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Critical magnetic flux for Weyl points in the three-dimensional Hofstadter model
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We investigate the band structure of the three-dimensional Hofstadter model on cubic lattices, with an isotropic
magnetic field oriented along the diagonal of the cube with flux � = 2π m/n, where m, n are coprime integers.
Using reduced exact diagonalization in momentum space, we show that, at fixed m, there exists an integer
n(m) associated with a specific value of the magnetic flux, that we denote by �c(m) ≡ 2π m/n(m), separating
two different regimes. The first one, for fluxes � < �c(m), is characterized by complete band overlaps, while
the second one, for � > �c(m), features isolated band-touching points in the density of states and Weyl points
between the mth and the (m + 1)-th bands. In the Hasegawa gauge, the minimum of the (m + 1)-th band abruptly
moves at the critical flux �c(m) from kz = 0 to kz = π . We then argue that the limit for large m of �c(m)
exists and it is finite: limm→∞ �c(m) ≡ �c. Our estimate is �c/2π = 0.1296(1). Based on the values of n(m)
determined for integers m � 60, we propose a mathematical conjecture for the form of �c(m) to be used in the
large-m limit. The asymptotic critical flux obtained using this conjecture is �(conj)

c /2π = 7/54.
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I. INTRODUCTION

The interaction between charged particles and background
magnetic fields plays an important role in the realms of
condensed-matter physics and solid-state theory [1–3]. The
associated phenomena have been largely studied in the past
decades, leading to the discovery of mathematical models that
have changed our understanding of electronic properties in
crystalline materials. In this context, one of the most fasci-
nating and paradigmatic models is the Hofstadter model [4,5],
which combines the coupling of electrons in the lattice struc-
ture of solids with external magnetic fields. Over the years,
this model has become increasingly important for its complex
and rich structure from both the physical and mathematical
points of view.

In two dimensions, the tight-binding model combined with
the Peierls substitution [6] captures how the properties of elec-
trons moving in a periodic lattice are influenced and modified
by the presence of a magnetic field. The first studies were
focused on the broadening of energy levels and the determi-
nation of the wave function of the system using semiclassical
techniques, reducing the problem to a finite-difference equa-
tion known as the Harper equation [7–10]. The complete
band structure as a function of the magnetic flux has an
intricate self-similar structure, which is the celebrated frac-
tal Hofstadter butterfly [5]. Moreover, the two-dimensional
(2D) Hofstadter model is closely connected to the physics
of Chern insulators and quantum Hall effect [11–13], due
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to the possibility of realizing novel topological phases of
matter by introducing strong magnetic fluxes in 2D materials
[14–16].

Interesting features emerge as well in the 3D case, showing
a highly complex band structure depending on the hopping
strengths in the various directions. For strong anisotropic
hoppings along a particular spatial axis there exists a 3D
analog of the Hofstadter butterfly [17], with a fractal struc-
ture of the energy levels as a function of the magnetic field
tilt with respect to the anisotropy axis. For general hopping
coefficients or orientations of the magnetic field, however,
this structure disappears and the spectrum is no more gapped.
The general absence of energy gaps between the bands is the
reason why the connection with the quantum Hall physics
cannot be trivially extended to the 3D case [18,19]. The 3D
Hofstadter model has been studied for varying directions and
intensities of the magnetic flux [17–23]. Analogously to the
behavior observed in the 2D Hofstadter model in the π -flux
case [24], the 3D case also exhibits points in the spectrum
with zero-energy density of states and band touching, such
as those found with a π flux [21] or for fluxes of the form
� = 2π/n with n integer [20,22,23]. Due to these properties,
the 3D Hofstadter model can be used to model various topo-
logical metallic phases, such as Weyl metals and semimetals
[25–28]. Interestingly, the semimetal behavior persists even at
finite interaction strengths, below a critical value [29,30], and
in presence of anisotropic tunneling coefficients [20,30]. In
addition to the 3D case, higher-dimensional extensions of the
Hofstadter model have been considered in relation to the in-
vestigation of integer quantum Hall effect in even dimensions
[31].
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The features of the Hofstadter model can be explored
experimentally in various platforms, also due to the recent
remarkable progress in the engineering of quantum matter in
artificial lattices in presence of large magnetic fluxes [32]. Re-
cent studies includes photonic crystals [33], ultracold atoms
in optical lattices [34–38], moiré double-layer heterostruc-
tures and superlattices [39,40], and molecular nanostructures
built with scanning tunneling microscopes [41,42]. More-
over, the topological properties of the Hofstadter model in
different dimensionalities have interesting connections with
optical diffraction figures resulting from optical gratings [43].
A significant effort is currently in progress on ultracold atoms
platforms to quantum simulate the 3D Hofstadter model (see
the latest results in the recent review [44]). On the other
hand, a remarkable amount of interest in the solid-state realm
is focusing on UTe2 field-boosted superconductivity [45]. In
this context, it has been proposed that the properties of the
superconducting state in magnetic field in UTe2 may be due
to Landau quantization in a “Hofstadter butterfly” regime
with large superlattices. The highest considered magnetic field
is around 60 T, with a magnetic length �B ≈ 3.3 nm [46],
resulting in fluxes ranging from ∼π/50 to ∼π/5 for lattice
length scales a ∼ (4, 6, 14) Å [47].

Besides these physical features and applications to the
analysis of new phases of matter, the Hofstadter model
displays a rich mathematical structure interesting per se, in-
trinsically connected to incommensurability effects [5,48–52]
and topological invariants [53]. The Harper equation repre-
sents a particular type of almost Mathieu operator, and its
properties and solutions strongly depends on the rational na-
ture of the magnetic flux. Indeed, if the flux is an irrational
number, then it can be proven that the spectrum of the model is
a Cantor set [54,55]. Conversely, for rational fluxes the spec-
trum has a finite number of bands and can be investigated in
the reciprocal space [56,57] by taking advantage of the Bloch
theorem applied to the magnetic translation group [58–60].

Throughout this paper, we focus on the 3D case and ratio-
nal magnetic fluxes parametrized as

� = 2π
m

n
, (1)

where m, n ∈ N are coprime integers. The spectrum consists
of the union of n bands. By excluding the case of strong
anisotropic hopping, previous works with this setting suggest
that these bands touch in isolated points or overlap, depending
on the value of the magnetic flux [20,22,23]. Investigations for
small values of n and m indicate that for large fluxes the bands
touch and by progressively decreasing � they overlap [20,22].
We may then define, at fixed m, the critical flux �c(m) as the
magnetic flux at which this transition from isolated touching
to full bands overlap possibly takes place. For example, for
m = 1, Weyl points appear if n � 7, while bands overlap oc-
curs for n � 8 [20,23]. Similarly, for m = 4 a transition occurs
between n = 31 and n = 32 [20]. Moreover, for m = 1, the
Weyl points are observed between the first and second bands
[20,21,23]. It is expected that for fluxes � > �c(m), Weyl
points exists between the mth and the (m + 1)-th band.

The questions we address in the present paper are the
following ones: (i) is the critical flux �c(m) defined for any
m? (ii) If the the answer to the previous question is affirmative,

then does the limit for large m converge to a well-defined
finite flux �c? Additionally, we aim to investigate whether, as
expected, the Weyl points separate the mth and the (m + 1)-th
bands, for � > �c(m) or, in the limit of large m, for � > �c.
Furthermore, if �c exists, then we investigate whether �c/2π

is a rational number. We also look for a qualitative charac-
terization of the transition occurring at �c(m). To address
these questions in a well-defined setting, we choose to con-
sider an isotropic flux with the magnetic field oriented along
the diagonal of the cubic lattice, and with isotropic hopping
coefficients.

Due to the involved analytical structure of the problem, an
exact mathematical expression of �c(m) as a function of m
is not present in the literature, to the best of our knowledge.
Numerical estimates for �c for small m are present in few
works [20,23], and are based on the exact diagonalization
(ED) of the 3D model. The aim of this work is to numerically
investigate the existence of the critical flux �c(m) for general
coprime pairs (m, n). By means of momentum space ED,
we analyze the structure of isolated band-touching points for
various magnetic fluxes, by increasing progressively the value
of m. Based on the sequence of critical fluxes obtained for
different values of m, �c(m) for m � 60, we argue in favor
of an asymptotic finite value of �c for large m by keeping the
ratio m/n finite. Additionally, based on the same sequence of
values, we formulate a conjecture for the value of �c(m) to
be used in the large-m limit. The resulting value of �c/2π ,
referred to as �

(conj)
c /2π , yields a rational number, in agree-

ment with the numerical estimate of �c obtained from a fit
using the values of �c(m). We also characterize other relevant
physical quantities and the momentum space bands structure
of the model for large m, such as the ground-state energies and
the isolated band-touching points.

