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Direct current generation by dielectric loss in ferroelectrics
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We study direct current (DC) generation induced by microwave irradiation to ferroelectric materials. The DC
generation originates from microwave absorption called dielectric loss due to the delay of a dielectric response.
Such current generation can be formulated as the low-frequency limit of the phonon shift current which arises
from an increase of electric polarization accompanying photoexcitation of phonons due to the electron-phonon
coupling. To study the DC generation by the dielectric loss, we apply the diagrammatic treatment of nonlinear
optical responses to photoexcitations of phonons and derive the general formula for phonon shift current. We
then study the DC generation in the low-frequency region and find that the current scales as ∝ ω2 for the linearly
polarized light and time-reversal symmetric systems. We estimate the order of magnitude of the DC generation
by dielectric loss, indicating its feasibility for experimental detection in the GHz region.
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I. INTRODUCTION

Ferroelectricity is one of the most fundamental phenom-
ena in solids, where the spontaneous electric polarization is
induced by the atomic displacements breaking the spatial
inversion symmetry [1]. The simple picture is the separation
between the positive and negative charges, which results in the
electric dipole and the electric polarization P. The modern the-
ory of electronic contribution to the polarization is formulated
in terms of the quantum Berry phase of Bloch wave func-
tions [2,3]. For this formulation, the polarization current jP
associated with the adiabatic change of the atomic positions is
the central quantity which is related to the Berry curvature of
Bloch electrons. The polarization is defined as the integral of
jP, resulting in the Berry phase. Therefore, the ferroelectricity
is directly relevant to the geometric nature of the electronic
states in solids. In recent years, it has been recognized that
the Berry phase is also relevant to the second-order nonlin-
ear optical response to produce the direct current (DC) in
noncentrosymmetric materials, i.e., shift current [4–10]. Shift
current is induced by the shift of the electronic wave packet
upon interband transition under light irradiation in noncen-
trosymmetric crystals. Namely, the photoexcited electron-hole
pair has nonvanishing electric polarization due to the shift,
and a constant increase of the electric polarization in time
due to the photoexcitations of electron-hole pairs leads to
the DC generation in the steady state. Such shift of electrons
can be described by the Berry connection that quantifies the
intracell coordinate of Bloch electrons. In this sense, shift
current is of a geometric origin and is similar to the po-
larization current. In particular, it does not originate from
the transport of the photo-induced carriers. That said, shift
current is still in sharp contrast to the polarization current, in
that shift current can be DC whereas the polarization current
is always alternating current (AC) under alternating electric

fields of electromagnetic waves due to the reversal of the
polarization.

Since the shift current does not require the transport of the
photo-induced carriers, it may not require the photocarriers
themselves, i.e., any elementary excitation that accompanies
nonzero electric polarization may induce DC generation once
such excitation can be photoexcited. This possibility has been
explored in the exciton-induced shift current both experi-
mentally and theoretically [11–14]. The photoexcitation of
excitons without the external bias voltage induces the DC
shift current, where no free charge carriers (i.e., free electrons
and holes) exist. In this case, the photocurrent originates from
finite electric polarization of excitons where the wave packets
of bound electrons and holes are shifted. Even more surprising
is the discovery of the shift current in ferroelectric material
BaTiO3 by the phonon excitation at the THz region where
no electronic excitations take place [15]. The DC emerges by
photoexcitation of the phonon which is hybridized with the
virtual electron-hole pairs through the electron-phonon inter-
action. In ferroelectric materials, such hybridization endows
phonons with electric polarization, leading to DC generation
with their photoexcitation. Therefore, how the photon energy
can be reduced for the shift current generation in insulating
materials is an intriguing issue.

In ferroelectrics, its AC response is described by the di-
electric function ε(ω) = ε′(ω) + iε′′(ω). The imaginary part
ε′′(ω) corresponds to the energy dissipation which is pro-
portional to ω in the low-frequency limit. This low-energy
response arises from the delay of the response, i.e., the phase
shift, and is extensively studied in the microwave regime,
called dielectric loss [16–19].

