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Halperin states of particles and holes in ideal time reversal invariant pairs of Chern bands
and the fractional quantum spin Hall effect in moiré MoTe2
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An experiment in moiré MoTe2 bilayers reported the observation of a topologically ordered state with zero
Hall conductivity and half of the edge conductance of a standard time-reversal invariant quantum spin Hall
insulator [K. Kang et al., Nature (London) 628, 522 (2024)]. This state is believed to emerge at total filling one
of a pair of bands with Chern numbers C = ±1 related by time-reversal symmetry. By viewing these bands as
a pair of Landau levels with opposite magnetic fields, and starting from a parent magnet with one filled band,
we demonstrate that a class of Halperin states constructed by adding particles to the empty Chern band and
holes to the occupied Chern band have all the properties observed in MoTe2. Remarkably, these states break
time-reversal symmetry but have exactly zero Hall conductivity and helical edge conductance of e2/2h. These
states also feature a spinless composite fermion with the same charge as the electron but split equally between
both valleys. In a standard Halperin 331 state, this particle would be a neutral Bogoliubov composite fermion.
However, in our context this composite fermion is charged but remains itinerant because it is split into the two
valleys that effectively experience opposite magnetic fields. The existence of such charged itinerant particles
is a key difference between Landau levels with opposite magnetic fields and standard multicomponent Landau
levels, where all the itinerant particles are charge neutral, such as the magnetoroton of the Laughlin state or the
Bogoliubov composite fermion of the Moore-Read state. When the electron density changes away from the ideal
filling and these itinerant charged particles are added to the parent state, the disorder potential is less efficient
at localizing them as compared to standard Landau levels. This can explain why the state reported in K. Kang
et al. [Nature (London) 628, 522 (2024)] did not display a robust Hall plateau upon changing the electron density.

DOI: 10.1103/PhysRevB.110.045114

I. INTRODUCTION

The dream of realizing fractional quantum Hall states
without magnetic fields has recently come true with the ob-
servations of fractional quantum anomalous Hall effect in
twisted MoTe2 bilayers (tMoTe2) [1–4] and in pentalayer
graphene on hBN [5]. These striking discoveries follow a
line of earlier observations in moiré twisted bilayer graphene
of anomalous [6,7], anomalous integer-quantized [8,9], and
fractional Chern insulators at relatively small fields [10], as
well as integer-quantized anomalous Hall effect MoTe2/WTe2

bilayers [11,12] and in tMoTe2 [13]. These fractional anoma-
lous quantum Hall states have been conceptualized [14–34]
as the result of spontaneous magnetism leading to particles
polarizing into a flat Chern band where analogues of fractional
quantum Hall states can become favorable [35–39].

However, a recent remarkable experiment in tMoTe2 [40]
has reported the evidence of a fractionalized state that does
not fit into the standard paradigm of fractional quantum Hall
states resulting from partially filling a Chern band. This ex-
periment reported the striking observation of an insulating
state with vanishing Hall conductivity, σxy = 0, but with a
quantized fractional edge conductance of e2/2h, namely, the
system behaves as if having an edge that is half the standard
time-reversal-invariant quantum spin Hall insulator [41–43].
The moiré bands of interest for this setting originate from
the valence bands at K and K ′ valleys of MoTe2 which are
spin split due to a large uniaxial spin-orbit field and related by

time-reversal symmetry. Upon twisting two layers of MoTe2

by a few degrees, a moiré pattern with a skyrmion tex-
ture of interlayer tunneling appears [44] and gives rise to
time-reversal pairs of flat bands with opposite Chern number
originating from K and K ′ valleys [24,32,44–51]. Related
models also apply to bilayers of other transition metal
dichalcogenides, such as WTe2, where recently the double
spin quantum Hall effect has been reported [52].