The paper is organized as follows. In Sec. II we introduce
the 3D Hofstadter model and show its diagonalization in mo-
mentum space. In Sec. III we define the spectral measures
of the reduced Hamiltonian and how they are related to the
possible definitions of the critical flux. In Sec. IV we present
our numerical results on the band structure of the model for
m � 2. We discuss the scaling of the ground-state energy,
the band-touching points position in momentum space, and
the numerical determination of the critical flux. In Sec. V we
present our mathematical conjecture for the critical flux, based
on our numerical results for m � 60. In Sec. VI we summarize
and present our conclusions. The various Appendixes contain
numerical details and computations, and the relevant tables
with the pairs (m, n) analyzed in the paper.

II. THE HOFSTADTER MODEL

The real-space Hamiltonian of the Hofstadter model is

H = −t
∑
r , ĵ

c†
r+ ĵ

eiθ j (r)cr + H.c. , (2)

where t is the hopping amplitude, assumed equal in the three
directions x, y, z, c†

r , and cr are the creation and annihilation
operators, and we used the Peierls substitution

θ j (r) ≡
∫ r+ ĵ

r
A(x)dx (3)
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to take into account the effect of the external magnetic fields,
defining the fluxes across all plaquettes of the cube [2,6]. We
consider the case of isotropic commensurate magnetic fluxes

� = 2π m

n
, m, n ∈ N, (4)

with (m, n) coprime integer pairs corresponding to a magnetic
field

B = �(1, 1, 1)

in units of the magnetic flux quantum �0 = h/(2e). In two
dimensions, this is a paradigmatic model for the study of
commensurability effects [5]. In the following we focus on
the 3D case, considering a cubic lattice with V = L3 sites,
hopping amplitude t = 1 and periodic boundary conditions.

The cubic lattice can be decomposed in independent sub-
lattices whose size depends, in general, on the gauge choice.
This freedom can be employed to identify the gauge produc-
ing the smallest number of sublattices related to the magnetic
flux �. As discussed and reviewed in Ref. [61], for a 3D cubic
lattice the minimal set of sublattices has dimension n, and a
practical gauge choice in this context is the Hasegawa gauge
[20], defined as

A(x) = �(0, x − y, y − x) . (5)

Within this gauge, the Peierls phases are

θx(r) = 0, θy(r) = �

(
x − y − 1

2

)
, θz(r) = �(y − x) ,

(6)

immediately observing that the z coordinate is absent. An-
other interesting feature of the Hasegawa gauge is the explicit
dependence only on the relative difference x − y, which indi-
cates that the problem is effectively 1D in momentum space
[18].

A. Momentum space diagonalization

The 3D Hofstadter model can be solved in momentum
space by introducing the magnetic translation group, exploit-
ing the interplay between gauge and translational invariance in
the system when a commensurate background magnetic field
is present [1,58,59]. For the gauge choice in Eq. (5), we can
define the magnetic Brillouin zone (MBZ) as

MBZ : kx ∈
[

− π

n
,
π

n

]
, ky ∈

[
− π

n
,
π

n

]
,

kz ∈ [−π, π ] . (7)

The Hamiltonian is then expressed in terms of independent
blocks known as magnetic bands. Each sublattice corresponds
to a specific band, and each of these bands exhibits an n-fold
degeneracy. We notice that when k ∈ MBZ, the allowed val-
ues of k are L/n2, and for each of them the associated matrix
is of size n × n. Consequently, we obtain L/n eigenvalues,
each one being degenerate n times, matching the real-space
dimensionality of the problem, as described, for example, in
Ref. [61].

The form of Eq. (2) in momentum space is

H = − t
∑

k∈MBZ

∑
ĵ,s

c†
s′,k(Tĵ )s′,se

−ik ĵ cs,k

+ H.c. ≡ −t
∑

k∈MBZ

C†
kH(k)Ck , (8)

where s labels the magnetic bands and the n × n matrices Tĵ

are for ĵ = x̂, ŷ, ẑ given by

Tx̂ =

⎛
⎜⎜⎝

0 1 0 0

0 0 . . . 0
0 · · · 0 1
1 0 · · · 0

⎞
⎟⎟⎠,

Tŷ = e− i�
2

⎛
⎜⎜⎝

0 · · · 0 ϕ0

ϕ1 0 · · · 0

0 . . . 0 0
0 0 ϕn−1 0

⎞
⎟⎟⎠,

Tẑ =

⎛
⎜⎜⎝

ϕ0 0 · · · 0
0 ϕn−1 0 0

0 0 . . . 0
0 · · · 0 ϕ1

⎞
⎟⎟⎠ (9)

in the sublattice basis. To lighten the notation, in Eq. (9)
we defined ϕl = ei�l = e

2π iml
n , with l = 0, . . . , n − 1. We note

that for n = 2, the well-known π -flux case, the model hosts a
Weyl semimetallic phase at half filling [21,24,62,63], notably
preserving physical time-reversal and space inversion symme-
tries [64]. When n 	= 2 we generally have the explicit breaking
of time-reversal symmetry dictated by the presence of the
external magnetic field, mathematically reflected into the
structure of the matrices Tĵ , which are not invariant under the
conjugate operation. Additionally, the real-space Hamiltonian
in Eq. (2) has a chiral sublattice symmetry cr → (−1)x+y+zcr,
which maps H → −H. As a consequence, the model shows a
symmetric single-particle energy spectrum.

The energy dispersion relations of the n bands of the model
can be obtained by diagonalizing the matrix H(k), whose
general structure is

H(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

D0 U1 0 . . . 0 U ∗
0

U ∗
1 Dn−1 U2 0 . . . 0

0 U ∗
2 Dn−2 U3 0 . . .

...
. . .

. . .
. . .

. . .
. . .

...
. . .

. . .
. . .

. . . Un−1

U0 0 . . . . . . U ∗
n−1 D1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (10)

where

Dj (kz ) = e−ikzϕ j + H.c. = 2 cos (kz − j�),

Uj (kx, ky) = e−ikx + ei(�/2+ky )ϕ∗
j . (11)

To summarize, the spectral problem of the 3D Hofstadter
model with isotropic commensurate fluxes is equivalent to a
family of n × n matrices parametrized by the three continu-
ous parameters k ∈ MBZ. The periodic tridiagonal structure
obtained in Eq. (10) at fixed values of k corresponds to a
periodic Jacobi matrix [65,66]. For this class of matrices, the
Hamiltonian level dynamics can be related to a 2 × 2 matrix
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known as the transfer matrix, as already pointed out by Hofs-
tadter in his celebrated work for the 2D model [5]. Theorems
and results for energy bands and gaps measures in the case of
real Jacobi matrices have been extensively discussed [67–70],
and there exists a criterion to establish if the measure of union
of the gaps in the spectrum has vanishing measure, depending
on the elements on the first diagonal of the Jacobi matrix [69].
The extension of these results to certain classes of complex
Jacobi matrices has also been recently studied recently in the
mathematical literature [71].

III. SPECTRAL MEASURES AND CRITICAL
FLUX DEFINITIONS

Before showing our numerical results and analytical con-
jecture for the critical flux, we define the fundamental
quantities we look at in the analysis of the bands structure
of the Hofstadter model. As previously stated, the reduced
Hamiltonian H(k) has n degenerate bands, labeled as Bj (k),
j = 0, . . . , n − 1. For any of these bands we define

min Bj (k) = ε j (k), max Bj (k) = Ej (k), j = 1, . . . , n ,

(12)

and the energy range of the j band is σ j = [ε j, Ej]. The union
∪ jσ j ≡ σ (H) is defined as the spectrum of the 3D Hofstadter
problem at the fixed flux pair (m, n). For any pair of consecu-
tive bands Bj , Bj+1 we can have

Bj ∩ Bj+1 = ∅ or Bj ∩ Bj+1 ≡ O j, j+1 	= ∅ , (13)

and in the first case the bands do not overlap, while in the sec-
ond case they do, and we denote with O j, j+1 their intersection.
In the 2D case, we can also define the set of the gaps as

G(H) ≡ [min σ (H), max σ (H)]/σ ≡ ∪ j[Ej, ε j+1],

j = 1, . . . , n − 1 , (14)

since it is well known that G(H) 	= ∅ [5,13]. In this respect,
the 3D is generically different, as the gap set’s measure de-
pends on the orientation of the magnetic fields B. In the case
of a cubic lattice, for directions of the field that are not the
high-symmetry crystallographic ones the spectrum is gapful
[19]. For B ∝ (1, 1, 1), which is the case considered here,
the spectrum is gapless for any coprime pair (m, n) [20,22].
Nonetheless, we can have Bj ∩ Bj+1 = ∅ for some values of
j, corresponding to bands touching in isolated points: If a
coprime pair realizes this situation, then the measure spectrum
has a peculiar structure [20] and can be expressed as the union
of three nonoverlapping sets,

σ (H) = σ1 ∪ σ2 ∪ σ3, σ1 ≡
m⋃

j=1

Bj, σ2 ≡
n−2m⋃

j=1

Bj+m,

σ3 ≡
m⋃

j=1

Bj+n−m . (15)

With this spectral measure, and due to the symmetry proper-
ties of H(k), to understand if there is overlap between all the
degenerate groups of bands we can simply look at Om,m+1,
i.e., the intersection between σ1 and σ2. If instead the coprime

pair does not realize this situation, then all the degenerate
blocks of bands overlap.

