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We study a relationship between conformally invariant boundary conditions and anomalies of conformal field
theories (CFTs) in 1 + 1 dimensions. For a given CFT with a global symmetry, we consider symmetric “gapping
potentials”, which are relevant perturbations to the CFT. If a gapping potential is introduced only in a subregion
of the system, it provides a certain boundary condition to the CFT. From this equivalence, if there exists a Cardy
boundary state, which is invariant under a symmetry, then the CFT can be gapped with a unique ground state by
adding the corresponding gapping potential. This means that the symmetry of the CFT is anomaly free. Using this
approach, we systematically deduce the anomaly-free conditions for various types of CFTs with several different
symmetries. They include the free compact boson theory, Wess-Zumino-Witten models, and unitary minimal
models. When the symmetry of the CFT is anomalous, it implies a Lieb-Schultz-Mattis type ingappability of the
system. Our results are consistent with, where available, known results in the literature. Moreover, we extend the
discussion to other symmetries including spin groups and generalized time-reversal symmetries.
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I. INTRODUCTION

Symmetry often plays an essential role in the study of
quantum many-body physics. In classical physics, it im-
plies various conservation laws and corresponding conserved
currents. However, on the quantum level, there is a poten-
tial obstruction in promoting a global symmetry to a gauge
symmetry, which is called ’t Hooft anomaly [1]. Recent
studies on topological phases of matter have revealed that a
d-dimensional quantum field theory with a global symmetry
having a 't Hooft anomaly can be regarded as the boundary
theory of a nontrivial symmetry protected topological (SPT)
phases [2—7] in one higher dimension and the anomaly of the
boundary theory corresponds to certain topological property
of the bulk theory [8—12].

For a (14 1)d conformal field theory (CFT) with an
anomalous global symmetry G, the anomaly can be detected
by examining modular invariance of the partition function(s)
of the CFT orbifolded by G [13,14]. (In a G-orbifold CFT,
states except for G singlets are projected out and G-twisted
sectors are included when evaluating the partition function.)
If G has a ’t Hooft anomaly, it is impossible to construct
a modular invariant G-orbifold partition function from the
original CFT.
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Another probe of anomaly is edgeability [15-17]. A CFT
with a global symmetry G is edgeable means it can be cut
open into a boundary conformal field theory (BCFT) where
G is preserved both in the bulk and on the boundary. The
connection between edgeability and anomaly relies on the
observation that a (1 4+ 1)d CFT with an anomalous symmetry
lives on the boundary of a (2 + 1)d nontrivial SPT phase and
thus can not be formulated consistently on a one-dimensional
space with a boundary (as the boundary of a boundary van-
ishes) [17-23]. That is, a (1 4+ 1)d CFT with an anomalous
symmetry is not edgeable in a symmetry-preserving manner
to a BCFT.

In this paper, we further investigate the correspondence
between boundary conditions and anomalies of CFTs from
a different aspect. We consider adding spatially dependent
relevant perturbations to a CFT such that the perturbations
are present only outside a finite length segment of the
one-dimensional space R!. The boundary conditions at the
interfaces between the regions with and without perturbations
are determined by the forms of the added relevant opera-
tors and undergo renormalization group (RG) flow with fixed
points corresponding to conformal boundary conditions. It
turns out that the theory on the finite segment will become
a BCFT with these conformal boundary conditions [24].

We will focus on the uniqueness of ground states after
adding particular space-dependent perturbation. More pre-
cisely, in the limit length L — 0, the multiplicity of the
identity operator contained in the partition function equals
ground-state degeneracy. In order to have a unique ground
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state, the identity operator should appear in the partition func-
tion just once, which means the partition function goes to 1
in this limit. We will show this requirement is equivalent to
finding a symmetric boundary state or boundary condition. On
the contrary, if all the possible boundary amplitudes (partition
function) with an imposed symmetry exhibit a degeneracy,
it suggests that the CFT cannot be gapped with a unique
ground state, i.e., ingappability. The latter property implies an
anomaly of the CFT.

If we use the gapping-potential argument directly to deduce
whether a symmetry is anomaly-free, we need to first con-
struct a symmetric gapping potential and then check whether
the gapped ground state(s) does not break the symmetry spon-
taneously. This procedure can be systematically implemented
on free compact boson CFTs but is usually not easy for most
other CFTs, such as WZW models and minimal models. On
the other hand, the BCFT formulation and the construction
of certain boundary states of several CFTs, including the two
mentioned above, have been known to us, so we can check
the existence of symmetric boundary states systematically
and quickly using the BCFT approach. For example, for the
SU(2); WZW model with the T-duality symmetry, we will
show the boundary state approach can give the symmetric
gapping potentials, which are beyond the usual Haldane null
gapping potentials [25]. Moreover, the boundary states ap-
proach can also imply the anomaly with respect to the time
reversal symmetry of WZW models, which are usually more
difficult to be detected by other approaches.

An analogous application of BCFT was discussed in Ref.
[24]. There, the SPT phases in 1 + 1 dimensions were related
to the spectrum of the “mother CFT” with distinct boundary
conditions corresponding to the trivial and SPT phases im-
posed at the two ends. In the present paper, we rather discuss
the anomaly of the CFT, which is related to the Lieb-Schultz-
Mattis (LSM) type “ingappability” [3,26-37], by imposing
the “same” boundary conditions at the two ends. Thus our dis-
cussion is complementary to Ref. [24]. (For previous studies
on anomaly based arguments for the LSM type ingappability,
see Refs. [36-43].)

Furthermore, a similar idea was used to discuss the
anomaly of WZW models between the center symmetry and
the spacetime (large) diffeomorphism [44]. While this was
useful in revealing the boundary ingappability of SPT phases,
its application on LSM-type ingappability—ingappability
induced from some internal symmetry and lattice symmetry—
was still unclear. In contrast, in our paper, we provide a
classification of mixed anomalies of, e.g., a large class of
Lie groups and their centers, where the Lie groups can be
the internal symmetry and the center symmetry is expected
to realize the lattice symmetry. Thus, our results are more
directly relevant to LSM-type ingappability of lattice models.
Indeed, our results are consistent with known ingappabilities
found on lattices. Moreover, our argument covers a broad class
of 1D spin systems. One class of such systems that has been
rarely studied is the SO(n) spin chains, whose associated LSM
theorem was discussed in Refs. [45,46] and is consistent with
the results presented here.

The organization of the rest of the paper is as follows.
In Sec. II, a brief introduction to BCFT is provided. In
Sec. III, we will discuss the correspondence between bound-

ary conditions and anomalies of CFTs in 1 4 1 dimensions.
As an application and illustration of our framework, we study
some concrete examples. In Sec. IV, the compact boson
CFTs in 1 + 1 dimensions with PSU(N) and Zy symmetry
is considered. In Sec. V, we will apply our framework to
anomalies of WZW models with center symmetry, vector
rotation symmetry, and time-reversal symmetry. In Sec. VI,
we will show discrete global symmetries of minimal models
are all anomaly-free. In Sec. VII, we will discuss the anomaly
of free boson theory with respect to the T-duality symmetry.
Our main results are summarized in Table I.

II. A REVIEW ON BOUNDARY CONFORMAL
FIELD THEORY

In this section, we will give a basic review of the BCFT on
the upper half plane and annulus, which is an important basis
for our formulation.

A. BCFT on the upper half plane

On the complex plane, the analytic coordinate transforma-
tions form the conformal group. If we put the CFT on the
upper half plane (UHP), the conformal transformation should
also map UHP to itself [47-49],

(x,y) = (x,¥) + (&, €,) and €,(x,0) = 0. )

To see the effect of boundary conditions, we can calculate
the expectation value of changes of primary fields X trans-
formed by the above conformal transformation,

f ddsXe S = / ddX5Se St
__ / dxes(x, 0)(T™ (x, 0)X)

+ /dxdyeMBU(T“”(x,y)X). 2)

The second term generates the conformal transformation on
X producing (§X), which demands the first term to vanish,
i.e., T*(x,0) = 0. This condition can be interpreted as the
absence of energy flow across the boundary.

In the complex coordinate, this boundary condition can be
written as

T()=T(@®),

Thus from the definition of the generators of the conformal
group expanding the Laurent series of energy-momentum ten-
sors, we obtain

TxX)=Lax " 2=Tx)=Lx"?*=L, =L, (4

z € R. 3

If we see the y axis as the time direction, then the Hilbert space
is defined on the x axis. Thus, in contrast to the case of CFTs
on the full complex plane, only one copy of Virasoro algebra
acts on the Hilbert space &n;,V;,.

B. BCFT on the annulus

We can also define CFT on an annulus. The boundary can
be placed perpendicular to the spatial direction (open string)
or to the time direction (closed string but with time open).
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TABLE I. Summary of the conditions for the existence of symmetry invariant boundary states in various CFTs. Here we denote the

G-WZW models at the level k by the associated Lie groups G.

Model Symmetry Invariant boundary states
SU(N)r WZW model k e NN
Spin(2N + 1); WZW model keN
Usp(N )y WZW model diagonal rotation symmetry ke2NorN € 2N
Spin(4N + 2), WZW model & k € 4N
Spin(4N ), WZW model center symmetry k € 2N
Es WZW model k € 3N
E; WZW model k € 2N
SU(N)r WZW model k€ 2N or N € 4N
Spin(2N + 1), WZW model keN
Usp(N )y WZW model diagonal rotation symmetry ke2NorN € 2N
Spin(4N + 2), WZW model & ke N
Spin(4N ), WZW model time-reversal symmetry 7, k € 2N
E; WZW model k € 2N
SU(2); WZW model T-duality yes
(self-dual compact boson) T-duality extended by center symmetry no
Unitary (Virasoro) minimal models any finite symmetry, i.e., Z, or Sz yes

In the closed string picture, the boundary state is repre-
sented by a state in the Hilbert space of a CFT defined on
a circle and boundary A is on the time + = 0 and boundary
B is on r = L. For spatial dimension, we identify x + it ~
x + B +it. Then we let w = x + it and map the cylinder into
the plane, z = exp(—i2mww/B). The boundary is mapped to
the circle |z] = 1 and |z| = exp(27L/B). From the calculation
in the above section, we can see the conformal boundary
conditions should be (¢ = ¢),

2T()—c/24=22T(z)—¢/24, |zl =1, exp(2nL/B).

