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By constructing an exactly solvable spin model, we investigate the critical behaviors of transverse-field
Ising chains interpolated with cluster interactions, which exhibit various types of topologically distinct Ising
critical points. Using fidelity susceptibility as an indicator, we establish the global phase diagram, including
ferromagnetic, trivial paramagnetic, and symmetry-protected topological phases. Different types of critical
points exist between these phases, encompassing both topologically trivial and nontrivial Ising critical points,
as well as Gaussian critical points. Importantly, we demonstrate the existence of a Lifshitz transition between
these topologically distinct Ising critical points, with central charge and critical exponents determined through
finite-size scaling. This work serves as a valuable reference for further research on phase transitions within the
gapless quantum phase of matter.
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I. INTRODUCTION

The classification of phases and phase transitions is a
foundational issue in condensed matter and statistical physics
[1–4]. The traditional paradigm of phase transition relies on
the Landau-Ginzberg-Wilson symmetry-breaking paradigm
[5,6]. However, since the 1980s, the development of topo-
logical phases of matter has received significant attention
[7–9], expanding our comprehension of quantum matter be-
yond the Landau paradigm [10,11]. A notable example is
the symmetry-protected topological (SPT) phase [12–14]. It’s
worth noting that discussions of SPT phases typically focus
on gapped quantum phases [15] in the past few decades. Nev-
ertheless, there are large unexplored areas within the field of
gapless quantum phases of matter, particularly in the context
of gapless topological phases.

Although extensive research has been conducted on non-
interacting gapless topological phases, such as Dirac or Weyl
semimetals [16–18], there has been a notable scarcity of stud-
ies addressing strongly interacting gapless topological phases.
These phases, considered as direct extensions of the SPT
phase, have been discussed in the literature [19–26]. They are
often referred to as gapless SPT (gSPT) or symmetry-enriched
quantum critical points [27–39]. These quantum phases ex-
hibit trivial bulk properties but with anomalous boundary
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behavior, which closely aligns with recent investigations into
the boundary criticality of both classical and quantum systems
[40–53]. Furthermore, recent literature proposed a method
called the Pivoet Hamiltonian, which offers a systematic
approach for constructing topologically distinct quantum crit-
ical points [54,55], making it very convenient to study the
phase transition between them. There has been a significant
surge in progress towards simulating quantum phases of mat-
ter characterized by nontrivial entanglement using platforms
summarized under the category of noisy intermediate-scale
quantum (NISQ) technology [56,57]. These advancements
include the simulation of exotic quantum many-body states,
such as topological order, spin liquids, SPT phases, and un-
conventional quantum phase transition [58–73], which have
long been topics of discussion in the field of condensed matter
and statistical physics.

However, the phase transition between topologically dis-
tinct quantum critical points (QCPs) or gapless phases is
rarely mentioned. To address these issues, fidelity sus-
ceptibility, a concept borrowed from quantum information
theory [74,75], offers a remarkably simple and intuitive
method for identifying QCPs. To date, fidelity susceptibility
has proven effective in detecting various QCPs, including
conventional symmetry-breaking QCPs [76–78], topologi-
cal phase transitions [79,80], Anderson transitions [81–83],
nonconformal commensurate-incommensurate transitions [6],
deconfined quantum criticality [84], and even non-Hermitian
critical points [85–88]. Nevertheless, it remains an open ques-
tion whether fidelity susceptibility can effectively detect the
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quantum critical and scaling behaviors in gapless-gapless
phase transitions, particularly those involving the transition
between topologically distinct universality classes, often re-
ferred to as the “transition” of phase transitions.

In this work, we answer the series of questions outlined
above by constructing an exactly solvable spin model, which
is a linear combination of transverse field and cluster Ising
models. Employing the Jordan-Wigner transformation, we
thoroughly examine various properties of the model, including
the ground-state energy density, winding number, fidelity sus-
ceptibility, entanglement entropy, and order parameters. These
investigations allow us to establish the global phase diagram
and comprehend its critical behaviors. Moreover, we not only
pay attention to the critical behaviors of the nonconformal
Lifshitz transition point between topologically distinct Ising
universality classes, but also investigate the conformal phase
transition between the SPT and paramagnetic (PM) phase.

The paper is organized as follows. Section II contains the
lattice model of the quantum Ising chain interpolated with
cluster interaction. Section III shows the global phase diagram
of the model and the finite-size scaling for various physical
quantities. The conclusion is presented in Sec. IV. Additional
data for our analytical and numerical calculations are provided
in the Appendix.