The presumptive fractional quantum spin Hall effect in
tMoTe2 is observed at a filling of ν = −3 [40] (three holes
per moire unit cell). At filling ν = −1 the system behaves
as an anomalous integer quantum Hall state with σxy = e2/h
[40], indicating that holes polarize onto a single moiré Chern
band with unit Chern number. At filling ν = −2, the system
behaves as a time-reversal invariant quantum anomalous spin
Hall state with σxy = 0 and conductance of e2/h per edge,
indicating that holes equally fill a time-reversal invariant pair
of bands with opposite Chern numbers C = ±1. At filling
ν = −3, the system displays an insulating state with vanishing
Hall conductivity σxy = 0 and edge conductance of 3e2/2h
per edge. We interpret this observation as resulting from a
nontrivial incompressible state constructed at half filling of a
pair of time-reversal invariant flat Chern bands residing on top
of the simpler time-reversal-invariant vacuum of a fully filled
pair of Chern bands. Therefore, from here on we will focus on
a single time-reversal invariant pair of flat Chern bands at an
effective electron filling ν = 1 [see Fig. 1(a)].
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FIG. 1. (a) Two flat moiré bands from K and K ′ valleys and
opposite spins and Chern numbers C = ± are simplified as a pair
of Landau levels with opposite magnetic fields. (b) Profile of the
PH-Halperin 331 state where holes of the K ′ valley with spin ↓ and
electrons of the K valley with spin ↑ are added to a reference integer
Chern ferromagnet occupying valley K ′. This state has a spinless
itinerant composite fermionlike particle ( fe) with the same electric
charge of the electron but split equally into one-half in each valley
(see Fig. 2).

Reference [40] and a few subsequent theoretical proposals
[53–56] interpreted the observation of vanishing Hall effect,
σxy = 0, as indicative that the ground state has time-reversal
symmetry. We will, however, deviate from this point of view
and propose instead a fully gapped incompressible state that
spontaneously breaks time-reversal symmetry but which has
all the key properties observed in experiment, including the
vanishing Hall conductivity and the fractional e2/2h helical
conductance per edge. Our proposal is that tMoTe2 realizes
a correlated Halperin state [57] with an equal number and
electrons and holes added to a parent Ising Chern insulator
at ν = 1, which we call a PH-Halperin state. Our states are
distinct from the Halperin states constructed in the standard
quantum Hall setting [57] because the electrons reside on
Chern bands with opposite Chern number. They are also
distinct from Halperin-like states of electrons discussed in
the fractional quantum spin-Hall setting [43] because they
generically break time-reversal symmetry, and have unequal
occupation of both valleys [see Fig. 1(b)].

Interestingly, we will see that PH-Halperin states with
σxy = 0 feature an emergent spinless gapped composite-
fermion-like particle that carries a total charge identical to the
usual electron but equally split into halves in each spin-valley
resolved Chern band [see Fig. 1(b)]. Because this particle is
split into occupying equally opposite Chern bands, it behaves
like the itinerant neutral dipolar particles of the standard quan-
tum Hall setting (i.e., the magnetoroton of Laughlin states or

the Bogoliubov composite fermion of the Moore-Read state
[58]), even though it is charged. The existence of these itiner-
ant charged particles is a unique feature of states constructed
in pairs of Landau levels with opposite magnetic fields not
present in ordinary Landau levels. These particles are harder
to localize by the disorder potential as a result of an uncer-
tainty relation between the average position and the relative
distance of the two components residing in opposite Chern
bands. The disorder potential tries to localize their average po-
sition, while interactions try to localize their relative distance.
As a result, there is a competition, and when interactions dom-
inate, disorder will be less effective at pinning and localizing
these itinerant charged particles and the corresponding analog
of the Hall plateau of these PH-Halperin states is expected
to be more fragile relative standard quantum Hall states. This
can explain why Ref. [40] did not observe a robust plateau,
but instead a smooth deviation of the Hall conductivity away
from zero as the electron density was changed away from the
ideal filling where the incompressible state was observed.

