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We develop an analytic theory to describe the interaction between electrons and K phonons and study its influ-
ence on superconductivity in the bare bands of twisted bilayer graphene (TBG). We find that, due to symmetry
and the two-center approximation, only one optical K phonon (∼160 meV) of graphene is responsible for the
intervalley electron-phonon interaction. This phonon has recently been found in angular-resolved photoemission
spectroscopy to be responsible for replicas of the TBG flat bands. By projecting the interaction to the TBG flat
bands, we perform the full symmetry analysis of the phonon-mediated attractive interaction and pairing channels
in the Chern basis, and show that several channels are guaranteed to have gapless order parameters. From the lin-
earized gap equations, we find that the highest Tc pairing induced by this phonon is a singlet gapped s-wave inter-
Chern-band order parameter, followed closely by a gapless nematic d-wave intra-Chern-band order parameter.
We justify these results analytically, using the topological heavy-fermion mapping of TBG which has allowed us
to obtain an analytic form of a phonon-mediated attractive interaction and to analytically solve the linearized and
T = 0 gap equations. For the intra-Chern-band channel, the nematic state with nodes is shown to be stabilized in
the chiral flat-band limit. While the flat-band Coulomb interaction can be screened sufficiently enough—around
the Van Hove singularities—to allow for electron-phonon based superconductivity, it is unlikely that this effect
can be maintained in the lower density of states excitation bands around the correlated insulator states.
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I. INTRODUCTION

Superconductivity in twisted bilayer graphene (TBG) ap-
pears within its phase diagram around the correlated insulator
states [1–19]. Among the mechanisms suggested for super-
conductivity are phonons, spin fluctuations, skyrmions, and
others [20–45]. Based on a recent experiment that suggests a
strong coupling between the graphene K phonon and the flat
bands in TBG [46], we perform a comprehensive analysis of
the electron–K-phonon (e-K-ph) interaction and the resulting
phonon-mediated superconductivity on the bare flat bands of
TBG. We develop an exhaustive numerical, analytical, and
symmetry based description of the e-K-ph interaction in TBG
and the symmetry classifications of the order parameter, and
find the competing singlet gapped inter-Chern-band channel
and nematic gapless intra-Chern-band channel. Armed with
the heavy-fermion description of TBG [47–55], the form fac-
tors of the K-phonon induced attractive interaction can be
analytically computed and matched well to full numerical
calculations. An analysis of the Coulomb screening shows
that, due to the high density of states (DOS) of flat bands,
the Coulomb interaction might be strongly renormalized down
near the Van Hove singularities. However, it remains unclear
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if the Hartree-Fock bands of the correlated insulator, with the
lower DOS, can provide a similar result.

II. MODEL HAMILTONIAN FOR ELECTRON-PHONON
INTERACTION IN TBG

We consider the deformation potential type of theory,
described by a tight-binding (TB) model for the electron
Hamiltonian with the hopping parameters depending on the
atom positions R̃

l
α = Rl + τ l

α + ul (Rl
α ) with a displacement

field ul (Rl
α = Rl + τ l

α ), where Rl and τ l
α label the lattice

vector and the sublattice atom position (α = A, B) at the layer
l , respectively. By treating u as a perturbation, we expand the
intralayer Hamiltonian up to the linear order in u [Supplemen-
tal Material (SM) Sec. II [56]]. We only keep u-independent
terms for the interlayer Hamiltonian for TBG, thus focusing
on the intralayer electron-phonon (e-ph) interaction in this pa-
per. As only the Dirac bands appear around the Fermi energy
close to ±KD = ± 4π

3a0
(1, 0) in the Brillouin zone (BZ) with

the lattice constant a0 in graphene, we also expand the Hamil-
tonian around ηKD (η = ± labeling two valleys) and focus
on Dirac electrons around two valleys. Our full Hamiltonian
consists of three parts,

H = Hel + Hph + Heph. (1)

Here, Hel describes the Dirac electrons located at valley η = ±
momentum ηKD that are coupled through interlayer tunnel-
ings and is given by the Bistritzer-MacDonald (BM) model
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FIG. 1. (a) Phonon dispersion of graphene. The irreps for phonon
modes at � and KD are labeled. Inset: BZ of graphene. (b) MBZ of
TBG. (c) and (d) show the momentum dependence of the normalized
gap function |�k| for the inter-Chern-band A1 singlet (or the A2

triplet) channel and intra-Chern-band pairing 2D E2 singlet channel,
respectively. The inset in (c) shows the |�k| along the dashed line
ky = 0 for both the inter-Chern-band (red) and intra-Chern-band
(blue) channels. The momenta �M , KM , MM are labeled in MBZ in
(b) and (d).