&)

More precisely, after quantization, the above equation sat-
isfies when it acts on the boundary state in the Heisenberg
picture. Using the mode expansion of the stress-energy tensor,
we can obtain

(L, — I:—n)|a)> =0. (6)

Thus the physical boundary condition that we put on the
boundary should be consistent with the conformal boundary
conditions. The physical boundary condition describes an
automorphism from the holomorphic sector to the antiholo-
morphic sector

[S(z) — pam(S@)]la)) =0, (N

where S belongs to some symmetry algebra and pap de-
notes an automorphism of the algebra of fields. For example,
the U(1) symmetry in the compact boson CFT has the
current id¢ and the boundary condition can be 9d,¢, =
£0:0z1z1=1,exp2nL/)-

A kind of quantum states |a)) satisfying the equation (7)
is called Ishibashi states [50]. They have the following
properties:

((ble™27 5Pt )) = 8, 0,(G = € ¥7F), ®)

where H, =Ly—c/12 and Hz=Lo—c/12 are the
Hamiltonians of the holomorphic and antiholomorphic

degrees of freedom. Here y, is the character of an irreducible
representation of the CFT.

Then the general boundary states can be expanded in terms
of Ishibashi states,

|A) = Adla)). ©

The partition function can be written as an amplitude of
boundary states,

Zap = (OA|e~ 7 F Mt g (10)

Now B is the circumference of space direction with periodic
boundary conditions (a circle) and L is propagating time. Here
® is a CPT operator since these two boundaries have opposite
orientations,

OcO ' =c¢*, O|B) = (By)*|a™)), arn

where |a™)) = C|a)) and C is the charge conjugation opera-
tor. In most CFTs, the CPT operator ® acts as the identity
operator.

Then, the partition function can be written as

L

Zap =) AdBaxa(=e 7). (12)

In the open string picture, BCFT is a CFT with bound-
ary conditions specified by A(x = 0) and B(x = L) at these
two conformal boundaries in spatial direction and ¢ + ix ~
t + B + ix identified in the time direction. Since these two
pictures can be related by the S-modular transformation—a
90-degree rotation of the space-time manifold, the symmetry
algebra will transform in the following way:

/ B =/
Inz=ilnZ,Sk) = i"S(z’)%, S = i‘hS(z’)%, (13)

where h and h are the conformal weights of S and S. Then the
boundary condition in the open chain is obtained from that of
closed string picture under the S-modular transformation,

5(2) = pa(3(@) — SE) = (=1)"pas(S@)), (14)
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where |7/| = 1, exp(2nL/B). In this picture, the boundary
condition constrains the Hilbert space of quantum states on the
interval, which is denoted by Hag. The partition function (at
inverse temperature ) is written as a trace of the Hamiltonian
H»" of the finite interval of length with boundary conditions
A and B,
Zap = try e P (15)
The partition function can be rewritten using the
Hamiltonian defined purely in the holomorphic sector since
only holomorphic (left-moving) degrees of freedom con-
tribute,

Zap = tryuq" . (16)

All terms in the partition function are powers of g = e~ "#/L
related to the length L and inverse temperature .

Since only holomorphic (left-moving) degrees of freedom
appear in the BCFT, the partition function can be decomposed
into characters of different irreducible representations ¢, of
the holomorphic Virasoro algebra [51],

Zap = ) _ nipXa(q). (17)

The non-negative integers n4, represent the multiplicity with
which the irreducible representations appear in the Hilbert
space Hagp-

These characters in the open string and closed string are
related by a modular transformation of the space-time torus,

Xa(@) =Y Sarxv(@). (18)
b

Now the Cardy condition requires that this expression in the
closed picture can be interpreted as that in the open picture.
That is, the non-negative integers and the expansion coeffi-
cients can be related via [51]

nis = Y _ ApBySa. (19)
b

III. BOUNDARY CONFORMAL FIELD THEORIES
AND QUANTUM ANOMALIES

In this section, we give a set of arguments, which support
the advocated relation between BCFTs and gappabilities of
CFTs.

We start with a brief overview of gappabilities of CFTs. A
given CFT in (1 4 1) dimensions can be gapped by a “massive
deformation” of a CFT,

S—S—2 / dtdxV (¢(x)), (20)

where V(¢(x)) is a relevant operator, and A € R is the cou-
pling constant.

To construct boundary conditions, one can also consider
a relevant operator, which depends on the space coordi-
nate. More precisely, one can consider the following relevant
operator:

Va(@(x)), x<0;
Vx)=10, 0<x<L; 2D
VB(¢(x)), L<x.

V =Va(o) V=0

V = gVa(o)g™!
X
L

! !

| |

| |

l l
=0 T =

FIG. 1. Space-dependent interaction with respect to transforma-
tion g.

If both V5 (¢) and V(¢) can gap the system with a unique
ground state, only the middle region is still gapless in the
sense that the bulk gapless modes have nonzero amplitude
only there. At low energy, the boundaries between the CFT
and any of the neighborhood gapped phases are expected to be
renormalized into conformally invariant boundary conditions
[24]. In other words, this implies that there is a relationship
between relevant operators and conformal-invariant boundary
conditions.

For our interest, the interactions are assumed to be related
by a symmetry G. That is, in the setup (21), we choose

Vi = gVa(d(x))g ", (22)

where g is an element of the symmetry group G, as shown in
Fig. 1.

The corresponding boundary conditions should also be re-
lated via the same transformation. Now if V (¢) is symmetric,
the interactions in the region x < 0 and x > L are the same. In
the limit L — 0 (¢ — 0), the theory is fully gapped and the
partition function of BCFT is just that of this gapped phase,
which is 1,

Zag(q) > 1, L —0. (23)
If we can find a boundary condition A satisfying Eq. (23) for
every g € G, we can argue that the symmetry G is anomaly-
free according to the gapping potential argument.

On the other hand, in the closed string picture, the length L
plays a role of time. Thus Eq. (23) implies the boundary state
|A) is invariant under each symmetry transformation g,

Zx(L — 0) = (OA[glA) = (AlglA) = 1, Vg € G. (24)

Here we use the fact that the CPT operator acts as the identity
operator for most CFTs. Therefore, the boundary condition A
and interaction Va (¢) should be also symmetric.

In fact, from an argument about the close relationship be-
tween boundary state and ground state after adding gapping
potential, the smeared boundary state e *7cFT|A) can serve as
the possible ground state after adding the relevant operator
Va(¢) [52]. Since Hamiltonian of the CFT commutes with
symmetry G, this possible ground state is symmetric if and
only if the boundary state is symmetric.

For example, the Ising CFT has a Z, symmetry, which flips
every spin and three boundary states | 1), | ), |free). Since
the boundary state |free) is symmetric, the corresponding
smeared boundary state is a symmetric ground state and the
corresponding perturbation is V =1 [ dx &(x), t > 0 where
€ is energy density [52].
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IV. MULTICOMPONENT U(1) FREE COMPACT
BOSON CFTs

In this section, we will use the boundary state approach to
calculate the anomaly of the free boson CFTs with respect to
some global symmetries.

A. Canonical quantization

Multicomponent free boson theories are a general class
of CFTs, which can be realized at the edge of (2 + 1) di-
mensional gapped many-body systems belonging to the SPT
phase [12],

1
S=g- / dxdt[K;;3,¢'9.¢" — Vija. 9’00’1, (25)
T

where K matrix is eaf’:la)‘ andI,J =1, ---, 2N. This theory
has N copies of nonchiral bosons, V is a 2N x 2N symmetric,
positive definite real matrix and contains the information like
the velocities of the edge modes. Here we choose the V matrix
to be an identity matrix in this paper since it does not influence
the topological properties of this theory. If this CFT is realized
on the cylinder of circumference L, the compact U(1) boson
fields ¢’ should satisfy the compact condition with radius
R=V2,

Sx+Lt)=¢' (x,t)+27n'V2, nleZ. (26)

We can also write the action above in the usual way,
1 I=N
S=— [ dxdt) 3,0* 'o"¢* " 27
= / ; R 27)

We define variable ¢ as the dual variable 6/,

It is more convenient to carry out the quantization in
the chiral basis ¢;, which we define by diagonalizing the
K matrix as

Py =¢, PKP!T =2y, (28)

where P is 2N x 2N orthogonal matrix and 7 is a diagonal
matrix with n; = (—1)"1.
The action can be rewritten in the chiral basis as follows:

1
S = o / dx*[ ¢, xe] — dppxpp

— 0,90, 0xp;, — 0x ks ]- (29)

In this picture, chiral bosons satisfy the compactified
condition

n ez,
m e Z. (30)

ol(x+L.t) = ¢l (x.1)+ 27n'R,
Oh(x + L, 1) = gh(x, 1)+ 27m'R,

After canonical quantization, the boson fields satisfy the com-
mutation relations

[0 (), B[ ()] = 27i8" 8(x — x'),
[0r(), g (X)) = —27is" §(x — x'). 31
The equation of motion is

dol — o0l =0, B¢k + 3,0k =0. (32)

As a result, the mode expansion is

2mri

2
o' (. Dr = @0 + A +x)ap+ Y ale” t . (33)
r#0

The canonical commutation relations and the compactified
conditions for the operators are

! J 1
[ar,L/R’ as,L/R] =rd" 8150
1 1 I
Yo.L/r ™ Po.L/R + 27n'R,
! J -olJ
[%,L/Rv aO,L/R] = +id”. (34

And the eigenvalue @) is quantized to be m!, where

V2m! € Z.

B. Anomaly-free condition and Haldane gapping potential

In the compact boson CFTs, the conformal boundary con-
ditions for Ishibashi states are

(L, = L-)IK)) = 0. (35)

Here L and L are Virasoro generators in each chiral sector. A
special solution for this equation is given by [53]

(al, — Dyad’,z)lv)) =0. (36)
The Ishibashi states for this condition are
=1
= —-d' ,Dya’ , 37
v)) = exp (; —al, 1 Dya, g |Iv) 37)

where |v) are eigenstates of ag, , . And its eigenvalues v’ satisfy

V2v! € 7. This eigenstate can be written as a coherent state,
namely,

o) = ef X1 V' + P sl (38)

The matrix D can be any N x N orthogonal matrix with eigen-
value d’ = 1 or —1. The eigenvector is denoted as e;.