II. IDEAL MODEL AND SYMMETRIES

We consider a highly idealized model in which the Chern
bands arising from both valleys of tMoTe2 (labeled ↑ and ↓)
are viewed as the lowest Landau levels of a Hamiltonian for
two species of particles experiencing opposite magnetic fields:

H↑ = (p − A0 − δA↑)2

2m
, H↓ = (p + A0 − δA↓)2

2m
. (1)

Here A0 is a spatially uniform magnetic field ∇ × A0 = B0ẑ
of equal magnitude and opposite signs on the two valleys. The
area of the moiré unit cell can be interpreted as the area of one
flux quantum aUC = 2π l2

B = 2π/B0 [59]. One crucial symme-
try of the Hamiltonian and the states that we will consider is
the U↑(1) × U↓(1) associated with separate particle number
of each valley. This symmetry allows us to couple the system
to two probe gauge fields, with vector potentials denoted by
δA↑,↓, which we view as weak and slowly varying in space
and time. Thus, the net magnetic and electric fields experi-
enced by the particles in the two valleys can be different:

∇ × (A0 + δA↑) ≡ B↑
e ẑ, E↑

e ≡ −∂tδA↑,

∇ × (−A0 + δA↓) ≡ B↓
e ẑ, E↓

e ≡ −∂tδA↓. (2)

Another important symmetry of our Hamiltonian is time
reversal, T = iσ yK (T 2 = −1), which exchanges the two
valleys (present for δA↑,↓ = 0). However, the states of our
interest will spontaneously break this symmetry. For con-
creteness, it is useful to imagine that the system has an
interacting Hamiltonian where particles in the same and in
opposite valleys interact with different potentials V↑↑(ri − r j )
and V↑↓(ri − r j ) [60]. We will imagine that the relevant
physics emerges from projecting this Hamiltonian onto the
pair of lowest Landau levels from Eq. (1), but we will not
make explicit detailed use of the specific microscopic form of
the interactions in our discussion.

III. HALPERIN STATES OF PARTICLES AND HOLES

We start from an Ising Chern magnet as a reference vacuum
in which particles fully occupy the valley with spin ↓ with
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corresponding Chern number C = −1. A common trick in
this setting that allows us to map the problem into a usual
quantum Hall setting of two two-components with the same
magnetic field is to perform a particle-hole conjugation on the
↓ particles (see, e.g., Refs. [60–62]). Thus, effectively, the ↑
particles and the ↓ holes behave like two species of particles
in the same field B↑

e = B↓
h = B0 in the lowest Landau level

with a total number of flux quanta Nφ = A/aUC = B0A/2π

(for δA↑,↓ = 0). This is a setting well studied in multilayer
and multicomponent quantum Hall systems, but one important
difference is that the sign of interflavor interaction, V↑↓, would
be flipped upon such partial particle-hole conjugation.

To construct states with the same total electron density as
the Ising Chern magnet reference vacuum, we add as many
holes to the C = −1 band as electrons to the C = 1 band,
N↑

e = N↓
h = Nφ − N↓

e . We will assume that these electrons
and holes are forming a correlated Halperin mmn state [57]
with wave function:

�PH
mmn =

N↑
e∏

i< j

(zi − z j )
m

N↓
h∏

i< j

(wi − w j )
m

N↑
e ,N↓

h∏
i, j

(zi − w j )
n, (3)

where m is an odd integer, n is a non-negative integer, and we
have omitted the standard exponential factors of the lowest
Landau-level wave functions. Notice that for n > 0 in the
above states, electrons of the ↑ component have repulsive
correlations with the holes of the ↓ component, suggesting
that to stabilize these states there needs to be an effective
attraction between electrons of ↑ and ↓ components or at least
a reduction of the repulsion V↑↓ relative to V↑↑, so electrons
gain correlation energy relative to those they have in the Ising
Chern magnet vacuum. Investigating the mechanism behind
these energetics is an important problem, but in this paper our
goal will instead be to understand the properties of these PH
Halperin states under the assumption that they are indeed the
stable incompressible ground states of the system.

