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Probing magnetism in moiré heterostructures with quantum twisting microscopes
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Spin-ordered states close to metal-insulator transitions are poorly understood theoretically and challenging to
probe in experiments. Here, we propose that the quantum twisting microscope, which provides direct access to
the energy-momentum resolved spectrum of single-particle and collective excitations, can be used as a novel tool
to distinguish between different types of magnetic order. To this end, we calculate the single-particle spectral
function and the dynamical spin-structure factor for both a ferromagnetic and antiferromagnetic generalized
Wigner crystal formed in fractionally filled moiré superlattices of transition metal dichalcogenide heterostruc-
tures. We demonstrate that magnetic order can be clearly identified in these response functions. Furthermore,
we explore signatures of quantum phase transitions in the quantum twisting microscope response. We focus on
the specific case of triangular moiré lattices at half filling that have been proposed to host a topological phase
transition between a chiral spin liquid and a 120◦ ordered state. Our work demonstrates the potential for quantum
twisting microscopes to characterize quantum magnetism in moiré heterostructures.
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I. INTRODUCTION

Magnetic order emerging in proximity to metal-insulator
transitions [1,2] is challenging to study both theoretically and
experimentally. Bilayers of transition metal dichalcogenides
(TMDs) [3] provide a new platform to realize such states,
with high tunability and access to novel probes. TMD bilayers
form moiré superlattices when the two layers are twisted
by a small twist angle with respect to each other or when
there is an intrinsic lattice mismatch in hetero bilayer struc-
tures. These moiré superlattices effectively simulate extended
Hubbard models on a honeycomb or triangular lattice [4–6],
which allows for the experimental realization of strongly cor-
related electron phases. Due to their large lattice constants
on the order of ∼10 nm, moiré materials allow for tuning
through a wide range of fillings. At several fractional fill-
ings, generalized Wigner crystals (GWC) have been observed
[7–14]. These states break the discrete translation symmetry
of the moiré lattice and form due to long-range interac-
tions between electrons. Long-range interactions are relevant
in moiré superlattices [15] because the Wannier orbitals of
the electrons are less localized, and the charge density is
low [4,6,16,17]. While the charge order of the GWC states
has been firmly established in experiments, their spin order
remains an open question. This is due to competing contri-
butions to the effective spin coupling, primarily consisting of
antiferromagnetic superexchange and ferromagnetic direct ex-
change [15,18–23]. Current methods to probe magnetic order
are mainly based on magneto-optical methods measuring the
magnetic susceptibility, suggesting a weak antiferromagnetic
coupling at half filling [5,14]. Moreover, almost vanishing
magnetic couplings in another sample have been found [24].
These experimental findings are in stark contrast to theoretical
predictions, which suggest large ferromagnetic interactions
[15,21,23].

To reliably determine the fate of spin order in GWCs,
additional experimental input is required, which hinges on
developing more direct experimental probes of quantum mag-
netism. One proposed method uses the Zeeman splitting
in circularly polarized exciton Umklapp resonances to de-
tect magnetic order [25,26]. Using such exciton Umklapp
resonances, signatures of Wigner crystals in TMDs have
been detected [27,28]. Another approach to characterize the
magnetic states is to use spin-polarized scanning tunneling
spectroscopy or noise magnetometry [29–31].

In this work, we propose that a quantum twisting mi-
croscope (QTM) [32] can be used to distinguish between
antiferromagnetic (AFM) and ferromagnetic (FM) spin or-
der by measuring the energy and momentum resolved
single-particle and collective-excitation spectrum. The QTM
is designed for studying the dynamical response of two-
dimensional moiré materials [32,33]. Placing a layer of
graphene on a capped pyramid on the edge of an atomic force
microscope cantilever makes it possible to continuously twist
two sheets of 2D materials with respect to each other, see
Fig. 1(a). By applying a voltage between the top layer on
the cantilever and the bottom sample layer and measuring
the tunneling current as a function of the relative twist angle
between the two layers, one obtains the momentum-resolved
single-particle spectral function of the sample [32]. This is
a form of elastic tunneling spectroscopy. In this work, we
show that the expected spectral function for the GWC is
qualitatively different for antiferromagnetic (AFM) and ferro-
magnetic (FM) interactions. An even more striking difference
between the AFM and FM state can be seen in the dynam-
ical spin-structure factor, which is accessible using inelastic
tunneling spectroscopy [33,34]. For that, the original setup of
the QTM has to be modified to a three-layer structure, with
graphene contacts on both sides of the sample, see Fig. 2(a).
Applying a bias voltage between the graphene sheets, the
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FIG. 1. Single-particle spectral function for generalized Wigner
crystals. (a) Left: illustration of the QTM with a graphene layer on
top of the sample layer. The top layer is twisted by an angle θ with
respect to the bottom layer, and a voltage φ is applied between the
two layers. Middle: By changing the twist angle θ , the Dirac points
of graphene, located at the corners of its Brillouin zone, trace a path
through momentum space (shown in red). For moiré lattices, the
Brillouin zone of the bottom layer (blue) is much smaller than the
one of graphene (black), such that a small twist angle already cuts
through the entire Brillouin zone of the sample. Right: illustration
of the second derivative of the tunneling current as a function of the
applied voltage φ for fixed twist angle. There are two main features: a
sharp temperature-independent peak at the Dirac matching condition,
arising when the Dirac point of graphene touches an energy surface
of the bottom layer, and a resonance peak at the onset condition when
tunneling becomes energetically allowed. The tunneling current is
proportional to the intersection length between the energy surfaces
within the allowed energy interval set by the chemical potentials.
(b) Schematics of antiferromagnetic (left) and ferromagnetic (right)
generalized Wigner crystal states. The chosen unit cell is highlighted
in grey. The central panel shows the Brillouin zone of the sample
(blue), including the reduced Brillouin zone (dashed) and the path
used to plot the spectral functions. (c) Spectral function A(k, ω) for
the antiferromagnetic (left, U = 25t , V = 5t , X = 0) and ferromag-
netic phase (right, U = 25t , V = 5t , X = 0.3t).

spin response of the sample layer, which acts as a tunneling
barrier, can be measured. Electrons tunneling from the top
to bottom layer interact with low-energy excitations of the
sample layer, thus measuring its collective excitation spec-
trum. Using both elastic and inelastic tunneling spectroscopy
to directly probe the momentum-resolved excitation spectrum
of two-dimensional materials, such as TMD heterostructures,
provides new insight into the strongly correlated states of
these systems, not accessible using conventional optical mea-
surements.

This work is structured as follows. In Sec. II, we review
elastic tunneling spectroscopy, and in Sec. III, we calculate
the expected signal for both an AFM and FM GWC. In
Sec. IV, we review inelastic tunneling spectroscopy, and in

FIG. 2. Dynamical spin-structure factor for generalized Wigner
crystals. (a) Left: QTM with an intermediate sample layer sand-
wiched between two layers of graphene. The top layer is twisted
by an angle θ with respect to the bottom layer, and a voltage φ is
applied between the two graphene layers. Middle: Brillouin zones
of the top and bottom layer graphene twisted by an angle θ . The
measured dynamical spin-structure factor is a function of �Kn.
Right: different processes contributing to the total tunneling current:
(i) elastic tunneling from top to bottom layer; (ii) inelastic tunnel-
ing where the electron virtually tunnels to the intermediate layer,
effectively interacting with spin excitations of that layer. (b) Dy-
namical spin-structure factor S(k, ω) of the antiferromagnetic (top)
and ferromagnetic phase (bottom). The dotted lines correspond to the
spin-wave dispersion from linear spin-wave theory.

Sec. V, we show the qualitative differences in the dynamical
spin-structure factor between the AFM and FM GWC. In
Sec. VI, we propose that the QTM can also be used to probe
quantum phase transitions, in particular focusing on a possible
transition between a chiral spin liquid (CSL) and the ordered
120◦ state in the half-filled Hubbard model on a triangular
lattice, where the onset of order manifests itself in a softening
of a collective mode at the ordering wave vector. We conclude
in Sec. VII with an outlook. Technical details are deferred to
the Appendices.

II. SINGLE-PARTICLE SPECTRAL FUNCTION
FROM ELASTIC TUNNELING

The schematic setup for the QTM, realized experimentally
in Ref. [32], is shown in Fig. 1(a). The idea is similar to a
conventional scanning tunneling microscope, but an extended
sheet of graphene replaces the tip of the microscope. The
tunneling current I (θ, φ) between the graphene layer and the
bottom layer, which one wants to examine, is measured as a
function of the applied voltage φ and the relative twist angle
θ . To avoid hybridization between the graphene layer and the
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sample, an insulating barrier, such as hexagonal boron ni-
tride, is placed in-between. The formation of additional moiré
structures can be avoided by a large angle mismatch between
the layers. Compared to a scanning tunneling microscope,
spatial resolution is lost in this setting. Instead, the QTM
has a momentum space resolution given by the linear size
of the graphene layer δk ∼ L−1. The tunneling current is a
convolution of the spectral functions A�(k, ω) of the top and
bottom layer [32]

I (θ, φ) = 4πe|	0|2
∫

dε ( fT (ε − φ) − fB(ε))

×
∑

k

AB(k, ε)AT (k, ε − φ), (1)

where f�(ω) is the Fermi-Dirac distribution, � ∈ {B, T } is the
layer index and |	0|2 is the elastic tunneling amplitude. A
detailed derivation is presented in Appendix A. The depen-
dence of the tunneling current on the twist angle θ is implicitly
contained in the momentum of the top layer, which is rotated
with respect to the bottom layer. One can effectively scan
through the Brillouin zone of the bottom layer by varying
the twist angle θ . This is illustrated in the central panel of
Fig. 1(a), where the Dirac point of the graphene layer traces a
path through momentum space. Since the lattice constant for
the moiré lattice aM ∼ 10 nm is much larger than the lattice
constant of graphene agr ∼ 0.25 nm, a small twist angle θ

is already sufficient to cross the entire moiré Brillouin zone.
Generically, the Brillouin zones of the top and bottom layer
will be incommensurate with respect to each other, which
implies that there is no guarantee that the path traced by the
top layer’s Dirac point will cross high symmetry points of
interest in the bottom layer’s Brillouin zone. Nevertheless, it
is possible to explore several different cuts and approximately
reach high symmetry points by varying the twist angle over a
wide enough range.