Given these considerations, we can define the critical flux
�c(m) at fixed m as the magnetic flux at which we observe
the transition from disjoint blocks of degenerate bands to
overlapping bands. In any case, it is important to notice that
�/2π is not irrational, and parametrized by coprime integer
ratios � ∝ m/n. At fixed m, therefore, we have �c(m) ∝ n−1

c ,
allowing for the identification of the corresponding critical
integer nc. We note that small fluctuations of � result in
significant variations of the coprime pairs (m, n) [5,18,20],
meaning that arbitrary close values of � could be represented
by coprime pairs that are apparently unrelated and “far away”
from each other. To generalize the definition of �c towards
the limit nc → ∞, and to identify a regular and well-behaved
succession of coprime pairs such that, in units of 2π ,

m1

nc,1
,

m2

nc,2
, · · · ,

m�

nc,�

�→∞−−−→ �c

2π
= m∞

nc,∞
, (16)

we need to give a more precise meaning to the critical integer
nc,�.

We propose to look to four different definitions, for any
integer m:

(1) the element nc,m is identified as the first coprime inte-
ger such that the bands Bm, Bm+1 of the model do overlap:

{nc,m ∈ N| gcd(m, n) = 1, Om−1,m = ∅ and Om,m+1 	= ∅} ;

(17)

(2) the element n′
c,m is identified as the last coprime integer

immediately before the bands overlap. In this case, the bands
Bm, Bm+1 do not overlap:

{n′
c,m ∈ N| gcd(m, n) = 1, Om,m+1 = ∅ and Om+1,m+2 	= ∅} ;

(18)

(3) the element ñc,m defined as the first non-co-prime inte-
ger value for which the bands do overlap:

{ñc,m ∈ N| Om−1,m = ∅ and Om,m+1 	= ∅} ; (19)

(4) the element ñ′
c,m defined as the last non-co-prime inte-

ger value for which the bands do not overlap:

{ñ′
c,m ∈ N| Om,m+1 = ∅ and Om+1,m+2 	= ∅} . (20)

With the last two definitions we simply want to include crit-
ical pairs that would be neglected by the coprime condition,
and whose exclusion may give rise to a wrong estimation of
the real values of the critical flux �c. Due to these definitions,
it is immediate to verify that ñc � nc and ñ′

c � n′
c, at fixed

m. As will be shown in the next section, these different def-
initions produce compatible results and agree in the large-m
limit. Among the aforementioned four definitions, somehow
the most practical and intuitive is the last one, which we use
to define the critical value at fixed m:

�c(m) = 2π
n

ñ′
c,m

. (21)

When there is no risk of ambiguity, we will use either nc(m)
or simply n(m) instead of ñ′

c,m.
In the next section, we present numerical results for the

critical flux �c(m) obtained from the diagonalization of the
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TABLE I. Examples of values of energies Em, εm+1 for various
coprime pairs crossing the critical value �c(m), alongside their po-
sition in momentum space. Pairs above the horizontal line within the
table have even m, while the remaining ones have odd m. The MBZ is
spanned in steps of size δk = O(10−3)(1, 1, 1) for all the considered
pairs (m, n).

m n Em kmax εm+1 kmin

4 29 −2.52 (0, 0, π ) −2.50 (0, 0, π )
31 −2.52 (0, 0, π ) −2.53 (0,0,0)

6 43 −2.52 (0, 0, π ) −2.51 (0, 0, π )
47 −2.52 (0, 0, π ) −2.56 (−3 × 10−3, 3 × 10−3, 0)

10 77 −2.52 (0, 0, π ) −2.51 (0, 0, π )
79 −2.51 (0, 0, π ) −2.58 (2 × 10−3, 2 × 10−3, 0)

5 38 −2.52 (∓0.077,±0.077, π ) −2.50 (∓0.077,±0.077, π )
39 −2.52 (∓0.011,±0.011, π ) −2.54 (∓0.040,±0.040, 0)

7 54 −2.52 (∓0.055,±0.055, π ) −2.51 (∓0.055,±0.055, π )
55 −2.51 (∓0.033,±0.033, π ) −2.56 (∓0.046,±0.046, , 0)

matrix H(k). Based on the coprime pairs extracted with this
procedure, we provide our estimate for

�c = lim
m→∞ �c(m) = lim

m→∞ 2π
m

n(m)

in Sec. V.

IV. NUMERICAL RESULTS

We present the results obtained with large ED of the
Hamiltonian in Eq. (8) for different coprime pairs (m, n)
parametrizing the magnetic flux �. Apart from Sec. IV A,
where we briefly remind the known results for m = 1, we will
consider integers m � 2. Besides the critical flux identifica-
tion, we aim to characterize, at fixed m, the energy features of
the model as a function of n.

A. Summary of results for m = 1

The properties of the 3D Hofstadter model with flux � =
2π/n have recently been studied as a function of n ∈ N [23].

By looking at the two definitions given by Eqs. (17) and (18),
for this particular case we have

nc = ñc = 8, n′
c = ñ′

c = 7 . (22)

As a general feature, for n < nc the density of states (DOS)
of the system shows isolated zeros, associated to Weyl points
separating the lowest band from the others. The corresponding
filling at the Weyl points is ν = n−1, generalizing the result
for n = 2 to higher integers [20,24,62]. In the opposite regime
n > nc, the DOS does not show any zero. As a consequence,
there are values of the chemical potential μ for which the
system is in a multiband metallic state, and the correspond-
ing Lifshitz transitions between these states and single-band
metallic phases can be identified.

The lowest-energy-bands extrema, denoted by ε0 and E0,
are respectively the ground-state energy and the Weyl energy
and scale with n with the power laws ε0 ∼ n−0.8, E0 ∼ n−2.8

[23].

B. Energy bands structure and inversion points for m � 2

For values of up to m = 10, we numerically diagonalize the
Hamiltonian by spanning the full MBZ with discretization of
size δk = O(10−3) in all directions, and investigate how the
bands Bm(k), Bm+1(k) behave. We find that for values of k in
the planes

�k̄z
= {k ∈ MBZ|kz = k̄z}, k̄z = 0, π , (23)

we are able to extract the minimum of the lowest band ε0

and explore the energy interval [Em, εm+1] (see details in
Appendix D).

We characterize the band structure around the band-
touching points k ≈ kW by varying the magnetic flux �. As
a general pattern, almost independently of the coprime pairs
(m, n), we observe that when � crosses the critical value from
above, i.e., � ↘ �c, the value Em remains the same, while the
energy εm+1 of degenerate central block of bands is lowered,
giving rise to the nontrivial overlap when � < �c. At the
same time, we observe an abrupt change in the z component of
the momentum kmin associated to εm+1, with associated values
of (kx, ky) that depends on the parity of m. We have

� > �c → � < �c ⇒ kmin = (0, 0,±π ) → kmin = (0, 0, 0), m even , (24)

� > �c → � < �c ⇒ kmin =
(

∓ π

n
,±π

n
,±π

)
→ kmin = (±k̄x,∓k̄x, 0), m odd , (25)

where k̄x ∈ MBZ is determined numerically, up to the preci-
sion with which we span the MBZ. For even m, the minimum
is always in the origin of the x-y plane in momentum space,
in both the regimes of �. On the other hand, for odd m the
bands extrema are located at opposite corners of the MBZ
for � > �c, and they are shifted towards the origin along
the line kx = −ky when we cross the critical value, as re-
ported in Eq. (25). The jump in kz is a common feature of
all m, suggesting—in the Hasegawa gauge—the presence of a
band inversion point in correspondence of the high symmetry
points kz = 0, π . Notice that in other gauges, this result does

not appear to hold. In general, however, we observe that for
time-reversal broken Weyl systems the onset of Weyl nodes in
correspondence of such a band inversion is related to an odd
number of inverted eigenvalues of the parity operator [72–74],
this property being in agreement with the jump in kz of the
Weyl points in the Hasegawa gauge. We report in Appendix B
the form of the Jacobi matrix H(k) in correspondence of the
momenta of Eqs. (24) and (25).

We refer to Table I for examples with specific values of
(m, n), and to Fig. 1 for two examples with even and odd m.
We further show in Figs. 2 and 3 the 2D cuts in momentum
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FIG. 1. Color plots of Bm(k), Bm+1(k) in the (kx, ky ) plane for m = 10, n = 77, 79 (two leftmost columns) and m = 7, n = 54, 55 (two
rightmost columns) with kz = 0, π as written in the color bar labels. White cross markers represent kmin in the (kx, ky ) plane, whose explicit
coordinates are reported in Table I. We point out the different energy scales of the bands Bm+1(k), compared to those of the bands Bm(k).

