvable models (either in the form of a state-sum
TQFT, or commuting-projector Hamiltonian) are known for
such phases [1].

A. Defect decoration

To see how to construct the ZN BC SPT phase, it would
be instructive to start from G = U(1) and then break it
down to ZN . The group-cohomology SPT phases are classi-
fied by H5[U(1), U(1)] = Z, which can be characterized by
the (4+1)d quantum Hall response. The beyond-cohomology
phases [H2[U(1),Z] = H1[U(1), U(1)] = Z] can be con-
structed as follows: suppose the U(1) symmetry is sponta-
neously broken so the system is in a superfluid phase. In
a (4+1)d superfluid, the vortices are codimension-2 domain
walls (i.e., spatially they are surfaces). It is well known that by
proliferating the vortices one can restore the U(1) symmetry
and enter an insulating state. To create a nontrivial BC SPT
state, the vortices are decorated by (2+1)d invertible states.
Once the U(1) symmetry is broken down to ZN , a U(1) vortex
should be viewed as a junction fusing N fundamental ZN

domain walls together.
The “beyond-cohomology” SPT phases can thus be un-

derstood as decorating (2+1)d nontrivial invertible states on
junctions of symmetry defects [18,19]. Recall that invertible
phases in (2+1)d form a Z group, generated by the so-called
E8 state with chiral central charge c− = 8. It has the simplest
edge theory being a chiral (E8)1 conformal field theory (CFT).
We then consider decorating the codimension-2 trijunctions
of symmetry defects, which are surfaces in 4D space, with
invertible states. A trijunction is labeled by a pair of group
elements (g, h) ∈ G. Fusing this pair of defects gives a gh
domain wall in G. The decoration pattern is parametrized by
an integer-valued function n(g, h) ∈ Z, evaluated at each tri-
junction. Physically n(g, h) = c−/8 is the E8 state decorated
on the trijunctions. In order to get a short-range entangled
state, it is necessary that the decoration patterns on defect
configurations, which can be locally deformed to each other
are (adiabatically) equivalent. This requirement is equivalent
to imposing the 2-cocycle condition on n(g, h) when we con-
sider a junction that fuses three symmetry defects g, h, k into
ghk. In addition, the following procedure does not change
the underlying phase of matter: we create a pair of invertible
states labeled by m(g) and −m(g) on the g defect and move
them to the adjacent trijunctions, i.e., n(g, h) → n(g, h) +
m(g) + m(h) − m(gh). Thus n(g, h) is a 2-cocycle defined up
to 1-coboundary and its classification is given by H2[G,Z].

Mathematically, we can understand such defect decoration
by looking at the explicit expression of the 2-cocycle. For G =
ZN , a 2-cocycle in H2[ZN ,Z] can be written in this canonical
form

n(a, b) = s

N
(a + b − [a + b]N ), (1)

where a, b ∈ {0, 1, . . . , N − 1} denote the elements of ZN

additively, s takes values in {0, 1, . . . , N − 1}, and [x]N means
x mod N . This explicit expression of n shows that fusing N of
the fundamental ZN defects should yield a (2+1)d invertible
state labeled by n(1, 1) + n(2, 1) + · · · + n(N − 1, 1) = s.

A key question here is what (2+1)d invertible states can
be decorated consistently on the U(1) vortex sheets or the

junction of ZN defects. Naively one might think of the E8

states but it is not obvious that such a decoration is consistent.
While we do not have a direct way to check the consistency
at the level of a wavefunction, it is useful to consider the
following QFT argument: Assuming that the system can be
described by a relativistic field theory, then we can study the
theory on a general curved manifold (in Euclidean spacetime)
and its response to background U(1) gauge field. That is, we
consider the partition function Z (M5, A) of the theory defined
on a closed 5-manifold M5 equipped with a U(1) background
gauge field A. To write down the well-defined action, it is
convenient to introduce a six-dimensional manifold B6 with
∂B6 = M5. The gauge field A is also extended to B6. The BC
SPT phase is characterized by the following topological term
[20–22]:

Z (B6, A) = exp

(
ik

∫
B6

F ∧ p1

)
, (2)

where F = dA is the field strength, and p1 is the Pon-
tryagin class of the tangent bundle of the manifold. Then
the partition function on M5 can be written as Z (M5, A) =
exp(2π ik

∫
M5

A ∧ p1). Notice that a well-defined topological
term in Eq. (2) should be independent of the choice of mani-
fold extension. In other words, the right-hand side of Eq. (2),
when evaluated on any closed 6-manifold, must give 1. This
requires k to be an integer [23]. On the other hand, observe
that e2π ik

∫
p1 defines an invertible theory in (3+1)d, [24] thus

when the manifold has a (2+1)d boundary, the theory reduces
to a boundary gravitational Chern-Simons term with chiral
central charge 24k. Thus we identify 24k as the chiral central
charge of the invertible theory decorated on the domain wall
junctions [22]. In other words, the index s in Eq. (1) must be
a multiple of 3.

This QFT argument suggests that one can only decorate
minimally c− = 24 invertible states (i.e., three copies of E8

states) on vortex surfaces. However, it is worth emphasizing
that we have assumed relativistic symmetry in this argument,
so it is not entirely clear whether the same argument applies to
gapped phases in nonrelativistic systems, such as lattice mod-
els. A related fact is that the ground-state wavefunctions of
such an invertible state with c− a multiple of 24 on any closed
surfaces are completely invariant under modular transforma-
tion (no additional phase factor). Such modular invariance
may be required for a consistent decoration.

B. Partition function for ZN BC SPT Phase

The argument in the previous section does not fully capture
the subtlety of writing down the response action of ZN BC
SPT phase. When 3 � N , the response action is indeed

Z (M5, A) = exp

(
2π ik

N

∫
M5

A ∪ p1

)
, k ∈ ZN , (3)

where A is the background ZN gauge field (valued in Z/NZ).
The 3 | N case requires a separate treatment. In the case of

N = 3 it is known that the action (3) turns out to be equivalent
to that of a Z3 group-cohomology SPT phase [25]. In fact, the
Z3 SPT phases are classified by Z9 [26], where the generator
is the root BC SPT phase. We discuss the partition function of
the root phase in Appendix B.
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In the Hamiltonian formalism, one can interpret this ac-
tion as follows: Let M5 = M4 × S1, where M4 is a closed
4-manifold. We also assume there is a unit ZN holonomy
along S1. For 3 � N , the partition function on M5 evaluates to
e

6π ik
N σ (M4 ). The physical interpretation is that the ground state

on a closed 4-manifold M4 has ZN charge 3kσ (M4) mod N .
However, the ground-state charge becomes ambiguous away
from the pure TQFT limit. The subtlety was recently exempli-
fied in the generalized double semion model [13], which is an
exactly solvable (commuting-projector) lattice model with the
same ground-state property as the Z2 BC SPT phase on any
closed 4-manifold, but on the other hand is locally equivalent
to a group-cohomology Z2 SPT model.

C. Constraints on the boundary states

We are interested in the existence of gapped, symmetry-
preserving (3+1)d boundary conditions for the BC ZN

SPT phases. Recently, within the mathematical framework
of TQFTs [27,28], established a necessary condition for a
(3+1)d ’t Hooft anomaly to be saturated by a symmetry-
preserving TQFT: the corresponding (4+1)d SPT topological
partition function must evaluate to 1 on K3 × S1 (with any
choice of background gauge field). Here K3 is a closed simply-
connected 4-manifold with signature 16. In other words, if
one can find a gauge field configuration of the corresponding
symmetry such that the partition function yields a phase factor
different from 1 on K3 × S1, then the SPT phase cannot have
a symmetry-preserving TQFT boundary.

Let us use the criterion to study the ZN BC SPT phase,
whose partition function is given by Eq. (3). If we require the
partition function to be 1 on K3 × S1, for 3 � N using (3) we
find

48k

N
∈ Z. (4)

For k = 1, it means a symmetry-preserving TQFT boundary
is possible only for

N = 2, 4, 8, 16. (5)

The case of 3|N is more delicate. We provide an argument
that the partition function on K3 × S1 is not 1 for the root
N = 3 BC SPT phase in the Appendix B, and hence there can-
not be a symmetry-preserving boundary TQFT. Interestingly,
even though the root phase does not allow symmetry-
preserving gapped boundary, three copies of the root phase is
equivalent to a group-cohomology SPT phase, which can have
symmetric gapped boundary. Similar results can be proven for
other 3|N .

III. BOSONIC CN SPT IN (4+1)d

A drawback of our discussions of the ZN BC SPT phases is
that it is entirely based on topological partition functions, and
at the moment we do not have a concrete microscopic model
for them. In this section we turn to a different but closely
related symmetry CN , the point group of N-fold rotations, and
study SPT phases protected by this symmetry. The advantage
of considering spatial SPT states (i.e., those protected by
spatial symmetries) is that they can be classified and explicitly
constructed using the block construction [15]. It is valid to

relate ZN SPT phases with CN SPT phases because there is
a one-to-one correspondence between these two SPT phases,
known as the crystalline correspondence principle [29].

Let us elaborate on the relation between the ZN SPT phases
and the CN ones. Starting from a ZN SPT phase, we create
a symmetry-breaking state in the following way: insert N
copies of ZN domain walls in a CN symmetric configuration.
This system breaks ZN and CN , but preserves the diagonal
subgroup called C′

N . At the rotation center, the N-domain
walls fuse together to a codimension-2 defect, which is the
state that lives at the rotation center. Therefore, from a ZN

SPT state we can always construct a CN SPT state. For the
other direction, consider a continuum QFT with continuous
spatial symmetry [i.e., SO(D) and translations, where D is
the spatial dimension]. The CN rotation can always be written
as a ZN internal symmetry transformation combined with the
corresponding rotation in SO(D). It is then expected that the
theory with the ZN symmetry is in the corresponding ZN SPT
phase.