II. MODEL AND METHOD

Quantum Ising chain interpolated with cluster interaction

The system under study is a quantum Ising chain inter-
polated with a three-body cluster interaction. The model is
defined by the following Hamiltonian:

H = λHTFI + (1 − λ)HCI,

HTFI = −
N−1∑
j=1

σ x
j σ

x
j+1 − h

N∑
j=1

σ z
j ,

HCI = −
N−1∑
j=1

σ x
j σ

x
j+1 + h

N−2∑
j=1

σ x
j σ

z
j+1σ

x
j+2. (1)

Here, σ
x/y/z
i represents the spin- 1

2 Pauli matrices on each site
i. The Hamiltonians HTFI and HCI correspond to the transverse
field and the cluster Ising model, respectively. Notably, these
models possess a Z2 spin-flip (generated by P = ∏

i σ
z
i ) and a

time-reversal symmetry denoted as ZT
2 (acting as the complex

conjugation T = K). The λ serves as a tuning parameter that
governs the competition between two different quantum spin
chains, ultimately leading to the emergence of an unconven-
tional universality class.

Although both the spontaneous symmetry-breaking phase
[e.g., ferromagnetic (FM) phase] to trivial PM or SPT phase
transitions are described by Ising conformal field theory
(CFT), the distinct behavior of the time-reversal symmetry to-
wards the symmetry flux operator (also known as the disorder
operator) gives rise to topologically distinct (symmetry-
enriched) QCPs or gSPT [28,30]. To provide a brief overview
of this distinction, it’s important to consider that an Ising CFT
has a unique local primary field denoted as σ with a scaling di-
mension � = 1/8, as well as a unique nonlocal primary field
denoted as μ with the same scaling dimension. These primary

FIG. 1. Schematic global phase diagram of quantum Ising model
interpolated with cluster interaction in terms of tuning parameters
(λ, h). The phase diagram is comprised of three distinct regions: the
Z2 × ZT

2 cluster SPT phase (light red area), the PM phase (purple
area), and the FM order phase (light blue area). When h < 1.0, the
ground state belongs to the FM order phase. When h = 1.0, the or-
ange (green) solid critical line represents the topological (nontrivial)
trivial Ising universality class between the FM to (cluster SPT) PM
phases. For h > 1.0, the transition from cluster SPT to PM phase
(blue solid line) is described by the free boson CFT with c = 1.
The red star denotes the multicritical Lifshitz point with dynamical
exponent z = 2.

fields correspond to the order parameters of the nearby phases.
For instance, σ (n) ∼ σ x

n is the Ising order parameter, whereas
the nonlocal operator μ(n) is the Kramers-Wannier dual dis-
order order parameter of the disorder symmetric phases. More
precisely, μ(n) ∼ ∏n

j=−∞ σ z
j in the trivial PM phase, whereas

μ(n) ∼ ∏n
j=−∞ σ x

j−1σ
z
j σ

x
j+1 in the SPT phase. Notably, the

two Ising critical lines are distinguished by the discrete in-
variant T μT = ±μ, indicating that they must be separated by
a phase transition, essentially representing the “transition” of
a phase transition. Indeed, as depicted in Fig. 1, they converge
at a multicritical Lifshitz point with the dynamical exponent
z = 2 [3,89]. More broadly, one of the authors of this paper
proposes that the conformal boundary condition can serve as
a more general “topological invariant” for classifying topolog-
ically distinct quantum critical points, even in the absence of
degenerate edge modes [29].

In this work, we denote the topological nontrivial case,
characterized by the property where the nonlocal disorder op-
erator is charged as T μT = −μ, as the “symmetry-enriched
Ising∗” critical point, which exhibits degenerate zero-energy
edge modes even the bulk is gapless. At a fundamental
level, the boundary of the symmetry-enriched Ising∗ criti-
cal point spontaneously breaks the Z2 symmetry, creating
an intriguing degenerate boundary fixed point that remains
stable and corresponds to a fixed boundary condition. Re-
markably, the finite-size splitting of this edge mode ∼1/N14 is
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parametrically faster than the finite-size bulk gap ∼1/N .
Therefore, the degenerate edge mode can maintain stability
even if the bulk remains gapless. In this work, for sim-
plicity, we study the simplest topologically distinct quantum
critical points, which can be mapped onto a noninteracting
fermion model, providing valuable intuition for understanding
the results. However, previous studies [27,29,90] showed that
topologically nontrivial quantum critical points also exist in
interacting systems. A detailed study of the transition between
interacting topologicallly distinct QCPs is a quite involved
and challenging direction, and we leave it for future work.
In the subsequent few sections, our focus remains on the case
where h = hc = 1.0 to ensure that the system resides within
the QCPs.

III. PHASE DIAGRAM AND CRITICAL BEHAVIOR

A. Quantum phase diagram

Before delving into the analytical results, let’s summarize
our main findings and outline the global quantum phase dia-
gram of the model in Eq. (1). The schematic phase diagram
is provided in Fig. 1. The tuning parameters (h, λ) drive the
system toward different phases, including FM, trivial PM,
and Z2 × ZT

2 SPT phases [91–93]. The latter is sometimes
referred to as the cluster or Haldane SPT phase. Further-
more, there exist rich QPTs between these quantum phases,
including the 1 + 1D conformal (topologically trivial) Ising
universality class (green solid line), symmetry-enriched (topo-
logically nontrivial) Ising∗ universality class (orange solid
line), Gaussian universality class (blue solid line), and non-
conformal Lifshitz criticality (red star).