We assume tunneling only occurs near the K and K ′ points
of the top layer’s Brillouin zone, where we can describe
graphene as a gas of massless Dirac fermions. To develop an
intuitive understanding of the QTM, focus on one K point with
its corresponding Dirac cone. If we assume that the spectral
functions define a sharp energy surface in momentum space,
then the convolution in Eq. (1) can be understood by a simple
geometric picture: The tunneling current is proportional to
the length of the intersection between the Dirac cone and the
energy surfaces defined by the spectral function of the bottom
layer. A given intersection only contributes to the current
if it lies within the energy interval defined by the chemical
potentials μ�, such that one of the energy bands is filled while
the other is empty. Since we assume the filling of the sample
layer to be constant, we fix its chemical potential μB, while μT

can be varied. This allows for measuring both the particle and
hole part of the spectral function. Assuming μT < μB, one
measures electrons tunneling from the bottom to the top layer,
effectively determining the hole spectrum of the sample. The
situation is reversed for μT > μB, where the particle spectrum
is measured. In the geometric picture, the position of the Dirac
point can be tuned vertically by changing the electrostatic bias
potential φ between the layers and horizontally by varying
the twist angle θ . If the Dirac point lies exactly on an energy

surface of the bottom layer, there will be no contribution to
the current since the density of states at this point vanishes
(in the geometric picture described above, the length of the
intersection between the surfaces is zero). This condition,
dubbed Dirac-matching condition, leads to a sharp peak in
the second derivative of the tunneling current with respect to
φ. Compared to the typical energy scales εB within a moiré
lattice with lattice constant aM , the graphene’s Fermi velocity
vF is very large h̄vF /aM � εB. In this limit, the Dirac cone
forms a very sharp momentum-resolved tip, which scans the
spectral function of the bottom layer. The latter is generically
written as

AB(k, ω) =
∑

α

Zα
k δ

(
ω − εα

B (k)
) + continuum (2)

with a band index α and spectral weight Zα
k . This leads to the

tunneling current

I (q(θ ), φ)∝
∑

α

Zα
q

∣∣εα
B (q) − φ

∣∣[ fT
(
εα

B (q) − φ
) − fB

(
εα

B (q)
)]

(3)

with q(θ ) = R(θ )K − g, where R(θ ) is a rotation matrix, and
g is a reciprocal lattice vector, ensuring that q lies within the
first Brillouin zone of the bottom layer. Here, we have no
longer explicitly written the contribution from the continuum
part of the spectral function.

More direct information is contained in the second deriva-
tive of the tunneling current

∂2I

∂φ2
= γ1

∑
α

Zα
q δ

(
εα

B (q) − φ
)

× [
fT

(
εα

B (q) − φ
) − fB

(
εα

B (q)
)]

+ γ2

∑
α

Zα
q

∂

∂φ

(∣∣εα
B (q) − φ

∣∣ ∂

∂φ
fT

(
εα

B (q) − φ
))

(4)

with some constants γ1 ∼ γ2. In the rightmost panel of
Fig. 1(a), a typical example of ∂2

φI for fixed twist angle is
sketched. There are two contributions: a distinct peak for
εα

B (q) = φ corresponding to the Dirac-matching condition
discussed above and a second feature stemming from the φ de-
pendence of the energy interval in which tunneling is allowed.
This second feature manifests as a maximum followed imme-
diately by a minimum of the second derivative of the current at
the point where tunneling first becomes allowed energetically.
This resonance peak is dubbed the onset condition [32]. Note
that the strength of the peak of the Dirac-matching condition
is based solely on density of states arguments and hence does
not significantly depend on temperature. In contrast, the peaks
associated with the onset condition get less pronounced with
higher temperatures. Furthermore, by choosing the chemical
potential of the top layer to be sufficiently large compared to
the bias voltage |μT | � φ, one can neglect the contribution
from the onset condition. In that case, ∂2

φI directly measures
the spectral function of the bottom layer.
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III. PROBING SINGLE-PARTICLE EXCITATIONS
OF GENERALIZED WIGNER CRYSTALS

The QTM can be used to identify different magnetic cor-
relations. We explicitly calculate the single-particle spectral
function for GWCs with antiferromagnetic and ferromagnetic
spin order and show that the different states have rather dis-
tinct signatures. We describe the TMD heterobilayer moiré
superlattice with an extended Hubbard model [4,15]

H = − t
∑
〈i, j〉σ

(c†
σ icσ j + h.c.) + U

∑
i

n↑in↓i

+ V
∑
〈i j〉
σ,σ ′

nσ inσ ′ j + X
∑
〈i j〉
σσ ′

c†
σ ic

†
σ ′ jcσ ′icσ j

= Ht + Hu + Hv + Hx (5)

with the number operator nσ,i = c†
σ,icσ,i. Both the on-site in-

teraction U and the nearest-neighbor interaction strength V
are repulsive. Additionally, an intersite-exchange term X is
included, which gives a negative contribution to the energy
when two neighboring spins are aligned and a positive con-
tribution when misaligned, thus favoring ferromagnetism. We
perform a mean-field decoupling of the interaction terms of
the Hamiltonian. To this end, we introduce the following no-
tation for the order parameter χ

i j
σσ ′ := 〈c†

σ icσ ′ j〉. The resulting
mean-field Hamiltonian reads

Hu � U
∑
i,σ

(
χ ii

σσ c†
σ̄ icσ̄ i − χ ii

σ σ̄ c†
σ̄ icσ i

)
(6)

−U
∑

i

(
χ ii

↑↑χ ii
↓↓ − χ ii

↑↓χ ii
↓↑

)
, (7)

Hv � V
∑
〈i j〉

∑
σσ ′

(
χ ii

σσ c†
σ ′ jcσ ′ j + χ

j j
σ ′σ ′c

†
σ icσ i − χ

ji
σ ′σ c†

σ icσ ′ j

−χ
i j
σσ ′c

†
σ ′ jcσ i − χ ii

σσχ
j j
σ ′σ ′ + χ

ji
σ ′σχ

i j
σσ ′

)
,

Hx � X
∑
〈i j〉

∑
σσ ′

(
χ ii

σσ ′c†
σ ′ jcσ j + χ

j j
σ ′σ c†

σ icσ ′i − χ i j
σσ c†

σ ′ jcσ ′i

−χ
ji
σ ′σ ′c

†
σ icσ j − χ

j j
σ ′σχ ii

σσ ′ + χ i j
σσχ

ji
σ ′σ ′

)
. (8)

In the following, we focus on a filling of ν = 2/3 elec-
trons per site, where the formation of GWCs is expected
[23,35–37]. We introduce a three-site unit cell, which is suf-
ficient to accommodate the expected spin and charge order
at this filling. The corresponding fermionic creation (annihi-
lation) operator for site i on sublattice a ∈ {A, B,C} and spin
σ ∈ {↑,↓} is denoted by c†

aσ i (caσ i). By translation invariance,
the mean-field parameters only depend on the relative distance
between sites i and j. Consequently, we can rewrite them
as matrices in sublattice space: χab

σσ ′ := 〈c†
aσ icbσ ′i〉. Next, we

perform a Fourier transformation to momentum space

caσ i = 1√
N

∑
k

eik·xi caσk, (9)

where N is the number of unit cells, and the momentum sum
is over the reduced Brillouin zone obtained by increasing
the unit cell to contain three sites. We bring the mean-field

Hamiltonian into bilinear form

H =
∑

k

�
†
khk�k + E0 (10)

with some constant energy E0, the sublattice spinor �k =
(cA↑k, cA↓k, cB↑k, cB↓k, cC↑k, cC↓k )T and a 6 × 6 matrix hk.
The matrix hk depends on the mean-field parameters χab

σσ ′ ,
which must be self-consistently determined. To find a self-
consistent mean-field solution, we iteratively diagonalize the
Hamiltonian of Eq. (10) and use the resulting ground state
to compute χab

σσ ′ . The explicit form for the matrix hk and the
energy shift E0 is given in Appendix B. The chemical potential
is determined implicitly by fixing the electron density ν, given
by the number of electrons per site.

Our mean-field calculations for ν = 2/3 are in good
agreement with previous mean-field [35,36,38,39] and exact-
diagonalization studies [23]. We find a disordered metallic
phase for small interactions U and V and small intersite
direct exchange X . By increasing the onsite-interaction U ,
the ground state undergoes a crystallization transition and
forms an antiferromagnetic spin state, where one sublattice
is completely empty. Hence, the electrons arrange themselves
in an effective hexagonal lattice as shown in the left panel
of Fig. 1(b). Remarkably, the phase survives on a mean-field
level down to V = 0, where one would naively no longer
expect the stabilization of hexagonal charge order. This con-
figuration is favored due to an interplay between spin and
charge ordering. By crystallizing in a honeycomb lattice,
the electrons can access an unfrustrated antiferromagnetic
spin configuration, lowering their energy. By increasing the
intersite direct exchange term X � 0.2t–0.4t , the effective
nearest-neighbor spin coupling changes sign [23], and we find
a ferromagnetic ground state. The corresponding real-space
spin configuration is shown in the right panel of Fig. 1(b).

Excitations on top of the antiferromagnetic and ferromag-
netic phases differ strongly, leading to distinct experimental
signatures. We present theoretical predictions for the QTM
response of the different GWCs and how these signatures can
be used to distinguish between the different phases. First, we
calculate the single-particle spectral function

A(k, ω) = − 1

π
ImG(k, ω) (11)

with the retarded Green’s function defined as

G(k, ω) = −i
∑

σ

∫ ∞

0
dt eiωt 〈{cσk(t ), c†

σk(0)}〉 (12)

and the expectation value taken with respect to the ground
state. Since our main goal is to show how the QTM can distin-
guish different GWCs, we are only interested in a qualitative
description. To characterize the main features of the spectral
function, we focus on the bare mean-field response [40]. Com-
putational details are given in Appendix B. In Fig. 1(c), we
present representative results for the spectral functions in the
AFM (left panel) and FM (right panel) phases.