A. Block construction for CN SPT

Let us carry out the block construction for CN symmetry in
(4+1)d. By the definition of SPT phases, the bulk state can be
disentangled everywhere except on the rotation “axis”, which
is two-dimensional in 4D, and the CN symmetry reduces to
a ZN internal symmetry on the rotation axis. Now there are
two possibilities: a ZN group-cohomology SPT phase, or a E8

state, on which the ZN does not act. The latter corresponds
to the generator of the ZN beyond-cohomology SPT phases.
In Appendix A we compute the group structure of the CN

SPT phases, which turns out to be ZN × ZN for 3 � N , and
Z3N × ZN/3 for 3 | N . Also note that in this construction for
CN SPT, the rotation center can be decorated with any (2+1)d
invertible topological phase. Unlike the internal ZN case,
there is no need to impose the c− = 24k condition from the
boundary gravitational Chern-Simons terms of ZN topological
action.

We then choose a 3D boundary perpendicular to the ro-
tation axis, so the boundary is invariant under rotation. The
rotation plane in the bulk terminates as the 1D axis on the
boundary. Since there is an E8 state on the plane, the 1D
axis carries the corresponding (E8)1 chiral edge mode. In the
following we fix that the rotation axis to be in the z direction.

In order to create a fully gapped (3+1)d boundary, we use
the following construction: choose N half planes all terminat-
ing at the z axis, the positions of which are related to each
other by CN rotation. For example, one of them could be the
plane defined by y = 0, x � 0, and the others are obtained by
CN rotations. On each plane we place a 2D chiral topological
phase B. Again all of them are placed in a CN -symmetric way.
At the 1D rotation center, we have N edge modes from the
topological phases on the half-planes and the (E8)1 CFT from
the rotation center in the (4+1)d bulk. The setup is illustrated
in Fig. 1 for N = 4. We require that these edge modes together
can be gapped out while preserving the CN symmetry. In other
words, the N blocks have a CN -preserving gapped boundary
to E8. We can further fold the N layers into one topological
phase denoted by B�N , where the CN symmetry becomes the
ZN cyclic permutation symmetry between layers. A similar
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FIG. 1. Illustration of the construction for a gapped state on the
boundary of (4+1)d CN BC SPT state.

method was used in Ref. [30] to study (2+1)d topological
phases enriched by reflection symmetry, which is essentially
the N = 2 case.

To summarize, our construction requires topological
phases that satisfy the following conditions:

(1) The topological phase B has a chiral central charge
c− = 8

N .
(2) N layers of B can have a fully gapped edge to a E8

state.
(3) The gapped edge preserves the ZN cyclic permutation

symmetry of the N layers.
We will say B is N gappable if all the conditions are

satisfied.
Therefore, the construction reduces to finding a ZN

symmetry-preserving gapped boundary (to an E8 state) of N
copies of B.

B. Gapped boundary conditions

Below we will study this problem using the mathematical
framework of modular tensor category (MTC), also known as
the anyon theory in physics literature [31]. In this formalism,
a topologically ordered phase in (2+1)d is fully described in
terms of the universal data of the low-energy quasiparticle
excitations, i.e., the anyons. The universal data describe the
fusion and braiding properties of the anyons. Alternatively,
this collection of data also suffices to specify the (2+1)d
TQFT associated with the topological phase. We should note
that the MTC description does not fully determine the edge
property, i.e., the chiral central charge c−. In fact, it can be
shown that the MTC (or the anyon theory) determines c− mod
8. Physically the ambiguity precisely comes from stacking E8

states in the bulk, which does not affect the anyon excitations
but can change edge c− by integer multiples of 8.

Gapped boundaries of a topological phase can also be
described in this formalism [32–38]. Each gapped boundary
is associated to a unique (composite) anyon object, which
determines which anyons can condense on the boundary. This
object is called the Lagrangian algebra, denoted by A below.
For Abelian anyons, the condensed anyons form a Lagrangian
subgroup [34]. In this case, it is relatively simple to state
the condition for a set of anyons to condense: they must all
be bosons, and the mutual braiding statistics between them
must all be trivial. In addition, the number of anyons in the
Lagrangian group must be the square root of the total number
of anyons. The definition of the algebra in the general case is
reviewed in Appendix E.

We can now define the notion of Witt equivalence for
topological phases. Two topological phases B1 and B2 are
Witt equivalent, if B1 � B2 has a fully gapped interface to
an invertible state (i.e., some copies of E8 states). Here �
denotes the operation of stacking two systems, and B2 is the
mirror image of B2. In other words, there is a gapped interface
between B1 and B2 as long as we are allowed to freely stack
copies of E8 states. Mathematically, two MTCs B1 and B2 are
Witt equivalent if B1 � B2 has a Lagrangian algebra. The Witt
equivalence classes of MTCs form an Abelian group, known
as the Witt group of MTCs.

With these definitions, the first two conditions of N gap-
pability implies that the MTC B has a minimal order N in
the Witt group. However, it is also known that the structure
of the Witt group is highly constrained [39–41]: the order of
elements in the Witt group cannot be any odd integer. In fact,
the only possible finite values are 2n with 1 � n � 5 (there
are obviously elements of infinite order). From this point of
view, we can immediately rule out any odd N � 3 in the
construction.

In our problem there is also a global symmetry G, i.e.,
the ZN group of cyclic permutations of the N layers, and
the gapped boundary must preserve this global symmetry.
Therefore it is necessary to incorporate global symmetry in the
categorical formalism. First of all, the global symmetry can
act on the anyons in nontrivial ways. In this case, the action is
given by the layer permutation. There are more subtle aspects
of symmetry actions in the topological phase but they do not
occur in our system, so we will not go into details. For more
details on symmetry-enriched topological phases in (2+1)d,
see Ref. [4].

Next, we will need to understand whether a given gapped
boundary, or the Lagrangian algebra, can preserve the global
symmetry. Clearly, the set of condensed anyons must be in-
variant under the global symmetry (layer permutations in our
case), otherwise the symmetry is explicitly broken. For a
condensed anyon a, we define Ga as the subgroup of G that
keeps a invariant. Then the condensed anyon a should carry
a well-defined charge under the symmetry group Ga. Here
by “charge” we mean a one-dimensional representation of
Ga, i.e., a homomorphism from Ga to U(1). Different choices
of these charges correspond to different types of symmetry-
preserving gapped boundary conditions. Again we note that
here our description is heuristic, and a more precise formula-
tion is given in Appendix E.

To understand the physical consequence of the symmetry
charges of the condensed anyons, it is useful to consider the
nature of the gapped boundary. By definition, the gapped
boundary is the interface between the topological phase and an
invertible state, which is often taken to be the vacuum. How-
ever, in the presence of global symmetry, the invertible state
could be a nontrivial SPT state. The nature of this invertible
state is determined by the symmetry charges of the condensate
[30,42]. Here we are mainly interested in the case where
the invertible state has no nontrivial SPT order. Following
Ref. [30], we study the problem by gauging the ZN sym-
metry in the B�N theory, the result of which is denoted
by [B�N ]/ZN . The interface then becomes one between the
gauged theory [B�N ]/ZN , and a ZN gauge theory obtained
from gauging the ZN SPT state (possibly stacked with an
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E8 state). After gauging, the Lagrangian algebra in B�N is
“lifted” to one in [B⊗N ]/ZN ; however, the lifting requires
additional data, i.e., the symmetry charges of the condensed
anyons. Once the Lagrangian algebra and its lifting are given,
one can apply the theory of anyon condensation to determine
the nature of the ZN gauge theory after condensation. We
leave the details of the derivations in Appendix F.

Below we apply this theory to several examples. In partic-
ular, we will consider a family of anyon theories known as
Kitaev’s 16-fold ways [31]. They can be described as (2+1)d
fermionic topological superconductors with Chern number
ν coupled to Z2 gauge field, or as Spin(ν)1 Chern-Simons
theory. We will show that Spin(ν)1 is 16

(16,ν) gappable when
ν is even. However, we find that Spin(ν)1 is not 16-gappable
when ν is odd. Instead, we find a different but closely related
construction for the C16 case.

1. Spin(2n)1

In this section we will consider Spin(2n)1 theories. First
we review the basic properties of these MTCs. Spin(2n)1

has four anyons: 1, ψ, v, v′ = v × ψ . ψ is a fermion and
satisfies ψ2 = 1. v can be viewed as a fermion parity flux
since the braiding phase between v and ψ is Mvψ = −1. The
topological twist factor of v is θv = e

iπn
4 . The chiral central

charge is c− = n. The order of Spin(2n)1 in the Witt group is
r = 8

gcd(8,n) .
We will show that the Spin(2n)1 MTCs are r gappable.
First, we construct the Lagrangian subgroup for

Spin(2n)�r
1 , preserving the Zr cyclic permutation symmetry.