FIG. 2. The spin correlation |Rx (r)| is plotted as a function of
distance r for different h with λ = 0.2 (a1) and 0.8 (b1), while the
string order parameter |Ox (r)| is depicted as a function of r for
λ = 0.2 (a2) and 0.8 (b2). Notably, when h < 1.0, regardless of
whether λ is greater or less than 0.5, the FM spin correlation exhibits
long-range order, indicating that the ground state features FM order.
Conversely, when h > 1.0 and λ < 0.5 (λ = 0.2), the string order
parameter displays long-range order, suggesting the presence of a
cluster SPT phase. Finally, in the scenario where h > 1.0 and λ >

0.5 (λ = 0.8), both the string order parameter and FM correlation
exhibit short-range behaviors, indicative of a trivial PM phase.

To elaborate, using the integrability of the model, Eq. (1)
can be reformulated as a free fermion model [94,95] through
the Jordan-Wigner transformation

σ x
i =

∏
j<i

(1 − 2c†
j c j )(ci + c†

i ),

σ
y
i = −i

∏
j<i

(1 − 2c†
j c j )(ci − c†

i ),

σ z
i = 1 − 2c†

i ci. (2)

After applying the Fourier transformation ck =
1√
N

∑N
j=1 eik jc j , where k = 2πm/N and m ranges from

−(N − 1)/2 to (N − 1)/2, we obtain the following free
Hamiltonian:

H (h, λ) = 2
∑
k>0

[iyk (c†
kc†

−k + ckc−k )

+ zk (c†
kck + c†

−kc−k − 1)] + const., (3)

where yk = −sin(k) + (1 − λ)hsin(2k) and zk = λh −
cos(k) + h(1 − λ)cos(2k). Subsequently, the Hamiltonian
takes on a bilinear form and can be diagonalized using the
Bogoliubov transformation

bk = cos

(
θk

2

)
ck − isin

(
θk

2

)
c†
−k,

b†
k = cos

(
θk

2

)
c†

k + isin

(
θk

2

)
c−k,

H (h, λ) =
∑
k>0

εk

(
b†

kbk − 1

2

)
, (4)

where bk (b†
k) is the Bogoliubov quasiparticle annihi-

lation (creation) operator, εk = 4
√

y2
k + z2

k , tan(θk ) = − yk

zk
,

and the ground state is given by |G〉 = ∏
k>0[cos( θk

2 ) +
isin( θk

2 )c†
kc†

−k]|Vac〉 (|Vac〉 is the vacuum state of c fermion).
Before delving into phase transitions, let’s explore the pos-

sible phases that appear in a phase diagram. As a preliminary
step, we examine some limiting cases. When λ = 0.0, the
model is simplified to a cluster Ising model. By adjusting
the parameter h, the model can achieve a phase transition
from the FM (small h) to the cluster SPT phase (large h).
Conversely, when λ = 1.0, the model is reduced to the usual
transverse-field Ising model. At this time, adjusting the pa-
rameter h can achieve the phase transition from the FM (small
h) to the trivial PM phase (large h). In general cases (λ, h), to
identify the possible quantum phase of matter, we calculated
the FM correlation function (order parameter) and string order
parameter

Rx(r) = 1

N

N∑
i=1

〈
σ x

i σ x
i+r

〉
,

Ox = lim
N→∞

〈
σ x

1 σ
y
2

(
N−2∏
k=3

σ z
k

)
σ

y
N−1σ

x
N

〉
. (5)

As depicted in Figs. 2(a1) and 2(a2), we observe that when
λ < 0.5 (λ = 0.2) and h < 1.0 (h = 0.2, 0.8), the FM or
string order parameter remains constant or tends to zero in
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the long-distance limit, suggesting the existence of FM long-
range order in this region [1]. Conversely, when λ < 0.5 (λ =
0.2) and h > 1.0(h = 2.0, 3.0), the string order parameter or
FM spin correlation function becomes constant or zero in the
long-distance limit, indicating that the system resides in the
cluster SPT phase in such a parameter region [93].

Similarly, as illustrated in Figs. 2(b1) and 2(b2), when λ >

0.5 (λ = 0.8) and h < 1.0 (h = 0.2, 0.8), the FM or string
order parameter remains constant or zero in the long-distance
limit, implying FM long-range order dominate in this region.
However, when λ > 0.5 (λ = 0.8) and h > 1.0 (h = 2.0, 3.0),
both the string order parameter and FM correlation tends to
zero under long-distance limits, indicating that the system is
in the trivial PM phase in such a region.