The Cardy states can be constructed as the superposition of
Ishibashi states,

B, (o)) = @B, '), [B,a') =Y ")), (39)

Such Cardy states can be rewritten as follows:

N
) — 2o p %al—r,,LD”aj—n,R
,Qj e

x Y cos[v! (g, + (Dgor) +a')]I0).  (40)

Here the most relevant operators Z]jyzl cos[(¢l , +

(Do g)" + a')/+/2] in the cosine term are gapping potential,
which can condense the value of boson fields. If this
interaction satisfies the Haldane condition [19,25,54,55] for
Tomonaga-Luttinger liquids,

e,TKeJ =0, (41)

then it can gap the compact boson CFT when the coupling
constant is large.
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In the open string picture, the Cardy state corresponds to
the following boundary condition:

@1 = (Dgg)' + o' 42)

So the computation above just implies the information on
gapping potential from Cardy states or boundary conditions.

Now for our interest, the boundary states on ¢ = 0 and
t =L are assumed to be |{a]}, D1), |{a}}, D2). These two
boundary states are related by a symmetry transformation
g€q,

[{al}. D2) = g|{e}}. D1). (43)

Firstly we assume these two boundary stats have the same
D matrix. Then the amplitude is given by

Z(q) = (@)™ Y q" exp ( - 8}%(0& - al)z), (44)

where u is in the Bravais lattice and 7n(q) is the Dedekind
function. Only the oy = «, the partition survives in the limit
L — 0.

For the boundary states with the different D matrices, we
can assume the number of eigenvalues —1 of DD, is k (k >
0) in the Ishibashi condition. The partition function is

Z(q) o< (@) N O @)* Y g (45)

It is easy to check that the partition function goes to zero in
the limit ¢ — O if the two boundary states have different D
matrices.

Therefore, we conclude only o, = «; and D, = Dy, which
is equivalent to the boundary state |A) is symmetric, the par-
tition function goes to 1 in the limit L — 0. This property of
the partition function is just the special case of the anomaly
free condition of our argument in the previous section.

C. Anomaly of U(1) x Z, symmetry

A simple example is the compact boson CFT with U(1) and
Z, symmetry. The element in U(1) and Z, symmetry acts on
the ¢ with radius R = V2,

h'¢h = ¢ + 7R,

h~'0h =0 + 7R,
U~'oU =6 + 56,
U 'oU = ¢. (46)

On the lattice, this boson theory can be realized as
the antiferromagnetic Heisenberg spin-1/2 chain. The U(1)
symmetry is spin rotation on the z axis and Z, is the IR emer-
gent Z, partner of translation symmetry [56,57]. The LSM
theorem claims that there is no gapped ground state keeping
spin rotation on z axis and translation symmetry if the spin in
the unit cell is half-integer. As claimed above, if one can find a
symmetric gapping potential with a unique ground state, there
will exist symmetry invariant boundary states. Therefore, we
expect there will be symmetric boundary states only if we
consider even copies of compact boson CFTs.

For one copy of boson theory, the boundary state is just the
Dirichlet boundary state or Neumann boundary state,

B.golp =Y " ®v)p,

ve%Z

B, 6oy = Y "™ v)). (47)

vngZ
Here
[0))p = e %a”"’La”'Rlao,L =apr =),
V) = eXr0 TRy = —ag g =) (48)

are Ishibashi states satisfying the conformal boundary
condition.

Each boundary state can not be symmetric since the U(1)
X Z, symmetry changes both ¢y and 6.

However, for two copies of the above theory, U(1) x Z,
symmetry is expected to be anomaly-free. The variables of
two copies theory are noted by (¢1, 61), (¢1, 62).

We can construct a symmetric boundary state satisfying the
constraint

(61 — 02)IB) = a1|B),  (¢1 + ¢2)IB) = a2|B).  (49)

For simplicity, we redefine the boson fields [18],
1 1
E(Gl —6), Pr= E((bl + ¢2). (50)

The mode expansion is given by

D, =

2 2mi
D =0+ —+x)cio+ Zci,re_T(H—X)s
L r#0

2 2i
Pir = Pior+ - —X)Cio + D e TV (51)
r#0

The symmetric boundary state for the redefined boson vari-
ables is

1 . 1 .
B)=|— Y "oy | @ | — D " v))n

J%V n1€Z % UzEZ
(52)
And the symmetric gapping potential is
1
H = U|:cos (E(Gl — 6, + al))
1
+ cos (E(¢1 + 2 +az))]- (53)

For such gapping potential, it satisfies the Haldane condition
(41) under which H’ is guaranteed to gap the bosons if U is
large.

D. Anomaly of SU(2) x Z, symmetry
When the free boson CFT is on the self-dual point, i.e., the
radius is +/2, the U(1) x Z, symmetry can be extended into
the SU(2) x Z, symmetry and it is equivalent to SU(2); WZW
model. Here the Z, is still the symmetry mentioned before
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and SU(2) symmetry is vector rotation subgroup of SU(2); x
SU(2)g with generators density

SZ = x¢’

St =exp (i%@(qs + 9)) + exp (i%(—qﬁ + 9)),

8§~ =exp ( — i%(qﬁ + 9)) + exp ( - i%(—qﬁ + 9)).

(54)
On the lattice, SU(2) symmetry is the projective representa-
tion of SO(3) rotation and Z, symmetry is still translation
symmetry.

From the previous analysis, there does not exist boundary
states invariant under SU(2) x Z, symmetry in the compact
boson CFT.

Similarly, for two copies of the compact boson CFT, there
is no anomaly for SU(2)x Z, symmetry. Thus we expect there
will be a symmetric boundary state. Now the generators of
SU(2) vector rotation are

A

5% = 0x(¢1 + ¢),

S*—Zexp( <¢,+9>)
Zexp( — (= ¢l+9))
2 1
§ = ;eXP ( —is @it 9,»))
+ Zexp (i\%wi — ei)). (55)

The symmetric Cardy states satisfy the constraint
S By =0, St|B)=0,
$7|B) =0, h|B)=|B). (56)

A special solution of these equations is

1 v «/En
By =~ D vy Z e ua))p
U1€§Z me
(57)
Here |v;))y and |vy))p are the same Ishibashi state mentioned

before. The corresponding gapping potential is

H = U<cos (%5(91 — 92))

+ cos (?(qx + 2+ fzn)). (58)

Moreover, it has been shown that the ground state is a trivial
state when U is positive whereas it is the Haldane state when
U is negative [30,58,59].

On the lattice, the two copies of the compact boson CFT on
self-dual point can be realized as the antiferromagnetic SU(2)

St g S
Jx
JJ_ JJ_
Jx
S? J o SP,

FIG. 2. SU(2) and translation invariant gapping potential.

spin-1/2 ladder in 1 4+ 1 dimension,

H=7Y 88,+8-5, J>o0 (59)
Here § is the spin-1/2 operator. In the continuum limit, the
spin operators can be related with effective low-energy field
operators as follows [56,60—-64]:

500 ~ () + (=¥ i,
wa

ii(x) = (cos <\/7§¢9), sin <\/7§9), sin <\/7§¢>> (60)

where J and 7i are smooth and staggered parts and x = ia and
a is lattice spacing.
The gapping potential (58) can be realized as the following
interaction on the lattice:
U2

H =UMDY S -5 -
1

which is shown in Fig. 2. Here 1| and X, are nonuniversal
constants [65]. On the lattice, the SU(2) x Z, symmetry is
spin rotation and IR emergent Z, partner of translation sym-
metry. This interaction is invariant under the spin rotation and
translation transformation. To see this lattice model having a
unique gapped ground state, we can do the Jordan Wigner
transformation and this potential will give a unique ground
state and fermionic mass m o 3U [66]. This result agrees with
the LSM theorem, which claims there will be a gapped ground
state keeping SO(3) and translation symmetry if the spin in
each unit cell is integer.

Indeed, the standard Abelian bosonization approach [67] to
Haldane gap problem is based on the description of the spin-S
antiferromagnetic chain as 25 coupled spin-1/2 chains, which
is mapped to 2S-component boson field theory (Tomonaga-
Luttinger liquid) with possible interactions. Often we can
focus on one particular linear combination corresponding to
the “center-of-mass” field, in the low-energy limit. However,
when 2S is even, the translation symmetry acts trivially on
this center-of-mass field and thus we do not expect anomalies.
Thus we generically expect the “Haldane gap”. In Ref. [24],
the degeneracy in the BCFT spectrum similar to what we
discuss in this paper was used as a probe of the Haldane SPT
phase. In their construction, the boundary conditions imposed
on the two sides correspond to different phases (trivial and
SPT), and are not related by a symmetry transformation of the
system. Despite these differences, it would be interesting to
find deeper connections between their analysis and ours.

5L 82,). 61
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E. Anomaly of SUN) x Zy symmetry

The discussion on the SU(2); WZW model can be gener-
alized to SU(N); WZW model with SU(N) x Zy symmetry.
For SUN)WZW model, the generators of vector SU(N)
transformation is

H' = id:¢',

E® = /*% 4 omiaor (62)
where « are root vectors with N — 1 components, H are
generators of the Cartan subgroups and E are other vertex
generators. Since the SU(N) symmetry has N — 1 H gener-
ators, the SU(N); WZW model can be described by N — 1
free massless bosons. We should note here that the radius
of bosons is not +/2 but depends on the root of SU(N) Lie

algebra.
The Zy symmetry only acts on the last massless boson,

1 _ N -1 1 _
goy gt =) 4 4m v gop g =y

(63)

The condition for symmetric boundary states is
H'|B)y=0, E%B)=0, gB)=IB). (64)

For one copy of the SUN); WZW model, in analogy to
the previous analysis for the SU(2) case, there does not exist
a symmetric boundary state.

However, as the index of LSM anomaly shows, one can
find a trivial gapped ground state for N copies of SU(N),
WZW model [43]. More precisely, there exists SU(N) and
translational invariant gapped interaction with the unique
ground state. Therefore, we expect to construct a symmetric
boundary state for N copies of SU(N); WZW model.