In the present paper, we study the relation between the
phonon-induced shift current and the dielectric loss in the
low-frequency limit, exploring the possible DC generation
associated with the dielectric loss (Fig. 1). To this end, we
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FIG. 1. Schematic picture of direct current (DC) generation by
dielectric loss. Left: Photoexcitation of phonons produces DC in
inversion broken materials called phonon shift current, originating
from an increase of electric polarization accompanying phonons due
to electron-phonon coupling. Right: In the low-frequency region, off-
resonant phonon excitation leads to dielectric loss in ferroelectrics.
According to the shift current mechanism, such dielectric loss also
produces DC in the microwave regime.

consider a system of Bloch electrons coupled to phonon
excitations, as summarized in Sec. II. In Sec. III, using a
diagrammatic technique, we derive a general expression for
the DC generation that arises from the second-order nonlinear
response in the external electric field and involves a phonon
excitation as an intermediate process. This formulation gives
a unified view for the phonon shift current and the DC gener-
ation by dielectric loss; the phonon shift current corresponds
to the DC generation in the resonant regime (ω � ω0 with the
phonon frequency ω0), and the DC generation by the dielectric
loss corresponds to the low-frequency and off-resonant regime
(ω � ω0), as explained in Sec. IV and Sec. V, respectively.
We demonstrate the DC generation in a representative one-
dimensional (1D) model of ferroelectrics, i.e., the Rice-Mele
model, with a coupling to phonon excitations in Sec. VI, and
give an order estimation of the DC generation in the low-
frequency (∼GHz) region in Sec. VII, revealing that such DC
generation is feasible for experimental detection in ferroelec-
tric materials.

II. SETUP

In this section, we present our setup for DC generation,
where Bloch electrons in solids are coupled to phonons and
subjected to the external electric fields.

We consider the Bloch electrons in solids described by the
Hamiltonian

Hel =
∑
k,a

εa(k)c†
k,ack,a, (1)

with the energy dispersion εa(k) and the annihilation operator
of the Bloch electron, ck,a, for the band a and the momentum
k. The coupling to the external electric field is introduced by
the minimal coupling as [20]

Hel−A = e
∑

k,a,b,α

Aαvα
ab(k)c†

k,ack,b + e2
∑

k,a,b,α,β

AαAβ

× (
∂kα

vβ
)

ab
(k)c†

k,ack,b + O(A3), (2)

where we set h̄ = 1 for simplicity. Here, Aα is the vector
potential of the electric field along the α direction and we
only consider contributions up to O(A2) as we focus on the
second-order effect. The velocity operator vα along the α

direction is given by vα = ∂kα
H when H is represented with

k-independent basis wave functions. Similarly, the diamag-
netic current operator ∂kα

vβ is given by ∂kα
vβ = ∂kα

∂kβ
H in the

same representation [10]. In general, one can formulate those
current operators as the covariant derivative of the Hamil-
tonian vα = DαH and that of the velocity operator ∂kα

H =
DαH . Here the covariant derivative Dα of an operator O is de-
fined by the matrix elements (DαO)ab = ∂kα

Oab − i[Aα, O]ab

with the Berry connection Aα = i〈ua|∂kα
ub〉, where |ua〉 is

the periodic part of the Bloch wave function of the band a,
and the operators with subscripts denote their matrix elements
with the Bloch states, Oab = 〈ua|O|ub〉. The interband matrix
element of the Berry connection is written with a matrix
element of the velocity operator as Aα

ab = −ivα
ab/εab, with

εab = εa − εb.
The electron-phonon coupling is given by [21]