We note that ideal Hamiltonians [63,64] for which the
above wave functions would be exact ground states can be
constructed by having intracomponent Haldane pseudopo-
tentials that penalize the approach of particles in angular
momentum channels smaller than m and penalizing the ap-
proach of ↑ particles and ↓ holes in angular momentum
channels smaller than n, which could be useful for investigat-
ing the appearance of these states in future numerical studies
[65]. Also, since the above wave functions are holomormphic,
they can also naturally be extended to the case of vortexable
Chern bands [66]. However, we emphasize that the detailed
form of the wave function and our assumption that these states
are realized in the lowest Landau level of Eq. (1) is simply for
concreteness, and can be generalized to higher Landau levels
and other flat Chern bands, because we will focus on universal
and topologically robust properties of these states.

IV. BULK PROPERTIES OF PH-HALPERIN STATES

We begin by establishing a matrix generalization of the
Streda relation between valley-resolved magnetic fields and
particle densities. To do so, we hypothetically allow the net
effective magnetic fields experienced by the ↑ electrons and
↓ holes to be slightly different from the background field

B0 generated by the moiré potentials by considering nonzero
δA↑,↓ in Eq. (2). The field experienced by the ↓ holes is
B↓

h = −B↓
e . We also allow the number of particles to be dif-

ferent (N↑
e �= N↓

h ) relative to the ideal ground state. Let us
imagine that the PH-Halperin state is placed on a manifold
of area A without boundaries such as the torus or the sphere.
Matching the areas of the droplets of both spin components
from Eq. (3) so no fractional quasiparticles are added and the
system remains in its deformed incompressible ground state
under these slightly modified conditions leads to the following
relations in the thermodynamic limit:(

B↑
e

B↓
h

)
= 2π

(
m n
n m

)(
n↑

e

n↓
h

)
, (4)

with n↑
e = N↑

e /A, n↓
h = N↓

h /A. By converting back to electron
variables, B↓

e = −B↓
h , n↓

e = B↓
h /2π − n↓

h , we obtain the fol-
lowing layer-resolved Streda relations:(

n↑
e

n↓
e

)
= 1

2π

(
m

m2−n2
n

m2−n2

n
m2−n2

m
m2−n2 − 1

)(
B↑

e

B↓
e

)
. (5)

The magnetic fields in the above formula are the same as in
Eq. (2), which can be written as B↑

e = B0 + δB↑
e , B↓

e = −B0 +
δB↓

e , where B0 is interpreted as the effective magnetic field
created by the moiré potential, and δB↑

e , δB↓
e are viewed as

extra perturbations. For example, if a usual physical magnetic
field, B, was applied to the moire material, we would replace
δB↑

e = δB↓
e = B.

Equation (5) is one of the central results of our paper,
since, as we will see, a wealth of physical properties of the
PH Halperin states can be derived from Eq. (5) using a few
reasonable physical assumptions. For example, the electron
filling of the moiré bands for each spin component can be
obtained by restoring the magnetic fields to the value gen-
erated by the moiré potential in the absence of perturbations
(B↑

e = −B↓
e = B0), and are given by

ν↑
e ≡ 2πn↑

e

B0
= 1

m + n
, ν↓

e ≡ 2πn↓
e

B0
= 1 − 1

m + n
. (6)

Moreover Eq. (5) also govern the valley-resolved current
density response to local electric fields in the bulk. This can
be derived by imagining that the PH Halperin states are placed
in a geometry without boundaries so there is a full gap to all
excitations and that the probe fields δA↑,↓ are varied weakly
and slowly in time and space. Assuming that the ground state
evolves adiabatically under such perturbations and that Eq. (5)
holds locally in space and time, one can derive a relation
between local currents and electric fields. This follows from
combining the continuity equations for the particle densities
and recasting Faraday’s laws as 2D continuity equations as
follows:

∂t n
↑,↓
e = −∇ · j↑,↓

e , ∂t B
↑,↓
e = −∇ · (E↑,↓

e × ẑ). (7)