B. “Transition” of phase transition

After delineating all the quantum phases in the phase
diagram, we shift our focus to the more intriguing QPTs
between these phases. While traditional discussions primarily
concentrate on the phase transitions between gapped phases,
it’s entirely plausible that there exists an unconventional
QPTs between different gapless topological phases [96]. For
simplicity, our attention is drawn to the intriguing “transi-
tion” between topologically distinct critical points. For our
purposes, we set h = 1.0 in the model Eq. (1), and by manip-
ulating the parameter λ, we first consider two tractable cases.

(1) When λ = 0.0 the model corresponds to a critical
cluster Ising chain, thereby realizing the symmetry-enriched
Ising∗ universality class [28,30].

(2) When λ = 1.0 the model transforms into a usual critical
Ising chain, belonging to the 1 + 1D (topological trivial) Ising
universality class.

These two (topologically) distinct Ising universality classes
correspond to different conformal boundary conditions
[29,39], and it is unfeasible to smoothly connect them without
either breaking the symmetry or encountering a multicritical
point. Therefore, akin to the unconventional phase transition
between gapped topological phases [93], there may exist an
unconventional QPT between topologically distinct quantum
critical points or critical phases, which constitutes a largely
unexplored area in statistical and condensed matter physics.
In the following subsections, we provide evidence of uncon-
ventional phase transitions from different perspectives.

1. Ground-state energy density and its second-order derivative

According to Eq. (4), the ground-state energy density of
the model is expressed as

ε0 = −
∑
k>0

εk

2N
= − 2

N

∑
k>0

√
y2

k + z2
k

= − 1

π

∫ π

0

√
y2

k + z2
k dk. (6)

Using this equation, we can numerically calculate both
ε0 and its second-order derivative − ∂2ε0

∂λ2 . As illustrated in
Fig. 3(a), we observe that the second derivative of the ground-
state energy density with respect to λ becomes sharper at λ =
0.5 as the system size increases. This suggests that λ = 0.5

FIG. 3. (a) The second derivative of ground-state energy density
− ∂2ε0

∂λ2 with respect to λ for h = 1.0. (b) The winding number as a
function of λ with h = 1.0 for N = 2000.

serves as a critical point between two distinct Ising universal-
ity classes.

2. Winding number

Following the authors of Ref. [97], we can express
Eq. (4) as

H (h, λ) = 4
∑
k>0

�hk · �sk. (7)

Here, �hk = (0, yk, zk ) and the pseudospin �sk = [(c†
−kck −

c†
kc−k )/2, i(c†

kc†
−k + ckc−k )/2, (c†

kck + c†
−kc−k − 1)/2]. These

pseudospin operators satisfy the SU(2) algebra.
The winding number is defined in the parameter space

(y, z) as follows:

ω = 1

2π

∫
c

1

h2
(zdy − ydz). (8)

Here, c represents the loop in the (y, z) space as k varies
from 0 to 2π . ω serves as a means to distinguish between dif-
ferent topological phases, which possess a different winding
number.

As depicted in Fig. 3(b), we observe a jump in the winding
number at λ = 0.5, signifying a topological phase transition at
this specific point. Additionally, we determine that the wind-
ing number takes on fractional values (0.5 and 1.5) at the usual
topological trivial and nontrivial Ising critical points, respec-
tively, aligning with findings in previous literature [30,98].

3. Entanglement entropy and central charge

Quantum entanglement serves as a powerful tool in de-
scribing QPTs, with entanglement entropy being the most
commonly used quantity for this purpose. In a quantum many-
body system, entanglement entropy characterizes the QPT
induced by a tuning parameter by properly extracting it from
the ground-state wave function |ψ0〉. Typically, the Hamilto-
nian is divided into two subsystems A and B, and the reduced
density matrix for subsystem A is computed by tracing over
the degrees of freedom of subsystem B, given by

ρA = TrB(|ψ0〉〈ψ0|). (9)

The entanglement entropy, measuring the entanglement be-
tween parts A and B, is then expressed as

SA = −[ρAln(ρA)], (10)
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FIG. 4. The entanglement entropy is plotted as a function of
subsystem size l for various λ values at h = 1.0. The central charges
obtained through the fitting of entanglement entropy consistently
equal 0.5, which belongs to the 1 + 1D Ising universality class.

which is evaluated in terms of the eigenvalues of ρA. For
a one-dimensional short-range interacting system with peri-
odic boundary conditions, CFT suggests that the entanglement
entropy for subsystem A with size l follows the finite-size
scaling behavior [99,100]

Sl ∼ c

3
ln

[
N

π
sin

(
π l

N

)]
+ S′, (11)

where c is the central charge, which varies for different univer-
sality classes, and S′ is a nonuniversal constant. The symbol
“ln′′ refers to logarithmic functions with e as the base through-
out the paper.

Back to our case, since the Hamiltonian in Eq. (1) is
quadratic and exactly solvable, the ground state |ψ0〉 is a
BCS-type state, and its correlation matrix Di j = 〈ψ0|c†

i c j |ψ0〉
can be efficiently analytical calculated. Therefore, the entan-
glement entropy SA between subsystems A and B can be easily
obtained as [101,102]

SA = −Tr[DAln(DA) + (1 − DA)ln(1 − DA)], (12)

where DA is the correlation matrix for subsystem A =
{1, 2, . . . , l}.