[57] (SM Sec. V [56]),

Ĥel =
∑
ηs

∑
k∈MBZ

∑
αα′

∑
Q,Q′

h(η)
Qα,Q′α′ (k)c†

k,Q,α,η,sck,Q′,α′,η,s, (2)

where ck,Q,α,η,s is the fermion annihilation operator, k is a
momentum in the moiré Brillouin zone (MBZ) [Fig. 1(b)], α

is the sublattice index, and s is spin. The vector Q belongs
to the lattice set Qlη = {lηq2 + n1bM1 + n2bM2 | n1,2 ∈ Z},
where l is the layer index, q2 = kθ (

√
3

2 , 1
2 ), bM1 = kθ (

√
3

2 , 3
2 ),

bM2 = kθ (−
√

3
2 , 3

2 ), and kθ = 2|KD| sin θ
2 with θ the twist an-

gle. h(η)
Qα,Q′α′ (k) is given in SM Sec. V A [56]. Ĥel exhibits C6v

and time-reversal symmetries, generated by valley-switching
π/6 rotation along the z axis (Ĉ6z), time reversal (T̂ ), and π ro-
tation along the y axis (C2y), and valley-preserving π rotation
along the x axis (Ĉ2x), and the composite antiunitary C2zT .
In addition, Ĥel has a unitary particle-hole (P̂) symmetry, as
well as a chiral symmetry Ĉ in the limit with vanishing AA
region hopping (w0 = 0) [19]. A full discussion of symmetry
of the BM model [58,59] is found in SM Sec.V B [56] (see
also Refs. [60–63] therein).

Hph describes the intralayer in-plane phonon modes. Out-
of-plane phonon modes are decoupled from Dirac electrons
for the intralayer e-ph interaction. The dynamical matrix for
a single-layer graphene is derived in SM Sec. III [56] based
both on symmetry considerations and the microscopic model,
up to the next-nearest-neighbor interaction. The resulting in-
plane phonon dispersion in Fig. 1(a) reproduces that in the
literature [64–68] (SM Secs. III and IV B [56]). The phonon
modes at � and ηKD can induce intravalley and intervalley

e-ph interactions, respectively. In this paper we focus on
the ηKD phonons. At ηKD, we have one A1 (∼160 meV),
one A2 (∼140 meV), and one two-dimensional (2D) E mode
(∼150 meV) of the C3v group. Based on the deformation
potential theory, we derive the e-ph interaction Heph by ex-
panding the TB Hamiltonian treating both the momentum and
phonon displacement field u as perturbations. For the e-ph
interaction, we only keep the dominant zeroth order in mo-
mentum for the ηKD phonons. We find, due to both symmetry
and the two-center approximation (SM Sec. II E [56]), that
only the A1 phonons at KD can scatter an electron from KD to
−KD [68]. The corresponding Hamiltonian reads

Hop,A1

intervall ≈ γ3√
2NGMωA1

∑
k̃,k̃′,η,αβ

(b−ηKD+k̃−k̃′,A1

+ b†
ηKD−k̃+k̃′,A1

)c†
k̃+ηKD,α

(σx )αβck̃′−ηKD,β , (3)

where k̃ is the electron momentum away from ηKD, NG is
the number of atomic unit cells, M is the atomic mass, ωA1

is the A1 phonon frequency, and b and c are phonon and
electron annihilation operators. The material-dependent pa-
rameter γ3 can be derived from the hopping potential as γ3 =
2i