We label the anyons by a r-tuple (a1, a2, . . . , ar ). Since all
Spin(2n)1 theories have total quantum dimension D = 2, the
Lagrangian subgroup has to have size 2r . Consider all bosons
of the form

A0 = {(a1, a2, . . . , ar )|ai ∈ {1, ψ}}, (6)

with an even number of ψ’s in the tuple. We will refer those
as fermion bound states. There are 2r−1 such bosons. Then
we fuse (v, v, . . . , v) with the fermion bound states, which
is equivalent to replacing an even number of v’s with v′ =
vψ . Together they generate a Lagrangian subgroup consist of
2r bosons, and it is straightforward to check that they have
trivial mutual braiding statistics, thus forming a Lagrangian
subgroup. Clearly this subgroup is invariant under the Zr

symmetry.
As described in the beginning of this section, we need to

examine finer structures of the Lagrangian algebra under the
symmetry action. We perform these calculations carefully for
two representative values of n = 1, 2 in Appendix E. As dis-
cussed above, to determine the nature of the condensed phase
it is necessary to know the symmetry charges of the condensed
anyons. We find that a consistent choice is to have all the
Zr-invariant anyons [i.e., (ψ, . . . , ψ ) and (v, . . . , v)] carry
trivial charges under Zr . With this choice, we can apply the
results in Appendix F to show that the condensation leads to
an E8 state where the Zr symmetry acts trivially. Together we
have established that there is Zr-symmetric gapped interface
between Spin(2n)�r

1 to an E8 state where the Zr symmetry
acts trivially, so Spin(2n)1 is r gappable.

2. Spin(2n + 1)1

Let us now turn to Spin(2n + 1)1 theories. Recall that the
Spin(2n + 1)1 MTC has three types of anyons 1, σ , and ψ ,
where ψ is a fermion and σ is a non-Abelian anyon that
satisfies σ × σ = 1 + ψ and with a topological twist factor
θσ = e

iπ (2n+1)
8 .

We first enumerate all bosons in [Spin(2n + 1)1]�16. There
are 215 Abelian bosons, which are bound states with an
even number of fermions. There is also a non-Abelian boson
(σ, . . . , σ ), with quantum dimension (

√
2)16 = 256. We can

form the following Lagrangian algebra:

A =
∑
a∈A0

a + 128(σ, σ, . . . , σ ). (7)

Unfortunately, due to the large multiplicity 128, we are not
able to obtain an explicit structure of the condensate. There-
fore, we adopt a different approach here. We condense only
the Abelian subset A0 of A to obtain a Z2 toric code (TC)
phase. From there, we try to construct a C16 symmetry-
preserving gapped boundary of the Z2 TC. We will show that
in fact it is not possible to condense A in [Spin(2n + 1)1]�16

without breaking the Z16 symmetry. This can be easily proven
using the anyon condensation theory, see Appendix F. Below
we provide a more physical argument, which will also suggest
a way to fix the problem.

We first condense the Abelian subgroup A0 of A, resulting
in a Z2 toric code (TC) phase. It is easy to see the only
deconfined anyons are the Abelian anyons, and (σ, . . . , σ ).
All the Abelian bosons are already condensed, and all the
(Abelian) fermions are identified and become the same ψ of
the toric code phase. While (σ, . . . , σ ) is deconfined, it is
invariant under fusion with any of the condensed bosons, so
it must split into direct sums of e and m.

In the following denote g as the cyclic permutation of the
16 layers. Namely, g generates the Z16 symmetry group. The
Z16 symmetry should be preserved by the condensation, so the
Z2 TC is enriched by the Z16 symmetry. Following the general
classification [4], first we need to know how the generator g
permutes anyon types. Given that the permutation must pre-
serve the fusion and braiding properties of anyons, there are
two possibilities for the Z2 TC: either g does not permute, or g
swaps e and m. In the latter case, there is no symmetric gapped
boundary. This is because the only Lagrangian subgroups for
the Z2 TC are 1 + e and 1 + m and neither of them is invari-
ant under e ↔ m. Therefore, a symmetric gapped boundary
requires that g does not permute e and m anyons.

To further determine the action of g on anyon ψ , we
take a slightly different approach. The Z2 toric code can be
obtained by gauging the 2D fermion parity of 16 copies of
px + ipy superconductors. In the block construction, we place
the 16 copies in a C16-invariant configuration, all terminating
at the rotation axis. Then we mirror-fold them into a stack
of px + ipy superconductors. The g symmetry again permutes
the 16 layers cyclically. In this construction, the e and m
anyons correspond to a fermion parity flux. The fermion parity
flux binds 16 Majorana zero modes γi for i = 1, 2, . . . , 16,
one from each layer. The local fermion parity of the flux is
thus P = ∏

i γi. After gauging, the fermion parity flux with
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even and odd local fermion parity (P = ±1) become the e and
m anyons.

Now under the g action, γi → γ[i+1]16 , so we find

P =
∏

i

γi → γ2 · · · γ16γ1 = −P. (8)

Therefore, the g symmetry flips the fermion parity of the
flux, which becomes the e ↔ m symmetry after gauging. As
a result, there is no symmetric gapped boundary.

However, we can fix this issue by modifying the transfor-
mation of the Majorana modes to the following form:

γi → γi+1, i = 1, . . . , 15, γ16 → −γ1. (9)

Under this transformation, the local parity P remains un-
changed. However, it then follows that g16 acts as γi → −γi

for all i, i.e., g16 = (−1)Nf , so the fermion should transform
projectively under g.

We thus conclude that the ψ anyon should have g16 = −1
in order to avoid the g symmetry swapping e and m. Since
ψ = e × m, one of them must have g16 = 1, which can then
condense to obtain a symmetric gapped boundary. We have
thus shown that there should exist a C16-symmetric gapped
boundary of the Z2 toric code phase to an invertible state.

Notice that in the original construction, we have 16 layers
of Ising theories, and the C16 rotation acts as the cyclic per-
mutation. One can show that there is no nontrivial symmetry
fractionalization for this symmetry. It is natural to postulate
that after condensing A0 one is led precisely to the toric code
with g16 = 1 on ψ . We can then conclude that the 16 layers
of Ising topological orders admit a C16-symmetric gapped
boundary at the rotation center to an invertible state.

However, we are not able to precisely determine the nature
of the invertible state besides its chiral central charge c− = 8.
So this (3+1)d fermionic Z2 gauge theory may exist on the
boundary of the root C16 BC SPT state, possibly stacked with
another (in-cohomology) SPT state.

IV. (3+1)d BOUNDARY TQFT

Reference [14] constructed a fermionic Z2 gauge theory
on the boundary of the Z2 BC SPT state. Here a fermionic Z2

gauge theory refers to a Z2 gauge theory with fermionic Z2

gauge charges. We will argue that the same theory can realize
the anomaly for ZN BC SPT state when N = 4, 8, 16 as well.
Recall the domain wall decoration construction for ZN BC
SPT in Sec. II A, the codimension-2 trijunctions in the bulk
are decorated by minimally three copies of E8 states. Thus the
truncated domain walls on the (3+1)d boundary should host
the E8 on the junctions as well. We will show that a fermionic
Z2 gauge theory in (3+1)d has an anomalous Z16 (0-form)
global symmetry [43]. More precisely, the (3+1)d boundary
TQFT is a fermionic Z2 gauge theory with E8 defects.

We now construct the codimension-1 invertible topological
defects that implement the Z16 0-form symmetry. We insert
a (2+1)d chiral topological superconductor (TSC) of Chern
number ν (equivalent to ν copies of p + ip superconductors)
into the fermionic theory before gauging, and then couple the
system to a Z2 gauge field. This way we obtain an invert-
ible topological defect of codimension-1 in the fermionic Z2

gauge theory [44], which defines a 0-form symmetry. From

m

TSC

m p

FIG. 2. Illustration of the 0-form symmetry action on a flux loop.

this construction naively it seems that the defect is labeled by
the integer ν and fusion of two defects of ν1 and ν2 results in a
defect of ν1 + ν2. However, we will argue that ν is defined
mod 16. This is because before gauging, a ν = 16 TSC is
topologically equivalent to a E8 state stacked with completely
trivial gapped fermions. Since this equivalence can be gener-
ated by adiabatic evolution with a gapped local Hamiltonian
preserving fermion parity, it is expected that the equivalence
is preserved after gauging. In other words, a ν = 16 defect is
equivalent to a E8 state. Since the E8 state is purely bosonic
and decoupled from the Z2 gauge theory, when viewed as
a topological defect it can only act on the Z2 gauge theory
trivially. Therefore the faithful symmetry group generated by
these TSC defects is Z16. However, the fact that 16 ν = 1
defects fuse to a E8 state suggests that the Z16 symmetry is
anomalous. Indeed this is exactly what should happen on the
boundary of a Z16 BC SPT state [45].

Let us examine how the symmetry acts on various objects
in the theory. First we review the low-energy excitations of the
Z2 gauge theory. There are two elementary types of excita-
tions: a fermionic Z2 particle, and a Z2 flux loop (denoted by
m2 below, where the subscript 2 is the codimension). In addi-
tion, it is useful to introduce an invertible line defect as follow:
We can think of the theory as a system of fermions in a gapped
trivial state coupled to a Z2 gauge field. We insert a Majo-
rana chain in the ungauged fermion system, and then gauge
the Z2 fermion parity. The Majorana chain then becomes an
invertible topological defect of codimension 2, which will be
denoted by p2. It is evident that the TSC defect does not act on
the fermionic particle, and the nontrivial action only happens
on the flux loops. To see what is going on when a flux loop
m2 passes through the domain wall, we note that the process is
equivalent to wrapping the topological superconductor around
the flux loop. It is a well-known fact that when ν is odd, the
topological superconductor when wrapped on a cylinder with
antiperiodic boundary condition for the fermions (i.e., with
a π flux threading the cylinder) is equivalent to a Majorana
chain [46]. See Fig. 2 for an illustration of the symmetry
action. Thus we find that m2 → m2 p2 when passing through a
TSC defect with an odd ν [43].