Hel−ph = 1√
V

∑
k,q,a,b

gab(k + q, k)c†
k+q,ack,b(bq + b†

−q), (3)

where V is the total volume of the system, gab(k + q, k)
is the matrix element of the electron-phonon coupling in
which the electron momentum is modified from k to k + q
with the phonon momentum q, ck,a is the annihilation oper-
ator of electrons with the momentum k and the band index
a, and bq is the annihilation operator of phonons with the
momentum q. The summation runs discrete momenta given by
k = 2πn/L, with the linear dimension L and an integer vector
n ∈ Z3. Since we consider photoexcitation of phonons, the
momentum transfer q is zero. In addition, we further consider
the modulation of the electron-phonon coupling g(k) under
the electromagnetic field Aα , which is incorporated with a
minimal substitution g(k) → g(k) + e

∑
α Aα∂kα

g(k) [where
we abbreviated gab(k, k) by gab(k)]. This modulation term
∝ ∂kα

g along with the diamagnetic current term in Eq. (2)
plays an important role to obtain the correct behavior of
the DC generation in the low-frequency region avoiding an
unphysical divergence. Thus the relevant part of the electron-
phonon coupling is given by

Hel−ph = 1√
V

∑
k,a,b

[
gab(k) + e

∑
α

Aα
(
∂kα

g
)

ab(k)

]

× c†
k,ack,b(b0 + b†

0). (4)

We note that one may adopt the different notation for the
electron-phonon coupling given by

Hel−ph = 1√
N

∑
k,q,a,b

g̃ab(k + q, k)c†
k+q,ack,b(bq + b†

−q ), (5)

where N is the number of unit cells within the system (i.e.,
N = V/Vc with the unit cell volume Vc). In this notation, g̃ has
the dimension of energy and is related to the former notation
via g(k, k′) = √

Vcg̃(k, k′).
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III. DC GENERATION WITH PHONONS

In this section, we present the diagrammatic formulation of
DC generation by phonon excitations [15]. When the photon
energy h̄ω is resonant with the phonon energy h̄ω0, the real
excitation of phonons takes place and leads to DC gener-
ation that is called phonon shift current. When the photon
energy h̄ω is off resonant with the phonon energy h̄ω0, e.g.,
h̄ω � h̄ω0, the energy dissipation still takes place due to
finite energy broadening of the phonon spectrum and results
in nonzero DC generation.

A. Diagrammatic derivation of the nonlinear conductivity

We consider DC generation at the second order of the
external electric field, which is described by the nonlinear
conductivity σαβγ (ω) as

Jα
dc = σαβγ (ω)Eβ (ω)Eγ (−ω), (6)

where Jα
dc is DC along the α direction and Eα (ω) is the electric

field along the α direction of the frequency ω. The nonlinear
conductivity σαβγ (ω) can be obtained using the standard dia-
grammatic technique as [20,21]

σαβγ (ω) = e3

ω2
�αβγ (ω), (7)

with the response function �αβγ . If we focus on the current
generation which arises from the phonon excitations and is
in the lowest order in the electron-phonon coupling g, the
response function is given by

�αβγ (ω) = Aβ

1 (ω)D(ω)Aαγ

2 (ω) + Aγ

1 (−ω)D(−ω)Aαβ

2 (−ω),
(8)

where the diagrammatic representation for the first term is
illustrated in Fig. 2(a). Here, Aβ

1 (ω) represents contributions
from diagrams with an incoming photon with the frequency ω

and an outgoing phonon [Fig. 2(b)]. The phonon propagator
D(ω) is given by

D(ω) = 2ω0

ω2 − ω2
0 + 2iγω

� 1

ω − ω0 + iγ
− 1

ω + ω0 + iγ
,

(9)

with the phonon frequency ω0 and the energy broadening for
the phonon γ [Fig. 2(c)] [22]. Aαγ

2 (ω) represents contributions
from the diagrams with incoming phonon, incoming photon
with the frequency −ω and the current vertex [Fig. 2(d)].