In the antiferromagnetic GWC phase, we observe one hole
band and two independent particle bands. The two distinct
particle bands can be understood intuitively: there are two
different ways to add an electron onto the AFM ground state,
either by putting it on an empty site or by putting it on an
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occupied site. The gap and the bandwidth can be calculated
using second-order perturbation theory. The gap between the
two particle bands is approximately �E = U − 3V while the
bandwidth is of order t (eff)

1 ∼ t eff
2 ∼ O(t2/U ), assuming U �

V, t . Detailed expressions for t eff
1/2 are given in Appendix C.

Similar arguments can be made for the hole band, leading to a
gap of �E = 3V between the hole band and the lower particle
band. The bandwidth for the hole band is of the same order as
for the particle bands.

The spectral function in the ferromagnetic GWC is qual-
itatively different. The most significant difference is that the
number of mean-field bands doubles. This can be understood
as a Zeeman splitting due to the nonvanishing overall mag-
netization. The individual bands can again be interpreted as
a particle or hole moving in a mean-field background: the
two topmost particle bands result from putting a particle on
an already occupied site. It can freely hop on an effective
hexagonal lattice, leading to a graphenelike dispersion. The
closing of the gap between the two bands at the corners κ of
the reduced Brillouin zone is not visible in Fig. 1(c), as only
one band has spectral weight at κ . The bandwidth of these two
bands is of order O(t ). The other two particle bands in the FM
can be understood by putting a particle on an empty site. There
are two possibilities: either the spin of the additional particle
is aligned with its neighbors, or it is misaligned. This results
in a separation of �E = 6X , which is of a similar order as
the bandwidth O(t2/U ), leading to several crossings. Also,
the hole spectrum in the ferromagnet is graphenelike since a
single hole on top of the ground state can freely hop on the
effective hexagonal lattice. In contrast to the AFM-hole band,
the ferromagnetic one has a bandwidth of order O(t ).

In real materials, additional features will be present in the
spectral function, which cannot be captured by mean-field
theory. Nevertheless, we expect that the most prominent bands
are the ones discussed above. It is possible that due to inho-
mogeneities of the sample, different patches of the sample
are in different phases. As long as these puddles have the
same size or are larger than the probing graphene sheet, which
has a linear dimension of about 200 nm [32], the QTM can
distinguish between different phases even within the same
sample. In that way, the QTM is ideally suited to probe the
physics of large but spatially localized phases in the sample.
This contrasts conventional transport measurements, where
such inhomogeneities are more challenging to resolve.

Another possible challenge is the formation of mirror
charges in the graphene layer due to charge order in the
sample. This is relevant since we assume that the chemical
potential in the graphene sheet is tuned away from charge neu-
trality. Well-defined Dirac cones are essential for the QTM to
measure energy and momentum-resolved spectral functions.
Consequently, we examine the influence of mirror charges on
the Dirac cones. Since the expected charge order is at the
moiré scale aM � agr, we can take the long-wavelength limit
to describe the graphene layer. The presence of mirror charges
leads to an additional potential term V (x) in the Hamiltonian:

H = H0 + V (x) = h̄vF (kxσ
x + kyσ

y) + V (x). (13)

Due to the large Fermi velocity vF ≈ 106 m/s of graphene,
the potential term can be treated as a small perturbation to the

kinetic term. Since the potential varies spatially on the moiré
scale aM , which is much larger than the distance between the
two sublattices of graphene, both sublattices feel, to leading
order, the same potential. Any perturbation to H0 proportional
to the identity in sublattice space cannot gap out the Dirac
cones of graphene. Hence, we expect the Dirac cones to re-
main intact to first approximation. There can be subleading
terms not proportional to the identity, which stem from the
small difference in potential between the two sublattices. Any
such perturbation scales with λ = agr/aM ∼ 10−2. To analyze
this effect, we consider a generic periodic potential of the form

V (x) =
∑

G

λVGeiG·rσ z. (14)

Assuming that there is no constant energetic offset between
the sublattices, the gap at the Dirac point scales as � ∼ (λV )3

to leading order in perturbation theory. Note that the cu-
bic scaling is a consequence of the particle-hole symmetric
dispersion of graphene and contrasts the generic quadratic
scaling obtained for a free dispersion of the form k2/2m. We
conclude that the gap at the Dirac points is strongly sup-
pressed by a factor of λ3, which should ensure the gap to be
smaller than the probed energy scale.

We have shown that by directly measuring these bands
using the QTM, different magnetic states in GWCs can be
distinguished. In particular, the spin degenerate single-particle
bands in the AFM split due to a nonvanishing overall mag-
netization in the FM state. This has the potential to resolve
an outstanding puzzle in the field: simple theoretical esti-
mates yield large values for the exchange coupling X [21,23].
In stark contrast, susceptibility measurements do not reveal
the expected strong ferromagnetism [5,14,24]. The QTM re-
sponse may provide useful insight into this puzzle.

IV. COLLECTIVE EXCITATION SPECTRUM
FROM INELASTIC TUNNELING

Inelastic tunneling spectra can be measured with a QTM
by sandwiching the sample in between two graphene layers
[33,34], as illustrated in Fig. 2(a). Momentum resolution is
again obtained by twisting the top layer by an angle θ . When
a bias voltage φ is applied between the two graphene layers,
electrons can tunnel directly from the top to the bottom layer.
This results in an elastic contribution to the tunneling current
similar to the one discussed in Sec. II. In addition, the electron
can also scatter off the intermediate layer, which results in an
inelastic contribution to the current. Through these inelastic
tunneling processes, one can probe the collective excitation
spectrum of the intermediate layer. Heuristically, the electron
interacts with the low-energy excitations of the sample layer,
allowing for contributions to the current in regimes where
elastic tunneling is forbidden by energy-momentum conser-
vation. Momentum resolution is again obtained by twisting
the two layers of graphene with respect to each other. If the
intermediate layer hosts spin excitations, which couple to the
tunneling electrons with a coupling J , one will measure the
dynamical spin-structure factor

S (q, iωn) = − 1

π
Im

∑
μ

∫ β

0
dτ eiωnτ

〈
T sμ

q (τ )sμ
−q(0)

〉
, (15)
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where sμ
q (τ ) is the Fourier transformed local magnet moment

in the intermediate layer and T is the imaginary time ordering
operator. By choosing the chemical potentials of top and bot-
tom layer to be sufficiently large μT = μB ≡ μ � φ and by
using again that the Fermi velocity of graphene is very large
h̄vF agr � μθ , one can write the contribution of the inelastic
tunneling current as [33]

I (2)(θ, φ) = γ

2∑
n=0

∫ φ

0
dω (φ − ω)S (�Kn, ω), (16)

where �Kn = (R(θ ) − 1)Kn is the difference between the K
points of the top and bottom layer’s Brillouin zone and γ is
some constant. The index n indicates the three different K
points, related by a reciprocal lattice vector, as shown in the
central panel of Fig. 2(a). Note that there are additional contri-
butions from tunneling around the K ′ valley, which are related
to the ones from the K valley by time-reversal symmetry.
Concretely, there are additional contributions in Eq. (16) with
�Kn replaced by −�Kn [33]. The second derivative of the
current directly measures the dynamical spin-structure factor

∂2I (2)

∂φ2
= γ

2∑
n=0

S (�Kn, φ). (17)

While tunneling through the intermediate layer, the electrons
may not only couple to spin excitations but also to density
excitations. If t is the hopping term from the top layer to the
intermediate layer and U the on-site interaction cost in the
intermediate layer, then the effective spin coupling will be of
order J ∼ t2/U while the coupling to the density excitations
will be of order U . In the insulating phase, U/t � 1 is large,
and therefore, spin and density excitations lie at very different
energy scales. Hence, they can be probed independently. For
the contribution to the current obtained by coupling to density
excitations, the result is the same as in Eq. (17), but with the
spin structure factor replaced by the density response

Sden(q, iωn) = − 1

π
Im

∫ β

0
dτ eiωnτ 〈T ρq(τ )ρ−q(0)〉. (18)

In the kinematic region where elastic tunneling is allowed, its
contribution dominates over the inelastic tunneling current,
which is suppressed by a relative factor of |J/�|2. Here, �

is the strength of the tunneling barrier between the top and
bottom layers. Consequently, the QTM can only probe the
dynamical structure factor in the absence of elastic tunneling.
The condition for elastic tunneling, given by [33],

φ < h̄vF |�Kn| < φ + 2μ (19)

can be tuned in an experiment by changing the chemical
potential μ of the two graphene sheets.

V. COLLECTIVE MAGNETIC EXCITATIONS
OF GENERALIZED WIGNER CRYSTALS

We have already discussed in Sec. III how the QTM can
distinguish between GWCs with ferro- and antiferromagnetic
spin order by measuring the single-particle spectral function.
An even more decisive difference between the two states can

be seen in the spin-spin response, accessible through inelas-
tic tunneling as described in Sec. IV. Collective modes can
be captured by studying fluctuations around the mean-field
state. Therefore we employ an RPA calculation [41–44], see
Appendix D.

In the top panel of Fig. 2(b), a representative dynamical
spin-structure factor as defined in Eq. (15) is shown for an
antiferromagnetic GWC. We note that on top of the gapless
spin-wave modes, with bandwidth O(J ), there is a gapped
particle-hole continuum at an energy scale U � J . The spin-
wave modes become gapless at the K and K ′ points of the
Brillouin zone, which correspond to reciprocal lattice vectors
of the extended lattice with a three-site unit cell. We observe
only a single mode, which is twofold degenerate. As expected
for an antiferromagnet, the spin-wave dispersion is linear in
the long-wavelength limit. Deep within the AFM phase (U �
V, t), the spin-wave modes can be described using an anti-
ferromagnetic Heisenberg model on a hexagonal lattice and
applying a Holstein-Primakoff transformation. The resulting
spin-wave dispersion is given by

εk = 3J

2

√
1 − |γk|2 (20)

with γk = (1 + eik·b1 + eik·(b1+b2 ) )/3. The effective nearest-
neighbor spin coupling

J = 4t2

U − V
− 2X (21)

contains the usual superexchange term and contributions from
direct exchange processes X [23]. Note that because the un-
derlying lattice is triangular, there are also contributions to
the spin coupling from spin-flip processes where an electron
virtually hops to an empty site. Both the RPA formalism used
to compute the spin waves in the top panel of Fig. 2(b) and
the linear spin-wave theory, which yields Eq. (20), do not take
interactions between the collective modes into account. Such
interactions would lead to a finite lifetime and renormalization
of the energy [45]. Moreover, since the spin order is collinear,
there are no cubic interaction terms for the spin waves, which
is why we do not expect interaction effects between spin
waves to influence their dispersion significantly [46,47].