When ν is even, the symmetry does not change the type
of the m2 loop. Instead, let us consider a Hopf link of two
flux loops, and pass the link through the domain wall. During
this process, the worldlines of the four intersection points of
the link with the domain wall precisely trace out the Hopf
link, which correspond to a full braiding between two of them
and result in a phase factor ±e

iπν
4 . Here the sign ambiguity

± comes from possible fermions attached to the flux loops.
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Notice that this characterization only applies to ν ≡ 2 mod 4.
More generally, we can consider a “three-loop braiding” pro-
cess [47], where two flux loops are linked to a base loop of the
defect. The exchange statistics of the two flux loops is e

iπν
8 ,

which can distinguish all different ν mod 16.
Now we describe the boundary TQFT for CN BC SPT

states. Starting from the block construction of the boundary
state in Sec. III, we can now construct a Z2 gauge theory in the
following way: fill the (3+1)d boundary with a fermionic Z2

gauge theory where the Cr symmetry acts trivially (besides the
coordinate transformation). The (2+1)d intrinsic topological
orders [i.e., Spin(2n)1 layers] need to be transformed into
invertible codimension-1 defects in the Z2 gauge theory such
that boundary theory is a (3+1)d TQFT. To achieve this,
on each of the Spin(2n)1 layer, we drive a condensation of
the bound state of the emergent fermion in the Z2 gauge
theory and the ψ in Spin(2n)1. In other words, the ψ in
Spin(2n)1 layers are all identified with the fermion in the Z2

gauge theory. Consequently, v or v′ anyons are attached to the
Z2 flux lines. There are no separate anyons confined on the
Spin(2n)1 layers anymore, so these layers become invertible
defects embedded in the fermionic Z2 gauge theory. These de-
fects are precisely the TSC defects introduced in the previous
paragraph, since the Spin(2n)1 can be thought of as coupling
a TSC of Chern number 2n to a Z2 gauge field, and what we
just did is to “Higgs” the emergent Z2 gauge field in Spin(2n)1

with that of the (3+1)d gauge theory. Notice that the kind
of condensation transitions on the Spin(2n)1 layers can be
driven by interactions that preserve the Cr symmetry, and it
is expected that there is no spontaneous symmetry breaking.
As a result, the new Z2 gauge theory obtained this way still
has the Cr symmetry with the same anomaly.

V. DISCUSSIONS AND CONCLUSIONS

In this paper we have studied symmetry-preserving gapped
boundary states for (4+1)d BC SPT phases protected by
ZN and CN symmetries. We show that for N /∈ {2, 4, 8, 16},
no such boundary states exist for the root ZN SPT phases.
We then propose that for N = 2, 4, 8, 16 a candidate bound-
ary topological order is a fermionic Z2 gauge theory, where
the anomalous symmetry is generated by topological super-
conductor defects. We provide explicit constructions of the
boundary theory for CN SPT phases for N = 2, 4, 8, 16.

One immediate question left open from our analysis is the
32 gappability of Spin(2n + 1)2n+1. Given that the simplest
of the series, SU(2)6, already has seven anyon types, it is
challenging to classify the Lagrangian algebras in SU(2)�32

6 .
We conjecture that Spin(2n + 1)2n+1 is not 32 gappable.

An interesting question for future works is to construct
possible gapless boundary theories for general N , or even the
U(1) symmetry group. For N = 2, a gapless boundary theory
was constructed in Ref. [48].

It will also be interesting to clarify the relation between the
bosonic ZN (or CN ) SPT phases and the fermionic ones. The
fermionic phases can be realized by noninteracting fermions
and the natural boundary states are Weyl fermions. One can
imagine that certain fermionic phases are actually adiabati-
cally connected to a bosonic one with trivial gapped fermions.
In fact, this provides a possible route to construct gapless

boundary states for many values of N if the bosonic phase
can be “embedded” into a noninteracting fermionic one. This
is the case for all odd N , so a possible boundary theory is
obtained by gauging fermion parity in a (3+1)d Weyl fermion.

We have discussed the 0-form symmetry in a fermionic Z2

gauge theory in (3+1)d. The full symmetry group includes Z2

1-form and 2-form symmetries, and together with the Z16 0-
form symmetry they are expected to form a 3-group [49]. The
1- and 2-form symmetries and their anomalies are analyzed
in Ref. [50]. It is important to fully understand the structure
and the anomaly of the 3-group. In addition, one can also
consider noninvertible defects to get an even richer structure
(conjecturally a fusion 3-category).
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APPENDIX A: GROUP STRUCTURE OF CN SPT PHASES

In the following we denote the root BC SPT phase (with a
single E8 state on the rotation center) as x. Similarly, denote
the root group-cohomology SPT phase (with the root group-
cohomology 2D ZN SPT state on the center) by y. Stacking of
phases is denoted additively and 0 represents the trivial phase.
We then have Ny = 0.

To determine the group structure of CN SPT phases, we
observe that in the block construction [15], a state |ψ〉 with
N copies of E8 states, all parallel to the rotation center and
arranged in a CN -symmetric configuration is actually adiabat-
ically connected to a trivial state. On the (3+1)d boundary,
we have N copies of (E8)1 CFTs, where the CN acts as
ZN cyclic permutations. Apparently, it has the same mixed-
gravitational anomaly as the boundary of the Nx phase. On
the other hand, it can also have a pure ZN anomaly. Recall
that ’t Hooft anomalies of a ZN symmetry are classified by
H3[ZN , U(1)] = ZN , so they can be labeled by an integer
ω ∈ Z/NZ. It is known that the ZN anomaly ωN for N copies
of (E8)1 CFTs is given by [51]

ωN =
{

0 3 � N
N
3 3 | N

. (A1)

Therefore, the triviality of |ψ〉 implies Nx + ωN y = 0 mod N .
For 3 � N , we have Nx = 0, so the group is Z2

N .
For 3 | N , we find Nx + N

3 y = 0 mod N , so it follows that x
generates a Z3N subgroup. The group structure is Z3N × ZN/3,
where ZN/3 is generated by 3x + y.

Special cases of the classification (for N = 2, 3, 4, 8) have
been obtained in Ref. [26].

Let us now consider the boundary states for the N = 3n

SPTs. Since it is well known that the group-cohomology SPT
phases admit topological boundary theories, for this purpose
we mod out the group-cohomology phases from the classi-
fication. The remaining group ZN is generated by the root
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BC phase x. For the kx state, there are k copies of chiral
(E8)1 CFTs at the rotation axis on the (3+1)d boundary. To
apply our construction, the (2+1)d MTC needs to have chiral
central charge c− = 8k

N . Let us write k = b · 3a, where b is
the coprime of 3n and 0 � a < n. Therefore, the MTC must
have order 3n−a in the Witt group, which is impossible. So we
conclude that our construction does not work for these SPTs.

APPENDIX B: U(1) AND ZN SPT PHASES IN (4+1)d

In this Appendix, we discuss in details the computation of
the partition functions of ZN SPT phases coupled to back-
ground gauge field, in particular for the BC phases. For 3 �
N , the action given in Eq. (3) correctly describes the BC
SPT phases, and evaluating the partition function on K3 × S1

yields. However, when 3|N , Eq. (3) does not apply anymore.
For example, for N = 3, it is known that for a Z/3Z gauge
field A,

∫
A ∪ p1 ≡ 0 mod 3 on any closed 5-manifold [52].

The cobordism classification gives a Z9 classification for
Z3 SPT phases in (4+1)d, where the generator is the root BC
SPT phase. This is consistent with the C3 analysis done in
Appendix A. We now discuss how to compute the partition
function on K3 × S1 for the Z3 root BC phase.

In the following we write the partition function as
Z = e2π iS , where S is the action.

1. Topological responses

To do this, we start from SPT phases with U(1) symmetry,
and then break the symmetry down to ZN . For a background
U(1) gauge field Ã, one can write down the following two
topological terms in 5d:

S1 =
∫

B6

c3
1, S2 =

∫
B6

c1 ∧ p1. (B1)

Here B6 is a six-dimensional extension of the 5-manifold, and
c1 = F̃

2π
is the first Chern class. Both terms are well defined

since on closed six-manifolds they are quantized to integers.
And yet, the following combination is also integral on a

closed six-manifold B6 based on the Hirzebruch signature
theorem [53],

S3 =
∫

B6

1

3

(
c3

1 − c1 ∧ p1
)
. (B2)

As a result, there is a well-defined 5d topological term when
S3 is defined on a 6d manifold with boundary. We will
schematically write it as

S3 =
∫

M5

1

3

(
Ã ∧ F̃ ∧ F̃

(2π )2
− Ã ∧ p1

)
. (B3)

Let us first consider dimensional reduction of both terms S1

and S2 on S2 × M3, where M3 is a three manifold, with a unit
flux through S2 (i.e.,

∫
S2

F̃
2π

= 1). For S1, one finds a 3d Chern-
Simons term at level 6, i.e., a bosonic U(1) SPT phase with
Hall conductance σH = 6. Notice that the most fundamental
bosonic U(1) SPT phase has σH = 2. For S2, as discussed in
Sec. II A the dimensional reduction gives an invertible bosonic
topological phase with chiral central charge c− = 24.

For S2, it is also useful to consider dimensional reduction
on S1 × M4, which can be interpreted as quantization of the

theory on a closed spatial manifold M4. We find that the state
on M4 carries a U(1) charge p1(M4) = 3σ (M4), where σ (M4)
is the signature of the manifold. On the other hand, S1 the
action does not contribute to the ground-state charge on M4.

Combining S1 and S2, S3 when dimensionally reduced on
S2 × M3 yields a (2+1)d invertible phase with σH = 2 and
c− = −8, while carries U(1) charge −σ (M4) upon quantiza-
tion on M4. We can choose S3 and S1 (or S2) as representing
the two generators of the U(1) SPT phases in (4+1)d.