To compute contributions from the diagrams, we adopt
the imaginary-time formalism for the Green’s function. For
simplicity, we focus on the zero-temperature case, where the
Green’s function in the Matsubara frequency representation is
given by

G(k, iω) =
∑

a

|ua〉〈ua|
iω − ε

. (10)

We consider two incoming photons with Matsubara frequen-
cies i�1 and i�2 that are analytically continued as

i�1 → ω + iγ ′, i�2 → −ω + iγ ′, (11)

with the photon frequency ω and the relaxation strength γ ′.
Below, we assume the relaxation strength γ ′ is much smaller

FIG. 2. Diagrams for direct current (DC) generation induced by
phonon excitations. (a) The second-order nonlinear process responsi-
ble for DC generation with phonon excitations. (b) Diagrams Aβ

1 (ω)
with incoming photon with the frequency ω and outgoing phonon.
(c) Phonon propagator D(ω). (d) Diagrams Aαγ

2 (ω) with incoming
phonon, incoming photon with the frequency −ω and the current
vertex.

than the band separation of electrons, and we neglect γ ′. The
first bubble diagram Aβ

1b is given by

Aβ

1b(i�1) =
∫

dω

2π

∫
[dk]Tr[gG(k, iω + i�1)vβG(k, iω)]

=
∫

dω

2π

∫
[dk]

∑
ab

gab
1

iω + i�1 − εa
v

β

ba

1

iω − εa

=
∫

[dk]
∑

ab

fabgabv
β

ba

i�1 − εba
. (12)

Here we use the notation
∫

[dk] ≡ ∫
dd k/(2π )d , and εa and

fa are the energy and the Fermi distribution function for the
state a, respectively. We also use the notations fab = fa − fb

and εab = εa − εb. In addition, we have a contribution Aβ

1d
arising from modulation of electron-phonon coupling g in the
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presence of the electric field, which is described by the vertex
∂kg in a similar manner to the diamagnetic current [Fig. 2(b)].
This contribution is important to derive the correct behavior of
the response function in the low-frequency region, avoiding
unphysical divergence that arises from the 1/ω2 factor in
Eq. (7). Specifically, this contribution reads

Aβ

1d (i�1) =
∫

dω

2π

∫
[dk]Tr

[
∂kβ

gG(k, iω)
]

= −
∫

dω

2π

∫
[dk]Tr[gG(k, iω)vβG(k, iω)]

= −Aβ

1 (0). (13)

Combining these two contributions and performing the an-
alytic continuation i�1 → ω and writing Ãβ

1 = Aβ

1 /ω, we
obtain

Ãβ

1 (ω) = 1

ω

[
Aβ

1b(ω) + Aβ

1d (ω)
] =

∫
[dk]

∑
ab

1

εba

fabgabv
β

ba

ω − εba
,

(14)

by using the identity

1

ω

(
1

ω − x
− 1

−x

)
= 1

x(ω − x)
. (15)

The second bubble diagram Aαγ

2 has three contributions: a
bubble diagram made of diamagnetic current vertex Aαγ

2b , a tri-
angle diagram involving two (paramagnetic) current vertices
Aαγ

2t , and a bubble diagram Aαγ

2d involving ∂kg. The diagram
Aαγ

2b can be computed in a similar manner as Aβ

1 and is
given by

Aαγ

2b (i�1) =
∫

dω

2π

∫
[dk]Tr

[
∂kα

vγ G(k, iω + i�1)gG(k, iω)
]

=
∫

[dk]
∑

ab

fab
(
∂kα

vγ
)

abgba

i�1 − εba
. (16)

The diagram Aαγ

2t can be further separated into two pieces Aαγ

2t1
and Aαγ

2t2 according to the order of the other incoming photon

and the current vertex. The contributions Aαγ

2t1 are given by

Aαγ

2t1(i�1) =
∫

dω

2π

∫
[dk]Tr[vαG(k, iω + i�1 + i�2)

× vγ G(k, iω + i�1)gG(k, iω)]

=
∫

[dk]
∑
a,b,c

vα
acv

γ

cbgbaIabc(i�1, i�2), (17)

with

Iabc(i�1, i�2)