Firstly, it is natural to ask how many there are indepen-
dent constraints for boundary states. To solve this question,
we first notice when « is a root, then —« is also a root.
Therefore, we can only consider positive roots where its first
nonzero component is positive. Another helpful information is
the communication relations between vertex generators with
positive roots,

EaJrﬂ
[E* EF] . atBeA,,
X1 — X2
[E EP1=0, a+p¢A,, (65)

where A is the set of positive roots. As a result, we can focus
on independent positive roots that cannot be written as the
sum or minus of two different positive roots. Actually, there
are N — 1 independent positive roots for SU(N) group,

V2
2
V2 (1 V3
my = — s T A 107
2\2 2

ml:_(190507"' 70)7
0,

V2 (1 1 1
my —= —\| -, ——= _—
T2 2203 2k(k — 1)

J2[1 1

mN—1=7 E,m,“

N
- /m . (66)

So for N copies of SU(N); WZW model, the independent
constraints for symmetric boundary states can be written in
the form of vertex operators with m vector,

N N )
> ENIBy=0, Y HI|B)=0,
j=1 j

h|B) = |B). (67)

Here j is the index for the jth copy.
We find a special solution for these equations,

‘P},L + ‘/’jl'ﬂ,R = Vr,

2 5 21
$iLtPirir= %v

O+ ¢lap =27 ;
Js Jj+1, (k+ l)k

oM e =2m ' (68)
I s+ (N—-1N

V. ANOMALY OF WZW MODEL

In this section, we will discuss the WZW models with
center symmetry, vector rotation symmetry and time-reversal
symmetry. We will show our argument is still valid for these
models.

A. Introduction to WZW model and global symmetry
The WZW model with the level  is defined with the action

_k dxdt Tr(d,g '9"g)
167 M, .

+— | &x1ri(z 'd2), (69)
247'[ B;

where g is a smooth map from the spacetime M, to the
group manifold G and the second term is defined on a three-
dimensional manifold B; whose boundary is the original
spacetime M,. g is denoted to be an extension of g field to
B3 and k is a non-negative integer.

There are three kinds of global symmetry:

(1) Center symmetry I' is the center of the group G, which
acts as multiplying a U(1) phase,

¢— hg, hel. (70)
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(2) Vector rotation symmetry acts as the adjoint representation
of G,

g—> VgVl VedG. (71)

(3) Charge conjugation symmetry C maps the group element
to its complex conjugation (without transpose),

C:g— g (72)

B. Action of global symmetry on Cardy state

For the WZW model, there is a set of special solutions for
the Cardy condition [47],

nig=>_ % Z i), (73)
- 0i
where S,; is elements of S matrix of the WZW model and |i))
is Ishibashi state.

The action of center symmetry on the Cardy states is the
same as the action of outer automorphism A on the Dynkin
label. More precisely, the action of center symmetry on the
Ishibashi state is given by

hli)) = e " Ae0Dlj)), (74)

Then we can obtain its action on Cardy states [44],

h|By) = Z %e—”“%”w» = Z (i‘/‘%f" li)) = |Baa).
(75)
Here we use the relationship
(AS)gi = Sqre™ 27 (76)

The charge conjugation C will act on the Cardy states as
follows:

C|By) Z«/ﬁ

= CyplBg), a7

where C matrix is the charge conjugation transformation of
the Dynkin label.

C. Mixed anomaly of WZW model

1. Invariant boundary states of center symmetry and vector
rotation symmetry

Let us first consider SU(N ), WZW model with the center
symmetry Zy and vector PSU(N) symmetry.

The generators of PSU(N) symmetry can be written in the
chiral form

St =J§ +J§. (78)

Here J§ and J§ are zero modes of holomorphic and antiholo-
morphic affine Lie group.

As we discussed in the previous section, if the WZW model

is anomaly free with respect to PSU(N) x Zy symmetry, we
expect to construct the symmetric boundary state,

VIB) = |B), h|B) = |B). (79)

To construct such a boundary state, we should know how
the PSU(N) symmetry acts on the Ishibashi state. In analogy

to the boundary state of compact boson CFTs, we denote
an orthogonal basis in the holomorphic and antiholomorphic

sectors,
A L (SA\™ s
¢i »m) = <_) ¢i ’ 0 P
_-a my
¢} m) é;.0 (80)
it = T1 (%) 16001
Here |¢}, 0) is vacua in different positive representations A of

the Virasoro algebra. Now we can construct the Ishibashi state
D= |¢; m)@U|p}, m), (81)

where U operator is an anti-unitary operator acting on the
chiral generators as follows:

—(2)" = —(J9). (82)
The basis (80) forms an irreducible representation of vector
PSU(N) symmetry,
21105

ZT“|¢1,m (83)

UlJeu =

J| ¢t m) =
J|gt m) =

Here TI?“ are generators of SU(N) in the A representation.

From the above equation, we can show all the Ishibashi
states are invariant under vector PSU(N) transformation. The
detail is shown in Appendix D. As a result, the Cardy state
is also invariant under vector PSU(N) transformation, which
means we only need to find Cardy states satisfying the follow-
ing conditions:

h|B) = |B). (84)

If we denote the Cardy state using the affine Dynkin la-

bels [AoAr1, - -+, Ay—1], the action of the center symmetry is
given by
A oA, oo Av—1]l = [Av-1520, -+ s Av—2]. (85)
The solution for invariant condition is
A=A =---=hy_1, (86)
k=xo+ A1+ -+ Ayv_1 = NAo. 87

Therefore, only when k is a multiple of N, there exists a
symmetric Cardy state. Since the index of mixed anomaly
with respect to PSU(N) x Zy symmetry is k mod N, there
exists a translation and PSU(N) symmetric gapped ground
state only when the level k is a multiple of N [43]. So the
result of the BCFT approach agrees with this classification of
mixed anomaly and the symmetric Cardy state corresponds to
the translation and SU(N) invariant ground state.

Moreover, for the SU(2),,x WZW model, we can show the
symmetric boundary state corresponds to the massive phase
after adding symmetric gapping potential Atr(g?) (A > 0). The
ground state is in the trivial phase when k is even, while it is
in the Haldane phase when k is odd [68]. This can also be
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TABLE II. The action of the center symmetry on Cardy state in the WZW model and condition for the existing of symmetric Cardy state.

Cartan matrix Group Action of Invariant boundary states
AN_1 SU(N) [)"N—l;)"()a ...,)\.N_z] ke NN

By Spin(2N + 1) [A15 205 ooy AN—1, AN] keN

CN USp(N) [)\‘N;)\‘Nfl,.u,)\‘],)\,o] ke2NorN € 2N
Doy Spin(4N + 2) [Aons Aongts -+ 5 A, Aol k € 4N

DZN Spm(4N) [)\.1;}»0,)\2,'” ,}»QN,)»ZNfl] k € 2N

Dy Spin(4N) [Aons Aon—1, Aav—2, = -+ 5 Aol

E(, E6 [)\|;)\,5,)\.4,)\3,)\.6,K0,)\,2] k € 3N

E7 E7 [)\.6;}»5,)\.4,}»3,)\2,)\.1,}»0,)\7] k € 2N

seen from the partition function of an open string. The detail
is shown in Appendix F.

We can also apply this argument to the WZW model with
other simple Lie algebras. The results are listed in Table II.
The detail is shown in Appendix D. The anomaly-free con-
ditions on the level k for most Lie algebras there implies the
classification of LSM-type anomaly, e.g., k € NN for SU(N)
consistent with the corresponding Zy classification of LSM
anomaly index [43] and the projective representation argu-
ment [33] on lattices.

Moreover, our results for the Spin(rn) WZW models includ-
ing B and D series are also consistent with a generalized LSM
theorem for SO(n) spin chains proposed in Refs. [45,46],
which claims that an SO(#n) spin chain in the n-dimensional
vector representation with even n has either gapless ex-
citations or degenerate gapped ground states with broken
translational symmetry. In particular, the model studied in
Ref. [45] is the SO(n) bilinear-biquadratic spin chain whose
low-energy physics can be described by the Spin(n); WZW
model. According to our results in Table II (or Table I),
such a low-energy theory indeed has an LSM-type anomaly if
nis even.

2. Invariant boundary states of time reversal
and vector rotation symmetry

Besides, we can also consider WZW models with vector
rotation and time-reversal symmetries. There are two types of
time-reversal symmetry. One acts as 7;: g(x,t) — g ' (x, —1)
and the other is given by the combination of 77 and any
order 2 element h, (if exists) of the center symmetry group,
T> = Tihy: g(x,t) — —g~'(x, —t); either one squares to the
identity, i.e., 7> = 7, = 1. As we will see in the following
discussion, however, it is only 7>, which has a mixed anomaly
with the vector rotation symmetry.

To construct the symmetric Cardy states, we work in
Euclidean signature by performing the Wick rotationt = —irt.
We should also consider the boundary condition in the closed
channel where the space-time cylinder has been rotated by
7 /2, namely, (x', ") = (r, —x). Due to the Lorentz symmetry
of CFTs, the original time-reversal symmetry 7,, which is an
anti-unitary operator in the Lorentz signature, becomes the
unitary CP, symmetry in the Euclidean signature,

CPy: g, t') — (g7 ' (—=x, 7)), (88)

CPy:g(x, 7)) = —(g") H(—x', ). (89)

Here we can see CP; is the combination of charge conjugation
C and spatial reflection P.

In the first case, the Cardy state should satisfy the con-
straint as follows:

CP11B) = |B),

Since the spatial reflection maps x’ to —x’, it exchanges
the state of holomorphic and antiholomorphic sections. Thus
the Ishibashi states (81) and Cardy states are invariant under
the spatial reflection symmetry.

Thus we only need to find the invariant Cardy state under
the charge conjugation. In other words, the Dynkin index of
such Cardy states should be invariant under the following
transformation:

V|B) = |B). (90)

C:[rosAr, oo An—1]l = [AosAn—1, -+, A2, Al (91)
The roots of boundary state should satisfy
Ai = Ay—i, 1>0. (92)
When N is even, k is given by
k=ho+200 4 +2rx )+ 2. 93)

On the other hand, when N is odd, & is given by
k:k0+2()\1+-~-+)uv7-1). 94)

In each condition, k& can take an arbitrary natural number.
Therefore, there is no mixed anomaly between the 7; and
PSU(N) symmetry.