FIG. 2. Band dispersions Bm,m+1(k) at fixed values of the momenta for � > �c, in the case of m = 4. Left plot: Bm and Bm+1 as a function
of kz at fixed kx = ky = 0, to show the onset of the Weyl node along the z direction in reciprocal space. Right plot: Bm and Bm+1 as a function
of kx = −ky at fixed kz, according to the labels in the legend, to highlight the absence of overlap for this coprime pair.

FIG. 3. Band dispersions Bm,m+1(k) at fixed values of the momenta for � < �c, in the case of m = 4. Left plot: Bm and Bm+1 as a function
of kz at fixed kx = ky = 0, to show the onset of the Weyl node along the z direction in reciprocal space. Right plot: Bm and Bm+1 as a function
of kx = −ky at fixed kz, according to the labels in the legend, to highlight the band overlap for this coprime pair.
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FIG. 4. Left plot: ε0 vs n at fixed values m = 4, 7, 15. The dashed lines correspond to the fit function in Eq. (26). Right plot: Ground-
state energies ε0 for various fluxes m/n = �/2π for m ∈ [4, 60] superimposed with the scaling fit function in Eq. (26). We also report the
tight-binding point ε0 = −6 (t = 1), corresponding to � = 0 (red circle).

space to exemplify the presence of Weyl nodes and the nature
of the band overlaps for the reference case of m = 4. These
considerations provide another way of extracting the critical
flux, based on physical arguments: By looking at the bands
structures of Bm(k), Bm+1(k) in the reduced MBZ for various
�, the critical flux �c is the one for which there is a band
inversion point in the (m + 1) band along the z direction [3].

According to these numerical observations, we are able re-
strict further the exploration of the MBZ in the ED algorithm
and speed up the numerics for large values of n. To extract
the ground-state energy ε0 and the bands-touching points we
explore the planes �k̄z

⊂ MBZ, while for the determination
of �c solely we can limit to the bisector kx = −ky of �k̄z

. In
both cases, we have to take into account the corresponding
uncertainty on the energies, which is higher if compared with
the ED obtained with the full MBZ. For completeness, we
report in Appendix G, see Table IV, the energies Em and
εm+1 rounded to the second, third, and fourth significant dig-
its, showing how different levels of precision in the energies
may lead to different estimates of the critical integers. No-
tably, when the entire MBZ is explored, we typically reach a
maximum size L ∼ 500, which in turn fixes the grid of the
MBZ. The second column of the second and third tables in
Appendix G are identical, while the second column of the
first table (pertaining to the rounding of energies to the second
digit) differs from the corresponding ones in the other tables
only for m = 25. This demonstrates the robustness of our
results across the errors committed in the determination of the
energy eigenvalues.

From now on, unless differently specified in the text, we
round the relevant energies to four decimal digits and use the
corresponding integers as critical nc values.

C. Ground-state energy scaling and Weyl energies

In addition to the momentum space characterization of
the central bands Bm(k) and Bm+1(k), we characterize the
scaling of the ground-state energy ε0 = min σ (H) and the
band-touching energies εm+1 as a function of the magnetic
flux �.

For what concerns the ground-state energy, it is lowered
as long as � is decreased, without any discontinuity when
we cross the critical value �c. This is expected, since we
progressively go towards the � → 0 limit, recovering the
standard tight-binding model in the absence of background
magnetic fields, for which ε0(� = 0) = −6 when t = 1. Our
results indicate that ε0(� = 0) = min� ε0(�).

The presence of � 	= 0 raises the ground-state energy, in
agreement with the m = 1 case [23]. This increase is related
to the localization effects of the external magnetic field on the
charged particle, analogously to what happens in the 2D case.
In the left plot of Fig. 4 we show ε0 as a function of n at fixed
values of m: Ground-state energies are on different curves that
we fit with the form

ε0(n) = −6 + a

nb
, (26)

by taking into account the tight-binding limit ε0(n → ∞) =
−6t . We report the estimates of the parameters in Table II. The
dependence on m enters only in the multiplicative coefficient
a, while, independently of m, the scaling relation is ε ∼ n−0.8,
consistent with the result obtained for m = 1.

We plot in Fig. 4 (right plot) the various ground-state ener-
gies for some of the flux ratios m/n considered in our analysis,
verifying the perfect collapse of the ED data as a function of
the magnetic flux. We extrapolate the scaling function as

ε0(�) = −6t + α

(
�

2π

)β

, (27)

TABLE II. Fit parameters of Eq. (26) obtained from the ED data
in Fig. 4 (right plot).

m a b

4 21.8(8) 0.74(1)
7 32(1) 0.82(1)
15 48(1) 0.765(8)
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FIG. 5. Left plots: Top subplots: all the critical pairs of Table III plotted as a function of m. Bottom subplots: �c(m)/2π for the various
m � 60 for the four critical successions nc, n′

c (left subplot) and ñc, ñ′
c (right subplot). The color code and markers are the same of the top

subplots. Right plot: Critical fluxes for all the considered sequences, in ascending (for the not-primed sequences) or descending (for the primed
sequences) order, according to the definition of π (m) given in the main text. This plot is not an indicator of how fast we reach the convergence
to the m → ∞ case.

obtaining the general, i.e., independent of the coprime pair
(m, n), estimates α = 6.46(7), β = 0.799(6). The scaling
function superimposed to the ED data is shown again in Fig. 4
(right plot).

Regarding the band-touching energy, due to the properties
of the Hamiltonian for k ≈ kW [23] we do not observe a
significant scaling of its location, as shown in Appendix E.
From some of the entries in Table I, it can be inferred that
the location of the band-touching point can be estimated or
through Em or εm+1, since these bands touch at isolated points.
For progressively increasing values of m, and within the pre-
cision with which we sample the MBZ with the numerical
ED, the location is almost constant and around the value
Ew = −2.5150(9) (see Appendix E for details) independently
of the considered magnetic flux � > �c.

D. Determination of the critical flux

We present the numerical estimation of the critical flux
�c(m) for various coprime pairs (m, n), with m � 2 up to
m = 60. By means of momentum space reduced ED in the
planes �k̄z

introduced in Eq. (23), we extract the four se-
quences of critical integers n, explicitly reported in Table III
(see Appendix F) and plotted in Fig. 5. From the top subplots
of Fig. 5, it is evident the linear trend for all the four critical
sequences identified in Sec. III.

We plot as well all the critical fluxes �c(m)/2π , obtained
with the same critical pairs, in the bottom subplots of Fig. 5:
As expected from their definitions, both n′

c, ñ′
c approach the

critical flux from below, while the other two definitions nc, ñc

from above. We observe a more regular trend by considering
the two sequences ñc, ñ′

c, as they satisfy |ñc − ñ′
c| = 1 at fixed

m. This is particularly clear by looking at the bottom right
subplot of Fig. 5. For this reason, from now on we focus on
the determination of �c(m) using these two sequences, and
comment on the estimate of �c(m) estimated through n′

c and
nc in Appendix C.

Based on these considerations, we perform a linear regres-
sion on the ñc, ñ′

c data with straight lines h(m) ≡ a0m + a1,
obtaining the results

ñc : a0 = 7.718(2), a1 = 0.49(8),

ñ′
c : a0 = 7.718(2), a1 = −0.50(8) , (28)

consistent with the properties of the critical sequences. How-
ever, since m, n ∈ N, when we compare this estimate with the
data of the critical flux �c(m) we have to round the values
obtained with h(m). We choose to round using the round-half-
up function, i.e., half-way values of h(m) are always rounded
up to the corresponding integer value:

h(m) ∈ R →
⌊

h(m) + 1

2

⌋
∈ N . (29)

With this definition, the estimated critical flux as a function of
m is

�c(m)

2π
= m

�a0m + a1 + 1
2� . (30)

We plot this function with momentum ED data in Fig. 6.
Regarding the estimation of the parameters a0, a1, we extrap-
olate them for all considered the values of m, as we observe
an excellent agreement with the numerical data. However, we
observe that if we progressively discard data at low m and fit
only for values of m above a given threshold, then few isolated
points are not consistent with our estimate (inset in left plot of
Fig. 6).