In agreement with our mean-field calculation, it is clear
from Eq. (21) that a large intersite direct exchange term
X leads to a ferromagnetic spin coupling. A representative
dynamical spin-structure factor for a ferromagnetic GWC is
shown in the bottom panel of Fig. 2(b). It was calculated
using linear spin-wave theory, see Appendix E. The magnon
spectrum can again be described using a Holstein-Primakoff
transformation [48], yielding

ε±
k = 3J

2
(1 ± |γk|). (22)

The lower magnon branch is gapless at the 	, K , and K ′
points of the Brillouin zone. In contrast to the antiferromag-
netic case, the long wavelength behavior is quadratic instead
of linear. Furthermore, the two modes are no longer degen-
erate. Instead, we have a second band, which is gapped at
zero momentum. The upper and lower magnon bands touch
at the corners κ of the reduced Brillouin zone with linear
dispersion, forming bosonic Dirac cones. We again note that
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magnon-magnon interactions renormalize the energy of the
two bands and introduce a finite lifetime to the magnons [48].
Still, the qualitative differences to the AFM case will remain.

Since the effective hexagonal lattice of the GWC requires
a two-site unit cell independent of the spin order, there is no
unit-cell doubling when going from the ferromagnetic to the
antiferromagnetic phase. This is different at half-filling, with
ν = 1 electron per site. Here, the ferromagnetic state does not
require an extended unit cell, while the competing antiferro-
magnetic 120◦ state requires a three-site unit cell. The QTM
can also be applied to the case of half-filling to determine the
dominant spin coupling. In that case, the larger unit cell of
the AFM leads to a smaller periodicity in momentum space
of both the single-particle spectral function and the dynamical
spin-structure factor. This is an additional qualitative differ-
ence between the two types of spin-order, which is present
at ν = 1 and ν = 1/3, which both stabilize triangular charge
order, but not at ν = 2/3, which stabilizes honeycomb charge
order.

VI. CHARACTERIZING QUANTUM CRITICALITY

So far, we have characterized the QTM response of spin
orders in generalized Wigner crystals. Here, we discuss the
QTM response in the vicinity of quantum phase transitions
and demonstrate its potential as a new tool to explore criti-
cal phenomena in two-dimensional materials. As a concrete
example, we focus on the half-filled Hubbard model on a
triangular lattice. For simplicity, we assume V = X = 0. For
large U/t , the ground state is the 120◦-ordered state, while
for small interaction strengths, we find a metallic phase. In
between an intermediate Kalmeyer-Laughlin type chiral spin
liquid (CSL) phase has been predicted [40,49–54].

The charge and spin gap in the three phases are schemati-
cally shown in Fig. 3(a). The spin gap closes at the transition
from the CSL to the 120◦ state. At the transition from the CSL
to the metal, both the spin and charge gap must close. While
the former is directly observable through inelastic tunneling
spectroscopy, the closing of the charge gap can be measured
using elastic tunneling spectroscopy with a QTM, where the
single-particle spectral function is obtained. On the metallic
side of the transition, one should be able to directly observe
the vanishing of the quasiparticle residue Z ∼ |U − Uc|2β , as
predicted for a second order Mott transition [2], with a critical
exponent β. Furthermore, the zero sound velocity is expected
to diverge. This is, in principle, also accessible through inelas-
tic tunneling spectroscopy by measuring the density response
in the metal. Here, we consider only one possible scenario
for a transition between the CSL and the 120◦ state, where a
continuous softening of a sharp roton mode at the K point is
observed, see Fig. 3(b). We emphasize that other transitions
are conceivable, e.g., via an intermediate Dirac spin liquid
[55]. Crucially, we argue that the QTM response would pro-
vide important information on the phases and their transitions.

We calculate the dynamical spin-structure factor of
Eq. (15), which is experimentally accessible through inelas-
tic tunneling spectroscopy in both the CSL and 120◦ phase.
We employ the RPA formalism discussed in Appendix D in
both cases. The resulting spin-wave dispersion deep within
the 120◦ phase is shown in panel (3) of Fig. 3(b). Due to

FIG. 3. Spin response across a quantum phase transition. (a) Pro-
posed zero temperature phase diagram of the half-filled triangular
Hubbard model [49,50]. The charge and spin gap are schematically
drawn as a function of interaction strength U/t . (b) Dynamical spin-
structure factor S(k, ω) in the chiral spin liquid (CSL) phase (1), at
the critical point (2) and in the ordered 120◦ phase (3). The roton
in the CSL becomes soft at the K point of the Brillouin zone at the
critical point, indicating a transition to an ordered state.

the three-sublattice structure of the ordered state, there are
three distinct modes, which become soft at the 	, K , and K ′
points of the Brillouin zone. Far from the transition, the three
modes can again be understood using linear spin-wave theory.
A Holstein-Primakoff transformation yields the following dis-
persion

εk = 3J

2

√
(1 + γk )(1 + 2γk ), (23)

where γk = 1/6
∑6

δ=1 eik·δ is a geometric factor resulting
from a sum over all nearest-neighbors δ of the triangular lat-
tice. This dispersion corresponds to a longitudinal mode in the
long-wavelength limit [42]. The remaining two modes, which
are transversal for small momenta, are obtained from εk+K
and εk+K′ . Note that along the high-symmetry line connecting
the 	 to the M point in the Brillouin zone, two of the three
modes become degenerate. Close to the transition, one of the
three modes develops a rotonlike minimum around the M
point (not shown), which becomes soft at a critical value of
Uc/t � 6.8 [42,44]. This indicates an instability of the ordered
120◦ phase, driven by out-of-plane fluctuations.
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In the CSL phase, we also calculate the dynamical spin-
structure factor. We describe the CSL by the Hamiltonian

H = −J

2

∑
〈i j〉
αβ

f †
iα f †

jβ fiβ f jα, (24)

which is up to a constant simply the antiferromagnetic Heisen-
berg Hamiltonian expressed in terms of Abrikosov fermions
fiσ . In this parton description, spin liquids appear when the
Abrikosov fermions propagate freely. This can be understood
in terms of a mean-field decoupling, which yields the free
spinon Hamiltonian [53,56]

Hsp =
∑
〈i j〉σ

Jeff
i j f †

iσ f jσ . (25)

In the chiral spin liquid, the hopping Jeff
i j = −J

∑
σ 〈 f †

iσ f jσ 〉
is chosen such that each triangle of the lattice encloses a
flux of π/2, which can be interpreted as a self-generated
emergent magnetic field spontaneously breaking time-reversal
symmetry. Due to the mean-field decoupling, there are two
energy scales: the effective spinon hopping Jeff = |Jeff

i j |, which
we keep fixed in our calculation, and the interaction energy
between spinons given by Eq. (24). Both energies scale with
J ∼ t2/U and hence decrease with increasing U . Still, the
relative value of the interaction strength between spinons
compared to their effective kinetic energy, J/Jeff, increases as
we approach the transition to the 120◦ state, implying more
fluctuations around the mean-field state.

We again employ the RPA formalism to describe collective
modes, describing quantum fluctuations around the mean-
field spinon state through interactions given by Eq. (24). In
Refs. [57–60], similar approaches were recently applied. In-
cluding quantum fluctuations, we find a sharp collective mode
below the continuum of two spinon excitations, as shown in
panel (1) of Fig. 3(b). The mode decays into the continuum
close to the κ point and has a pronounced roton minimum
at the K point, indicating short-range 120◦ antiferromagnetic
correlations. By increasing the effective interaction strength
J relative to the spinon hopping Jeff, the roton minimum be-
comes more pronounced and finally softens at a critical value
of Jc, as seen in panel (2) of Fig. 3(b). The closing of the spin
gap at the K point indicates an instability towards an ordered
phase with ordering wave vector K , which is precisely the
ordering wave vector for the 120◦ phase. Therefore the excited
states of the chiral spin liquid not only carry information about
the phase itself but also encode information about competing
ordered phases. Using inelastic tunneling spectroscopy, as
outlined in Sec. IV, we can directly study the mode softening
at the transition between the CSL and the 120◦ phase. The
critical exponent of the gap can hence be directly measured.
Experimental observation of the roton mode and its softening
would be strong evidence for the spin liquid phase and will
reveal correlations relevant for a better understanding of the
transition to the ordered state.

Note that by fixing the spinon hopping Jeff
i j , such that there

is π/2 flux per triangle, we assume that the spin liquid remains
gapped and neglect modifications of the spinon dispersion as
the roton mode closes at the K point. For example, a Dirac
spin liquid [55] might appear at the critical point or even as an

extended critical phase. The Dirac spin liquid is characterized
by Dirac cones in the spinon dispersion. In this case, the
dynamical spin-structure factor exhibits a continuum of states
down to zero frequency at the three distinct M points [61]
due to the two Dirac cones, which are separated by lattice
momentum M. This indicates the fractionalization of spin
excitations, while a well-defined roton mode at the K point
remains.

One possible challenge for inelastic tunneling spec-
troscopy is that only the portion of the Brillouin zone, where
elastic tunneling is forbidden by energy-momentum conser-
vation, can be measured, see Eq. (19). For the closing of
the spin gap, which we predict to occur at the K and K ′
points, it should always be possible to experimentally tune
the chemical potential such that only inelastic tunneling is
possible at the points of interest. When the relevant region
is closer to the center of the Brillouin zone, this may not be
achievable, though.

In a similar spirit, the QTM can be used to clarify the
nature of the transition between the metallic phase and the
GWC at fractional filling ν = 2/3 discussed in the previ-
ous sections. In Refs. [62,63], a continuous metal-insulator
transition, driven either by doping or a displacement field,
at half-filling was reported. In agreement with Ref. [35], we
find that the transition from metal to GWC is first order on
a mean-field level. The first derivative of the energy and the
compressibility, which vanishes for the ordered phase, show
a discontinuity at the transition to the metallic phase. By
contrast, we observe the charge gap to open continuously,
similarly to what was found in an exact diagonalization study
[64], indicating that the transition from metal to insulator is
not strongly first order. Further experimental and theoretical
studies may help to clarify the situation.