The numerical results are shown in Fig. 4, we calculated
the entanglement entropy S(l ) as a function of subsystem
sizes l for λ = 0.0, 0.2, 0.49, 0.51, 0.8, 1.0, and h = 1.0. Fur-
thermore, to determine the central charge, we provide the
finite-size scaling of entanglement entropy as a function of
subsystem sizes lnl for λ = 0.0, 0.2, 0.49, 0.51, 0.8, 1.0 in
the inset of Fig. 4. It is apparent that the central charge at the
conformal critical point consistently equals 0.5, indicating its
classification within the Ising universality class. For h = 1.0,
in addition to the multicritical point λ = 0.5, there exists a
critical line belonging to the Ising universality class. Conse-
quently, the entanglement entropy of the system adheres to
the scaling law of CFT, with a central charge of c = 0.5.

The numerical findings in the preceding sections suggest
that when λ = 0.5, representing the “phase transition” tran-
sition, the critical point belongs to Lifshitz criticality with a
dynamical exponent z = 2 (see next section). This suggests
that the phase transition is not described by CFT and exhibits

anomalous entanglement entropy scaling behavior and uni-
versal finite-size amplitudes [103]. However, recent studies
[103–105] illustrated that Lifshitz transitions with z = 2 ex-
hibit anomalous entanglement entropy scaling behavior and
universal finite-size amplitudes, thus offering a promising
avenue for future research on entanglement concerning the
phase transition between topologically distinct critical points
or phases.

4. Finite-size scaling and critical exponents

To date, we established numerically the existence of a Lif-
shitz multicritical point between topologically distinct Ising
universality classes. This discovery naturally leads to inquiries
about the scaling and critical exponents at this multicritical
point. In this work, we obtain the critical exponents through
the finite-size scaling of fidelity susceptibility.

The concept of fidelity susceptibility pertains to a system
undergoing a continuous phase transition from an ordered to
a disordered phase upon tuning the parameter λ to a critical
value λc. At this point, the structure of the ground-state wave
function changes significantly. The quantum ground-state
fidelity F (λ, λ + δλ) quantifies the overlapping amplitude be-
tween the ground-state wave function at external field λ and
λ + δλ [74,106–108]. Near λc, F (λc, λc + δλ) ∼ 0, indicat-
ing a drastic change in the ground state. Then, the fidelity
susceptibility, defined as the leading term in the fidelity

χF (λ) = lim
δλ→0

2[1 − F (λ, λ + δλ)]

(δλ)2
= 1

4

∑
k>0

(
∂θk (λ)

∂λ

)2

.

(13)

For a continuous QPT in a finite system size N , the fidelity
susceptibility χF (λ) exhibits a peak at a critical point, and
show the finite-size scaling behaviors follow [74,79,84]:

N−dχF (λ) = N (2/ν)−d fχF (N1/ν |λ − λc|), (14)

where ν is the critical exponent of the correlation length. z
is the dynamic exponent, d is the spatial dimension of the
system, and fχF is an unknown scaling function. It’s im-
portant to note that, in practice, the critical exponent ν is
usually extracted from fidelity susceptibility per site, χN ( f ) =
χF (λ)/Ld .

To further investigate whether the phase transitions are
described by CFT, we calculate the energy gap �, defined
as the energy difference between the first excited state and
the ground-state energy. For continuous phase transitions, the
energy gap is expected to vanish following � ∼ |λ − λc|zν as
λ approaches λc [1]. Combined with the divergence of the cor-
relation length following the form ξ ∼ |λ − λc|−ν , we obtain
the scaling relation, � ∼ ξ−z. Since the correlation length at
the critical point of a finite system can be characterized by the
lattice length N , the finite-size scaling form, �(λc, N ) ∝ N−z,
can be finally derived. In addition, the energy gap also exhibits
a similar functional form to the fidelity susceptibility [6]

�(N ) = N−zF�[N1/ν (λ − λc)] , (15)

where F� is another scaling function associated with �.
Therefore, we can determine the dynamical exponent z by
performing finite-size scaling on the energy gap.

045119-5



XUE-JIA YU AND WEI-LIN LI PHYSICAL REVIEW B 110, 045119 (2024)

FIG. 5. (a) The finite-size scaling analysis of the fidelity suscep-
tibility per site χN for h = 1.0. The fidelity susceptibility per site
shows a sharp peak near the transition point. (b) Data collapse of
the fidelity susceptibility per site χN and λ with ν = 1.0 for various
system sizes. The inset shows the log-log plot of the fidelity suscepti-
bility against the system size at the critical point, and the correlation
length critical exponent ν = 1.0 can be inferred from the slope of
the fitted straight line. (c) Data collapse of the rescaled energy gap
and λ with z = 2, ν = 1.0, and λc = 0.5 for the largest four system
sizes. The inset displays the log-log plot of the energy gap � versus
the system size N at the critical point λc, and the fitted straight line
has a slope whose absolute value equals to the dynamical critical
exponent z. (d) The variation modes FM spin correlation function
|Rx (r)| at the critical point λc = 0.5 for h = 1.0, the insets plot the
curves at critical point λ = 0.5 in log-log coordinates and show the
slope η = 1/4 of the lines. The inset also shows the curves featuring
power-law decay in ln-ln coordinates.