=
∫

dω

2π

1

(iω + i�1 + i�2 − εc)(iω + i�1 − εb)(iω − εa)

= 1

εac + i�1 + i�2

(
fab

i�1 − εba
− fcb

−i�2 − εbc

)
. (18)

Similarly, the contributions Aαγ

2t2 are given by

Aαγ

2t2(i�1)

=
∫

dω

2π

∫
[dk]Tr[vγ G(k, iω − i�2)vαG(k, iω + i�1)

× gG(k, iω)]

=
∫

[dk]
∑
a,b,c

v
γ

bcv
α
cagabIbac(i�1,−i�1 − i�2)

=
∫

[dk]
∑
a,b,c

(
vα

acv
γ

cbgba
)∗

Iabc(−i�1,−i�2), (19)

where we changed the variable as iω → iω − i�1 in the inte-
gral I in the last line. In addition, the contribution from Aαγ

2d
that involves ∂kg reads

Aαγ

2d (i�1) =
∫

dω

2π

∫
[dk]Tr

[
vγ G(k, iω)∂kα

gG(k, iω)
]

= −
∫

dω

2π

∫
[dk]Tr

[
∂kα

vγ G(k, iω)gG(k, iω)

+ vαG(k, iω)vγ G(k, iω)gG(k, iω)

+ vγ G(k, iω)vαG(k, iω)gG(k, iω)
]

= −[A2b(0) + A2t1(0) + A2t2(0)], (20)

which correctly cancels the low-frequency divergences of
A2b, A2t1, and A2t2. Thus, after the analytic continuation of
Matsubara frequencies and writing Aαγ

2 = Aαγ

2 /ω, we obtain

Ãαγ

2 (ω) = 1

ω

[
Aαγ

2b (ω) + Aαγ

2t1(ω) + Aαγ

2t2(ω) + Aαγ

2d (ω)
]

=
∫

[dk]
∑

ab

fab
(
∂kα

vγ
)

abgba

εba(ω − εba)

+
∫

[dk]
∑
abc

vα
acv

γ

cbgba
1

εac

(
fab

εba(ω − εba)
− fcb

εbc(ω − εbc)

)

+
∫

[dk]
∑
abc

(
vα

acv
γ

cbgba
)∗ 1

εac

(
− fab

εba(−ω − εba)
+ fcb

εbc(−ω − εbc)

)
. (21)
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The DC that can be extracted out of the system inevitably
accompanies energy dissipation in the system. In the present
case, such energy dissipation arises from the phonon excita-
tion and is described by the imaginary part of the phonon
propagator, Im[D(ω)]. Thus, focusing on the contributions
that involve Im[D(ω)], we obtain the general expression for
the DC generation with phonon excitations as

σαβγ (ω) = −e3Cαβγ (ω)Im[D(ω)], (22)

with

Cαβγ (ω) = Im
[
Ãβ

1 (ω)Ãαγ

2 (ω) − Ãγ

1 (−ω)Ãαβ

2 (−ω)
]
. (23)

B. Role of time-reversal symmetry

Next let us consider the role of the time-reversal symmetry
T on the nonlinear conductivity σαβγ (ω). When the system
preserves T , the energy dispersion is k-even as

εa(k) = εa(−k), (24)

and the matrix elements of the velocity operator v, the dia-
magnetic current ∂kv, and the electron-phonon coupling g
satisfy the following relationships:

vab(k) = −vba(−k),

(∂kv)ab(k) = (∂kv)ba(−k),

gab(k) = gba(−k). (25)

Note that the Bloch states ua(±k) are Kramers pairs for cases
with spin-orbit couplings. With these symmetry properties,
Ãβ