VII. CONCLUSIONS AND OUTLOOK

This work demonstrates how the QTM can characterize
two-dimensional quantum magnets, ranging from ordered
(anti)ferromagnets to quantum spin liquids. In particular, we
focus on antiferromagnetic and ferromagnetic generalized
Wigner crystals on a triangular moiré lattice. There is also
the possibility that the nearest-neighbor effective spin cou-
pling vanishes and the state does not magnetically order. In
that case, we expect no well-defined spin-wave modes in
the inelastic tunneling spectroscopy signal. Note that while
the general formulas for the elastic and inelastic tunneling
spectroscopy signal, as derived in Appendix A, are valid also
for finite temperatures, all of our concrete calculations were
performed in the zero temperature limit. For concreteness, we
focused on a fractional filling of ν = 2/3 electrons per site,
but GWCs have been observed for a wide range of other fill-
ings [7,8,10–12]. We expect the QTM to distinguish between
different types of magnetic order in these other cases as well.

Due to intrinsically strong interactions in atomically thin
TMDs, crystalline states can form even in the absence of an
induced moiré potential [28,65]. While such Wigner crys-
tals have a long history, their spin order, as well as their
charge order close to the crystallization transition, are still
investigated [18–20,22,66]. Moreover, first-order crystalliza-
tion transitions are forbidden in this regime due to long-range
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interactions and replaced by more exotic intermediate phases
[67–69]. It will be interesting to generalize our analysis
to these systems, as the QTM offers a new opportunity
to probe the exotic properties of melting transitions in the
two-dimensional electron gases directly. We also remark that
systems with weak moiré potentials [8] at low fillings may
serve as a controlled starting point.

Exotic superconductivity in strongly correlated regimes
appears in various two-dimensional heterostructures with and
without moiré potential [70–73]. Often, these superconduct-
ing states appear in close proximity to ordered states [72,74].
Data from elastic and inelastic scattering via the QTM may
help shed light on the collective modes that drive supercon-
ductivity in these systems.

Many exotic states, such as Wigner crystals and chiral spin
liquids, are stabilized by an external magnetic field [28,53].
This makes it interesting to explore the response of the QTM
in finite magnetic fields, which has to account for Landau-
level formation in the probing graphene layers. A detailed
description of the effects of a magnetic field on the QTM is
analyzed in Appendixes F and G.

Using the QTM to measure the excitation spectra of the re-
cently discovered fractional quantum anomalous Hall states in
twisted MoTe2 and graphene-based heterostructures [75–79]
offers the exciting possibility of obtaining direct spectroscopic
evidence for electron fractionalization.

Data, data analysis, and simulation codes are available
upon reasonable request on Zenodo [80].
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APPENDIX A: TUNNELING CURRENTS

Based on Refs. [33,34,81], we calculate the tunneling
current between two layers, described by the independent
Hamiltonians HT and HB for the top and bottom layer respec-
tively. The two layers are separated by a third intermediate
layer, serving as a tunneling barrier. The goal of this section is
to derive a unified formalism both for elastic tunneling and
inelastic tunneling. In the former case, the top layer is the
graphene sheet, the bottom layer is the sample, and the middle
layer is an insulating spacer layer that prevents hybridization
between the top and bottom layers. In the latter case, the top
and bottom layers are graphene sheets, and the middle layer
consists of the sample sandwiched between insulating layers.
For this setting, we compute the inelastic contributions to the
tunneling current. The total Hamiltonian of the system can be

written as

H = HT + HB + Hbarr + Htun. (A1)

We assume that HT , HB, and Hbarr all commute with each other
and are only coupled through the tunneling Hamiltonian

Htun =
∑
i, j

∑
ab,σσ ′

(
T ab

σσ ′ (xi, x j )c
†
σaTicσ ′bB je

iφt + H.c.
)
, (A2)

where c†
σa�i (cσa�i) creates (destroys) an electron in layer � ∈

{T, B} on lattice site xi with spin σ and sublattice a. Generi-
cally, the (sub-)lattice structure of the top and bottom layers
are not assumed to be the same. The bias voltage φ between
the top and bottom layer appears as a time-dependent phase.
Assuming that the top and bottom layers are separated by a
distance d and that a constant potential � can approximate the
tunneling barrier, a WKB approximation yields a tunneling
amplitude of

T ∼ exp

⎡
⎣−

√
� − E

�0

⎤
⎦ (A3)

with �0 := 8md2

h̄2 and E being the energy of the electron. We
assume that the electron can couple to spin excitations of the
intermediate layer, see Fig. 2(a), leading to E = Js · σ, where
s is the local magnetic moment in the intermediate layer and
J is an effective coupling. For small couplings J/� � 1, the
tunneling amplitude Eq. (A3) can be expanded [82,83]:

T = 	01 + 	1ŝ · σ (A4)

with

	1

	0
= tanh

J|s|
2�

� J|s|
2�

� 1. (A5)

We see two contributions to the tunneling amplitude: a dom-
inating term without spin-flips and a term coupling to spin
excitations, suppressed by a relative factor of ∼J/�. This
motivates the following matrix elements in our tunneling
Hamiltonian

T ab
σσ ′ (xi, x j ) = 	0

(
�rab

i j

)
δσσ ′ + 	1

(
�rab

i j

)
σ

μ

σσ ′sμ
(
Rab

i j

)
, (A6)

where �rab
i j := (xi + ra) − (x j + rb) is the relative distance

between site i on sublattice a of the top layer and site j on
sublattice b of the bottom layer, while Rab

i j := (xi + ra + x j +
rb)/2 is their midpoint. Note that the first term in Eq. (A6)
only depends on the relative distance between the two sites
and hence only contributes to elastic tunneling. Inelastic con-
tributions stem from the second term. By taking a Fourier
transform

cσa�i = 1√
N

∑
k

eik·(xi+ra )cσa�k, (A7)

T ab
σσ ′ (�r, R) = 1

N

∑
q,q′

e−iq·Re−iq′ ·�rT ab
σσ ′ (q, q′), (A8)
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we can rewrite the tunneling Hamiltonian as follows:

Htun =
∑

ab,σσ ′

∑
kk′

∑
gT gB

(
T ab

σσ ′ (q, q′)e−i(rTa·gT −rBb·gB )

× c†
σaT kcσ ′bBk′eiφt + H.c.

)
, (A9)

where r�a is the position of sublattice a within the unit cell
of layer � and g� are reciprocal lattice vectors of layer �.
Furthermore, we have q = k − k′ + gT − gB and q′ = (k +
k′ + gT + gB)/2. The tunneling matrix elements in momen-
tum space can be explicitly written as

Tσσ ′ (q, q′) = 	0(q′)δq,0δσσ ′ + 	1(q′)σμ

σσ ′sμ
q (A10)

with

sμ
q = 1

N

∑
R

eiR·qsμ(R). (A11)

Next, we calculate the tunneling current I (t ) := −e〈ṄT (t )〉
with N� := ∑

kσa c†
σ�akcσ�ak. Time-dependent perturbation

theory yields

I (t ) = − ie
∫ ∞

−∞
dt ′θ (t − t ′)〈[Htun(t ′), ṄT (t )]〉 (A12)

with ṄT = i[Htun, NT ]. By introducing the bilinear operator

A(t ) :=
∑

ab,σσ ′

∑
kk′

∑
gT gB

T ab
σσ ′ (q, q′)e−i(rTa·gT −rBb·gB )

× c†
σaT k(t )cσ ′bBk′ (t ), (A13)

one can compactly write

Htun = A(t )eiφt + A†(t )e−iφt ,

ṄT (t ) = −i[A(t )eiφt − A†(t )e−iφt ], (A14)

which yields the single-particle contribution IS to the tunnel-
ing current

IS (φ) = e
∫ ∞

−∞
dt ′θ (t − t ′)[eiφ(t−t ′ )〈[A(t ), A†(t ′)]〉

− e−iφ(t−t ′ )〈[A†(t ), A(t ′)]〉] = −2e ImUret(φ).
(A15)

We have to calculate the retarded Green’s function defined by

Uret(ω) = −i
∫ ∞

−∞
dt eiωtθ (t )〈[A(t ), A†(0)]〉. (A16)

This can be achieved by first computing the Green’s function
in the imaginary time formalism

U (iωn) = −
∫ β

0
dτ eiωnτ 〈T A(τ )A†(0)〉 (A17)

and then taking the analytical continuation iωn → ω + iη to
obtain the retarded Green’s function. Here T is the imaginary
time ordering operator. Making use of Wick’s theorem and
defining the single-particle Green’s function as Gab

� (k, iνn) :=
− ∫ β

0 dτ eiνnτ 〈T cσa�k(τ )c†
σb�k(0)〉, we arrive at the following

result

U (iωn) = 1

β2

∑
kp

νl �m

∑
ab

a′b′

∑
αβ

Maba′b′
αβ (k, p, i�m + iωn)

× Gbb′
B (k − p, iνl − i�n)Ga′a

T (k, iνl ), (A18)

where Maba′b′
αβ (k, p, iωn) is the Fourier transform of

Maba′b′
αβ (k, p, τ ) := −〈

T T̃ ab
αβkp(τ )

(
T̃ a′b′

αβkp(0)
)†〉

(A19)

with

T̃ ab
αβkp(τ ) =

∑
gT gB

Tαβ (q, q′; τ )e−i(rTa·gT −rBb·gB ) (A20)

and q = p + gT − gB, q′ = (2k − p + gT + gB)/2.
So far, the theoretical description is general. We will first

focus on the elastic tunneling spectroscopy as discussed in
Sec. II of the main text, which is achieved by setting 	1 = 0.
To proceed, we make some simplifying assumptions. Specif-
ically, we assume that the typical in-plane length scale is
very small compared to the layer-to-layer distance d , which
implies that 	0(q′) decays rapidly as a function of |q′| [84].
Hence, we can assume it to be constant for the first shell of
reciprocal lattice vectors and vanishing otherwise. As in the
main text, we focus on the special case where the top layer
is a monolayer graphene. For simplicity, we only consider
tunneling around a single Dirac point. Thus, for convenience,
we redefine momentum to be measured with respect to the
K point of the top layer Brillouin zone. Under all of these
assumptions, Eq. (A18) reduces to