Furthermore, we obtain another critical exponent known as
the anomalous exponent, which can be extrapolated through
finite-size scaling for the FM spin correlation function at the
critical point

|Rx(λ = λc, r)| ∼ 1

rη
, (16)

where η is the anomalous exponent characterizing the critical
universality class.

The numerical results are presented in Fig. 5. Specifi-
cally, we observe a distinct peak in fidelity susceptibility at
λ = 0.5, which becomes more pronounced with increasing
system size, as depicted in Fig. 5(a). This observation suggests
the presence of a phase transition between two distinct Ising
universality classes, consistent with the numerical results in
previous sections. As shown in Fig. 5(b), by employing the
scaling formulas of fidelity susceptibility and energy gap
[Eqs. (14) and (15)], we can deduce the corresponding cor-
relation length exponent ν and dynamical exponent z (see
Appendix A for analytical calculation details and Appendix B
for additional λ values). These findings indicate the exis-
tence of nonconformal Lifshitz multicritical points between
topologically distinct Ising critical points. Additionally, for a
more comprehensive analysis of the critical behavior at Lif-
shitz points, we numerically calculated the scaling behavior

of the FM spin correlation function [Eq. (5)] at the critical
point, as shown in Fig. 5(d). The results demonstrate that the
anomalous exponent is 1/4, complementing the correlation
length exponent and dynamical exponent in characterizing
Lifshitz criticality. Additionally, we investigate the topolog-
ical properties at these multicritical points (see Appendix E
for details). Our results unambiguously demonstrate that the
Lifshitz transition point corresponds to a topologically triv-
ial critical point without degenerate edge modes under open
boundary conditions..

C. Topological phase transition for large h limit

For large values of h, the Ising interaction term becomes
negligible, resulting in the simplified Hamiltonian:

H ′ = −λ

N∑
j=1

σ z
j + (1 − λ)

N−2∑
j=1

σ x
j σ

z
j+1σ

x
j+2. (17)

When λ = 0.0, the ground state corresponds to the clus-
ter SPT phase protected by Z2 × ZT

2 symmetry. Conversely,
when λ = 1.0, the transverse field term dominates, and the
ground state resides in the trivial PM phase. Consequently,
a topological phase transition is expected between these two
distinct ground states [93]. To systematically investigate this
phase transition, similar to the previous section, we utilize the
Jordan-Wigner transformation to solve the model and calcu-
lated various physical quantities such as the second derivative
of the ground-state energy density, winding number, entan-
glement entropy, and fidelity susceptibility. Additionally, we
determined the central charge and critical exponent through
finite-size scaling (see Appendix D for details).

The numerical results reveal that the topological phase
transition from the cluster SPT to the trivial PM phase is de-
scribed by the free boson CFT with critical exponents ν = 1.0
and z = 1.0 [93,109,110]. More generally, when h is finite
and greater than 1.0, this universality class of phase transitions
remains stable (see Appendix D for details). In other words, a
critical line (blue solid line in Fig. 1) characterized by the free
boson CFT with c = 1 exists in the global phase diagram.

For the sake of completeness and comparison, we briefly
discuss the properties of the model around h < 1.0. This line
differs from the h > 1.0, we find that regardless of how λ is
tuned, our results (see Appendix C for details) show that the
system always exhibits FM long-range order.

IV. CONCLUSION AND OUTLOOK

To summarize, we investigate the phase transition between
the topologically distinct QCPs, i.e., a transition of the phase
transition. Using fidelity susceptibility as a diagnostic, we
obtain a global phase diagram for the Hamiltonian, which
interpolates between the transverse field and cluster Ising
model. For h = 1.0, by tuning the parameter λ, we observe
that fidelity susceptibility detects the multicritical Lifshitz
point characterized by z = 2 and ν = 1.0 between different
Ising universality classes. Furthermore, as a by-product, for
h > 1.0, fidelity susceptibility also identifies the phase tran-
sition between the cluster SPT and PM phases, described
by c = 1 free boson CFT. However, for h < 1.0, no phase

045119-6



FIDELITY SUSCEPTIBILITY AT THE LIFSHITZ … PHYSICAL REVIEW B 110, 045119 (2024)

transition occurs, and the ground state maintains FM order
phase. Future intriguing questions involve exploring the crit-
ical behavior between topologically distinct critical points
in higher dimensions and within different symmetry groups
[e.g., Z3, U (1), among others], as well as constructing finite-
temperature phase diagrams [111]. Our work could shed new
light on the phase transition between the gapless quantum
phase of matter.
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APPENDIX A: ANALYTICAL CALCULATION DETAILS
FOR THE DYNAMICAL EXPONENT