2. Defect decorations

This dimensional reduction procedure is closely related
to the decorated defect picture explained in Sec. II A. Here,
the topological defect to consider is a fundamental vortex,
which has spatial dimension 2, i.e., a vortex sheet. Note that
a vortex sheet is only available when the U(1) symmetry
is spontaneously broken. Naively, it might appear that one
cannot discuss any SPT decoration protected by the original
U(1) symmetry. However, one can combine U(1) with a spa-
tial SO(2) rotation to get a new U(1)′ symmetry, which is
respected by the vortex system. We can then ask what kind
of (2+1)d U(1)′ SRE phase is decorated on the domain wall.
It is well known that such SRE phases are labeled by a pair of
integers [σH/2, c−/8], where σH is the Hall conductance and
c− is the chiral central charge (c−/8 gives the number of E8

states).
To make connection with the topological responses in the

previous section, observe that the “boundary” of a vortex
sheet is a U(1) vortex in the symmetry-breaking phase. If one
restores the U(1) symmetry [and the SO(2) spatial symme-
try as well], the vortex sheet boundary should become the
U(1) monopole, and the U(1)′ symmetry is identified with the
original U(1). Therefore, the decoration on the vortex sheet
should be identified with the theory obtained from the com-
pactification on S2. We thus have the following identification:
S3 ∼ [1,−1], S1 ∼ [3, 0], S2 ∼ [0, 3]. A general topological
term aS1 + bS3 should give decoration [3a + b,−b]. In other
words, there appears to be a constraint

σH

2
+ c−

8
≡ 0 (mod 3). (B4)

When the symmetry is broken down to ZN , the decoration
on the vortex sheet becomes the one at the junction of N
fundamental ZN defects (each carrying 2π/N flux). Equiva-
lently, the decoration is the fusion outcome of N such defects
as indicated in Eq. (1). In the symmetry-breaking phase, the
defects become domain walls, then the configuration of N
domain walls meeting at the fusion junction preserves the
combined symmetry Z′

N of the ZN and CN transformation.
Then one can ask what kind of (2+1)d Z′

N SPT phase is
decorated on the junction. Recall the discussion in Sec. II A,
such SPT phases are classified by [k, c−/8], where k ∈ Z/NZ
labels the group-cohomology ZN SPT phases.

Notice that there is an additional equivalence relation: one
can attach the trivial configuration, N copies of E8 states, to
N of ZN codimension-1 domain walls in a CN (thus also Z′

N )
symmetric way, increasing c−/8 by N . However, as shown in
Appendix A, when 3 | N the index k is also modified to k +
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N/3. So for 3 | N we find the important equivalence relation

[k, c−/8] ∼ [k + N/3, c−/8 + N]. (B5)

As a result, we have [0, N] ∼ [−N/3, 0], and hence [0,1] gen-
erates a Z3N subgroup. The other ZN/3 subgroup is generated
by [1,3].

For 3 � N we instead have [k, c−/8] ∼ [k, c−/8 + N], and
the classification is ZN × ZN , with the two generators being
[k = 1, c− = 0] and [k = 0, c−/8 = 1].

If the phase can be connected to a U(1) SPT phase, then
we have k = σH/2 mod N satisfying the constraint Eq. (B4)
for U(1) SPT phase. Therefore, when 3 | N certain ZN group-
cohomology SPT states, e.g., [k = 1, c− = 0] for N = 3,
cannot be lifted to a U(1) SPT phase. The topological response
for such phases cannot be described by S1, instead we define
S′

1 as the topological response for the [k = 1, c− = 0] phase.
Note that for 3 � N , one can easily show that all ZN SPT
phases can be embedded to U(1) SPTs.

From this analysis, the correspondence between the CN and
ZN classifications can also be made clear. In fact, the decora-
tion [σH/2, c−/8] in the ZN case is precisely the SRE state
placed on the rotation center in the CN block construction.

3. Computing Z(K3 × S1)

For ZN symmetry, if there is a nontrivial holonomy e2π i/N

along S1, Z (K3 × S1) is given by e2π iq(K3 )/N , where q(K3) is
the ZN charge of the state on K3. The group-cohomology SPT
phases always give q(K3) = 0 (at least within TQFT), thus
only the BC SPT phases contribute nontrivially to the charge
q(K3).

For 3 � N , we can always embed the ZN SPT phase to a
U(1) SPT phase, and it follows from the dimensional reduc-
tion that q(K3) = −σ (K3) c−

8 = −2c− mod N . When N = 3,
q(K3) = −σ (K3) = −16 ≡ 2 mod 3, corresponding to the
Z3N subgroup generated by [0,1]. Thus the partition function
on K3 × S1 is e4π i/3 = 1.

Now let us consider N = 3p symmetry, with p > 1. Again,
since group-cohomology SPT phases do not contribute to
q(K3), we can mod out the Z3N × ZN/3 group by the ZN

group generated by the group-cohomology SPTs, leaving only
the ZN BC SPTs. Essentially, the quotient is given by the
mapping [k, c−/8] ⇒ c−/8 mod N . For the purpose of com-
puting q(K3), one can use S3 [with the symmetry reduced from
U(1) to ZN ] for the generator of this quotient group, which
gives q(K3) = −σ (K3) = −16. Note that the generator of
ZN/3 corresponds to 3 after quotient, so the partition function
on K3 × S1 is e6π iq(K3 )/N = e−32π i/3p−1 = 1 as long as p > 1.

In [26], it was claimed that the response action for the
root BC phase should be the Postnikov square: β(9,3)(β(3,3)A ∪
β(3,3)A), where A is the Z3 gauge field and β(n,m) is the Bock-

stein homomorphism associated with the extension Zn
·m−→

Znm → Zm. It will be interesting to understand the relation
between the various forms of actions.

APPENDIX C: WITT GROUP OF MTCS

In this section we will review the definition of the Witt
group, as well as some known facts about it.

First we define the notion of Witt equivalence between two
(2+1)d topological phases. Two topological phases B1 and B2

are Witt equivalent, if B1 � B2 has a fully gapped interface
to an invertible state (i.e., some copies of E8 states). Here B2

is the mirror image of B2. In other words, there is a gapped
interface between B1 and B2 as long as we are allowed to
freely stack copies of E8 states. Mathematically, two MTCs
B1 and B2 are Witt equivalent if B1 � B2 is a quantum double
(Drinfeld center of some fusion category).

Below we review known results about the torsion subgroup
of the Witt group, particularly for Abelian MTCs. We adopt
notations in Ref. [54] for MTCs. In particularly, Z(k)

N refers
to an Abelian topological order with N Abelian anyons la-
beled by [a]N , where a ∈ {0, 1, . . . , N − 1}, and [·]N denotes
mod N . The fusion rules are given by addition: [a]N × [b] =
[a + b]N . The topological twist factor θ[a]N = ei πk

N a2
. Notice

that for odd N , k must be an integer. While for even N , k can
be an integer or half-integer, but only half-integer values give
modular theories. Z(1)

2n represents the topological order of the
familiar U(1)2n Chern-Simons theories.

The Witt group of all Abelian MTCs, denoted by Wpt

following the notation in Ref. [41], has the following decom-
position:

Wpt =
⊕

p prime

Wpt(p). (C1)

For each prime p, the p-subgroup Wpt(p) is given by

p = 2Wpt(2) = Z8 × Z2. Here Z8 is generated by the
semion theory Z(1/2)

2 , and Z2 is generated by Z(1/2)
2 ×

Z(1/2)
4 .

p ≡ 1 (mod 4)Wpt(p) = Z2 × Z2. One generator can be
chosen as Z(1)

p , and the other Z(k)
p where k is a quadratic

nonresidue mod p.

p ≡ 3 (mod 4)Wpt(p) = Z4. The generator could be any
Z(n)

p theory for 1 � n < p.

Another important example is Kitaev’s 16-fold way: the Ising
MTC generates a Z16 group, which contains order-2,4,8 sub-
groups.

There also exists infinitely many order-32 elements in the
Witt group. They are represented by the Spin(2n + 1)2n+1

Chern-Simons theories, where n � 1. The simplest one of
them is Spin(3)3 � SU(2)6. It is the “square root” of an Ising
Witt class: two copies of Spin(2n + 1)2n+1 is Witt equivalent
to Spin((2n + 1)2)1.

We will now examine the N gappability of the examples
mentioned above.

1. Z(n)
p

We start from the Z(n)
p theories, where p is an odd prime.

First, we consider p ≡ 3 mod 4, and Z(n)
p MTCs have order

4 in the Witt group. We now show that they are not 4 gappable.
Label anyon in four copies of Z(n)

p by a = (a1, a2, a3, a4),
where ai ∈ {0, 1, . . . , p − 1}. The most general form of a
cyclic permutation is generated by

g(a) = (s1a4, s2a1, s3a2, s4a3), (C2)
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where si = ±1. Basically, this is a “bare” permutation that
takes a to (a4, a1, a2, a3), combined with a topological sym-
metry of each of the Z(n)

p layer. It is known that the only
nontrivial topological symmetry of the Z(n)

p MTC is the charge
conjugation a → −a.

In our setup, we require g4 is the identity. Under repeated
actions of g we have

(a1, a2, a3, a4) → (s1a4, s2a1, s3a2, s4a3)

→ (s1s4a3, s2s1a4, s3s2a1, s4s3a2)

→ (s1s4s3a2, s2s1s4a3, s3s2s1a4, s4s3s2a1)

→ s1s2s4s4(a1, a2, a3, a4). (C3)

So we must have s1s2s3s4 = 1, otherwise g4 is the global
charge conjugation, which acts nontrivially in Zp theories.