U (0)(iωn) = 2|	0|2
β

∑
k,νl

GB(k, iνl + iωn)GT (k, iνl ). (A21)

The Matsubara sum can be performed by making use of the
Lehman representation

G�(k, iωn) =
∫ ∞

−∞
dε

A�(k, ε)

iωn − ε
(A22)

where A�(k, ε) = −ImG(k, ε)/π is the single-particle spec-
tral function of layer �. After taking the analytical continua-
tion iωn → ω + iη, we arrive at the final result for the elastic
tunneling current

I (0)(φ) = 4πe|	0|2
∫

dε
∑

k

( fT (ε − φ) − fB(ε))

× AB(k, ε)AT (k, ε − φ), (A23)

where f�(ε) is the Fermi-Dirac distribution for layer �.
As a second step, we calculate the inelastic contributions

to the tunneling current following Refs. [33,34], relevant for
inelastic tunneling spectroscopy, see Sec. IV of the main text.
We take both the top and bottom layers to be monolayer
graphene, while the insulating barrier is the probe of interest.
We again assume that the distance between layers is large
compared to the typical length scale of graphene, such that
we can restrict ourselves to the first shell of reciprocal lattice
vectors and take 	1 to be constant. We only consider con-
tributions from the K valley of graphene for simplicity. The
contributions from the K ′ valley are related by time-reversal
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symmetry. Under these assumptions, the sum over reciprocal
lattice vectors in Eq. (A19) reduces to a sum n ∈ {0, 1, 2}
over the three different Kn points as defined in Fig. 2(a). We
introduce the following matrix in sublattice space

T (n)
ab = e−i(rTa·g(n)

T −rBb·g(n)
B ), (A24)

which allows us to compactly write the inelastic contribution
to Eq. (A19) as

Maba′b′
αβ (k, p, τ ) = − |	1|2

2∑
n=0

T (n)
ab T (n)

b′a′ σ
μ
αβσ ν

βα

× 〈
T sμ

p+�Kn
(τ )sν

−p−�Kn
(0)

〉
. (A25)

To make further progress, we perform a unitary transfor-
mation from sublattice space to band space, where the
single-particle Green’s functions are diagonal by construction

Gλ
� (k, τ )δλλ′δkk′ = 〈k, λ|Gab

� (k, τ )|k′, λ′〉 (A26)

T (n)
kk′,λλ′ = 〈k, λ|T (n)|k′, λ′〉, (A27)

where |k, λ〉 is the Bloch-function for graphene in band λ ∈
{±1}. Inserting all of this back into Eq. (A18), performing
the Matsubara sums, and taking the imaginary part after an
analytical continuation, we arrive at the following result for
the inelastic tunneling current

I (2)(φ) = 2πe|	1|2
2∑

n=0

∫
dε

∑
k

(nBE (ε + φ) − nBE (ε))

× S (k + �Kn, ε + φ)A(n)
T B(k, ε) (A28)

with S (k, ε) being the dynamical spin-structure factor defined
in Eq. (15), nBE (ε) the Bose-Einstein distribution and

A(n)
T B(k, ε) =

∑
q,λλ′

∫
dω

(
fT (ω) − fB(ω − ε))

∣∣T (n)
q,q+k,λλ′

∣∣2

× Aλ
T (q, ε)Aλ′

B (q + k, ω − ε). (A29)

Here Aλ
� (q, ε) = −ImGλ

� (q, ε)/π is again the single-particle
spectral function of graphene for layer � and band λ. To fur-
ther simplify the convolution of Eq. (A28), we follow the same
steps as outlined in Ref. [33]. Taking the zero-temperature
limit, both the difference between Bose-Einstein and Fermi-
Dirac distributions, in Eqs. (A28) and (A29), reduce to
theta-functions limiting the integration boundaries. Next, we
make use of the fact that the Fermi-velocity vF in graphene
is very large compared to typical moiré scales h̄vF agr � μθ ,
where agr is the lattice constant of graphene and θ is the
twist angle between the top and bottom layer. Under this as-
sumption, we can approximate S (k + �Kn, ε) ≈ S (�Kn, ε).
Furthermore, we assume that the chemical potentials of the
top and bottom layers are large compared to the bias voltage
between them μT = μB ≡ μ � φ. This allows us to assume
that the density of states ρ(ε) = ∑

kλ Aλ(k, ε)/N ∼ |μ +
ε| ≈ |μ| in graphene is nearly constant for ε < φ. Finally,
we replace the matrix elements |T (n)

q,q+k,λλ′ |2 by their average,
which is unity. Under these assumptions, all momentum sums
and one of the energy integrals can be carried out explicitly,
leading to Eq. (16).

In our initial motivation for the tunneling matrix Eq. (A6),
we assumed that the inelastic contributions come from inter-
actions between the tunneling electron and low-energy spin
excitations in the intermediate layer. If we probe at higher
energies instead, we can couple to density excitations. Con-
cretely, this would correspond to a tunneling matrix Tσσ ′ ∼
δσσ ′ρ(R), where ρ(R) is the local density in the intermedi-
ate layer. In that case, one measures the density response of
Eq. (18) instead.

There are also mixed contributions to the current, propor-
tional to 	0	1, but when coupling to spin excitations they
vanish since Maba′b′

αβ ∼ σ
μ
αβ and consequently the spin sum in

Eq. (A18) is zero because Trσμ = 0.

APPENDIX B: MEAN-FIELD THEORY

The matrix hk in spinor space in Eq. (10) is given by[
h(t )

k

]
ab,σσ ′ = −tγ ab

k δσσ ′, (B1)[
h(u)

k

]
ab,σσ ′ = Uδabχ

ab
σσ ′

(
δσσ ′ − σ x

σσ ′
)
, (B2)[

h(v)
k

]
ab,σσ ′ = V

[
3(n − na)δabδσσ ′ − γ ab

k χba
σ ′σ

]
, (B3)

[
h(x)

k

]
ab,σσ ′ = X

[
3

(
χab

σ ′σ −
∑

c

χ cc
σ ′σ

)
δab

+ γ ab
k δσσ ′

∑
α

χba
αα

]
(B4)

with na = χaa
↑↑ + χaa

↓↓ and n = ∑
a na. For the nearest-

neighbor geometric factor γ ab
k , one finds

γ AB
k = 1 + eib1·k + ei(b1+b2 )·k, (B5)

γ AC
k = 1 + eib2·k + ei(b1+b2 )·k, (B6)

γ BC
k = 1 + e−ib1·k + eib2·k, (B7)

and γ aa
k = 0 ∀ a ∈ {A, B,C}, γ ba

k = (γ ab
k )∗. The vectors b1/2

span the unit cell and are defined in Fig. 1(b). The following
constant energy shift is obtained

E0 = − UN
∑

a

(
χaa

↑↑χaa
↓↓ − χaa

↑↓χaa
↓↑

)

+ V N

2

∑
ab

∑
σσ ′

γ ab
k=0

(∣∣χab
σσ ′

∣∣2 − χaa
σσχbb

σ ′σ ′
)

+ XN

2

∑
ab,σ

γ ab
k=0

(
χab

σσχba
σ̄ σ̄ − χaa

σ̄ σ χbb
σ σ̄

)
. (B8)

The mean-field result for the retarded single-particle
Green’s function of Eq. (12) is given by

G (0)(k, ω) =
6∑

μ=1

Zμ

k

ω − ε
μ

k + iη
, (B9)

where ε
μ

k are the eigenvalues of the mean-field matrix hk and
Zμ

k is the following function of the eigenvector projections
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α
μ

aσk

Zμ

k =
∑
σ,ab

e−ik·(ra−rb)α
μ

aσk

(
α

μ

bσk

)∗
(B10)

with ra describing the position of sublattice a within the unit
cell.

APPENDIX C: EFFECTIVE HOPPING
IN MF BACKGROUND

In the AFM, the dispersion of both particle bands and
the hole band is described as a free particle, with hopping
restricted to the initial sublattice it has been placed on since
the other two sublattices are inaccessible either due to energy
conservation or the Pauli principle.

The effective hopping parameters can be computed using
perturbation theory for U � V and X = 0. For particles hop-
ping on a triangular lattice spanned by the two vectors b1/2,
they are given by

t (eff)
1 = 3t2

6V
+ 3t2

2(3V − U )
+ 18t3

3V (3V − U )
+ · · · , (C1)

t (eff)
2 = −3t2

2U
− 3t2

2(U − 3V )
+ 18t3

U (U − 3V )
+ · · · , (C2)

t (eff)
0 = 3t2

6V
+ 3t2

2U
+ 6t3

UV
+ · · · , (C3)

where t (eff)
1 and t (eff)

2 correspond to the upper and lower par-
ticle band respectively and t (eff)

0 describes the hole band. For
the ferromagnet, the two topmost particle bands and the two
hole bands correspond to leading order to free hopping on a
hexagonal lattice with hopping parameter t . The remaining
two particle bands can be understood as free hopping on a
triangular lattice and effective hopping parameters

t (eff)
1 = − 2t2

2V − X
+ 4t3

(2V − X )2
+ · · · , (C4)

t (eff)
2 = 6t2

2U − 6V − 3X
+ 36t3

(2U − 6V − 3X )2
+ · · · , (C5)

assuming U � V, X .

APPENDIX D: RANDOM PHASE APPROXIMATION

To incorporate quantum fluctuations on top of mean-field
states, we use the random phase approximation (RPA) to cal-
culate the spin- and density response functions. We consider a
generic interaction Hamiltonian for fermions

Hint = 1

N

∑
k,k′,q

∑
αβγ δ

Vαβγ δ (q)c†
αk+qc†

βk′−qcγ k′cδk, (D1)

where Greek indices can be both spin and sublattice, and N
is the number of unit cells. We calculate the generic response
function

χαβγ δ (q, iωn) = 1

2

∫ β

0
dτ eiωnτ

×
∑
k,k′

〈T c†
αk(τ )cβk+q(τ )c†

γ k′ (0)cδk′−q(0)
〉
,

(D2)

which can be expressed in terms of the single-particle Green’s
function Gαβ (k, τ ) = −〈T cαk(τ )c†

βk(0)〉 as

χαβγ δ (q, iωn)=− 1

2β

∑
k,iνm

Gδα (k, iνm)Gβγ (k+q, iωn + iνm).