In this section, we derive the expression for the single-
particle fermionic excitation energy at the special momentum
point k = 0, denoted as εk∼0, at the multicritical point
(h = 1.0, λ = 0.5). This derivation relies on the exact
solvable fermionic Hamiltonian given in Eq. (3), which
is obtained through the Jordan-Wigner and Bogoliubov
transformation

εk =
√( − sink + 1

2

)
(sin2k)2 + (

1
2 − cosk + 1

2 cos2k
)2

,

=
√

(sinkcosk − sink)2 + (cos2k − cosk)2,

= |1 − cosk|. (A1)

At the low-energy momentum point k = 0, we observe that
εk∼0 ∼ k2, indicating a dynamical exponent z = 2 at the mul-
ticritical point. This suggests that phase transitions between
topologically distinct Ising critical points cannot be described
by CFT.

APPENDIX B: FIDELITY SUSCEPTIBILITY
FOR VARIOUS λ

In this section, we provide additional data on finite-size
scaling for fidelity susceptibility as a function of h for
different λ to ascertain the location of the Ising critical
line.

As shown in Fig. 6, the fidelity susceptibility demonstrates
a distinct peak at h = 1.0 across various λ values, including
λ = 0.0, 0.2, 0.8, 1.0. Moreover, the sharpness of the peak
increases with the system size, indicating the presence of a
phase transition. Utilizing the scaling relation in Eq. (14), we
ascertain the correlation length exponent ν = 1.0 for the Ising
critical point for both λ = 0.2 and λ = 0.8. This is illustrated
in the inset of Figs. 6(b) and 6(c). Consequently, we deduce
that h = 1.0 (excluding λ = 0.5) represents an Ising critical
line with a correlation length exponent ν = 1.0.

APPENDIX C: FM LONG-RANGE ORDER FOR h < 1.0

In this section, we explore possible QPTs that occur
when h < 1.0. As discussed in the main text, in the two
extreme cases of h = 0.0 and λ = 0.0, 1.0, the ground state

FIG. 6. The finite-size scaling analysis of the fidelity suscep-
tibility per site χN is presented for λ = 0.0 (a), 0.2 (b), 0.8 (c),
and 1.0 (d). Notably, the fidelity susceptibility per site exhibits a
sharp peak near the transition point. The insets in (b) and (c) de-
pict the log-log plot of the fidelity susceptibility against the system
size at the critical point, from which the correlation length critical
exponent ν = 1.0 can be inferred based on the slope of the fitted
straight line.

demonstrates FM long-range order. To investigate the pres-
ence of possible quantum phase transitions, we calculated the
fidelity susceptibility as a function of λ at h = 0.5, as shown in
Fig. 7. The results indicate that the fidelity susceptibility does
not exhibit a growing peak with system size. This observation
suggests that when h < 1.0, no phase transition occurs within
the system. Consequently, in this regime, the ground state
exclusively displays FM long-range order, as illustrated in
Fig. 1 in the main text.

0 0.5 1
0.2

0.4

0.6

0.8

F/
N

λ

N=51

N=81

N=101

N=201

FIG. 7. The finite-size scaling analysis of the fidelity susceptibil-
ity per site χN for h = 0.5. The fidelity susceptibility per site does
not exhibit a pronounced peak as the system size increases near the
transition point.
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FIG. 8. (a), (b) The second derivative of ground-state energy
density − ∂2ε0

∂λ2 with respect to λ for h = 2.0, ∞. (c), (d) The winding
number as a function of λ with h = 2.0, ∞ for N = 2000.

APPENDIX D: ADDITIONAL DATA FOR TOPOLOGICAL
PHASE TRANSITION

1. Ground-state energy density and its second-order derivative

In this section, we provide additional data on the ground
state energy density corresponding to the topological phase
transition at h > 1.0.

Similar to the main text, the ground-state energy of the
model is given by Eq. (6). Using this equation, we numerically
calculate both ε0 and its second-order derivative − ∂2ε0

∂λ2 for
h = 2.0,∞ at the topological critical point. As depicted in
Figs. 8(a) and 8(b), we observe that the second derivative of
the ground-state energy density with respect to λ becomes
sharper at λ = 0.5 as the system size increases, indicating that
λ = 0.5 is a continuous QCP.

2. Winding number

In this section, we present additional data on the winding
number corresponding to the topological phase transition at
h > 1.0.

As depicted in Figs. 8(c) and 8(d), we observe a jump in
the winding number at λ = 0.5 for h = 2.0,∞, indicating a
topological phase transition at this point. Moreover, we note
that the winding number takes integer values (0.0 and 2.0)
within the trivial PM and SPT phases, respectively, consistent
with findings in previous literature [30].