By considering Eq. (30) as the form of the critical flux
�c(m) as a function of m, we simply observe that

lim
m→∞

�c(m)

2π
= 1

a0
= �c (31)

is the asymptotic estimate of the critical flux. For the two
sequences ñc, ñ′

c we estimate the same a0, and therefore
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FIG. 6. Left plot: Critical fluxes �c(m)/2π for ñ′
c together with the estimates of Eq. (30). The parameters a0, a1 of Eq. (30) are obtained by

discarding the values of m below the threshold represented by the gray dashed vertical line: In the main plot and the inset, respectively, m � 1
and m � 25. Right plot: Band overlaps as a function of m/n for the coprime pairs (m, ñc ) with m ∈ [4, 60), listed in Table III, superimposed
with the straight line Om,m+1 = m(�/2π ) + q.

we get

ñc, ñ′
c : �c = 0.1296(1). (32)

This is a unique and well-defined quantity, as it coincides for
both the sequences, consistent with the chosen energies uncer-
tainties and within the precision of the parameters a0, a1. The
critical coprime pairs in Table III closest to this value are

m

ñc
= 39

301
,

∣∣∣∣�c

2π
− m

ñc

∣∣∣∣ = 2 × 10−6, (33)

m

ñ′
c

= 46

355
,

∣∣∣∣�c

2π
− m

ñ′
c

∣∣∣∣ = 7 × 10−6. (34)

On the same line, Eq. (32) is also consistent with the esti-
mated value that can be obtained from the sequence ñc through
the analysis of the overlaps Om,m+1, introduced in Sec. III. In
this case � ↗ �c, and we look at the functional dependence
on m of the quantity Om,m+1 ≡ |εm+1(k) − Em(k)| as long as
we go towards �c. The results obtained for the coprime pairs
(m, ñc) with m ∈ [4, 60) are plotted in Fig. 6 (right plot). In
the explored region, the overlaps close almost linearly as a
function of the flux ratio m/n. We therefore perform a linear
fit of the form

Om,m+1 = m
�

2π
+ q, (35)

obtaining m = −20.6(6) and q = 2.66(7). The critical flux �c

is extrapolated as

Om,m+1 = 0 ⇒ �c = −2πq

m
, (36)

which corresponds to m/nc = 0.129(1), in agreement with
Eq. (32). We finally point out that the other sequences of
integers, i.e., nc and n′

c, are consistent with the estimated �c,
as can be seen from Fig. 5 (right plot). Here we show all
the critical fluxes plotted as a function of the permutations
π (m), defined in such a way that the values of �c(π (m)) are
in ascending (descending) order for the not-primed (primed)

sequences of critical integers n to visualize the convergence
towards �c. All the numerical details left in Appendix C.

V. TWO CONJECTURES AND THE ASYMPTOTIC
CRITICAL FLUX

Based on the extrapolated form of the critical sequences,
we propose two mathematical conjectures to establish the
critical integer n(m) as a function of m. Specifically, we focus
on the sequence ñ′

c, but our approach can be translated to the
other sequences as well.

To begin with, we plot the deviation of ñ′
c from the line

y(m) ≡ 8m, which is the integer upper bound of the lin-
ear regression extrapolated in Eq. (28). We observe that the
numerical data are organized in blocks of seven points, as
highlighted in the left plot of Fig. 7, that can be characterized
through an integer valued function. The characterization in
terms of this function can be done for a specific subsequence
of m values or by considering all of them. We discuss both
cases, showing how to conjecture the critical flux and high-
lighting similarities and differences.

Let us consider the first conjecture, which is for all values
of m. Given the round-half up function, we notice that the
estimate of ñ′

c satisfies the inequalities

�ma0� +
⌊

a1 + 1

2

⌋
� ñ′

c � �ma0� +
⌊

a1 + 1

2

⌋
+ 1 . (37)

We further observe that �a1 + 1/2� = 0, due to our numerical
estimates in Eq. (28). Hence, motivated by the numerical
results presented in Sec. IV D, we conjecture that

a1 + 1

2
= 0 , (38)

which implies ñ′
c = �ma0�. Now we can apply the Hermite

identity [75], a mathematical identity stating that, for any x ∈
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FIG. 7. Left plot: Values of C7(m) obtained with the mathematical conjecture (38) superimposed with the numerical values obtained with
momentum space exact diagonalization. Right plot: Difference C7(m + 7) − C7(m) and the associated numerical values. The inset shows the
conjectured values C7(m) computed with two values of a0 (respectively, 7.720 and 7.716) compatible with our estimate a0 = 7.718(2). In both
the plots, f (m) generically denotes one of the possible functions reported in the legend.

R and n ∈ N, it holds

�xn� =
n−1∑
k=0

⌊
x + k

n

⌋
. (39)

When applied to ñ′
c(m) = �a0m�, the Hermite identity allows

us to rewrite a generic element of the critical sequence in
terms of a summation involving floor functions of the numer-
ical parameter a0 ∈ R, i.e., �a0 + k/m�. Since �a0� = 7, the
summation of Eq. (39) contains only the integers � = 7, 8.
This is because the term k/m in the argument of the floor
function is limited in the range [1/m, 1), and for m � 1 it can
change the integer part of a0 at most by one.

Due to this property, we can always identify a unique in-
dex, labeled as C7, such that m − C7 � m{a0} � m − C7 − 1,
where {a0} ≡ a0 − �a0� is the fractional part of a0. We can
then split the sum in the Hermite identity as

ñ′
c =

m−1∑
k=0

⌊
a0 + k

m

⌋
=

C7−1∑
k=0

�a0�+
m−1∑
k=C7

(�a0� + 1) =8m − C7 .

(40)

The index C7 is an integer function of m, counting how many
times the integer � = 7 appears in the Hermite decomposition
of �a0m�.

With the introduction of this counting index C7, the critical
flux �c(m) for all values of m can be written as

�c(m)

2π
= m

8m − C7(m)
. (41)

Therefore, our conjecture (38) implies that, given any inte-
ger m � 1 decomposed as a sum of the integers � = 7, 8,
the associated critical flux �c(m) is determined simply by
counting how many times the number � = 7 appear in such
a decomposition and then apply the Eq. (41).

It follows that, by the conjecture (38), the large-m limit of
�c(m) is explicitly defined by

�c

2π
= 1

a0
. (42)

However, since a0 is not analytically known, it must be deter-
mined through fitting from the numerically determined values
of n(m), as done in Sec. IV D. Thus, while the conjecture (38)
gives a form for �c(m), it does not provide a new estimate
for �c, which is instead provided by the second conjecture we
provide below.

In Fig. 7, the left plot shows the value of the C7(m) obtained
by using (40) with the numerical estimate for a0 provided
in (28), and the numerically extracted one, i.e., the value
8m − ñ′

c for each m (see Appendix F). From the plot, we
also observe that the values of C7(m) are grouped into blocks
of length 7. This feature can be captured by the quantity
C7(m + 7) − C7(m), as depicted in the right plot of Fig. 7.

An interesting observation is that for the subsequence
of the form m = mp = 7p + 1, with p integer, the value of
C7(mp), for m � 60 (i.e., p � 8), is given by C7(mp) = 2p +
1. Furthermore, for these values C7(mp+1) − C7(mp) = 2. On
the other hand, we point out that for all m there may be
isolated exceptions, as can be seen from the specific cases of
m = 32 (C7) and m = 39 (8m − ñ′

c), and the clustering of the
conjectured values depends on the estimate of a0, which can
modify the position of the spikes (see the inset in Fig. 7). This
is a direct consequence of the fact that, despite its simplicity,
our proposed conjecture in Eq. (38) is valid up to the precision
associated to a0. Possible effects on the estimate of ñ′

c are
expected to show up for extremely large values of the integer
m, without affecting, however, the convergence of the critical
sequences to the critical value �c. The asymptotic relation of
�c to a0 is given by Eq. (31). Last, we observe that the entire
analysis can be applied to the other critical sequence ñc, with
the working hypothesis �a1 + 1/2� = 1 within the precision
of the parameter a1 of Eq. (28).
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We now state our second conjecture, which applies to a
subsequence with integers m of the form m mod 7 = 1, such
as m = 1, 8, 15, . . .. This sequence can be parametrized as
mp = 7p + 1, where p ∈ N. For these values, we conjecture
that

8mp − ñ′
c = 2p + g(p), g(p) : lim

p→∞
g(p)

2p
= 0, (43)

based on the numerical results obtained for m � 60. For these
specific values, i.e., when p � 8, the difference 8mp − ñ′

c =
2p + 1, and g(p) is found to be equal to 1. However, for
larger values of p, deviations from the value g(p) = 1, while
still compatible with the conjecture, can be allowed. This can
be exemplified already by a single case: Consider m19 = 134
with p = 19, such that the associated ñ′

c × ñ′
c matrix is still

computationally accessible, i.e., ñ′
c = O(103), and the numer-

ical considerations given at the end of Sec. IV B apply. We
find ñ′

c = 1034 and g(19) = 2.
A complete characterization of g(p) for very large values of

p is very challenging, due to increasingly higher matrix size in
momentum space. Nevertheless, due to the coprime condition
on the pairs (m, n), we conjecture that the function g(p) is
subdominant with respect to the linear term in p, leading to
the assumption of Eq. (43).