In the second case, since the 7, symmetry needs an order
2 element of center symmetry, it only exists when N is even.
The condition for an invariant boundary state is

CP,|B) =CPim|B) = |B), V|B)=|B). (95)

Since all Cardy states are invariant under the spatial reflection
symmetry, we only need to find the invariant Cardy state under
the combination of charge conjugation and the order 2 element
of the center symmetry group.

The Dynkin roots of such boundary state should satisfy

[Aos A1y ooy An—1] = [Any2s ANja—1s - - ANja42, Anjatal.
(96)

Thus the relations A; = Ayjp—; if 0 <<i<<N/2 and A; =
Asnya—i if N/2 < i < (N — 1) hold for symmetric boundary
states. When N € 4Z + 2, the level k is given by

=200+ +Ava +hse -+ Ana) (9
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TABLE III. The action of CP, symmetry on Cardy state in the WZW model and condition for the existing of symmetric Cardy state.

Cartan matrix Group action of CP, Invariant boundary states
An_1 SU(N) [)"N/Z;)"N/Zfla ceny )\'N/2+]] ke 2N or N € 4N
By Spm(2N—|— 1) [A15 A0, s Av—1, AN] ke N

Cwn USp(N) [Ans An—1, ooy A1, Ao] ke 2N or N € 2N
Dy Spin(4N + 2) [A15 20, A2y ooy Aoy Aoy ] keN

Doy Spin(4N) [A15 20, A2y ooy Aoy, Aay—1] k € 2N

Dsy Spin(4N) [Aons Aanv—1, Aaw—2, ..oy A1, o]

E; E; [A6; As, Agy A3, Aoy Ag, Ag, Ag] k € 2N

And when N € 4N, k is given by

k=2()»0+"'+)»¥ -l-)x%-l—-'-—i-)»#)-i-)»%—i-)\%.
(98)

So a symmetric boundary state exists only when k is even
or when N is a multiple of 4. As a result, there should be no
mixed anomaly between PSU(N) and 7, symmetry under the
same condition.

D. Application to a spin chain with the triple
product interactions

On the other hand, when N € 4N + 2, PSU(N) and 7>
have a mixed anomaly. This anomaly implies an LSM-type
ingappability under the PSU(N) x 7, symmetry. Let us illus-
trate the point with the simplest case with N = 2. A lattice
model, which reflects the ingappability of the SU(2); WZW
theory is given by the spin-1/2 chain with SO(3)-invariant
three-spin (triple-product) interactions [69]

H=Y (=1)S;- (811 x Sj12). (99)

J

Although this model is invariant under the PSU(2) symmetry,
it is invariant only under two-site translation and not one-site
translation. Thus, the standard LSM theorem does not give
any constraint on this model. Nevertheless, in Ref. [69] the
system was found to be gapless and described by the SU(2),
WZW theory. To our knowledge, the mechanism behind this
phenomenon has not been clarified. Here we point out that the
gapless nature of the model is not accidental but rather reflects
the ingappability of the SU(2); WZW theory due to the mixed
anomaly of PSU(2) and 7, symmetries.

On the lattice, 7, corresponds to the combination of the
time reversal 7; :S; — —S; and the one-site translation.
Thus, the mixed anomaly implies an LSM-type ingappability
of one-dimensional PSU(2)-symmetric spin systems, which
are invariant under the combined operation. This is a field-
theory derivation of a simple one-dimensional case of the
LSM-type ingappability due to magnetic space group symme-
tries [70,71].

Indeed, we can observe that the model (99) has this sym-
metry, since the Hamiltonian is odd under both the time
reversal 7 and the one-site translation. Therefore, the model
(99) can be gapped only if the ground states are at least doubly
degenerate. This was a background why it was gapless without
any fine-tuning of parameters [69].

In fact, this ingappability does not require the full PSU(2)
symmetry and can be protected by the smaller symmetry

Jj=L
To: T, =TKUr =TK [ [io], (100)
j=1
L
U(l),: Uy =exp | i Y S|, (101)
j=1
L
Zy: R} = l_[ia_;v. (102)
j=1

We present a simple proof in Appendix G, which is analogous
to the original proof of the LSM theorem.

Moreover, we can obtain a similar argument of the WZW
models with other simple Lie groups. On the one hand, the
result for 7, and vector rotation symmetry is listed in the
Table III. The detail of calculation is shown in Appendix E.
On the other hand, there is always no mixed anomaly between
71 and vector rotation symmetry.

As mentioned in the Introduction, anomaly-free conditions
of the WZW model were discussed earlier in Ref. [44] using a
similar formulation. However, they discuss the anomaly-free
condition for the center symmetry with the charge conjuga-
tion. In contrast, we have studied the mixed anomaly of the
Lie Group and center symmetries, which is more relevant to
the LSM-type ingappability of lattice models.

VI. DISCRETE SYMMETRIES OF MINIMAL MODELS

In this section, we will discuss the global discrete symme-
tries of minimal models.

The classification of ¢ < 1 minimal models is given in
terms of a pair of Dynkin diagrams (A;, G) where G is
A — D — E type. The boundary states of (4;, G) models are
labeled by pair (r, a) of nodes of (4;, G) graph with the iden-
tification [72]

(rna)=(h+1-ry(@)). (103)

Here y is an automorphism of the G graph. Thus independent
boundary states are half of nodes of the (A;,, G) graph.

These minimal models have a unique and maximal Z,
symmetry except six cases [73]. The (A4, D4) (the critical
three-state Potts model) and (Ag, D4) (the tricritical three-state
Potts model) have a Z;, and Z3 symmetry, which combine to
an S3 symmetry. The remaining four models related to the E;
and Eg have no symmetry.
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A. Invariant boundary states of Z, symmetry

Let us begin with the invariant boundary state of minimal
models with unique Z, symmetry. Since this Z, symmetry
is anomaly free [74], we expect there are always invariant
boundary states.

For (A,,—1, A,») models, the Cardy state (a, b) is labeled by
points of its Dynkin graph. When m is odd, the Z, symmetry
maps the (a, b) to (a, m + 1 — b). Thus the invariant boundary
state is (a, "’T“). On the other hand, when m is even, the Z,
symmetry maps the (a, b) to (m — a, b). And the invariant
boundary state is (%, b).

For (A4;, Dy;47) models, the Z, symmetry exchanges two
Cardy states if they correspond the same point of A graph and
two endpoints of D graph. Thus the other Cardy state is invari-
ant under Z, symmetry. Since the action of Z, symmetry of
the (A4142, D212), (Aaiy2, Dary3), and (Aszy4, Dyy43) models,
is same as above, the calculation for the invariant boundary
state is also similar.

For (A9, E¢) and (A1, E¢) models, the Z, symmetry is the
reflection symmetry of Eg graph. Thus the invariant boundary
states correspond to nodes of reflection axis in the Eg graph.

B. Invariant boundary states of S; symmetry

Now we consider the S3 symmetry of (A4, Dy4) (the critical
three-state Potts model) and (A¢, D) (the tricritical three-state
Potts model).

In these two models, the S3 symmetry is the permutation
of three outside nodes of the D, graph. Thus the invariant
boundary states correspond to the only one inside node of the
Dy graph, which implies the S3 symmetry should be anomaly
free.

For example, there are eight boundary states for (A4, D4)
model. The first three states |A), |B), |C) describe fixed bound-
ary conditions where the spin on the boundary takes one of
three possible values. The mixed boundary states |AB), |BC),
|AC) describe boundary conditions where the spin on the
boundary can take on two values independently. These six
boundary states correspond to six outside nodes of (A4, Dy)
graph. The remaining two boundary states |ABC), |N) corre-
spond to free boundary conditions and are invariant under the
S3 symmetry.

Actually, the Z3 subgroup is Z3 rotation of three-state Potts
model on the lattice, thus it is anomaly-free as gauging it
results in the same theory of the original one [75]. This is
nothing but the Kramers-Wannier duality of the three-state
Potts model.

VII. T-DUALITY SYMMETRY OF SU(2); WZW model

In the previous sections, we consider two kinds of sym-
metries that act on the zero modes of the primary fields of
CFTs. The construction of symmetric Cardy states implies
that the potential can gap a CFT without spontaneous symme-
try breaking. The potentials appearing in the compact boson
CFTs are all Haldane gapping potentials. A natural question
to be asked is whether symmetric Cardy states can imply the
result beyond the usual gapping potentials.

In this section, we will discuss a related example: the
SU(2); WZW model with T-duality symmetry.

A. T-duality symmetry of SU(2); WZW model

For a free boson CFT with a compacting radius, there is
a T-duality relating theories of radius 2/R and R. Therefore,
only on the self-dual radius R = /2, which is exactly SU(2),
WZW model, this duality becomes a symmetry, which ex-
changes of two fields
TeT' =6, TOT ' =¢. (104)
This T-duality symmetry not only acts on the zero modes of
fields, but also changes every mode in the expansion. In the
chiral representation, it acts as follows:

ToorT ™" = —por, TarT ™' = —a,z. (105)

B. Anomaly of T-duality symmetry and center symmetry

For our interest, we first consider Cardy states invariant
under both T-duality symmetry and center symmetry 4. The
SU12); WZW model has SU(2); x SU(2)x transformation
and the generators can be written in terms of boson field,

J(z) = 0.(¢p +0),

JT(z) = exp i?(¢+9)],
J7(2) = exp —i%z(qwre) ,

J(2) = d:(=¢ +6),

JF(Z) = exp i%z(ﬂb +0)|,
J (z) = exp —i%(—qﬁ + 9)i|. (106)

In this representation, the center symmetry is the minus iden-
tity operator 7 = —1I and the T-duality symmetry acts as 7
rotation along the x axis on the antiholomorphic boson,

TJET! = J%,
TJET ' = J7.

TIFT™ =,

TJT ' = —J7, (107)

Since the 47 rotation is the identity in the SU(2) rotation,
the T-duality symmetry is a Z4 symmetry in the spin represen-
tation. This extension from Z, to Z4 is because of the center
symmetry acting like minus identity [76]. In the next section,
we will move to the case with only T-duality symmetry where
it is a Z, symmetry.

Because 7% = h after extension, we only need Cardy states
invariant under the extended T-duality symmetry,

T|B) = |B). (108)

To construct such Cardy states, we need to do vector /2
rotation along the y axis,

1y 1y
JV = J7,

J = J”.