∑
G ei(τA−τB )·G(G + KD)yt (G + KD, 0) ≈ 17 eV/ Å, where

G is the reciprocal lattice vector and t (q) is the Fourier trans-
form of the π -bond hopping function between two carbon pz

orbitals in graphene [Eq. (6) in SM Sec. I [56]]. Our next
step is to rewrite the electron momentum k̃ into the MBZ by
k̃ = k − Qlη with k ∈ MBZ, so that ck,Qlη,α,η,s = cηKl

D+k̃,α,l,s

and
∑

k̃ → ∑
k∈MBZ

∑
Qlη

, where we have added the spin in-
dex s and layer index l . Finally, we project the e-ph interaction
Hop,A1

intervall into the flat bands of the BM Hamiltonian as

Hop,A1

intervall ≈ 1√
NG

∑
Gηnn′l

k,k′,Q−lη
γ

†
k,n,η,sγk′,n′,−η,s

× (b−ηKD+k−k′−Q−lη,l,A1 + b†
ηKD−k+k′+Q−lη,l,A1

),

(4)

where the summation includes k, k′, n, n′, η, s, l , Q−lη,
γ

†
k,n,η,s = ∑

Qα uQα;nη(k)c†
k,Q,η,αs with un

k,Q′
lη,α,η

the eigen-

states of h(η)
Qα,Q′α′ (k). The matrix element

Gηnn′l
k,k′,Q−lη

= γ3√
2MωA1

∑
Q′

lη,αβ

×un

k,Q′

lη,α,ησ
x
αβun′

k′,Q′
lη−Q−lη,β,−η (5)

characterizes the e-ph interaction strength for TBG and can
be evaluated numerically (and later analytically), as shown in
SM Sec. VI F [56]. We focus on two flat bands (per valley
per spin) of TBG, labeled by n = ±. Instead of the eigenstate
basis, we work on the so-called “Chern-band” basis, defined
by

ueY
k,Q,α,η

= 1√
2

(un=+
k,Q,α,η + ieY un=−

k,Q,α,η ), (6)

with eY = ±1. ueY
k,Q,α,η

carries the Chern number ±1. On the
Chern-band basis, the expressions for the e-ph interaction can
be obtained by replacing the n, n′ indices in Eqs. (4) and
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(5) with eY , e′
Y indices and un

k,Q,α,η in Eq. (5) with ueY
k,Q,α,η.

Discrete symmetries can constrain the form of the function
GηeY e′

Y l
k,k′,Q−lη

, as discussed in SM Sec.VI D [56]. In particular,

in the chiral limit w0 = 0 one can show that GηeY e′
Y l

k,k′,Q−lη
=

δeY ,e′
Y
GηeY eY l

k,k′,Q−lη
has a diagonal form on the Chern-band basis,

and this approximation will be adopted below for the discus-
sion of possible superconducting channels.

III. PHONON-MEDIATED ELECTRON-ELECTRON
INTERACTION AND SYMMETRY CLASSIFICATION OF

SUPERCONDUCTING PAIRING CHANNELS

We next apply the Schrieffer-Wolff transformation [69]
to integrate out the phonon modes and obtain the phonon-
mediated electron-electron (el-el) interaction [25,32]. We
focus on the Cooper pair channel of the attractive interaction,
which takes the form

Hee = − 1

NM

∑
k,k′,s,s1,eY ,e′

Y

V η,eY ,e′
Y

k,k′

× γ
†
keY ηsγ

†
−ke′

Y ,−ηs1
γ−k′e′

Y ,ηs1γk′eY ,−ηs, (7)

where

V η,eY ,e′
Y

k,k′ = 1

N0ωA1

∑
GM ,l

Gη,eY ,l
k,k′,−lηq2+GM

G−η,e′
Y ,l

−k,−k′,lηq2−GM
,

with GM the moiré reciprocal lattice vectors, NM the number
of moiré unit cells, and N0 the number of atomic unit cells
in one moiré unit cell (NG = N0 × NM). Discrete symme-
tries constrain the form of the interaction parameter V η,eY ,e′

Y
k,k′ .