In light of these considerations and based on the conjecture
(43), the asymptotic critical flux can be estimated for large p,
and it is given by

lim
mp→∞

mp

ñ′
c

= lim
p→∞

7p + 1

8(7p + 1) − (2p + g(p))

= 7

54
≡ �

(conj)
c

2π
. (44)

The value 7/54 = 0.1296 for �
(conj)
c /2π is compatible with

the value �c/2π = 0.1296(1) reported in Sec. IV D.

VI. CONCLUSIONS

We characterized the band structure of the 3D Hofstadter
model on cubic lattices in the presence of isotropic fluxes,
associated with a magnetic field B aligned along the main
diagonal of the lattice and parametrized as a ratio of coprime
pairs (m, n), i.e., � = 2π m/n. As a function of m, we iden-
tified the presence of a critical flux �c(m), which separates
two regimes characterized respectively by complete overlap
between the degenerate bands of the model (� < �c) and the
presence of isolated band-touching points between the mth
and (m + 1)-th bands of the model (� > �c).

By writing the model using the Hasegawa gauge in the
magnetic Brillouin zone [20,61], we performed numerical
exact diagonalization and established a connection between
the critical flux and the appearance of inversion points in the
central bands of the model along the z axis of the reciprocal
space. The minimum of the (m + 1)-th band moves from
kz = π to kz = 0 on crossing the critical flux, passing from
a band touching to an overlapping scenario. At the same time,
we characterized the scaling of the ground-state energy, which
is a function of the magnetic flux �. We showed that the
Weyl energy, corresponding to the band-touching points, does
not scale with m/n nor m. Its position remains, up to our

numerical precision, the same for the explored critical pairs
(m � 60).

Regarding the critical flux �c, we characterized it introduc-
ing four different critical sequences of integers n, as discussed
in Sec. III. We distinguished two types of sequences: the first
two, labeled nc and ñc, tend towards �c from below, i.e.,
from the overlapping scenario, while the remaining two, n′

c
and ñ′

c, approach it from above, in the band-touching case. All
these sequences tend asymptotically to the same critical value,
leading to the conclusion that �c(m) is defined for any m and
that the limit for large m is unique, well defined, and finite.

Considering the sequences ñc and ñ′
c, we conjectured an

analytical form for the critical flux as a function of the numer-
ator m parametrizing the magnetic field in two cases. If all the
values of m ∈ N are considered, then we applied the Hermite
identity [75] to conjecture that ñ′

c is determined by the differ-
ence 8m − C7(m), where C7(m) is an index function counting
the occurrences of the integer � = 7 in the application of the
Hermite identity. If, at variance, we consider only the subset of
values for which m mod 7 = 1, then we provided a value for
the asymptotic critical flux given by �

(conj)
c /2π = 7/54. This

prediction is based on the numerically determined values of ñ′
c

obtained through numerical ED for m � 60 but does not de-
pend on the parameters estimated from the critical sequences.

Knowing the existence and precise magnitude of the crit-
ical flux defined in this work for the 3D Hofstadter model is
important to distinguish nontrivial topological regimes from
trivial metallic ones [23,76] also in experimental scenar-
ios. Indeed, the experimental realization of Hofstadter model
with ultracold atoms with artificial gauge fluxes [32,34,35,37]
combined with band-touching points detection techniques,
such as interferometric experiments [77], Bragg spectroscopy
[78], or Landau-Zener scattering processes [79], could be ap-
plied to verify the existence and separation of the overlapping
and band-touching regimes. This can be further relevant for
the identification of Weyl semimetallic phases and determi-
nation of Weyl nodes locations in momentum space [80]. It
would be also useful to study the robustness of Weyl points
when the hopping coefficients are not isotropic or for different
orientation (parametrized by rational numbers) of the mag-
netic field. Moreover, our study provides a basis to investigate
the effects of interacting pairing terms [81], which has been
recently studied in the context of UTe2 superconductivity in
magnetic fields. Our results indicate that it would be interest-
ing to study such effect close to the (conjectured) critical flux
�

(conj)
c = 7/54.
Finally, from the mathematical point of view, it would be

very interesting in our opinion to complement our numerical
observations and conjectures with analytical predictions of the
critical flux �c(m) based on the structure of the Jacobi matrix
H(k) in momentum space. This computation, which is not
present in the literature to the best of our knowledge, can shed
light on the existence and well-definiteness of the large-m
limit of �c(m) and on the rational (or potentially irrational)
nature of the large m critical flux �c.
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APPENDIX A: HARPER EQUATION

Within the Hasegawa gauge (5), the discrete Schrödinger equation Hψ (r) = Eψ (r) is written as

1

2

(
ψ (r + x̂) + ψ (r − x̂) + ψ (r + ŷ) exp

(
i

(
x − y − 1

2

)
�

)
+ ψ (r − ŷ) exp

(
− i

(
x − y − 1

2

)
�

)

× ψ (r + ẑ) exp (−i(x − y)�) + ψ (r − ẑ) exp [i(x − y)�]

)
= Eψ (r) , (A1)

where we used the Harper operator [7]

Hĵψ (r) = ψ (r + a ĵ)eiθ j (r) + ψ (r − a ĵ)e−iθ j (r)

2
(A2)

and set the lattice spacing a = 1. The absence of the z coordinates in the Peierls phases allows for the factorization of the wave
function ψ (r) = eikzzϕ(x, y), with kz ∈ [−π, π ]. The last two terms in the left-hand side of the discrete Schrödinger equation then
become

ψ (r + ẑ) exp (−i(x − y)�) + ψ (r − ẑ) exp (i(x − y)�) → 2 cos (kz − �(x − y))ϕ(r′) . (A3)

With the flux defined in Eq. (4), the Peierls phases θx,y(r) are periodic in x, y with period n. We can apply the Bloch theorem to
the wave function ϕ(r′) [2], by writing

ϕ(r′) = eikr′
ϕ̃�k(r′), k ∈

[
− π

n
,
π

n

]
×

[
− π

n
,
π

n

]
. (A4)

By inserting this into the Schrödinger equation we end up in the Harper equation for the 3D Hofstadter model,

ϕ̃�k(r′ + x̂)eikx + ϕ̃�k(r′ − x̂)e−ikx + ϕ̃�k(r′ + ŷ)ei(ky+�(x−y−1/2)) + ϕ̃�k(r′ − ŷ)e−i(ky+�(x−y−1/2)) + 2ϕ̃�k(r′) cos (kz − �(x − y))

= E ϕ̃�k(r′) . (A5)

This eigenvalue equation has n degenerate solutions, with k defined in the MBZ. As expected, we recover the same spectrum
obtained with the momentum space diagonalization described in Sec. II A.

APPENDIX B: JACOBI MATRIX FOR THE BAND INVERSION POINTS

In this Appendix we report the periodic Jacobi matrix H(k) for the values of kmin in Eqs. (24) and (25). When m is even, we
have kx = ky = 0, simplifying the off-diagonal matrix elements to

Uj (0, 0) ≡ Uj = 1 + ei(�/2)ϕ∗
j = 1 + ei�(1/2− j) , (B1)

with the symmetry property Un− j (0, 0) = 1 + ei�(1/2+ j)e−2π im = U− j (0, 0). The diagonal elements involve only kz, which can
be kz = 0 or kz = π . In the two cases we have, respectively,

Dj (0) ≡ Dj = 2 cos( j�), Dj (π ) = 2 cos(π − j�) = −2 cos( j�) = −Dj, (B2)

with the symmetry property Dn− j (0) = 2 cos(2πm − j�) = Dj (0). The matrix for kz = 0, which we label He, has the simplified
form

He =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 1 + e−i�/2 0 . . . 0 1 + e−i�/2

1 + ei�/2 2 cos � 1 + e−i3�/2 0 . . . 0
0 1 + ei3�/2 2 cos 2� 1 + e−i5�/2 0 . . .
...

. . .
. . .

. . .
. . .

. . .
...

. . .
. . .

. . .
. . . 1 + ei3�/2

1 + ei�/2 0 . . . . . . 1 + e−i3�/2 2 cos �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

; (B3)

the corresponding one for kz = π has the elements on the diagonal with the opposite sign.
For odd values of m, the position of the minimum is at (kx, ky) = (k̄,−k̄), and therefore

Uj (k̄,−k̄) = e−ik̄ + e−ik̄ei�(1/2− j) = e−ik̄Uj , (B4)
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FIG. 8. Left plot: Band overlaps as a function of m/n for the coprime pairs (m, nc ) listed in Table III, superimposed with the straight line
Om,m+1 = m(�/2π ) + q. Central plot: Band gap as a function of m/n for the coprime pairs (m, n′

c ) listed in Table III, superimposed with
the fit and parameters values of Eq. (C1). Right plot: Three-dimensional scatter plot of overlapping bands, with Bm(kz = 0) (red dots) and
Bm+1(kz = π ) (black dots), for (m, n) = (4, 31).

showing that the off-diagonal structure is the same as the even m case up to a phase factor due to the different location of the
Weyl nodes in momentum space. The diagonal part, being kz = 0, π for this case, too, is the same as the even case. By calling
Ho the matrix for odd m, we can write it for kz = 0 as

Ho =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 e−ik̄ (1 + e−i�/2) 0 . . . 0 eik̄ (1 + e−i�/2)
eik̄ (1 + ei�/2) 2 cos � e−ik̄ (1 + e−i3�/2) 0 . . . 0

0 eik̄ (1 + ei3�/2) 2 cos 2� e−ik̄ (1 + e−i5�/2) 0 . . .
...