If a is in the Lagrangian subgroup and the subgroup pre-
serves the Z4 symmetry, then a, g(a), g2(a), g3(a) must form
a condensable subset. Then they must all be bosons, which
gives

a2
1 + a2

2 + a2
3 + a2

4 ≡ 0 mod p. (C4)

In addition, they must have trivial mutual braiding statistics,
which lead to

s2a1a2 + s3a2a3 + s4a3a4 + s1a4a1 ≡ 0 mod p,

(s1s4 + s2s3)a1a3 + (s1s2 + s3s4)a2a4 ≡ 0 mod p. (C5)

The last equation simplifies to 2(s1s4a1a3 + s1s2a2a4) ≡ 0
mod p, and since 2 is invertible mod p, we have

(s1s4a1a3 + s1s2a2a4) ≡ 0 mod p. (C6)

Since s1s2s3s4 = 1, we can represent s1 = c4c1, s2 = c1c2,

s3 = c2c3, s4 = c3c4, and define bi = ciai. The equations are
simplified to

b2
1 + b2

2 + b2
3 + b2

4 ≡ 0 mod p,

b1b2 + b2b3 + b3b4 + b4b1 ≡ 0 mod p, (C7)

b1b3 + b2b4 ≡ 0 mod p.

Together they imply (b1 + b2 + b3 + b4)2 ≡ 0 mod p. Then
the second relation leads to

b1b2 + b2b3 + b3b4 + b4b1 = (b2 + b4)(b1 + b3)

≡ −(b1 + b3)2 ≡ 0 mod p,

from which we conclude that b3 ≡ −b1, b4 ≡ −b2 mod p.
The last relation in Eq. (C7) then implies −2(b2

1 + b2
2) ≡

0 mod p. For p odd, we then have b2
1 + b2

2 ≡ 0 mod p.
One can show that there is no solution for p ≡ 3 (mod 4).

To show this is the case, we write b2
1 ≡ q, so b2

2 ≡ −q. In other
words, both q and −q are quadratic residues of p. Compute the
Legendre symbols,(−q

p

)
=

(−1

p

)(
q

p

)
= (−1)

p−1
2

(
q

p

)
= −

(
q

p

)
. (C8)

So it is impossible to have both q and −q being quadratic
residues when p ≡ 3 (mod 4).

Let us now turn to p ≡ 1 (mod 4), and the Z(n)
p theories

have order 2 in the Witt group. We will show that they
are not 2-gappable. Using the same argument, (a1, a2) and

(s1a2, s2a1) should form a condensable subgroup, which re-
quires

a2
1 + a2

2 ≡ 0 mod p, (s1 + s2)a1a2 ≡ 0 mod p. (C9)

Thus we need to have s1 = −s2. However, under this permu-
tation (a1, a2) → (s1a2, s2a1) → s1s2(a1, a2), if s1s2 = −1
then g2 is equal to the charge conjugation.

2. Z
( 1

2 )
2

Z
( 1

2 )
2 has order 8 in the Witt group. A Lagrangian subgroup

in eight copies of Z
( 1

2 )
2 should have dimension 16, so generated

by four bosons.
We first find all bosons, such that the its image under

Z8 form a condensable subgroup. It turns out that there
are 8 such bosons, and they form Z3

2 group generated by
(1,1,0,0,1,1,0,0),(0,1,1,0,0,1,1,0),(0,0,1,1,0,0,1,1). So it is im-
possible for find a Lagrangian subgroup invariant under Z8.
Interestingly, if we actually condense this Z3

2 subgroup, we
find a Z2 toric code, and the Z8 generator acts as electro-
magnetic duality in this theory. Therefore, we cannot further
condense bosons without breaking the Z8 symmetry.

APPENDIX D: LATTICE MODEL REALIZATION

Given the subtleties in the TQFT classification of SPT
phases, it is highly desirable to find microscopic constructions
of the nontrivial states. For the N = 2 case, an exactly solvable
model was given in [14] (see also [55] for an alternative
construction, which applies to N = 4 as well.). The key ob-
servation there is the following: because p1 ≡ w2

2 (mod 2), we
can interpret the action in Eq. (3) as Z2 domain walls being
decorated with the “w2

2” SPT states, which are realized as
the ground state of the so-called three-fermion Walker-Wang
(WW) model [56]. The key ingredient in this construction is
a quantum cellular automata (QCA), or a locality-preserving
unitary, that disentangles the 3-fermion WW state. In addition,
the QCA exactly squares to 1. With such a QCA, a wavefunc-
tion of a consistent, equal-weight superposition of decorated
domain wall states, as well as a commuting projector parent
Hamiltonian, can be written down.

It is not clear whether similar constructions can be gen-
eralized to other N > 2 cases. If we simply generalize the
construction in [14], according to the action in (3), the ZN

domain wall is decorated by a (3+1)d gapped state, parti-
tion function of which is given by e

2π i
N

∫
p1 . In addition, the

disentangling QCA for this state must have order N . The con-
straints on QCAs could be seen from the Witt group of (2+1)d
modular tensor categories (MTC), which are mathematical
theories describing the universal bulk properties of topolog-
ical phases. While a complete topological classification of
QCAs in (3+1)d is still unknown, there is a growing body
of evidences [57–59] suggesting that they are classified by the
Witt group of (2+1)d MTCs. We review the definition of Witt
group in Appendix C. Conjecturally, a QCA that disentangles
a WW model with the input MTC in a nontrivial Witt class
is topologically nontrivial. The partition function for the WW
model is e

2π ic−
24 ·p1 , where c− is the chiral central charge of the

input MTC. Assuming that this conjectured classification of

045137-10



GAPPED BOUNDARY OF (4+1)D BEYOND-COHOMOLOGY … PHYSICAL REVIEW B 110, 045137 (2024)

μ ν

ba =
c,λ

[Mab
c ]μν

λ

λ

c

ba

FIG. 3. A diagrammatic representation of the M symbol.

QCA is correct, we conclude that in order to generalize the
construction to ZN , we would need to find a topological phase
with chiral central charge 48

N mod 8 and with order N in the
Witt group.

However, as already mentioned in Sec. III B, by the con-
straint of the order of elements in the Witt group. The only
possible finite values for N are 2n with 1 � n � 5 (there are
obviously elements of infinite order). This immediately rules
out any odd N > 3 in the construction.

Even for N that divides 48, when there exist order-N ele-
ments in the Witt group, there is a further constraint. If the
MTC has an order N element in the Witt group, the cor-
responding QCA conjecturally is also of order N , meaning
that N th power of the QCA is a finite-depth local unitary
circuit. However, for the construction to work, the N-th power
needs to be exactly 1. So far this has only been done for the
3-fermion QCA with N = 2, and to the best of our knowledge,
no other known examples of QCA satisfy this property.

APPENDIX E: ALGEBRAIC DESCRIPTION OF
SYMMETRY-PRESERVING ANYON CONDENSATION

We review the algebraic theory of gapped boundaries of
a two-dimensional topological phase [32,33,35–38], closely
following the formulation in [38] and [42]. We extensively
use the language of unitary modular tensor category (UMTC)
for (2+1)d topological phases. A brief summary of UMTC in
this context can be found in the Appendix of [42].

A gapped boundary corresponds to a Lagrangian algebra
of the bulk MTC. Physically the Lagrangian algebra indicates
which bulk anyons are condensed on the boundary [34,35].

The mathematical theory of the gapped boundary takes
into account the local process of annihilating a condensable
anyon a on the boundary. Similar to fusion/splitting spaces,
we associate a vector space for local operators that annihilate
a, denoted as V a, with basis vector |a; μ〉. The dimension of
this vector space is the “multiplicity” na of a in the Lagrangian
algebra. Obviously we must have n1 = 1.

Diagrammatically, the condensation process is represented
by an anyon line terminating on a wall representing the bound-
ary. We also attach a label at the termination point, which
represents the state of the boundary condensation space. When
na = 1 it can be suppressed.

An important property of the algebra is the following “M
symbol”,

|a; μ〉|b; ν〉 =
∑
c,λ

[
Mab

c

]μν

λ
|c; λ〉. (E1)

The definition is illustrated diagrammatically in Fig. 3.
Next we impose consistency conditions on the M symbols.

We can apply M moves to three anyon lines terminating a, b, c
on the boundary, but in different orders, which leads to a

a xg

= χa(g)
a xg

FIG. 4. A diagrammatic representation of the χ symbol.

variation of the pentagon equation,∑
e,σ

[
Mab

e

]μν

σ

[
Mec

d

]σλ

δ

[
F abc

d

]
e f =

∑
ψ

[
Ma f

d

]μψ

δ

[
Mbc

f

]νλ

ψ
. (E2)

The M symbols also have gauge degrees of freedom,
originating from the basis transformation of the boundary
condensation space V a: |̃a; μ〉 = �a

μν |a; ν〉, where �a
μν is a

unitary transformation. The M symbol becomes[
M̃ab

c

]μν

λ
=

∑
μ′,ν ′,λ′

�a
μμ′�

b
νν ′

[
Mab

c

]μ′ν ′

λ′ [�c]−1
λ′λ.. (E3)

M symbols are affected by the gauge transformation of bulk
fusion space as well.