The ones leaving the momentum (k, k′) unchanged are as
follows: (1) Ĉ2zP̂: V η,eY ,e′

Y
k,k′ = V −η,eY ,e′

Y
k,k′ ; (2) Ĉ2zT̂ : V η,eY ,e′

Y
k,k′ =

V η,−eY ,−e′
Y 


k,k′ ; and (3) the combination of index reshuffling and

P̂ symmetry: V η,eY e′
Y

k,k′ = V −η,e′
Y eY

k,k′ . These three symmetry oper-
ations reduce the number of the independent components of
the V function for a fixed (k, k′) from eight complex parame-
ters to one real (V +,+−

k,k′ ) and one complex parameter (V +,++
k,k′ ).

Other discrete symmetries, including P̂, reshuffling, Hermitic-
ity, Ĉ3z, and Ĉ2z, relate the V function at different (k, k′).
In particular, Ĉ3z guarantees V η,eY ,eY

KM ,0 = 0 for the intra-Chern-
band channels. The projected Coulomb interaction into the flat
bands of the BM model possesses a large U (4) × U (4) spin-
valley continuous symmetry [18,58,70]. The el-el interaction
(7) breaks this symmetry down to the U (2)eY =+ × U (2)eY =−
in the chiral limit and further to a total spin SU (2) together
with a valley charge U (1) ⊗ U (1) (SM Sec. VI E [56]).

At the mean-field level, the attractive interaction (7) is
decomposed into the fermion bilinear form H� = �̂ + �̂†

with

�̂ =
∑

γ
†
k,eY1 ,η,s1

�
η

k;eY1 s1,eY2 s2
γ

†
−k,eY2 ,−η,s2

, (8)

where the summation above includes the indices k, eY1 , eY2 , s1,
s2, η, and the gap function

�
η

k;eY1 s1,eY2 s2
= − 1

NM

∑
k′

V
ηeY1 eY2

kk′ 〈γ−k′eY2 ηs2γk′eY1 −ηs1〉. (9)

Since the interaction V function does not involve spin, we
can decompose �

η

k;eY1 s1,eY2 s2
= ∑

S,M �
η,SM
k;eY1 eY2

SSM
s1s2

, where S =
0 for the spin singlet and S = 1 (M = −S, . . . , S) for the spin
triplet (SM Sec. VI G 1 [56]).

The gap function can be classified according to the dis-
crete symmetries. The C6v group includes four 1D irreducible
representations (irreps), e.g., A1,2 and B1,2, and two 2D ir-
reps, E1,2. The 1D irreps A1,2 and B1,2 channels differ by
their Ĉ2z eigenvalues, λC2z = +1 for A1,2 and λC2z = −1 for
B1,2. Combining Ĉ2z and reshuffling symmetries leads to
�

η

k;eY1 ,eY2
= λC2z�

η

k;eY2 ,eY1
for the spin singlet and �

η

k;eY1 ,eY2
=

−λC2z�
η

k;eY2 ,eY1
for the spin triplet. Thus, for intra-Chern-band

pairing (eY1 = eY2 ), the A1,2 channel must be a spin singlet
while the B1,2 channel must be a spin triplet. Furthermore,
the rotation Ĉ3z ensures the existence of nodes at KM for
the gap function of any 1D irrep intra-Chern-band channel
(�η

KM ;eY ,eY
= 0), while the inter-Chern-band channel does not

have such a constraint. The 2D irreps E1 and E2 have different
Ĉ2z eigenvalues, λC2z = +1 for E2 and λC2z = −1 for E1, sim-
ilarly to the 1D irrep case. Consequently, the E2 channel must
be a spin singlet while the E1 channel must be a spin triplet
for intra-Chern-band pairings. Ĉ3z guarantees nodes at �M

for both intra- and inter-Chern-band channels, and it requires
additional nodes at KM for the inter-Chern-band channels
for both 2D E1,2 pairings. Besides discrete symmetries, the
continuous U (2)eY =1 × U (2)eY =−1 spin symmetry in the chiral
limit guarantees the singlet and triplet pairings of the inter-
Chern-band channel to be degenerate in the chiral flat-band
limit. The full symmetry analysis of the gap functions can be
found in SM Sec. VI G [56] (see also Refs. [71,72] therein).