3. Entanglement entropy and central charge

In this section, we present additional data on the en-
tanglement entropy and central charge corresponding to the
topological phase transition at h > 1.0.

Similar to the main text, we plot the entanglement en-
tropy S(l ) as a function of subsystem sizes l for h = 2.0,∞,
and λ = 0.5 in the main panel of Fig. 9(c). Additionally,
for determining the central charge, we provide the finite-size
scaling of entanglement entropy as a function of subsystem
sizes logl for h = 2.0,∞ in the inset of Fig. 9(c). It is ev-
ident that the central charge at the conformal critical point

FIG. 9. (a), (b) The finite-size scaling analysis of the fidelity
susceptibility per site χN for h = 2.0 and h = ∞. The fidelity sus-
ceptibility per site exhibits a sharp peak near the transition point. The
inset displays the log-log plot of the fidelity susceptibility against the
system size at the critical point, from which the correlation length
critical exponent ν = 1.0 can be inferred based on the slope of the
fitted straight line. (c) The entanglement entropy as a function of
subsystem size l for different h values with λ = 0.5. The central
charge c = 1.0 is obtained through the finite-size scaling fitting of
the entanglement entropy (free boson CFT).

consistently equals 1.0, indicative of its classification within
the free boson CFT.

4. Finite-size scaling and critical exponents

In this section, we present additional data on the finite-size
scaling for fidelity susceptibility corresponding to the topo-
logical phase transition at h > 1.0.

As depicted in Figs. 9(a) and 9(b), fidelity susceptibility
exhibits a clear peak at λ = 0.5, which becomes sharper as the
system size increases, indicating a phase transition occurring
at λ = 0.5. According to the scaling relation in Eq. (14), we
determined the correlation length exponent ν = 1.0 for the
topological phase transition point for both h = 2.0 and ∞, as
shown in the inset of Figs. 9(a) and 9(b).

APPENDIX E: SURFACE STATE FOR DIFFERENT
λ AT THE CRITICAL LINE

In this section, to verify possible topological proper-
ties at the Lifshitz multicritical point, we present additional
numerical results demonstrating the energy spectrum as a
function of the state index under open boundary conditions
and the zero-energy (or near-zero-energy) state probability
distribution for different values of λ along the critical line
h = 1.

Through the Jordan-Wigner transformation, the Hamil-
tonian (1) under open boundary conditions can also be
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FIG. 10. The energy spectrum as a function of the state index (a1)–(e1) and the zero energy (or near-zero-energy) state probability
distribution (a2)–(e2) for typical values of λ = 0.0, 0.2, 0.5, 0.8, 1.0 along the critical line (h = 1.0). All calculations are conducted under
open boundary conditions, and the simulated system size is L = 240.

reformulated as a free fermion model:

H = −
N−1∑
i=1

(c†
i ci+1 + c†

i c†
i+1 + H.c.) − λh

N∑
i=1

(1 − 2c†
i ci )

+ h(1 − λ)
N−2∑
i=1

(c†
i ci+2 + c†

i c†
i+2 + H.c.). (E1)

Then the Hamiltonian can be diagonalized as H =∑N
n=1 �nη

†
nηn through a canonical Bogoliubov transformation

by introducing the fermionic operators ηn and η†
n,

ηn =
N∑
i

(u∗
n,ici + vn,ic

†
i ), η†

n =
N∑
i

(un,ic
†
i + v∗

n,ici ), (E2)

where un,i and vn,i denote the two components of the
wave function at site j, n is the energy band index, and
�n represents the eigenstate energy. The Schrödinger equa-
tion H |�n〉 = En|�n〉 can be written as(

A B
−B∗ −AT

)(
un,i

v∗
n,i

)
= En

(
un,i

v∗
n,i

)
, (E3)

where A(B) is a N × N symmetric (antisymmetric) matrix,
En is the energy spectrum and n is the state index, the zero
energy-state probability distributions can be computed as
|�n,i|2 = |un,i|2 + |vn,i|2.

This section concerns the surface state when the bulk
undergoes a Lifshitz transition. Specifically, we obtained an
exactly solvable fermionic model through the Jordan-Wigner
transformation and calculated the energy spectrum as a func-
tion of the state index and the probability distribution of
zero-energy (or near-zero-energy) states for typical values of λ

along the critical line (h = 1) to explore possible edge modes,
as shown in Fig. 10. Our numerical results unambiguously
demonstrate that there are indeed two zero-energy edge modes
(a pair of edge modes within the red box in the inserted figure)
for the topologically nontrivial Ising critical point (λ < 0.5)
and no degenerate edge modes at the boundary for the topo-
logically trivial Ising critical point (λ > 0.5). However, at
the “transition” of the phase transition (Lifshitz multicritical
point) λ = 0.5, the system does not exhibit degenerate edge
modes under open boundary conditions, indicating that the
Lifshitz transition point belongs to the topologically trivial
quantum critical point.
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