It is convenient to fix the gauge for the following symbols:[
M1a

a

]μ

ν
= [

Ma1
a

]μ

ν
= δμν. (E4)

Braiding puts further constraints on the M symbols. Since
the anyons condense on the boundary, it should not matter in
which order the anyon lines terminate on the boundary,[

Mba
c

]νμ

λ
Rab

c = [
Mab

c

]μν

λ
. (E5)

There is a similar condition for the inverse braiding.
It was shown in Ref. [38] that these conditions are

equivalent to the mathematical definition of a commuta-
tive, connected and separable Frobenius algebra A = ⊕

a naa
in a braided tensor category, with the algebra morphism
A × A → A precisely given by the M symbol.

1. Symmetry-preserving condensation

We now give a precise definition of anyon condensation
that preserves the global symmetry [60]. This builds on top of
the algebraic theory of (2+1)d symmetry-enriched topologi-
cal phases, known as the G-graded braided tensor category,
reviewed in [42]. For a more complete account see [4]. A key
fact that we will use is that in a topological phase enriched
by symmetry group G, the symmetry action on anyons is fully
specified by the following data: ρg,Ug(a, b; c) and ηa(g, h).
Here ρg denotes a permutation of anyon labels, and in the
following we write ga ≡ ρg(a). Ug(a, b; c) are unitary trans-
formations acting on the fusion spaces. ηa(g, h) are phase
factors that describe projective symmetry transformations on
individual anyons. ρ,U and η need to satisfy consistency
conditions given in [4]. Again we refer to [4] for their defi-
nitions and properties. In the present case of the B�N MTC,
ρ is the ZN cyclic permutation, and U and η are both 1 if
we use the natural gauge choice where the F and R symbols
of B�N are simply given by the Cartesian products of those
of B.

In the following a, b, c, . . . denote anyons in the conden-
sate, unless otherwise specified. We assume na = 1 whenever
a belongs to the condensate, so we omit the index for the
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boundary condensation space. Since the boundary is fully
gapped and symmetric, we can posit that for each g there
exists at least one g defect that can be absorbed without
creating any additional excitations on the boundary.

Here χa(g) is a phase factor. Physically, χa(g) encodes the
g action on the condensed anyon, illustrated in Fig. 4. When
there is more than one condensation channel, χ should be re-
placed by a unitary transformation acting on the condensation
space.

If we slide a vertex which splits a gh defect to g and h
defects over a boundary vertex, we find

ηa(g, h) = χa(gh)

χḡa(h)χa(g)
. (E6)

We can also consider fusion of condensable anyons on a
boundary. For a, b, c in the condensate, sliding a g line over
the diagrammatic equation that defines M symbol, one finds

M
ḡa,ḡb
ḡc Ug(a, b; c) = Mab

c

χa(g)χb(g)

χc(g)
. (E7)

We believe that these two conditions Eqs. (E6) and (E7)
are sufficient and necessary for the condensation to preserve
symmetry. Mathematically, χa(g) defines an algebraic isomor-
phism for each g. The consistency conditions guarantee that
one has a G-equivariant algebra structure on L [60].

Note that for a g-invariant anyon a, χa(g) can be inter-
preted as the g charge carried by a. In particular, it means
that ηa(g, h) = χa(gh)

χa(g)χa (h) . Below, in all our examples the bulk
has no symmetry fractionalization so we make the canonical
choice that ηa(g, h) = 1.

2. Condensation in Spin(2n)1 layers

Below we focus on the cases of Spin(2n)�r
1 . We will only

study the n = 1, 2 cases. n = 4 has been treated in Ref. [30],
and the other values of n are similar. We start from a few
general results that apply to all n. As before, anyons are
denoted by a r tuple.

Denote the Lagrangian subgroup as A for the system,
which has two types of group elements. The subgroup A0

consists of all bosons {a0, b0, . . . } ∈ A0 made of an even
number of fermions while the rest of the group elements are
expressed as v + a0, where v is the fermion parity flux.

We observe that F a0,b0,c0 = 1. So Ma0,b0 forms a 2-cocycle
over A0. We will postulate that Ma0,b0 = 1 in our solutions.

To simplify Eq. (E2), we make the following gauge
choices: By using the �v+a0 gauge freedoms, we set
Mv,a0 = 1. Then using �v we set Mv,v = 1. From the consis-
tency equations we find the following expressions:

Mv+a0,b0 = F v,a0,b0 ,

Ma0,v+b0 = Ma0+b0,v

Mb0,v
, (E8)

Mv+a0,v+b0 = Ma0,v.

Now Ma0,v has to satisfy

M2v+a0+b0+c0,vMb0,vF v+a0,v+b0,v+c0

= Ma0,vMc0,vF v,a0,2v+b0+c0 . (E9)

We can write a general solution of the consistency equa-
tions Ma,b = Ma,b

0 ωa,b, consisting of a special solution Ma,b
0

of Eq. (E9) and a group 2-cocycle ωa,b over A. Then ω will
be fixed through Eq. (E5).

3. Z4-symmetric Lagrangian algebra of Spin(4)�4
1

We denote the anyons in Spin(4)�4
1 by a = (�a1, �a2, �a3, �a4),

where �ai = (a1
i a2

i ) are defined mod 2. The F and R symbols
are given by

F a,b,c = exp

(
iπ

2

4∑
i=1

�ai · (�bi + �ci − [�bi + �ci]2)

)
,

Ra,b = exp

[
iπ

2

4∑
i=1

�ai · �bi

]
. (E10)

The Z4 symmetry generator g acts on the anyons in the fol-
lowing way:

ρ : (�a1, �a2, �a3, �a4) → (�a2, �a3, �a4, �a1). (E11)

It is obvious that F and R symbols are invariant under ρ,

Fρ(a),ρ(b),ρ(c) = F a,b,c, Rρ(a),ρ(b) = Ra,b. (E12)

Therefore the corresponding U symbols are all 1. We can then
set all the η symbols to 1 as well.

It will also be convenient to pick a set of generators for the
Lagrangian subgroup. We will use the following set:

v1 = (1 0, 1 0, 1 0, 1 0),

v2 = (1 1, 1 1, 0 0, 0 0),

v3 = (0 0, 1 1, 1 1, 0 0),

v4 = (0 0, 0 0, 1 1, 1 1). (E13)

Together they form a A = Z4
2 group. Then any group element

a can be expanded in terms of the generators: a = ∑4
i=1 ãivi.

Following the procedure in Appendix E 2, we find the
special solution Ma,b

0 ,

Ma0,v
0 = e

iπ
2 v·a0 , (E14)

and the group 2-cocycle ωa,b:

ωa,b = eiπ (ã2 b̃3+ã3b̃4 ). (E15)

We find the following solution of χ ,

χa(g) = eiπ (1−ã4 )(ã2+ã3 ), (E16)

and

χa(g2) = eiπ[(1−ã4 )ã3+(1−ã3 )ã2]. (E17)

One can easily verify that all g-invariant anyons have χ = 1.
The same is true for all g2-invariant anyons.

4. Z8-symmetric Lagrangian algebra of U(1)�8
4

We denote the anyons in U(1)�8
4 by a 8-tuple a =

(a1, a2, . . . , a8), where ai ∈ {0, 1, 2, 3} are defined mod 4.
Since the theory is Abelian, fusion will be denoted additively.
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We will use shorthand notations for the F and R symbols
(F a,b,c

a+b+c )a+b,b+c ≡ F a,b,c, Ra,b
a+b = Ra,b. They are given by

F a,b,c = exp

(
iπa · b + c − [b + c]4

4

)
,

Ra,b = exp

(
iπ

4
a · b

)
. (E18)

The Z8 symmetry generator g acts on the anyons in the fol-
lowing way:

ρ : (a1, a2, . . . , a8) → (a2, a3, . . . , a1). (E19)

It is obvious that F and R symbols are invariant under ρ,

Fρ(a),ρ(b),ρ(c) = F a,b,c, Rρ(a),ρ(b) = Ra,b. (E20)

Therefore the corresponding U symbols are all 1. We can then
set all the η symbols to 1 as well.

The Lagrangian subgroup is generated by the following
anyons:

v1 = (1, 1, 1, 1, 1, 1, 1, 1),

v2 = (2, 2, 0, 0, 0, 0, 0, 0),

v3 = (0, 2, 2, 0, 0, 0, 0, 0),

v4 = (0, 0, 2, 2, 0, 0, 0, 0), (E21)

v5 = (0, 0, 0, 2, 2, 0, 0, 0),

v6 = (0, 0, 0, 0, 2, 2, 0, 0),

v7 = (0, 0, 0, 0, 0, 2, 2, 0).

Together they generate a A = Z6
2 × Z4 group. We find the

solution to be

Ma0,v
0 = e

iπ
4 v·a0 , (E22)

and

ωa,b = eiπ (ã2 b̃3+ã3b̃4+ã4b̃5+ã5b̃6+ã6b̃7 ). (E23)

The solution for χ is given by

χa(g) = eiπ (1−ã7 )(ã2+ã4+ã6 ). (E24)

In this case, the only g-invariant anyons are generated by v1,
so obviously χv1 (g) = 1. The same is true for other symmetry
transformations.

APPENDIX F: GAUGING ZN CYCLIC
PERMUTATION SYMMETRY

We describe the ZN gauging of B�N , where the ZN gener-
ator g acts as

(a1, a2, . . . , aN ) → (aN , a1, . . . , aN−1). (F1)

We will denote the gauged theory by U . Anyons in U will
be labeled by (xgr , χ ), where gr is the symmetry flux, and χ

is an irreducible representation of the stabilizer group. Here
since G is Abelian we can view χ as a group homomorphism
from the stabilizer group to U(1). For example, if r = 0, then
x runs through all orbits of anyons [b] in B�N under G, where
b = (b1, b2, . . . , bN ) is a representative element of the orbit.
Its stabilizer group, i.e., the subgroup of G that keeps the
anyon b invariant, is denoted by Gb. When the stabilizer group

is strictly smaller than G, we call ([b]1, χb) a superposition
anyon. In general, the label x can actually be chosen as an
element in B�(N,r).