IV. GAP EQUATIONS AND SELF-CONSISTENT SOLUTION
OF PAIRING CHANNELS

The linearized gap equation (LGE) for the attractive inter-
action (7) can be derived by evaluating 〈γ−k′eY2 ηs2γk′eY1 −ηs1〉 in
Eq. (9) and expanding it to linear order of the gap function. In
the chiral flat-band limit, e.g., the bandwidth is much smaller
than the critical temperature Tc, the LGE is derived as

2kBT �
η,SM
k;eY1 eY2

= 1

NM

∑
k′

V
ηeY1 eY2

k,k′ �
−η,SM
k′;eY1 eY2

. (10)

This is an eigenequation problem for the matrix V
ηeY1 eY2

k,k′ : The
Tc is determined by the largest eigenvalue and the symmetry
of the gap function is determined by that of its eigenvec-
tor. As mentioned, the only two independent components
of the V function (complex V +++

k,k′ and real V ++−
k,k′ ) lead to

two independent LGEs for the intra- and inter-Chern-band
channels, respectively. The form of the LGE suggests that
all the gap functions are doubly degenerate at Tc in the flat-
band limit. They belong either to two degenerate 1D irreps
or one 2D irrep. We first numerically solve these two LGEs
from Eq. (10), and find the forms of the gap functions with
the largest eigenvalues, as shown in Fig. 1. Our numerical
calculations show kBTc ∼ 0.21 meV for the inter-Chern-band
channel, slightly larger than kBTc ∼ 0.16 meV for the intra-
Chern-band channel. For the inter-Chern-band channels, the
gap function is almost a constant in Fig. 1(a), featuring a fully
gapped s-wave pairing with even Ĉ2z parity (A1 or A2 irrep). In
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the chiral flat-band limit, spin singlet and triplet pairings are
degenerate, as required by the continuous U (2) × U (2) spin
symmetry (SM Sec. VI E [56]). Including kinetic energy splits
this degeneracy and makes the spin singlet A1 irrep channel to
have the highest Tc. For the intra-Chern-band channel, one can
see nodes appearing at the �M in Fig. 1(b). As our previous
symmetry analysis shows that the gap function should have
nodes at KM for the 1D irrep (A1,2, B1,2) and �M for the 2D
irrep (E1,2), numerical results should correspond to a 2D ir-
rep. Numerically analyzing the symmetry property of the gap
function suggests that the intra-Chern-band channel belongs
to the 2D E2 irrep with a spin singlet. Full numerical results
are discussed in SM Secs. VI H 2 and VI H 3 [56].

Our results for the intra-Chern-band channels reveal a d-
wave character of the gap. Using the heavy-fermion formalism
of TBG [47], we analytically obtain V η,eY ,eY

k,k′ ,

V η,eY ,eY

k,k′ = U ∗
eY ,kUeY ,k′ , UeY ,k =

√
V0

k2 + b2
k2

eY
, (11)

with keY = kx + ieY ky (eY = ±). This interaction allows us to
solve the LGE analytically to obtain the Tc,

kBTc = Ṽ0

2
, Ṽ0 = 1

NM

∑
k

V0
k4

(k2 + b2)2
, (12)

where V0 and b are material-dependent parameters. The corre-
sponding self-consistent gap function takes the d-wave form(

�+,00
k,eY eY

�−,00
k,eY eY

)
= �eY

k2
−eY

k2 + b2

(
1
1

)
, (13)

with eY = ± and �eY a parameter to be determined.
Time reversal, if it exists, requires (�−,00

k;−−,�+,00
k;−−) =

(�+,00
k;++,�−,00

k;++)∗. The d-wave nature of the gap function
suggests the possibility of the nodal superconductivity. How-
ever, one should note that the single-particle Hamiltonian is
not diagonal in the Chern-band basis. The Bogoliubov–de
Gennes (BdG) spectrum must be checked with kinetic en-
ergy added. The BdG Hamiltonian for the intra-Chern-band
pairing is block diagonal and one block H+,+

BdG on the basis
(γ †

k,eY =±,+,s=↑, γ−k,eY =±,−,s=↓) reads

H+,+
BdG (k) =

(
h+(k) �+

k
(�+

k )† −h

−(−k)