By combining the above with Eq. (5) and assuming that
currents are locally orthogonal to electric fields, one obtains
the following valley resolved Hall conductivity matrix:(

j↑e
j↓e

)
= e2

h

(
m

m2−n2
n

m2−n2

n
m2−n2

m
m2−n2 − 1

)(
E↑

e × ẑ
E↓

e × ẑ

)
, (8)
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where we have restored the explicit units of electrical conduc-
tivity for convenience. The above formula demonstrates that
the PH Halperin states feature a nontrivial quantized Hall-
drag response, whereby an electrical field driving only one
valley can induce a quantized Hall current in the other valley,
analogous to that of standard Halperin states in Landau levels
[67]. From the above, we can get the valley-resolved electric
currents in response to a net physical electrical field that acts
identically on both valleys to be

j↑e = e2

h

(
1

m − n

)
E × ẑ, j↓e = e2

h

(
1

m − n
− 1

)
E × ẑ,

(9)

and the net bulk electrical conductivity is therefore the sum of
the above coefficients and given by

σxy = e2

h

(
2

m − n
− 1

)
. (10)

Interestingly, we see that the Hall conductivity of the
PH-Halperin states is not simply the sum or the difference of
the filling factors of the two valleys from Eq. (6). And even
more remarkably, the above implies that the subset of PH
Halperin states satisfying m = n + 2 have exactly zero Hall
conductivity σxy = 0 and fractional-1/2 spin-resolved Hall
conductivities of equal magnitude and opposite signs:

j↑e = −j↓e = e2

2h
E × ẑ. (11)

In other words, their bulk electrical response would be
exactly half of a standard time-reversal invariant quantum
spin-Hall insulator state [41–43] with valley number conser-
vation in which the two valley-resolved bands with opposite
Chern would be fully occupied. However, notice that such
PH Halperin states are not time-reversal invariant. This can
be seen from Eq. (6) by noting that, generically, the fillings
of the two components are different ν↑

e �= ν↓
e , for example,

the PH 331 state the fillings are ν↑
e = 1/4 and ν↓

e = 3/4 [see
Fig. 1(b)].

To close this section, we note that the Streda relations for
the change of the electron and spin densities added to the
ground state in response to applying a small usual physical
magnetic field, B, follow directly from Eq. (5), and are

δne =
(

2

m − n
− 1

)
B

	0
, δn↑

e − δn↓
e = B

	0
. (12)

Therefore, we see that for the special states m = n + 2,
the state is expected to be realized at the same density as
the unperturbed ground state in zero field, and the spin den-
sity changes linearly with magnetic field with a coefficient
which is 1/2 of the one expected for the standard noninteract-
ing time-reversal invariant quantum spin Hall state with spin
conservation [68].

V. EDGE PROPERTIES OF PH HALPERIN STATES

Let us now analyze the properties of the PH-Halperin states
at the edge. From analogy to fractional quantum Hall states

of correlated holes, such as the ν = 2/3 particle-hole conju-
gate to the Laughlin state [69–73], one expects a nontrivial
edge profile in which the ideal bulk PH-Halperin state might
be surrounded by a strip with fillings (ν↓

e , ν↑
e ) = (1, 0),

since the PH-Halperin droplet is carved out from a parent
Ising-Chern magnet vacuum of the ↓ valley [see Fig. 1(a)],
although more complex variants are certainly possible (see
e.g., Ref. [74]). Given the complexities of the edge even in
standard quantum Hall settings and considering the additional
uncertainties about physical ingredients that are special to
moiré materials, we will not attempt here to develop a detailed
microscopic description of the edge. Instead we will follow
the spirit of thermodynamic considerations such as those dis-
cussed in Ref. [75], and appeal to the assumption that in each
edge there is good local thermodynamic equilibration between
the particles in each of the valleys but no intervalley scattering
processes that violate the conservation of the number particles
in each valley, and thus we will assume that different chemical
potentials for each valley at the edge are well defined.