1 becomes purely imaginary and Ãαγ

2 becomes purely real.
Expanding Ãβ

1 and Ãαγ

2 with respect to ω gives

Ãβ

1 = − i
∫

[dk]
∑

ab

Im
[
gabv

β

ba

] fab

ε2
ba

− iω
∫

[dk]
∑

ab

Im
[
gabv

β

ba

] fab

ε3
ba

+ O(ω2), (26)

and

Ãαγ

2 = −
∫

[dk]
∑

ab

Re
[(

∂kα
vγ

)
abgba

] fab

ε2
ba

− ω

∫
[dk]

∑
ab

Re
[(

∂kα
vγ

)
abgba

] fab

ε3
ba

− 2ω

∫
[dk]

∑
abc

Re
[
vα

acv
γ

cbgba
] 1

εac

(
fab

ε3
ba

− fcb

ε3
bc

)

+ O(ω2). (27)

For the case of linearly polarized light β = γ and the ab
initio Hamiltonian for electrons H = p2/2m + V (r), where
(∂kv)ab = 0 holds for a �= b, the coefficient Cαβγ (ω) for the

nonlinear conductivity given by Eq. (22) is given by

Cαββ (ω) = 4ω

{∫
[dk]

∑
ab

Im
[
gabv

β

ba

] fab

ε2
ba

}

×
{∫

[dk]
∑
abc

Re
[
vα

acv
β

cbgba
] 1

εac

(
fab

ε3
ba

− fcb

ε3
bc

)}
,

(28)

in the least order in ω. In general, the coefficient Cαββ (ω) is
proportional to ω in the presence of T .

IV. PHONON SHIFT CURRENT

Let us consider that the incoming photon frequency is
resonant to the phonon frequency, ω � ω0, to study phonon
shift current. In this case, we replace D(ω) by the δ

function as

D(ω) � −iπ [δ(ω − ω0) − δ(ω + ω0)]. (29)

Using Eq. (22) for the nonlinear conductivity, we obtain the
formula for the phonon shift current as

σαβγ (ω) � πe3Im
[
Ãβ

1 (ω)Ãαγ

2 (ω) − Ãγ

1 (−ω)Ãαβ

2 (−ω)
]

× δ(ω − ω0), (30)

with Ã1 and Ã2 in Eq. (14) and Eq. (21).
For the case of linearly polarized light and the ab initio

Hamiltonian, the expression for the phonon shift current is
given by

σαββ (ω) = 4πe3ω

{∫
[dk]

∑
ab

Im
[
gabv

β

ba

] fab

ε2
ba

}

×
{∫

[dk]
∑
abc

Re
[
vα

acv
β

cbgba
] 1

εac

(
fab

ε3
ba

− fcb

ε3
bc

)}

× δ(ω − ω0). (31)

This formula clearly indicates that the photoexcitations of
phonons, which are charge neutral and usually lie much below
the electronic band gap, can produce DC charge current gen-
eration. Such charge current is essentially induced by the shift
current mechanism since the phonons in noncentrosymmetric
crystals accompany nonzero electric polarization.

V. DIRECT CURRENT FROM DIELECTRIC LOSS

In this section, we consider DC generation arising from
dielectric loss in ferroelectrics with off-resonant driving in the
low-frequency region (ω � ω0).

We start with the expression for the DC generation in
Eq. (22). The presence of the imaginary part of the phonon
propagator Im[D(ω)] in Eq. (22) describes the energy dissipa-
tion due to the phonons, which corresponds to the dielectric
loss in the low-frequency region. Thus the formula Eq. (22)
indicates that the dielectric loss can generally induce the
DC generation through the shift current mechanism. The
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imaginary part of the phonon propagator reads

Im[D(ω)] = −4ω0γω(
ω2 − ω2

0

)2 + (2γω)2
� −4

γω

ω3
0

, (ω � ω0),

(32)

in the low-frequency region. Thus the nonlinear conductivity
in the low-frequency region is given by

σαβγ (ω) = 4e3γω

ω3
0

Cαβγ (ω), (33)

with the coefficient Cαβγ (ω) in Eq. (23). For the time-reversal
symmetric systems under linearly polarized light β = γ , the
nonlinear conductivity scales as