. . .
. . .

. . .
. . .

. . .
...

. . .
. . .

. . .
. . . e−ik̄ (1 + ei3�/2)

e−ik̄ (1 + ei�/2) 0 . . . . . . eik̄ (1 + e−i3�/2) 2 cos �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B5)

and similarly for kz = π .

APPENDIX C: FEATURES OF THE CRITICAL
SEQUENCES nc AND n′

c

If the critical flux is determined from below, i.e., � ↗ �c,
then it is convenient to look at the overlaps between the bands
Bm and Bm+1 [20], choosing the first and third definitions of
critical sequences (nc, ñc) among the ones given at the end of
Sec. III. Once the overlaps are identified, the corresponding

integers in the other sequences (n′
c, ñ′

c) follow immediately.
We repeat the same analysis done at the end of Sec. IV D,
this time considering the values of nc instead than ñc, that is,
only true coprime pairs at fixed m. By performing the same
linear regression of Eq. (35), we obtain the parameters m =
−22.3(3) and q = 2.88(4), with the associated estimate of
the critical flux �c/2π = m/nc = 0.129(1), consistent with
the estimate �c/2π ∼ 4/31 [20]. The corresponding bands

FIG. 9. Three-dimensional plot of the explored part of the MBZ in the intervals I (δE ) around the band-touching points for the coprime
pairs (m, n) = (4, 29) (left plot) and (4,31) (right plot), with even m, for δE = 0.03. In both the plots, δk = O(10−2).

045121-13



PIERPAOLO FONTANA AND ANDREA TROMBETTONI PHYSICAL REVIEW B 110, 045121 (2024)

FIG. 10. Three-dimensional plot of the explored part of the MBZ in the intervals I (δE ) around the band-touching points for the
coprime pair (m, n) = (5, 38), with odd m, for two different values of δE = 0.03 (left plot) and δE = 0.01 (right plot). In both the plots,
δk = O(10−2).

overlap is shown in Fig. 8 (right plot). We notice that this
estimate is compatible with the one given in the main text,
see Eq. (32).

If instead we consider � ↘ �c, then the bands of the
model do not overlap but touch in isolated points [20]. How-
ever, due to the numerical discretization of the explored MBZ
and the consequent uncertainty on the energy values dis-
cussed in the paper, we observe small gaps separating the
bands Bm(k), Bm+1(k). We denote such gaps by Gm,m+1 =
|εm+1(k) − Em(k)|. Interestingly, we observe a regular behav-
ior of these gaps as a function of m at a fixed value of the
discretization δk = O(10−3) in the MBZ. The plot of the data
for the critical sequence n′

c is shown in Fig. 8 (central plot),

superimposed with a fit of the form

Gm,m+1 = g0

mg1
, g0 = 0.16(1), g1 = 1.49(9) . (C1)

APPENDIX D: IDENTIFICATION OF THE PLANES �k̄z

In this Appendix we show the numerical details regarding
the determination of the planes �k̄z

of Eq. (23) in the main
text. In the reduced ED procedure, we choose a discretization
δk of the MBZ and keep track of the momenta associated to
ε0 and of the energy interval I (δE ) = [Em − δE , εm+1 + δE ],
where δE is a small parameter introduced to take into account
the possible discretization effects related to δk. We plot the

FIG. 11. Energies εm+1(k) and Em(k) vs m for the sequences ñ′
c (left plot) and n′

c (right plot). In both the plots, the insets show the estimated
Weyl energies Ew as a function of m (black dots), with the corresponding estimates (red dashed lines).
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explored regions for even and odd m in Figs. 9 and 10, respec-
tively, for different values of the parameter δE . It is evident
that by properly tuning δk and δE the regions we are interested
in are the bisectors kx = −ky at kz = ±π for odd m, with the
additional plane at kz = 0 for even m when the bands overlap
(see the right plot of Fig. 9). If we put in relation δk to the
linear size L of the system in real space, and consider uniform
grids in all the three directions in the MBZ, then we have the
usual correspondence [2,20],

δkx,y = 2π

nL
, δkz = 2π

L
. (D1)

In our numerical diagonalization, we considered δkx,y =
O(10−3), which for values of n ∈ [8, 500] is associated to
linear sizes of the order L ∈ [10, 700].

APPENDIX E: DETERMINATION OF THE WEYL ENERGY

We present here details about the estimate of Ew(k) from
the critical sequence of integers ñ′

c. Due to the discretiza-
tion effects discussed in Appendix C, we can identify the
Weyl points Ew,m for every coprime pair (m, ñ′

c) as the center

of Gm,m+1, i.e.,

Ew,m(k) = εm+1(k) + Em(k)

2
. (E1)

We plot in Fig. 11 (left plot) the values of εm+1(k) and Em(k)
as a function of m, highlighting the fact that the amplitude of
Gm,m+1 shrinks as long as we go progressively to large m. The
asymptotic value of Ew,∞ ≡ Ew extracted from this critical se-
quence can be estimated as the weighted average of all the val-
ues computed through Eq. (E1), obtaining Ew = −2.5150(9).

For comparison, we consider the critical sequence n′
c,

whose energy values determining Gm,m+1 are reported in
Fig. 11 (right plot). In this case we observe the same behavior,
but with a larger standard deviation associated to the asymp-
totic Weyl energy, which turns out to be Ew = −2.515(2),
in any case compatible with the one obtained with the ñ′

c
sequence.

APPENDIX F: TABLES WITH SEQUENCES
OF INTEGERS n(m)

We summarize in Table III all the critical pairs (m, n)
analyzed in the main text, according to the definitions given
in Sec. III.

TABLE III. Critical pairs (m, n), when defined, for the definitions {nc, n′
c, ñc, ñ′

c}. The left table is for 1 � m � 30 and the right table for
31 � m � 60.

m nc n′
c ñc ñ′

c

1 8 7 / /
2 17 15 16 /
3 25 23 24 /
4 31 29 / 30
5 39 38 / /
6 47 43 / 46
7 55 54 / /
8 63 61 62 /
9 70 68 / 69
10 79 77 78 /
11 85 84 / /
12 95 91 93 92
13 101 100 / /
14 109 107 / 108
15 116 113 / 115
16 125 123 124 /
17 132 131 / /
18 139 137 / 138
19 147 146 / /
20 157 153 155 154
21 163 160 / 162
22 171 169 170 /
23 178 177 / /
24 187 185 186 /
25 193 192 / /
26 201 199 / 200
27 209 208 / /
28 219 215 217 216
29 224 223 / /
30 233 229 232 231

m nc n′
c ñc ñ′

c

31 240 239 / /
32 247 245 / 246
33 256 254 255 /
34 263 261 / 262
35 271 269 / 270
36 281 277 278 /
37 286 285 / /
38 295 293 294 /
39 301 298 / 300
40 309 307 / 308
41 317 316 / /
42 325 323 / 324
43 332 331 / /
44 343 339 340 /
45 349 347 348 /
46 357 355 356 /
47 363 362 / /
48 371 367 / 370
49 379 377 / 378
50 387 383 386 385
51 394 392 / 393
52 405 401 402 /
53 410 409 / /
54 419 415 417 416
55 426 424 425 /
56 433 431 / 432
57 440 439 / /
58 449 447 448 /
59 456 455 / /
60 467 463 464 /
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APPENDIX G: TABLES OF THE ROUNDED ENERGIES Em, εm+1

We report in Table IV the energies Em and εm+1 rounded to different significant digits.