)
, (14)

with hη(k) = (d0,η(k) − μ)ζ 0 + dx,η(k)ζ x and �+
k =

Diag[�+,00
k,++,�+,00

k,−−]. Here, d0,η(k) = [ε+,η(k) + ε−,η(k)]/2
and dx,η(k) = [ε+,η(k) − ε−,η(k)]/2, where ε±,η(k) are the
eigenenergies for the two low-energy flat bands (per valley
per spin) of the BM model Ĥel (2). The corresponding energy
spectrum can possess nodes when the pairing amplitudes of
two Chern-band channels are equal, |�eY =+| = |�eY =−| =
�0, which corresponds to the Euler pairing discussed in
Refs. [32,73]. Point nodes appear at the location defined
by two conditions, (1) cos[(�k,− − �k,+)/2] = 0, where
�k,eY = ϕeY − 2eY θk with �eY = �0eiϕeY and keY = keieY θk ,
and (2) d2

x,k = (d0,k − μ)2 + �2
0,k with �0,k = �0

k2

k2+b2 ,
as discussed in SM Sec. VI H 5 [56]. The first condition
determines the momentum angle for the nodes while the
second gives the momentum amplitude, thus together fixing

FIG. 2. (a) The superconductor order parameter amplitudes |�±|
(red circles and blue crosses) and the ground state energy (black
dots) as a function of μ. The superconducting phase has nodes in
the shadowed regime. (b) and (c) show the BdG spectrum with and
without nodes at μ = 0.04 and 0.14 meV, respectively. The single-
particle bandwidth is set around 0.3 meV.

the location of point nodes in the 2D momentum space. We
next solve the self-consistent gap equation at zero temperature
for the interaction form (11). With the gap function ansatz

�k;eY = �eY

k2
−eY

k2+b2 , we find a self-consistent gap equation

�eY = V0

NM

∑
k′,eY1

k′2
eY

k′2 + b2
u−k′,eY eY1

w∗
−k′,eY eY1

, (15)

where ψk,eY1
= (uk,±,eY1

,wk,±eY1
) (eY1 = ±) are the eigenwave

functions with the positive eigenenergies of the BdG Hamilto-
nian H+,+

BdG (k) (14). Figure 2(a) shows the chemical potential
dependence of the gap functions and the condensation en-
ergy. The Euler pairing |�+| = |�−| is always energetically
favored for a non-flat-bandwidth ∼0.3 meV, quite different
from chiral d-wave pairing in doped graphene [26,74,75].
For the chemical potential μ below 0.1 meV, a nodal super-
conductor phase with four point nodes [Fig. 2(b)] located at
the positions determined by two conditions discussed above
[32]. With increasing μ, four nodes move towards �M and
eventually a gapped superconductor phase [Fig. 2(c)] appears
for μ > 0.1 meV.

The energy scale of the Coulomb interaction in TBG is
∼24 meV [58], much larger than the estimated energy scale of
e-K-ph mediated attractive interaction ∼0.3 meV [76]. Near
the Van Hove singularities of flat bands, the screening can
significantly reduce the Coulomb interaction to a similar order
as the e-K-ph mediated interaction due to the large DOS
(SM Sec. VI H 7 [56]), thus making superconductivity from
this mechanism possible. If, however, the DOS is that of
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the Hartree-Fock bands of correlated insulators, the screen-
ing might not be enough to reduce the Coulomb interaction.
Hence, superconductivity from this K-phonon flat bare band
mechanism could appear only when the correlated insulator
states are suppressed and the Coulomb interaction is strongly
screened [77], which is consistent with the TBG experiments
with different Coulomb screenings [78].

V. CONCLUSION

In conclusion, we develop a theory for the projected e-K-ph
interaction of the flat bands and the resulting superconduc-
tor pairing channels in TBG. We find the inter-Chern-band
s-wave singlet pairing and the intra-Chern-band d-wave ne-
matic singlet pairing have the highest Tc, and the Tc of the
inter-Chern-band channel is slightly higher than the intra-
Chen-band channel. The intra-Chen-band channel can have
nodes in a large parameter regime. From the estimate of the
screened Coulomb interaction, we argue that this mechanism
requires the correlated insulators to be suppressed.
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