σαββ (ω) ∝ ω2, (ω � ω0), (34)

because of Cαββ (ω) ∝ ω. This behavior is reasonable in that
the current should vanish in an insulator with the adiabatic
limit (ω → 0) since the electric polarization adiabatically fol-
lows the external electric field for ω → 0. In addition, one
can interchange ω ↔ −ω in Eq. (6) for linearly polarized light
β = γ , indicating that σαββ (ω) is an even function of ω. Com-
bining these two properties leads to the scaling σαββ (ω) ∝ ω2

in the low-frequency region. In contrast, for circularly polar-
ized light (β �= γ ), ω ↔ −ω is not interchangeable in Eq. (6),
indicating that the ω linear term in σαβγ (ω) is allowed.

In comparison, at the phonon resonance ω = ω0, the DC
generation under the linearly polarized light is given by

σαββ (ω0) = e3

γ
Cαββ (ω0), (35)

with Im[D(ω0)] = 1/γ . Thus the ratio of the DC generation
associated with dielectric loss to the phonon shift current is
given by

σαββ (ω)

σαββ (ω0)
� 4γ 2ω

ω3
0

Cαββ (ω)

Cαββ (ω0)
= 4γ 2ω2

ω4
0

, (36)

in the low-frequency region, ω � ω0.
To discuss the amount of the DC in the present mechanism

incorporating the effect of the absorption depth, it is good to
look at the Glass coefficient which is defined by

Gαββ (ω) = Jα
dc

αabsIβ
, (37)

with the absorption coefficient αabs and the intensity of the
incident light Iβ with linear polarization along the β direction
[23,24]. The absorption coefficient αabs is proportional to the
linear conductivity σββ (ω), which scales linearly in ω, if we
neglect relaxation mechanisms other than the phonon excita-
tions. This ω linear scaling of σββ (ω) can be derived from

σββ (ω) = −e2
{
Ãβ

1 (ω)Im[D(ω)]
[
Aβ

1b(ω)
]∗ + (ω ↔ −ω)

}
,

(38)

where Ãβ

1 (ω)[Aβ

1b(ω)]∗ → const and Im[D(ω)] ∝ ω for
ω � ω0. Thus the Glass coefficient behaves as

G(ω) ∝ σαββ (ω)

σββ (ω)
∝ ω, (39)

in the low-frequency region.

VI. APPLICATION TO RICE-MELE MODEL

In this section, we demonstrate the DC generation by
dielectric loss by applying our formulation to a model of fer-
roelectrics. Specifically, we consider Rice-Mele model which
is a representative model of 1D ferroelectrics and is described
by the Hamiltonian given by

HRM =
∑

k

�
†
k

(
t cos

ka

2
σx + δt sin

ka

2
σy + mσz

)
�k, (40)

with

�k =
(

cA,k

cB,k

)
, (41)

where t is the hopping amplitude, δt is the strength of hopping
alternation, m is the strength of staggered potential, a is the
lattice constant, and σi is the Pauli matrix acting on sublattice
(AB) degrees of freedom. We consider an electron-phonon
coupling in the form of Eq. (4) with

g(k) = g0 sin
ka

2
σy, (42)

where the phonon excitation modulates the bond alternation
with the strength g0.

In this setup, the diagrams constituting DC generation in
Fig. 2 can be evaluated with Eq. (14) and Eq. (21). We
show the result of numerical calculation in Fig. 3 for the pa-
rameters. Figure 3(a) shows the nonlinear conductivity σ (ω)
in the low-frequency regime below the phonon excitation,
where DC generation by the dielectric loss takes place. In
the low-frequency region, σ (ω) scales as ∝ ω2 as indicated
by a ω2 fit in the blue dashed curve. The inset shows a
behavior of σ (ω) in the phonon resonance region ω ∼ ω0,
which corresponds to the phonon shift current. The nonlin-
ear conductivity σ (ω) at fixed ω shows a sign change with
respect to the sign of the staggered potential m as shown in
Fig. 3(b). Since m determines the pattern of the inversion sym-
metry breaking and the direction of the electric polarization,
this sign change of σ (ω) indicates that the direction of the
DC generation is governed by the direction of the electric
polarization.