(D3)

In the RPA formalism, the response function fulfills the Dyson
equation

χαβγ δ (q, iωn) =
∑

α′β ′γ ′δ′
χαβα′β ′ (q, iωn)Vα′β ′γ ′δ′ (q)

× χ
(0)
γ ′δ′γ δ (q, iωn) + χ

(0)
αβγ δ (q, iωn), (D4)

which has the following solution in matrix form

χq = (
1 − χ(0)

q Vq
)−1

χ(0)
q , (D5)

where we have introduced a combined energy-momentum la-
bel q = (q, iωn). The bare response function χ(0)

q is computed
on a mean-field level:

χ
(0)
αβγ δ (q, ω) = 1

2N

∑
k

∑
μν

nμ

k+q − nν
k

ω + ε
μ

k+q − εν
k + iη

× (
α

μ

α,k+q

)∗
αν

βkα
μ

δ,k+q

(
αν

γ k

)∗
(D6)

with α
μ

βk being the projection of the eigenstate with eigenvalue
ε

μ

k . Finally, the dynamical spin-structure factor is given by

S i j (k, ω) = − 1

π
Im

∑
ab

∑
αβγ δ

e−ik·(ra−rb)

× χ
αβγ δ

aabb (k, ω)σ i
αβσ

j
γ δ, (D7)

where we have explicitly introduced sublattice indices a, b.
For the spin response in the ordered 120◦ phase and the
antiferromagnetic generalized Wigner crystal, we use an on-
site interaction for the RPA calculation. For the chiral spin
liquid phase, we work with an antiferromagnetic Heisenberg-
Hamiltonian, which can be expressed in terms of Abrikosov
fermions as Eq. (24). After performing a mean-field decou-
pling, one gets the free spinon Hamiltonian of Eq. (25). We
assume a Kalmeyer-Laughlin type of chiral spin liquid [51],
which fixes the hoppings Jeff

i j up to a gauge transformation.
Using the free spinon Hamiltonian of Eq. (25), we compute
the bare response and then apply the above-described RPA
formalism, expressing the interaction Hamiltonian Eq. (24) in
momentum space as

Hint = 1

N

∑
k,k′,q

αβ

V (q) f †
αk+q f †

βk′−q fαk′ fβk (D8)

with

V (q) = J

4

5∑
n=0

e−iq·δn , (D9)

where δn = R( nπ
3 )δ0, δ0 = (1, 0)T are the six nearest neigh-

bors in the triangular lattice and R(θ ) is a rotation matrix.
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APPENDIX E: SPIN-WAVE DISPERSION FROM
HOLSTEIN-PRIMAKOFF TRANSFORMATION

Consider the J1-J2 model on a hexagonal lattice

H = J1

∑
〈i j〉

Si · S j + J2

∑
〈〈i j〉〉

Si · S j (E1)

with nearest-neighbor spin coupling J1 and next-nearest-
neighbor spin coupling J2. We assume that |J1| � |J2| is the
dominant energy scale. Explicitly in terms of sublattices

H = J1

∑
i

3∑
δ=1

SA,i · SB,i+δ

+ J2

∑
i

3∑
δ′=1

(SA,i · SA,i+δ′ + SB,i · SB,i+δ′ ), (E2)

where Sa,i is the spin operator on sublattice a ∈ {A, B} and
site i ≡ xi. The nearest-neighbor vectors δ and δ′ are chosen
as follows:

δ1 = 0, δ2 = −b1, δ3 = −b1 − b2, (E3)

δ′
1 = b1, δ′

2 = b2, δ′
3 = b1 + b2 (E4)

with b1/2 defined in Fig. 1(b).
We consider the ferromagnetic case J1 < 0. Here the

Holstein-Primakoff transformation for sublattice A and B is
equivalent:

Sx
a,i = S − a†

i ai, (E5)

S+
a,i =

√
2S

√
1 − a†

i ai

2S
ai, (E6)

S−
a,i =

√
2Sa†

i

√
1 − a†

i ai

2S
, (E7)

with S± = Sy ± iSz. The bosonic creation and annihilation
operators describe spin excitations around the ordered ground
state, defined by ai |0〉 = 0. We expand in the total spin S � 1,
even though we are eventually interested in the S = 1/2 case.
The resulting quadratic spin-wave Hamiltonian is given in
momentum space by

H = −3J1S
∑

k

(a†
k, b†

k )H (k)

(
ak
bk

)
, (E8)

H (k) =
(

1 − 2J2
J1

(1 − ξk ) −γk

−γ ∗
k 1 − 2J2

J1
(1 − ξk )

)
(E9)

with ξk = 1/3
∑

δ′ cos(k · δ′) and γk = 1/3
∑

δ e−ik·δ. Diago-
nalizing H (k) yields the spin-wave dispersion

ε±
k = 3J1S

[
1 − 2J2

J1
(1 − ξk ) ± |γk|

]
. (E10)

The lower branch is gapless at k = 0 and the K and K ′ points
of the Brillouin zone, while the upper branch is gapped in
the long-wavelength limit. The gap between the two branches
closes at finite energy at the corners κ of the reduced Bril-
louin zone, forming bosonic Dirac cones [48]. For J2 = 0, the
two bands have the same bandwidth. For antiferromagnetic

J2 < 0, the bandwidth of the lower branch increases, while the
bandwidth of the upper branch decreases. For ferromagnetic
J2 > 0, the opposite is the case. Consequently, the main effect
of a finite next-nearest-neighbor spin coupling is to break the
symmetry between the two branches by renormalizing the
energies differently. In the basis that diagonalizes the Hamil-
tonian of Eq. (E9), the magnon operators can be written as

ak =
∑

λ∈{±}
ua

λk fλk. (E11)

In terms of the coefficients ua
λk, the spin-spin response

χ
μν

ab (k, ω) = − i

N

∫ ∞

0
dt eiωt

〈[
Sμ

a,k(t ), Sν
b,−k(0)

]〉
(E12)

is given by

χ xx
ab (k, ω) = 0, (E13)

χ
yy
ab (k, ω) = χ zz

ab(k, ω)

= S

2

∑
λ∈{±}

[
ua

λ,−k

(
ub

λ,−k

)∗

ω − ελ
k + iη

−
(
ua

λ,k

)∗
ub

λ,k

ω + ελ
k + iη

]
,

(E14)

χ
yz
ab(k, ω) = −χ

yz
ab(k, ω)

= −i
S

2

∑
λ∈{±}

[
ua

λ,−k

(
ub

λ,−k

)∗

ω − ελ
k + iη

+
(
ua

λ,k

)∗
ub

λ,k

ω + ελ
k + iη

]
.

(E15)

The total spin-structure factor is

S (k, ω) = − 1

π
Im

∑
μ

∑
ab

e−ik·(ra−rb)χ
μμ

ab (k, ω). (E16)

APPENDIX F: TUNNELING IN AN EXTERNAL
MAGNETIC FIELD

The chiral spin liquid phase encoded in the layer pseu-
dospin can be stabilized by an external magnetic field [53].
Therefore we explore the response of the QTM in finite
magnetic fields, which has to account for Landau-level for-
mation in the probing graphene layers. We consider a similar
setup to the one discussed in Sec. IV. The tunneling current
between two graphene sheets is measured as a function of
the applied bias voltage and the relative twist angle, with
the probe of interest sandwiched between the two graphene
layers. Additionally, we now apply an external perpendicular
magnetic field. This introduces a new length scale: the mag-
netic length �B = √

h̄/eB, which limits momentum resolution
by δk ∼ 1/�B ∼ √

B. Consequently, we expect that for suffi-
ciently large magnetic fields, when the magnetic length is of
the same order as the typical length scale of our probe, the
quantum twisting microscope completely loses its momentum
resolution. Intuitively, this can be understood as a conse-
quence of the flattening of the Dirac cones in graphene due
to the formation of relativistic Landau levels. Ideally, there
will be an intermediate regime where the momentum space
resolution is still sufficiently good to uniquely characterize
the dynamical response functions of the probe while already
stabilizing the phase of interest.
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The low energy description of the K = K+ (K ′ = K−)
valley of a monolayer graphene in an external gauge potential
A(r) is given by [85,86]

HK± = vF (±�xσ
x + �yσ

y) with � = p + eA. (F1)

Following Ref. [86], we introduce the relative twist angle θ

between the two layers by a constant pseudo vector potential,
which rotates the momenta. We adopt the following gauge

A�(r) = 1

e
(��K±

x ,−eBx + ��K±
y , 0)T (F2)

with the layer index � ∈ {b =̂ 0, t =̂ 1}. The eigenvalues of
Eq. (F1) are given by

εn = sgn(n)ωc
√

n (F3)

with cyclotron frequency ωc = √
2eBvF and the relativistic

Landau-level index n ∈ Z. The corresponding eigenstates are
[86]

ψ+
n,ky

(r) = Cn√
L

eikyy

(
φ

(�)
|n| (x)

−sgn(n)iφ(�)
|n|−1(x)

)
,

ψ−
n,ky

(r) = Cn√
L

eikyy

(
sgn(n)iφ(�)

|n|−1(x)
φ

(�)
|n| (x)

)
(F4)

with Cn = √
(1 + δn,0)/2 and

φ(�)
n (x) = 1√

2nn!
√

π�B

exp

[
− (x − X�)2

2�2
B

− i��K±
x (x − X�)

]

× Hn

(
x − X�

�B

)
, (F5)

where Hn(x) are Hermite polynomials and X� = �2
B(ky +

��K±
y ) is the x component of the orbit center for the semi-

classical cyclotron orbits. The quantum number ky is indexing
the degeneracy of each Landau level. The derivation of the
tunneling current is analogous to the one presented in Secs. II
and IV. We again assume that all layers are separated by
some insulating barrier and only coupled through a tunneling
Hamiltonian

Htun =
∑
rt,rb

∑
ab

(Tab(rt, rb)c†
ta(rt)cba(rb)eiφt + H.c.). (F6)

We take tunneling matrix elements of the form

Tab(rt, rb) = T̂abδ(rt − rb)[	0 + 	1Ô(rt)], (F7)

where Ô(r) is some operator that the electrons couple to
when tunneling through the intermediate layer. Concretely,
this operator might be the local magnetic moment or the local
density, as discussed in Appendix A. For simplicity, we take
the tunneling amplitude between all sublattices to be equal,
i.e., T̂ab ∼ δab + σ x

ab. First, we focus on the elastic contribution
to the tunneling current, setting 	1 = 0. In the following,
we restrict ourselves to the K valley. Analogous expressions
can be derived for the K ′ valley. In the basis of the Landau
level eigenfunction given by Eq. (F4), the elastic tunneling
Hamiltonian can be expressed as

H (0)
tun =

∑
nt,nb

∑
kt,kb

(
Tntnbktkbc†

tntkt
cbnbkbeiφt + H.c.