JH = J",

J = Jr,

JE s —J~,

J = —J~,

(109)
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In the new coordinate, the T-duality symmetry acts as  rota-
tion along the z axis on the antiholomorphic sector,

TJ/ZT—I — ]/z’ TJ/:tT—l :J/i’

77T = J°, TJFT = )7, (110)

We can also represent these generators in terms of new boson
fields ¢’ and 6'. Therefore the T-duality acts on the new boson
fields as follows:

3 ﬁ

T’T71=, ,
PT =9+ =

ToT = ¢ + 72 (111)
_ =

For one boson theory, there is no symmetric boundary state.
However, for four copies of SU(2); WZW model, we can
redefine the boson fields,

1
¢ = —= (@) + ) + & + B)),

J4

1
9// — _(9/ _ 9/)’
2= g TR

1
9// — _(9/ _ 9/)’
3T R
0 = L(9’ ) (112)
4T R T

The symmetric Cardy state takes the form
1
— ot _ .

IB) = ®}, %;m» : (113)

where the v; is Ishibashi state for the boson ¢;. The first
boson takes the Dirichlet boundary state and the others take
Neumann boundary states.

The corresponding gapping potential can be given from the
Cardy state

2
H = U|:cos (é(qﬁi + 5+ @ +¢2)>

+ cos (?(01’ - 95)) + cos (‘/75(% — eg))

+ cos (?(0_% - 94)>j|.

After vector — /2 rotation along the y axis, we get the invari-
ant gapping potential under original symmetry,

H =U Zcos (?q&,) cos <%§¢j+1>
4
+U Zcos (?@) cos (?6]4_1)

Jj=1

4
+ UReJlI |:cos (?cﬁj) + icos (?91)} (115)

Where Re means taking the real part of the third term.

(114)

This potential can also be realized as a SU(2) spin ladder
model,
4
H' =UG2P Y Y S5uSium + S an
j=1 &
4
+UGD* DY Re[ [ (Sjk - Sjru +iS3y). (116)
k j=1

where A; and A, are nonuniversal constants.

This potential satisfies the translation symmetry, which is
reduced to the center symmetry in the low energy. However,
it remains unclear how to realize the T-duality symmetry in
the lattice model, so we conclude that the mixed anomaly
between the T-duality and center symmetry is at least stable
in a perturbative manner around this critical point in the field
theory. For the perturbation on the lattice, it is left for future
research.

C. Pure anomaly of T-duality symmetry

Now we can consider the case of SU(2); WZW model
with only T-duality symmetry. Since the corresponding SPT
phase is trivial [77], we expect the boson CFT can be trivially
gapped with persevering T-duality symmetry and has invariant
Cardy states.

When there is no Z, center symmetry, we do not need to
see it as a subgroup of SU(2)g. To construct the symmetric
boundary state, we also apply the vector SU(2) transfor-
mation. The fundamental operator is the vertex operator
exp(+i0/+/2) and exp(£ig/+/2). This is equivalent to cosine
terms cos(6/ «/E) and cos(¢/ \/5) and similar sine terms. Un-
der vector /2 rotation along y axis, these terms transform as

follows:
cos (?0’) = —sin (?47),

sin <£0/> = sin <£9>,
2 2
NO V2

<7¢’ ) = cos <7¢’)’

2 2
sin £¢/ = cos £9 . (117)
2 2
In this new coordinate, the T-duality symmetry acts like
2 2
T cos £9’ T' = —sin £9’ ,
2 2
2 2
T sin £9’ T-' = —cos £9’ :
2 2
2 2
T cos £¢’ T~!' =sin £¢/ ,
2 2
2 2
T sin (%(p’)T—l = cos (%(ﬁ’), (118)
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which implies its action on 6" and ¢/,

2 3V2
¢ — 72 —¢, 6 — L (119)
2 2
We can find a symmetric Cardy state
—iVamy,
By= Y 5" v))p. (120)
ue‘/TEZ
And the gapping potential is given by
2
H' = v2U cos (‘éq&’—%). (121)

After rotating back, the corresponding gapping potential is

given by
H = U|:cos (?9) + cos (?¢)i| (122)

On the lattice, it can be realized as a spin 1/2 antiferromag-
netic Heisenberg chain in a staggered magnetic field along the
x direction [78],

H=Hy+H
= JZSi -Sip1 + UM Z(—l)iSi “Sit
i i

+UX Y (1)}, (123)
where A; and A, are nonuniversal constants.

Since the gapping potential (121) can condense the boson
field and have a unique ground state, the gapping potential
(122) will also gap the compact boson CFT with a unique
ground state after rotating back. As a result, the corresponding
ground state on the lattice should be unique.

On the lattice, the T-duality symmetry is not an exact sym-
metry, but can be an emergent symmetry in the low-energy
limit. It would be interesting to study the consequence of the
emergent T-duality on the lattice model.

VIII. CONCLUSIONS AND DISCUSSION

In this paper, we discuss the relationship between global
anomaly and boundary states of CFTs from the perspective of
massive deformation. That is if a 1 + 1d CFT with symmetry
G is anomaly-free, there will be symmetric boundary condi-
tions where the partition function of BCFT converges to one
when the length goes to zero. For the closed string, symmetric
boundary conditions imply the existence of symmetric bound-
ary states.

Then we apply our approach to several examples and show
the anomaly-free condition derived from the existence of
symmetric boundary conditions is consistent with the result
from the ’t Hooft anomaly-free condition obtained directly
from the bulk CFT. In the multicomponent U(1) boson theory,
the existence of symmetric boundary conditions can imply
the symmetric gapping potentials, which belong to Haldane
null vectors. We also show this relationship between global
anomaly and boundary states can be generalized to WZW
models. As the last example, for SU(2); WZW model with

the T-duality symmetry, we use our approach to find the sym-
metric gapping potentials, which are beyond the Haldane null
vectors. This result coincides with the fact that there is no
anomaly for the T-duality symmetry.

We should note there is a slightly different context dis-
cussing the relation between BCFT and 1 + 1d SPT phases or
anomalous 0 + 1d critical theory [24]. In this reference, it is
found that boundary state |B);, in the sector twisted by h € G
can defect the anomalous phase €(g|h), which is related to the
cocycle in H?[G,U(D)],

glB)y = es(glh)|B) . (124)
More precisely, this correspondence detects the action of sym-
metry operation on the twisted boundary condition or twisted
boundary state. However, in our approach, we are looking
for boundary states in the untwisted sector, which remain
invariant under the global symmetry G.

As an outlook, it is interesting to consider the relation-
ship between boundary conditions and ’t Hooft anomalies in
the fermionic CFTs. Here symmetry should include global
symmetry G and the fermionic parity symmetry (—1)F. The
key to solving this problem is searching for the boundary
states of a fermionic minimal model. For the bulk fermionic
CFTs, they can be constructed from A-type bosonic CFTs
[74] and two exceptional CFTs [79] attached with a Kitaev
chain after Z, orbifolding [80,81] with a parafermionic gen-
eralization [82]. On the lattice model, this transformation is
called the Jordan-Wigner transformation and, more generally,
the Fradkin-Kadanoff transformation [83]. Naturally, there is
a correspondence between boundary states of bosonic CFTs
and fermionic CFTs [84,85]. This correspondence can help us
find symmetric boundary states of fermionic CFTs from that
of related bosonic CFTs. Besides, it is quite energizing to ap-
ply our BCFT scheme to the intrinsically gapless topological
phase in Refs. [86-88] where the low-energy symmetry is an
anomalous Z, group but the entire symmetry is a nonanoma-
lous Z4 group. More precisely, the degree of freedom charged
under normal Z, symmetry is gapped and Z, symmetry does
not act on the low-energy theory faithfully. Hence there are
no Z4 symmetric boundary conditions for the low-energy
theory. However, one can add a symmetric perturbation to
bring the energy of the gapped degree of freedom down. If
further increasing the perturbation reopens the gap, one can
eventually arrive at a symmetric gapped ground state and sym-
metric boundary condition and the nonfaithful representation
of Z4 group becomes a faithful one [87]. Thus we conclude
that a symmetric boundary condition or gapped ground state
exists under a symmetric perturbation if we consider the entire
theory of the intrinsically gapless topological phase.

Our analyses in this paper rely heavily on well-developed
techniques on CFT in 1+ 1 dimensions. However, the
“gapping potential argument” should be applicable to higher-
dimensional CFTs as well, and we also expect universal
relationships between the boundary conditions and the
anomalies of CFTs in higher dimensions. Indeed, this kind of
result has been studied in topological quantum field theories
by considering fusion algebra of symmetry defects in Ref.
[17], where anomalous symmetries must be spontaneously or
explicitly broken on the boundary. It is interesting to explore
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such result directly from the perspective of CFTs in future
research.
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APPENDIX A: HALDANE GAPPING POTENTIAL

In this Appendix, we review some basic knowledge on
Haldane gapping potential, which is a universal class of
perturbations, which can gap the free boson CFTs in 1+ 1
dimensions [12,19,25,54].

For N component compact boson CFTs, the Haldane gap-
ping potential is defined as follows:

N [}
H = UZ/ dxcos (AT ®/R — ;). (A)
=177

Here ®=(¢y, 61, ...., ¢y, On) and each A; is a 2N-dimensional
linearly independent vector whose elements are integer.
aj...ay are arbitrary phases. The above perturbation H' can
gap the boson CFT when it satisfies the following sufficient
conditions [25]:

ATKA; =0, Vi, j. (A2)

Here K = @Y 0/ and such vectors A, are also be called “null-
vectors”.

Now we can further assume the perturbation is invariant
under a global symmetry group G,

g 'Hg=H' VgegG. (A3)

Although the perturbation is symmetric, the ground state may
break the symmetry spontaneously and have nontrivial degen-
eracy. There is another primitive condition, which can forbid
this case and ensure the unique gapped ground state. More
precisely, the primitive condition means there is no solution
to the equation

alN+ ... +ayAy = kA, (A4)

where a; are integers with no common divisors, k is an integer
that is greater than 1, and A is an integer vector.