VII. DISCUSSION

The Berry phase was originally formulated for the adi-
abatic process, where the transitions of the wave function
between the different energy eigenstates are forbidden [25].
Therefore, its application to solids is naively considered to
be limited to the low-energy phenomena where the inter-
band transitions are forbidden, i.e., the wave functions are
confined within the manifold spanned by the states specified
by the band index [26]. On the other hand, the shift current
due to the interband transition is formulated by the Berry
connections of Bloch wave functions, where the adiabatic
approximation is never justified. In the case of the shift cur-
rent due to phonon excitation, there are no real transitions
of electrons between bands; instead, the virtual transition of
electrons that accompanies the real excitation of phonons
induces the DC. Thus, it appears to be an “adiabatic” process
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(a)

(b)

FIG. 3. DC generation in Rice-Mele model coupled with
phonons. (a) Nonlinear conductivity σ (ω) in the low-frequency
regime below the phonon excitation. Blue dashed curve is a fit of
σ (ω) with a form Cω2 indicating the scaling of σ (ω) ∝ ω2. Inset
shows σ (ω) in the phonon resonance region ω ∼ ω0 corresponding
to the phonon shift current. (b) Staggered potential (m) dependence
of nonlinear conductivity σ (ω). σ (ω) at the fixed frequency, ω =
0.25ω0, shows a sign change with respect to the sign of m, indicating
that the current direction switches depending on the direction of the
electric polarization. We adopted the parameters δt/t = 0.2, ω0/ω =
0.2, γ /t = 0.05 for (a) and (b), and m/t = 0.2 for (a).

for electronic degrees of freedom. However, from the view-
point of the Born-Oppenheimer approximation (BOA) [27],
which is the adiabatic approximation based on the difference
in the timescales of electrons and phonons, the nonadiabatic

corrections to BOA is the origin of the shift current. This is
especially clear in the present dielectric loss, in that the small
but finite frequency gives the absorption and shift current
simultaneously. Also, the existence of energy supply is crucial
for shift current responses to support the DC generation in a
nonsuperconducting system even though it is of a geometric
origin.

Note that in real materials, the dielectric loss could also
occur due to the motion of the domain walls. In this case, the
generation of the shift current is localized in the domain wall
regions, and has the opposite signs between the two types of
domain wall, i.e., (+,−) and (−,+).

Lastly, we present an estimation for the DC generation
from dielectric loss. For soft phonon excitations in BaTiO3

studied in Ref. [15], the photocurrent of the order of 10 µA
with the Glass coefficient G � 1 × 10−8 cm/V has been
observed. For soft phonons (e.g., Slater mode in BaTiO3),
the typical values for the phonon frequency and the energy
broadening are given by ω0 � 4 and γ � 4 meV [15]. If one
considers the dielectric loss in the presence of an AC electric
field in the off-resonant gigahertz regime, e.g., ω = 10 GHz,
the ratio of the nonlinear conductivities σαββ (ω)/σαββ (ω0)
is given by 4γ 2ω2/ω4

0 � 4 × 10−4. Since the nonlinear con-
ductivity of σαββ (ω0) � 30 µA/V 2 is reported in an ab initio
calculation [15], we expect σαββ (ω) � 0.01 µA/V 2 for ω =
10 GHz. For the electric field of E = 1 kV/cm and the sam-
ple dimension of d = 0.1 mm, the DC generation of 1 µA is
expected from dielectric loss, which is feasible for experimen-
tal detection. For the Glass coefficient, we expect G � 1 ×
10−10 cm/V for ω = 10 GHz from the measured value for the
phonon shift current, G � 1 × 10−8 cm/V for ω = 1 THz.
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