)
(F8)

FIG. 4. Elastic tunneling in a magnetic field. An external mag-
netic field (here B = 4 T) leads to the formation of relativistic Landau
levels in the top and bottom layer graphene. (a) Normalized tunneling
amplitudes between Landau level nt in the top layer and nb in
the bottom layer for different twist angles. (b) We consider elastic
tunneling between two sheets of graphene separated by an insulating
barrier. A bias voltage is applied between the graphene layers, and
the system is placed in a perpendicular magnetic field. We show the
elastic tunneling current as a function of the bias voltage φ and the
twist angle θ . Both graphene layers are at charge neutrality.

with

Tntnbktkb = 	0

∑
r

ψ∗
nt,kt (r)T̂ ψnb,kb (r). (F9)

A similar calculation to the one presented in Sec. II, yields
an elastic tunneling current of the form

I (0)(φ) = − 2πe
∑
nt,nb

∑
kt,kb

∣∣Tntnbktkb

∣∣2

×
∫

dε [ ft(ε) − fb(ε + φ)]

× At(ε, nt)Ab(ε + φ, nb), (F10)

where A�(ε, n) is the spectral function of layer � and Landau
level n. In the disorder-free limit we can take A�(ε, n) ∼
δ(ε − εn), which results in a current

I (0)(φ) = − 2πe
∑
nt,nb

W (nt, nb)
[

ft
(
εnt

) − fb
(
εnt + φ

)]
× δ

(
εnt − εnb + φ

)
. (F11)

The dependence on the twist angle is implicitly contained in
the tunneling amplitudes

W (nt, nb) = L4

(2π )2

∫
dktdkb

∣∣Tntnbktkb

∣∣2
, (F12)

which describe the probability for an electron in the top layer
in Landau level nt to tunnel to Landau level nb in the bot-
tom layer. Explicit expressions for W (nt, nb) are given in
Appendix G. In Fig. 4(a), we plot W (nt, nb) for four dif-
ferent twist angles at a fixed magnetic field. For very small
twist angles, the tunneling amplitude is peaked at transi-
tions between the same Landau levels |nt| = |nb|. As we
move to higher twist angles, the maxima of W (nt, nb) are
shifted towards transitions between increasingly separated
Landau levels. This observation can be explained by a sim-
ple semiclassical picture [86]: the massless Dirac fermions
of graphene perform cyclotron orbits in the presence of a
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magnetic field. The circular motion in real space induces
orbital motion also in momentum space, with an orbital radius
of κn = √

2|n|/�B. Due to the relative twist angle, the orbital
center of the top layer is shifted by �K = 2KD sin(2θ ), where
KD = |K| is the position of the Dirac point of graphene. In
this semiclassical picture, the tunneling amplitude between
Landau levels is maximized when the fermion orbits touch
each other, leading to the condition κnt ± κnb = �K . As the
twist angle increases, the difference between the Landau lev-
els must also increase to fulfill the condition. Increasing the
magnetic field has the opposite effect since κn ∼ √

B.
In Fig. 4(b), we show the elastic tunneling current as

a function of the applied bias voltage and the twist an-
gle, assuming both graphene layers are at charge neutrality.
Pronounced plateaus corresponding to transitions between
different Landau levels can be seen. The width of the plateaus
scales inversely with the magnetic length. Since the energy of
Landau levels scales with εn ∼ √|n|, the separation between
consecutive Landau levels decreases as n increases. Conse-
quently, only transitions between the first few Landau levels,
where the separation �E = εnt − εnb is larger than the energy
resolution, give a clean and unique signal to the tunneling
current.

Information regarding collective excitations of the probe,
sandwiched between the two graphene layers, is obtained
from the inelastic contribution to the tunneling current,
proportional to |	1|2. An analogous derivation to the one
presented in Sec. IV leads to an inelastic tunneling current
given by

I (2)(φ) = 2πe	2
1

∑
ntnb

[
nB(εnt − εnb + φ) − nB

(
εnt − εnb

)]
× [

f
(
εnt

) − f
(
εnb

)]
Sntnb

(
εnt − εnb + φ

)
(F13)

with

Sntnb (ω) = L4

(2π )2N

∫
dktdkb

∑
k

∣∣�ntkt,nbkb
k

∣∣2S (k, ω)

(F14)

and

�
ntkt,nbkb
k = 1

L2

∫
d2r ψ∗

nt,kt (r)eik·rψnb,kb (r). (F15)

Here, nb(ε) is the Bose-Einstein distribution, and f (ε) is the
Fermi-Dirac distribution. Their only effect in Eq. (F13) is en-
suring that only energetically allowed transitions between an
empty and a filled Landau level contribute to the current. Both
top and bottom-layer graphene are held at charge neutrality.
We see that the inelastic tunneling current still measures the
dynamical structure factor

S (k, ω) = −i
∫ ∞

0
dt eiωt

〈
[Ôk(t ), Ô−k(0)]

〉
(F16)

but expressed in the Landau level basis. Explicit expressions
for the coefficients of Eq. (F15) are given in Appendix G. The
twist angle dependence is implicitly contained in Sntnb (ω).
In Fig. 5, we show the inelastic contribution to the tunneling
current for the transition between the zeroth and first Landau
level for different magnetic fields, measuring the dynamical
spin-structure factor of a CSL. Since the primary objective of

FIG. 5. Inelastic tunneling in a magnetic field. (a) Inelastic con-
tribution to the tunneling current for an intermediate layer in the
CSL phase, measuring the dynamical spin-structure factor S(k, ω).
We show S01(ω) for different magnetic fields as a function of the
twist angle. Due to the formation of Landau levels in the top and
bottom graphene layer, momentum space resolution decreases with
increasing external field strength. Since S01(ω) corresponds to a
tunneling process from the zeroth to the first Landau level, we shift
the bias voltage by ωc. In general, Snm(ω) gives contributions around
a bias voltage of (

√
n − √

m)ωc.

this section is to characterize the response of the QTM in an
external magnetic field, we assume a fixed S (k, ω) indepen-
dent of the magnetic field. The measured response Sntnb (ω)
consists of a convolution of the structure factor S (k, ω) and
the tunneling matrix elements between the Landau levels nt
and nb of graphene. Even at a small magnetic field of B =
0.1 T, the cyclotron frequency is already ωc ≈ 30 meV, which
is much larger than the typical energy scale of the effective
spin-coupling Jeff expected for the CSL. Despite the complex
convolution, we can, therefore, easily reconstruct the inelastic
scattering response of the system by focusing on bias voltages
that are in the vicinity of the cyclotron frequency, which is the
energy difference of the zeroth and the first Landau level.

As expected, one can see in Fig. 5 that for small magnetic
fields, the sharp collective mode of the CSL is still visible
with good momentum resolution. As the magnetic field is
increased, momentum resolution is lost. Nonetheless, even at
a magnetic field of B = 8 T, the signal is strongest at the K
and K ′, a remnant of the fact that the collective mode has
its minima there. We conclude that the QTM can still pro-
vide useful momentum-resolved information about collective
modes at finite magnetic fields.

APPENDIX G: EXPRESSION FOR TRANSFORMATION
TO LANDAU-LEVEL BASIS

Here, we provide explicit expressions for Eqs. (F12) and
(F15). For that purpose, it is useful to consider the following
integral:

Iq(n, m) :=
∫ ∞

−∞
dx eiqxx

(
φ(t)

n (x)
)∗

φ(b)
m (x) (G1)

with φ(�)
n (x) defined in Eq. (F5). To make progress, we first

introduce another integral:

Fnm(b, c) :=
∫ ∞

−∞
dz ez2+bz−c2/2Hn(z)Hm(z − c). (G2)
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In terms of Fnm, the integral Eq. (G1) can be expressed as

Iq(n, m) = eiqxXt

√
2n+mπn!m!

Fnm(b = �B[�Ky − qy + i(�Kx + qx )], c = �B[�Ky − qy]) (G3)

with X� = �2
B(ky + ��Ky) and �K = (R(θ ) − 1)K. Here R(θ ) is a rotation matrix. Using standard properties of Hermite

polynomials, Fnm can be computed to be

Fnm(b, c) = √
πeb2/4−c2/2

m∑
j=0

min(n, j)∑
i=0

(−c)m− jbn+ j−2i 2m+i− jn!m!

(m − j)!(n − i)!( j − i)!i!
. (G4)

For Eq. (F15), we find

�ntkt,nbkb
q =CntCnbδ(kt − kb − qy)[Iq(|nt|, |nb|) + sgn(nt)sgn(nb)Iq(|nt| − 1, |nb| − 1)

− i sgn(nb)Iq(|nt|, |nb| − 1) + i sgn(nt)Iq(|nt| − 1, |nb|)] (G5)

with Cn = √
(1 + δn,0)/2. For the tunneling amplitudes Eq. (F12), one obtains

W (nt, nb) = L4

(2π )2

∫
dktdkb

∣∣�ntkt,nbkb
q=0

∣∣2
. (G6)
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A. Imamoğlu, Optical signatures of periodic charge distribu-
tion in a Mott-like correlated insulator state, Phys. Rev. X 11,
021027 (2021).
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