Indeed, the compact boson CFTs can be realized as the
edge theories of 2+ 1d Abelian Chern-Simons (CS) the-
ory [89], which can describe the quantum Hall effect. Such
Haldane gapping potential can be also understood as the
scattering process of electrons or quasiparticles on the edge
between different modes. Reference [90] shows the condition
(A2) and (A4) can also be understood from the gapped bound-
ary conditions of Abelian CS theory.

APPENDIX B: DICTIONARY CONNECTING SPIN
OPERATORS AND BOSON FIELDS

In this Appendix, we will review the dictionary connect-
ing spin operators and boson fields, which can be derived
by Jordan-Wigner transformation and bosonization. This
Appendix is mainly based on Ref. [30,64].

We start with the spin-1/2 XXZ model with microscopic
Hamiltonian,

H= Z [V (S3Sns1 +S08)11) + 858511 ] (BD
Thanks to the Jordan-Wigner transformation
n—1
St =ctexp (in Z c$cm),
m=1
z + ! + +
Sp=Cnen =50 Cylmt CnCy = b, (B2)

the above Hamiltonian can be mapped to a spinless fermion
Hamiltonian

J
H = Z [—E(C:C,I_H + HC)

1 1
+ J, (c:c,, — 5) <c;’+lcn+1 — E):|

In the low energy, the fermion chain can be described by a
Dirac fermion theory with four fermion interactions,

(B3)

Hiow = J / dx (U 00 — Y0 v)

4, / X2V Y — W+ v e,
(B4)

where we choose lattice spacing being 1. By the bosonization
approach, this model can be mapped to the compact boson
CFT with interactions,

Hyow = é / dx(3:¢)* + (8,0)* — 2J. cos (%‘7’) (B5)

with radius

¢p=¢+27R, 0=60+4n/R,

R = \/5[1 - %cos_l (%)ir,

where 6 is a dual field of ¢, i.e., 3,60 = 0;¢. When |J;| < |/,
the interaction term is irrelevant and thus the low-energy
physics of spin-1/2 XXZ chain can be described by the com-
pact boson CFT.

The correspondence between spin operators and the boson
field is given by

(B6)

1 A
Si(x) ~ AR (—l)x; sin(¢/R),

ST(x) ~ eif)R/z[%(—l)x + sin(¢ /R)], B7)
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with x = n. It is easy to check the translation and U (1), acts
on the low-energy boson fields as

T:¢—>¢+nR, 60 >0+ nR,
Ul),:¢ —> ¢, 0 - 0 +«aR. (B8)

J

APPENDIX C: SU(N) SYMMETRY INVARIANT
BOUNDARY STATES OF FREE BOSON MODEL

In this Appendix, we will use the affine Lie algebra to show
the boundary states (57) and (66) are invariant under vector
SU(N) spin rotation.

Firstly, we prove the result for the case of SU(2). For simplicity, the boundary state (57) can be written in the language of

chiral operators,
leeNJr r Hal rdl rR+a—rla—lR)

AMAD

|B) =

1l 2
ezrel\u T(u—r.Lafr.R-'»afr,La—nR)

— E (eing(‘/’?,L*W(l),R*WgL*‘Pg,R) _ e’m 3 (Wl 1+‘/’| R+‘P21+‘/’2 R))|O>

M

m,n

where ¢?/pp is zero mode of primary fields @ (w =
0)/¢r(@ = 0).
The affine SU(2) generators are given by

H=idg,, E*= eiiﬁ‘”L,

H = —idgr, E* =V, (C2)
The OPE between affine SU(2) generators and primary

fields are

£ 50f +i 500
HEe = S e =
2z Z
£ 550} Fi 50k
— o diL0 Fe V2 7R P o 2 ] e V2
H@e™ % = —p—,  EX@e™ % = . (C3)
Z

Since the generators of SU(2) rotation are zero modes of
affine SU(2) generators, they satisfy the following OPE with
primary fields:

EO,:|: :Fi%‘ﬁg il«[(/’[,

L0 1,0
HOe™ A% = ™77, =e

HO :Elwa _ q:e [‘/’R EOi ilwa _ e:Flﬁ‘pR. (C4)

Since the other OPEs are zero, the SU(2) rotation only acts
on the following parts of the boundary state:

-2 242
[614(w?,lliw(l)ARing#»ng) _ el%»(w(lil‘+(p?,k+¢g,l_+wgk)

+ e_iJTE(W?.L_‘/’?{R_‘/’QL""‘/’(Z)‘R) _ e_i%i(‘p[lj.L""/’(]).R""/’g,L""‘/’(z{R)]|O>.
(C5)

For the vector SU(2) rotation, the generators is S° = H +
H, s* = E%* 4 E%* In this representation, the SU(2) gen-
erators are the sum of four spin-1/2 generators. The following
states can be written as the spin-1/2 since primary fields
transform like a spinor:

exp (ig)/~/2)[0) = | 1),
ipn/~/2)10) = | 1),

exp (— iy /+/2)|0) =

exp (ip/v/2)10) = | |).
(C6)

exp (—

where the spin up and down is determined by the sign of
eigenvalue of H° or H°. Then the boundary state (C5) can

Z(e’” 2 O)—69) _

eMmT (¢0+¢2))e_’“ rLa—rRe_yla—rLu—rR|O>

(ChH

(

be rewritten as

| Pt rd2cd2.R)) — | PredirT2.Ld2R))
+ 1 dnedirtac /) — 1 dietirdaLT2.8))
= tred2r)) — 1 d1,et2.r)) ® (| Tird2,L))

= dirt2L))- (CT)
It is easy to see the boundary state is invariant under vector
SU(2) transformation since it is the direct product of two spin-
singlet states.

For general vector SU(N) transformation, the Lie algebra
can be composed into N(N — 1)/2 SU(2) Lie subalgebras. For
each SU(2) Lie subalgebras, we can do similar calculations
to show the eigenvalue of SU(2) generators is zero. So the
boundary state is invariant under vector SU(N) spin rotation.

APPENDIX D: INVARIANT BOUNDARY STATE OF
VECTOR ROTATION SYMMETRY AND CENTER
SYMMETRY

In this Appendix, we will give a detailed calculation on
invariant boundary states of vector rotation symmetry and
center symmetry in the WZW model.

The Ishibashi state is defined as follows:

)= |er m@U|g}. m). (D1)

m

To show the Ishibashi state is invariant under the vector
rotation symmetry, we only need to show the action of gen-
erators on such states is zero. Since the holomorphic and
antiholomorphic sector is tensor product, the action of a gen-
erator is a summation of action on each part, $* = J§ + J¢.
The vacuum states of each sector form different irreducible
representations of Lie algebra labeling by A,

ZT**“IM,m)
ZTA a|¢j’ m).

Jglei, m) =

J§|or. m) (D2)
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Here U operator is an anti-unitary operator and anticom-

mutes with Lie algebra,
Uleu = —(70,) " = —(J9). (D3)

Now we can show the action of generators on each vacuum
in the summation is zero,

3 (¢hon| @ UG |5 ¢ m)@ UG m)

m

= Z SicSwm nJ5|¢F . m) + 8:8um(U L. 1’| J3U |G}, m)

= Sudij (@7, n|J5 |87 n') + (UG ' [UTTGU |, n))
= Sud (@], n|Jg |7 ') — (. n' |5 1T n))
=0. (D4)

Thus the Cardy state is also invariant under vector rotation
symmetry since it is a linear summation of Ishibashi states.
The condition for invariant Cardy states is now

h|B) = |B). (D5)

1. By affine Lie algebra
For By type Lie algebra, the action of the outer automor-
phism is
A [hosAr, oo Av—1, ANl = (A1 do, - An—r, Ayl (D6)

Thus the affine Dynkin labels of an invariant boundary state
satisfy

Ao = Al (D7)
Since the comarks of By are
(ag)/;a}/7"'7a]\\/])=(1;1725"'527291)5 (D8)
we can obtain the level of k
N
k=Y a/A =200+ -+ +iy. (D)
i=0

Thus we can always find a Cardy state invariant under the
vector SO(2/ + 1) symmetry and center symmetry.

2. Dy affine Lie algebra

For D,; type Lie algebra, there are two outer automor-
phisms,
Ayt [hoshr, Aay e Ao, Ao
= [A1; 40, A2y -+, Aoty Mgt
Azt [hoshy, Ag, e Ao, Aot Aot
= [Aas Aar—1, Aai—2, -+ 5 A2, A, Aol (D10)

So the affine Dynkin labels of an invariant boundary state
satisfy

Al = Ao = Ay = Ay,

A= (j=2). (D11)
The comarks of Dy are
(agsaj, -+ ay)=(1;1,2,---,2,1,1). (D12

As a result, for the existence of an invariant boundary state, k

satisfies
k=4r+4(Ay---+ A1) + 24, (D13)

Therefore, there exists an invariant Cardy state under vec-
tor SO(4/) symmetry and center symmetry only for even k.

3. Cy affine Lie algebra
For Cy type Lie algebra, the action of the outer automor-
phism is
A [dosAr, - Av—1 An] = [Ans An—1, -+, A1, Aol (D14)

Thus the affine Dynkin labels of an invariant boundary state
satisfy

Aj = An—j. (D15)
Since the comarks of Cy are
(ag)/;ai/s"'sa[\\//):(l;lv"'7])7 (D]6)
We can obtain the level of k
200+ -+ Av_))+ Ay, ifNiseven;
= 2 2 . . (D17)
2ho + -+ F Au), if N is odd.

Therefore only when k is even or N is even, there will be a
Cardy state invariant under the vector Usp(N) symmetry and
center symmetry.

4. Dy, affine Lie algebra
For Dy type Lie algebra, the action of the outer automor-
phism is
Az [hosArs sy dary Aoir] = [Aars Aaigers - -+ 5 A, Aol
(D18)

The affine Dynkin labels of an invariant boundary state
satisfy

M=Ay=A =y, Aj = Ay, Q< j <2 -1).

(D19)
Since the comarks of Dy are
(agsay, -+ ay)=(1;1,2,---,2,1,1),  (D20)
we can obtain the level of k
k=4(o+ A+ + ). (D21)

Therefore only when k is a multiple of 4, there will be a
Cardy state invariant under the vector SO(4/ + 2) symmetry
and center symmetry.