Among all (xgr , χ ) there is one with the minimal quantum
dimension, which we will call (1gr , χ ) (for r = 0, (11, 1) is
the identity anyon). We have the following fusion rule:

(a1, a2, . . . , a(N,r),1, . . . ,1) × (1g, χ ) = (ag, χ ). (F2)

Here a = (a1, a2, . . . , a(N,r) ). Therefore d(agr ,χ ) = dad(1gr ,1).
To compute d(1gr ,1), we use the fact that the total quantum

dimension squared of all gr defects must be equal to D2
B [4].

That is, ∑
a∈B�(N,r)

d2
a d2

1gr = D2(N,r)
B d2

1gr = D2N
B .

Thus d1gr = DN−(N,r)
B .

We also have the topological twist factors for the fluxes,

θ(agr ,χ ) = θagr χ (gr ). (F3)

Here θagr is the topological twist factor of the agr defect. It can

be chosen to be θagr = θ
(N,r)

N
a , but we do not need its value in

this section.
Now we consider the S matrix elements between fluxes and

anyons. The entries of S matrix could be computed from the
topological spins and the fusion coefficients,

Sx,y = 1

D

∑
z

Nxy
z dz

θxθy

θz
. (F4)

We will use this to derive an important property of
SU

(agr ,χa ),([b]1,χb), where [b]1 denotes a superposition anyon (i.e.,
Gb is smaller than G). First we consider the fusion between
a superposition anyon ([b]1, χb) and a bare charge (11, χ ),
where χ is a 1D rep. of ZN . Following Ref. [4], we have

([b]1, χb) × (11, χ ) = ([b]1, χb · χ |Gb ). (F5)

Here χ |Gb is the restriction of χ to Gb.
Suppose χ |Gb is trivial. For such a χ , using (F5) we get

([b]1, χb) × (11, χ ) = ([b]1, χb), (F6)

which implies that

(agr , χa) × ([b]1, χb) × (11, χ ) = (agr , χa) × ([b]1, χb).
(F7)

Let us define �b as the group of χ ’s, which restrict to
identity on Gb. It is easy to see that �b is all the irreps on
G/Gb. Then Eq. (F7) implies

(agr , χa) × ([b]1, χb) =
∑
cgr

N
cgr

agr ,[b]1

∑
χ∈�b

(cgr , χcχ ). (F8)

While N
cgr

agr ,[b]1
and χc are undetermined, they are not needed

for our purpose.
Using the definition (F4), we obtain

SU
(agr ,χa ),([b]1,χb)

= θ(agr ,χa )θ([b]1,χb)

DU

∑
cgr

N
cgr

agr ,[b]1
d(cgr ,χc )

∑
χ∈�b

θ−1
(cgr ,χcχ ). (F9)
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Let us consider the sum over χ ∈ �b, which can be simplified
further to ∑

χ∈�b

θ−1
(cgr ,χcχ ) = θ−1

(cgr ,χc )

∑
χ∈�b

χ−1(gr ). (F10)

First, we assume gr ∈ Gb. By the definition of �b, χ (gr ) = 1
so the sum evaluates to |�b|. Then if gr /∈ Gb, the Schur’s
orthogonality theorem applied to G/Gb shows that the sum
should be 0. To summarize, we have shown that

SU
(agr ,χa ),([b]1,χb) ∝ δgr∈Gb . (F11)

Let us now consider what happens when gr ∈ Gb. It implies
that b has a period (N, r), i.e., write b = (b1, b2, . . . , bN ), then
bi = bi+(N,r) mod N . Thus for this calculation, we can group
(N, r) consecutive layers into one “layer”, with total num-
ber of layers Ñ = N

(N,r) . It is also convenient to define b̃ =
(b1, b2, . . . , b(N,r) ) ∈ B̃ = B�(N,r). Therefore, the problem re-
duces to computing the S matrix between a (agr , 1) defect, and
[b]1 = (b̃, . . . , b̃). We will account for the charges later.

Now we use a geometric picture to compute the S matrix.
A cylinder with a agr defect line can be viewed as a Ñ-layer
cylinder, with a gr cyclic permutation branch cut, which is
topologically equivalent to a single-“layer” cylinder with the
topological order described by B̃. On the cylinder there is a
Wilson line of the a anyon. We then compute the eigenvalue
of the Wilson loop of ([b]1, 1) along the other noncontractible
cycle in two ways. Note that in the alternative picture, the
Wilson loop of ([b1, 1]) becomes a Wilson loop of b̃. We thus
have

SU
(agr ,1),([b]1,1)

SU
(agr ,1),(11,1)

= SB̃
ab̃

SB̃
a1

(F12)

where SU
(agr ,1),(11,1) = d(agr ,1)

DU
, SB

a1 = da
DB̃

= da

D(N,r)
B

. Using

d(agr ,1) = DN−(N,r)
B da and DU = NDN

B, we have

SU
(agr ,1),([b]1,1) = daDN−(N,r)

B

NDN
B

D(N,r)
B
da

SB̃
ab̃

= 1

N
SB̃

ab̃. (F13)

Including the contribution from the charge χb, we find

SU
(agr ,χa ),([b]1,χb) = 1

N
χb(gr )SB̃

ab̃δgr∈Gb . (F14)

Now we study gapped boundaries of B�N from the gauging
perspective. Suppose we have a Lagrangian algebra A0 of
B�N . It can be “lifted” to a condensable algebra A in the
gauged theory U . Namely, we can first break A0 into orbits
under G, and each orbit becomes a single anyon after gauging.

A0 =
∑
[a]

na

∑
b∈[a]

b. (F15)

Here [a] is an orbit under G, with a being a representative
element. After gauging, it becomes

A =
∑
[a]

na([a]1, χa ). (F16)

Roughly speaking, χa is the symmetry charge carried by the
a anyon when it condenses. The assignment of χa is not
arbitrary. In fact, because U and η are all 1 in our example,
the χa’s are precisely those defined in Appendix E 1.

By definition, condensing A0 in B�N results in a trivial
theory (the Vec MTC). If the condensation preserves the ZN

symmetry, condensing A in U should result in a deconfined
ZN gauge theory, denoted by D. In the same convention,
anyons in D will be denoted by (gr, χ ). The vacuum is 1 ≡
(1, 1). Note that depending on the choice of the charges χa’s,
the ZN gauge theory may be twisted. We are in particular
interested in whether there exists a choice of χ ’s such that
the ZN gauge theory is not twisted.

We briefly recall a few basic facts about anyon conden-
sation from a MTC U to D. It is useful to think of the
anyon condensation as defining a gapped interface between
the theories U and D. To fully describe this process, it is
also necessary to define the theory of (possibly confined)
excitations on the interface, called T . D is the “deconfined”
subcategory of T .

The relations between the three theories are encoded in the
restriction map r and the lifting map l . An anyon α in the U
theory can be “restricted” to the T theory,

r(α) =
∑
t∈T

nα,t t, (F17)

where the nα,t ’s are non-negative integers. On the other hand,
a particle in the T can be lifted back to the U theory:

l (t ) =
∑
α∈U

nα,tα. (F18)

Clearly l (1) is the Lagrangian algebra A. We are mostly
interested in nα,t ’s when t ∈ D.

The integers nα,t should satisfy various constraints. We will
only need the following condition: the restriction/lifting maps
should commute with the modular matrices of U and D. More
specifically, for α ∈ U and t ∈ D, we have∑

β∈U
Sαβnβ,t =

∑
s∈D

nα,sSst . (F19)

Secondly, for a given t ∈ U , all α’s with nα,t = 0 share the
same topological twist factor and θα = θt .

We will denote

l (g, 1) =
∑
a∈B

wg(a)(ag, 1), (F20)

where wg(a) is a non-negative integer. We shall use (F19)
to constrain wg(a), which can then determine the topological
twist factor of (g, 1).

Setting α = (ag, 1), t = 1 in (F19), we have the left-hand
side given by∑

([b]1,χb)∈A
SU

(ag,1),([b]1,χb )nb = 1

N

∑
b=g(b)

χbSB
abnb. (F21)

The right-hand side is 1
N wg(a). So we find∑

b=g(b)

χbSB
abnb = wg(a). (F22)
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Here b = g(b) means b = (b, b, . . . , b). Similar relations can
be derived for other gr . Given that the S matrix elements are
generally not integers, it is a nontrivial consistency check that
the sum on the left-hand side yields a non-negative integer.

Let us now apply the relation to B = Spin(2n)1 theory. In
this case, b runs over all anyons in B and with nb = 1 we have

∑
b∈B

SB
abχb = wg(a). (F23)

We have shown in that χb = 1 for all b = g(b) is allowed for
n = 1, 2, and 4, and in fact for all other values of n. With this
choice, the unitarity of S matrix implies that wg(a) = 2δa,1.
Therefore, θ(g,1) = θ(1g,1) = 1 and the ZN gauge theory is not
twisted.

In the case of the Ising theory with N = 16, the left-hand
side becomes

1
2 (1 + 128

√
2χσ + χψ ) = wg(1),

1
2 (1 − 128

√
2χσ + χψ ) = wg(ψ ), (F24)

1√
2
(1 − χψ ) = wg(σ ).

Regardless of the choice of χσ and χψ , wg(1) and wg(ψ )
cannot be an integer, and the only possible integer value for
wg(σ ) is 0. We conclude that such a symmetry-preserving
condensation in Ising�16 does not exist. This confirms the
more heuristic argument in Sec. III B 2.
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