TABLE IV. Maximum of the mth band (Em) and minimum of the (m + 1)-th band (εm+1) for the sequence ñ′
c. From left to right: Energies

rounded to the second, third, and fourth significant digits, respectively.

m ñ′
c Em εm+1

1 7 -2.57 -2.39
2 15 -2.54 -2.48
3 23 -2.53 -2.50
5 38 -2.52 -2.51
7 54 -2.52 -2.51
8 61 -2.52 -2.51
10 77 -2.52 -2.51
11 84 -2.52 -2.51
13 100 -2.52 -2.51
16 123 -2.52 -2.51
17 131 -2.52 -2.51
19 146 -2.52 -2.52
22 169 -2.52 -2.52
23 177 -2.52 -2.51
24 185 -2.52 -2.51
25 193 -2.52 -2.52
27 208 -2.52 -2.51
29 223 -2.52 -2.52
31 239 -2.51 -2.51
33 254 -2.52 -2.51
36 277 -2.52 -2.51
37 285 -2.52 -2.51
38 293 -2.51 -2.51
41 316 -2.52 -2.51
43 331 -2.52 -2.51
44 339 -2.52 -2.51
45 347 -2.51 -2.51
46 355 -2.52 -2.52
47 362 -2.52 -2.51
52 401 -2.51 -2.51
53 409 -2.52 -2.51
55 424 -2.51 -2.51
57 439 -2.52 -2.52
58 447 -2.51 -2.51
59 455 -2.51 -2.51
60 463 -2.52 -2.51

m ñ′
c Em εm+1

1 7 -2.567 -2.392
2 15 -2.539 -2.482
3 23 -2.529 -2.498
5 38 -2.522 -2.506
7 54 -2.519 -2.514
8 61 -2.518 -2.509
10 77 -2.518 -2.512
11 84 -2.516 -2.510
13 100 -2.517 -2.514
16 123 -2.517 -2.515
17 131 -2.516 -2.513
19 146 -2.517 -2.515
22 169 -2.517 -2.516
23 177 -2.516 -2.514
24 185 -2.515 -2.514
25 192 -2.517 -2.516
27 208 -2.516 -2.514
29 223 -2.516 -2.515
31 239 -2.515 -2.514
33 254 -2.516 -2.515
36 277 -2.516 -2.515
37 285 -2.516 -2.515
38 293 -2.515 -2.514
41 316 -2.515 -2.514
43 331 -2.515 -2.515
44 339 -2.515 -2.514
45 347 -2.514 -2.514
46 355 -2.515 -2.515
47 362 -2.515 -2.515
52 401 -2.514 -2.514
53 409 -2.515 -2.515
55 424 -2.515 -2.514
57 439 -2.515 -2.515
58 447 -2.515 -2.514
59 455 -2.514 -2.514
60 463 -2.515 -2.515

m ñ′
c Em εm+1

1 7 -2.5670 -2.3923
2 15 -2.5393 -2.4822
3 23 -2.5291 -2.4983
5 38 -2.5222 -2.5062
7 54 -2.5192 -2.5139
8 61 -2.5178 -2.5094
10 77 -2.5180 -2.5122
11 84 -2.5156 -2.5104
13 100 -2.5175 -2.5137
16 123 -2.5173 -2.5148
17 131 -2.5162 -2.5133
19 146 -2.5172 -2.5155
22 169 -2.5171 -2.5160
23 177 -2.5163 -2.5144
24 185 -2.5154 -2.5136
25 192 -2.5171 -2.5163
27 208 -2.5157 -2.5141
29 223 -2.5164 -2.5152
31 239 -2.5149 -2.5138
33 254 -2.5157 -2.5146
36 277 -2.5160 -2.5150
37 285 -2.5156 -2.5146
38 293 -2.5146 -2.5138
41 316 -2.5151 -2.5142
43 331 -2.5154 -2.5147
44 339 -2.5153 -2.5144
45 347 -2.5144 -2.5139
46 355 -2.5152 -2.5150
47 362 -2.5155 -2.5148
52 401 -2.5142 -2.5139
53 409 -2.5151 -2.5149
55 424 -2.5147 -2.5141
57 439 -2.5154 -2.5150
58 447 -2.5150 -2.5144
59 455 -2.5141 -2.5139
60 463 -2.5151 -2.5149
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Rev. Res. 2, 013044 (2020).

[43] F. Di Colandrea, A. D’Errico, M. Maffei, H. M. Price, M.
Lewenstein, L. Marrucci, F. Cardano, A. Dauphin, and P.
Massignan, Linking topological features of the Hofstadter
model to optical diffraction figures, New J. Phys. 24, 013028
(2022).

[44] J. C. Halimeh, M. Aidelsburger, F. Grusdt, P. Hauke, and
B. Yang, Cold-atom quantum simulators of gauge theories,
arXiv:2310.12201.

[45] S. K. Lewin, C. E. Frank, S. Ran, J. Paglione, and N. P. Butch,
A review of UTe2 at high magnetic fields, Rep. Prog. Phys. 86,
114501 (2023).

[46] M. J. Park, Y. B. Kim, and S. Lee, Geometric superconductivity
in 3D hofstadter butterfly, arXiv:2007.16205.

[47] V. Hutanu, H. Deng, S. Ran, W. T. Fuhrman, H. Thoma, and
N. P. Butch, Crystal structure of the unconventional spin-triplet
superconductor UTe2 at low temperature by single crystal neu-
tron diffraction, arXiv:1905.04377.

045121-17

https://doi.org/10.1103/PhysRevB.50.11365
https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevB.90.075104
https://doi.org/10.1103/PhysRevLett.125.236805
https://doi.org/10.1103/PhysRevLett.125.236804
https://doi.org/10.1103/PhysRevB.101.235312
https://doi.org/10.1103/PhysRevLett.86.1062
https://doi.org/10.1103/PhysRevB.44.6842
https://doi.org/10.1103/PhysRevB.67.195336
https://doi.org/10.1143/JPSJ.59.4384
https://doi.org/10.1103/PhysRevB.41.664
https://doi.org/10.1143/JPSJ.61.1657
https://doi.org/10.1103/PhysRevB.104.195127
https://doi.org/10.1103/PhysRevB.39.11538
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1146/annurev-conmatphys-033117-054129
https://doi.org/10.21468/SciPostPhysCore.5.1.014
https://doi.org/10.1209/0295-5075/19/8/007
https://doi.org/10.1088/0953-4075/46/13/134014
https://doi.org/10.1093/ptep/ptu144
https://doi.org/10.1016/j.crhy.2018.03.002
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1038/nphys3171
https://doi.org/10.1038/s41567-021-01316-x
https://doi.org/10.1038/nature12186
https://doi.org/10.1126/science.1237240
https://doi.org/10.1038/s41567-018-0328-0
https://doi.org/10.1103/PhysRevResearch.2.013044
https://doi.org/10.1088/1367-2630/ac4126
https://arxiv.org/abs/2310.12201
https://doi.org/10.1088/1361-6633/acfb93
https://arxiv.org/abs/2007.16205
https://arxiv.org/abs/1905.04377


PIERPAOLO FONTANA AND ANDREA TROMBETTONI PHYSICAL REVIEW B 110, 045121 (2024)

[48] G. M. Obermair and G. H. Wannier, Bloch electrons in
magnetic fields. Rationality, irrationality, degeneracy, Physica
Status Solidi (b) 76, 217 (1976).

[49] G. H. Wannier, A result not dependent on rationality for Bloch
electrons in a magnetic field, Physica Status Solidi (b) 88, 757
(1978).

[50] S. Aubry and G. André, Analyticity breaking and anderson
localization in incommensurate lattices, Ann. Isr. Phys. Soc. 3,
133 (1980).

[51] J. P. Guillement, B. Helffer, and P. Treton, Walk inside Hofs-
tadter’s butterfly, J. Phys. France 50, 2019 (1989).

[52] B. Andrews, Hofstadtertools: A python package for analyz-
ing the Hofstadter model, J. Open Source Softw. 9, 6356
(2024).

[53] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Quantized Hall conductance in a two-dimensional peri-
odic potential, Phys. Rev. Lett. 49, 405 (1982).

[54] A. Avila and S. Jitomirskaya, The ten martini problem, Ann.
Math. 170, 303 (2009).

[55] J. Brüning, V. Geyler, and K. Pankrashkin, Cantor and band
spectra for periodic quantum graphs with magnetic fields,
Commun. Math. Phys. 269, 87 (2007).

[56] M. Kohmoto, Zero modes and the quantized Hall conductance
of the two-dimensional lattice in a magnetic field, Phys. Rev. B
39, 11943 (1989).

[57] X. G. Wen and A. Zee, Winding number, family index theorem,
and electron hopping in a magnetic field, Nucl. Phys. B 316,
641 (1989).

[58] J. Zak, Magnetic translation group, Phys. Rev. 134, A1602
(1964).

[59] J. Zak, Magnetic translation group. II. Irreducible representa-
tions, Phys. Rev. 134, A1607 (1964).

[60] A. Rauh, G. H. Wannier, and G. Obermair, Bloch electrons
in irrational magnetic fields, Physica Status Solidi (b) 63, 215
(1974).

[61] M. Burrello, I. Fulga, L. Lepori, and A. Trombettoni, Exact di-
agonalization of cubic lattice models in commensurate abelian
magnetic fluxes and translational invariant non-Abelian poten-
tials, J. Phys. A: Math. Theor. 50, 455301 (2017).

[62] L. Lepori, G. Mussardo, and A. Trombettoni, (3 + 1) massive
Dirac fermions with ultracold atoms in frustrated cubic optical
lattices, Europhys. Lett. 92, 50003 (2010).
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