5. E; affine Lie algebra
For Es type Lie algebra, the action of the outer automor-
phism is
At [hos Aty s oo, Aol = [M13As, Ag, A3, A6, Ao, A2
(D22)
The affine Dynkin labels of an invariant boundary state satisfy

A=As=Al, Ar=hs= A (D23)
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Since the comarks of E¢ are

(agiay, - ,al)=(1;1,2,3,2,1,2), (D24)
the level k is given by
k=Xo+ A+ 2 + 343 + 204 + As + 246
= 3(ho + A3 + 242). (D25)

This implies only if k is a multiple of 3, there will be a
Cardy state invariant under the vector E¢ symmetry and center
symmetry.

6. E; affine Lie algebra
For E; type Lie algebra, the action of the outer automor-
phism is
A [hosAa, - s A1 = [Aes As, Aa, A3, A2, A1, Ao, A7)

(D26)

The affine Dynkin labels of an invariant boundary state satisfy

A =Ae, Al =As, Ay =Xy = A4 (D27)
Since the comarks of E; are
(ag;ay, - ,ay)=(1;2,3,4,3,2,1,2), (D28)
the level k is given by
k =2Aho+4A; + 61y + 403 + 247. (D29)

This implies only if k is even, there will be a Cardy state
invariant under the vector E7 symmetry and center symmetry.

APPENDIX E: INVARIANT BOUNDARY STATE OF
VECTOR ROTATION SYMMETRY AND CP, SYMMETRY

In this Appendix, we will give a derivation on the invariant
boundary state of vector rotation symmetry and CP, symme-
try in the WZW model. As shown in Appendix D, all Cardy
states are invariant under vector rotation and spatial reflection
symmetry, we only need to search for Cardy states, which
are invariant under the combination of charge conjugation
C and an order 2 element of center symmetry h,. Since the
charge conjugation acts as an identity on Cardy states and
center symmetry is a Z, group for By, Cy, Dy;, E; cases, the
result is the same as that of Appendix D. Moreover, the center
symmetry of Es¢ WZW model is Z3 group, which implies we
cannot construct 7, symmetry. Thus, we only need to calculate
the Dy, WZW model where the order 2 element is A2

07
min(E,) =

—kb|4cos (

It is easy to see when a = k/2, the minimal of variational
energy is lowest. In the language of Dykin label, this boundary

2k+2 )_1| ==

For D4 type Lie algebra, the action of the Zghz transfor-
mation is

CA? : Dhos Aty -+ o Aty Aargt ] = [hashos ==+ 5 Aar, A -
(ED)
The affine Dynkin labels of an invariant boundary state satisfy
Xo = A (E2)

Then when there is an invariant boundary state, k satisfies
k=20 + 22 + -+ Ay1) + Ao + Ao (E3)

Therefore, there always exists an invariant boundary state for
arbitrary k.

APPENDIX F: SYMMETRIC INTERACTION
OF SU(2),x WZW MODEL

The calculation in this Appendix is based on an argument
[52] for a perturbed CFT with the Hamiltonian

H = Hepr + ZAJ» / &/ (x)dx. (F1)
J
Here, ®/ are relevant operators (primary fields). It claims
that the smeared boundary state e~ ™|B,) with the lowest
variational energy can be very close to the ground state. This
variational energy is given by

A

LN
a 967.'2 Z j (Sj> (ZTa)A/. (F2)

For the SU(2),x WZW model, the relevant operator Atr(g?) is
the primary field A®'. We have 2k + 1 boundary states |B,)
for 2a € Z and 0 < a < k. Thus the variational energy of the
smeared boundary state e~ |B,) is
1 2
2 T k+1
G -

E o= ¢ Ly S1 So
¢ 9612 s}

When > 0, we can vary 7, and obtain the minimal of E,,

0, if 55 > 0;
min(E,) = G |k o (F4)
s if 3 <0,

where b is a positive number only depending on k.
The modular S matrix of SUR2);x WZW model are

given by
" 1 2ji+1D2j +1
s = / sinn(]+ )2) + )_ (F5)
k+1 2k 42

Thus the minimal of E, can be rewritten as

(F6)

(

state is [k; k], which is the only invariant state under the center
symmetry.
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P LTS

FIG. 3. The lattice version of interface between Haldane phase
and VBS phase of SU(2), WZW model.

When A < 0, a similar calculation can show that the varia-
tional energy is lowest when a = 0 or a = k. These two states
correspond to the valence bond solid (VBS) phase, which
breaks translation symmetry.

We can also show the massive phase with A > 0 is the
Haldane phase if & is odd and is the trivial phase if & is even.
To see this, we consider such massive deformation,

ktr(gz), x < 0;
Vix)=10, 0<x<L;
_)\.tr(gz)s L § X.

The partition function of the middle gapless region is given by

Zig=Zy=x@=0k+1g" s+ (F)
Here - - - is polynomials of g whose degree is large than Ay ;.

Thus, when L goes to zero, there will be k + 1 states on the
interface, which are equivalent to states of spin-k/2. When
k is even, the effective spin on the interface is an integer,
which can be gapped without degeneracy. When k is odd, the
effective spin is a half-integer, which is always degenerate.
We show the lattice version of the interface for SU(2), WZW
in the Fig. 3. Here dots are the effective spin 1/2 decoupled
from the spin 1 on each site. Thus the unpaired spin 1/2 on
the interface implies the symmetry protected degeneracy.

APPENDIX G: THE LSM INGAPPABILITY OF THE SPIN
CHAIN WITH TRIPLE-PRODUCT INTERACTIONS

In this Appendix, we will prove the LSM ingappability of
the Hamiltonian (99) with the following symmetry:

j=L
To: T =TKUr =TK [ [io], (GD)
j=1
L
U(l), : Uy = exp iHZSj'- , (G2)
j=1
L
=[io (G3)
j=1

Similar to the original LSM theorem, the twisting operator
Utwist of U (1), is given by

L
2mi .
Utwist = exp - E JS; | =exp . (G4)

. L
i
L
j=1 Jj=1
Suppose the Hamiltonian (99) with length L has a uniquely
gapped ground state |G.S.) under periodic boundary condi-
tion. To show the excited state Uyyist|G.S.) has low energy,
we consider the term H; ;11 j1> in Hamiltonian (99) involv-

ing the three neighboring sites, j, j+ 1, and j 4 2. Since
[0 + 05, + 05,5, Hjjt1,j+2]1 =0, and others commute
Wlth Hj JH1,j42s

Ui (Hj i1, j+2 ) Utwist

( m/L)((r +20[+]+3a

JH)H it Jr2e(m/L)(a +207 +]+30']+7)

JJ+1j+2
1
+0 2

i 1
= Hj jt+1,j42 — ZJU’ Jot+lj+2 +0(L2>

j=l1

iy . . .
Z[Uj +20%,, 43055, Hj jr112]

(G5)

We can sum over all terms in (G5),

1
(G S. | tWIStHUthSt|G S. ) gs + 0<Z) (G6)

The reminder O(%) comes from third term in (G5) and 7;
symmetry ensures contributions from H; ;1 j+2> does not de-
pend on site. Therefore we have Ugyist|G.S.) = €¢'“|G.S.) +

1
O(H)lY).

Moreover, since |G.S.) preserves symmetries in (G1), it is
invariant under the combination of 7, and Z';,

LRT|G.S.) = TK|G.S.) =|G.S.). (G7)
Under the periodic boundary condition, we can obtain
. L

i .
(TK)*IUtwistTK = K*lUtwist exp <f Z a;) exp (mof)K
j=1

= —Upyist €XP ——Zo (G8)

Then
(TK) '"Upwist TK|G.S.)

IG.S.) =

tWISt

. 1
—e7|G.S.) — 0(Z>|w’>. (G9)

The first equation comes from the fact R} Uy
Uy =1. ’
On the other hand, we can calculate this equation directly,

= U;R;’ and

(TK) 'Uwist TKIG.S.) = (TK)"'(“|G.S.) + 0(%)%)

= ¢ ®|G.S.) + 0(%)TK|¢).
(G10)

When L goes to infinity, there will be a conflict between (G9)
and (G10). Therefore, the energy spectrum must be either
gapless or gapped with nontrivial ground-state degeneracy.

APPENDIX H: VECTOR ROTATION ON THE y DIRECTION

In this Appendix, we will use the affine SU(2) Lie algebra
to show how the primary terms transform after vector SU(2)
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rotation. For U(1) boson theory with the self-dual radius,
the primary terms are just exp(£if /+/2) and exp(Li¢/v/2).
For simplicity, we also represent them in the chiral language
exp ( % i(pL + @r)/~/2) and exp (+ i(gr — @r)/V/2).

The zero modes of affine SU(2) algebra can be rewrit-
ten as J 2 = f dzJ,(z). The commutation relationship between
zero modes and other fields is related to the OPEs as
follows:

[0, b(w)] = f dzJ.(2)b(w). (H1)

w

Therefore, the commutation relationship between zero
modes of affine SU(2) algebra and chiral primary field can
be calculated using OPEs and the result is given by

Mo

[Ho’e:tigm] — :l:ezl:ingoL’ [Eo’i,€1i§wL]

=2ie*"2 %, [EVF, MY =0,

[HO, e:ti%(/m] — :Feiigfme’ [qui’ eii§¢f<]

= 2ieFE, [V FFU] =0, (H2)

Now we can perform the vector SU(2) rotation along y axis
whose generator is given by

§' = S(E"* —E°7 4+ EF — 7). (H3)

For 7 /2 rotation, the transformation can be written in the
language of the generator,

T \/E
Ul=)=—00+i8). H4
(2> 3 (148" (H4)
For simplicity, we consider the real and imagi-

nary parts of primary fields, cos(¢/~/2),sin(¢p/v/2),
cos(8/+/2), sin(8 /+/2). There are two primary fields invariant
under rotation since they commute with S”,

U! cos(gtb)U = cos <%§¢>, U~'sin (

v =sin(L26).
(5°)

The other two primary fields satisfy the following commu-
tation relationship:

|:S~V, cos (?9)} = 2isin <%§¢>

ﬁe)

2

(H5)

2 2
SY, sin £¢ = —2icos £9 , (H6)
2 2
thus, they transform under the 7 /2 rotation as follows:
2 2
U~ 'sin £¢ U = cos £0 ,
2 2
2 2
U~ cos (§9>U = —sin (%_qﬁ) H7)
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