Let us begin by describing the edge when the system is
globally in thermodynamic equilibrium (all edges included).
There are two global chemical potentials μ↑

e , μ↓
e for electrons

in each valley. Particles in each valley are confined to some
area A by electrostatic potentials with an associated force
E↑,↓

0 = −n̂E↑,↓
0 , where E↑,↓

0 > 0 and n̂ is the local unit vector
normal to the edge and pointing outwards from the sample
(see Fig. 2). From Eq. (11), we expect that there are net cur-
rents in equilibrium at the edge, which are flowing in opposite
directions for the two spin components, and which for our
conventions would be counterclockwise for the ↑ particles and
clockwise for the ↓ particles (see Fig. 2). Following standard
principles of equilibrium thermodynamics, we can define a
grand-canonical free energy, G = E − μ↑

e N↑
e − μ↓

e N↓
e , where

E is the total energy of the system, whose differential is

dG = T dS − N↑
e dμ↑

e − N↓
e dμ↓

e − AM↑
e dB↑

e

− AM↓
e dB↓

e + · · · , (13)

where M↑,↓
e are the particle-number magnetization densities

for the two valleys and the · · · include the work differentials
of variations of the Hamiltonian with respect to parameters
other than B↑,↓

e . From the above, we obtain the following
Maxwell relations:

∂M j
e

∂μi
e

= ∂ni
e

∂B j
e

, i, j ∈ {↑,↓}. (14)

Now from the assumption of incompressibility of the bulk,
one concludes that any changes of the magnetizations, δM↑,↓

e
in response to small variations of the chemical potentials
δμ↑,↓

e which remain within the bulk gap must arise entirely
from variations of the currents localized at the edges of the
system. By integrating the relation between magnetization and
current densities j↑,↓

e = ∇ × (ẑM↑,↓
e ), one gets the relation

between edge currents and magnetization I↑,↓
e = M↑,↓

e ẑ × n̂
[75]. Then by computing the right-hand-side of Eq. (14) from
Eq. (5), one obtains the relation between variations of edge
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FIG. 2. (a) Depiction of the half-quantized helical current trans-
port at the edge of the PH-Halperin states with m = n + 2.
(b) Quasiparticle lattice of the 331 PH-Halperin state. The most
elementary anyons are denoted by ve↑, ve↑, vh↑, vh↑. Their bound
states include charged spinless composite-fermion-like particles fe

and fh and the neutral spin-carrying semions s↑ and s↓. c is the local
intervalley Cooper pair, e↓ is the local electron in valley ↓ and m↑ is
a local charge-neutral spin-1 intervalley magnon. Spinless particles
along the pure charge axis are itinerant charged particles, which is
impossible in usual Landau levels where charged particles are also
drifting particles which experience Lorentz force.

currents and global chemical potentials:

(
δI↑

e

δI↓
e

)
= (ẑ × n̂)

e2

h

(
m

m2−n2
n

m2−n2

n
m2−n2

m
m2−n2 − 1

)(
δμ↑

e

δμ↓
e

)
. (15)

Now, following the spirit of the Landauer-Büttiker ap-
proach [76,77], in a transport experiment one expects that
different edges connecting various voltage leads generally
have different chemical potentials for the two spin com-
ponents. Since the net direction of the ↑,↓ edge currents
is opposite, we assume that the chemical potential of
these modes is in equilibrium with the voltage lead from
which each of them emanates, in analogy to the standard
Landauer-Büttiker picture for the quantum-spin-Hall effect
[41]. In particular, we see from the above that the total electric

current at the edge, δIe = δI↑
e + δI↓

e , is

δIe = (ẑ × n̂)
e2

h

(
1

m − n

)
δμ↑

e

− (ẑ × n̂)
e2

h

(
1 − 1

m − n

)
δμ↓

e , (16)

and, therefore, we see that for the special PH Halperin states
of our interest with m = n + 2, each edge behaves as a
helical edge conductor with opposite current directions for
each spin and fractional conductance e2/2h, namely, half
of the usual quantum spin Hall effect, in agreement with
experiment [40]:

δIe = (ẑ × n̂)
e2

2h
(δμ↑

e − δμ↓
e ). (17)

VI. BULK QUASIPARTICLES OF PH HALPERIN STATES

There is a key distinction between standard multicompo-
nent systems in Landau levels with the same magnetic field,
and our current setting of pairs of Landau levels with oppo-
site magnetic fields becomes evident when we analyze their
quasiparticles. In standard Landau levels, only fully neutral
particles are itinerant and can move in straight trajectories in
the presence of magnetic field. Such itinerant neutral particles
include the excitons in integer quantum Hall ferromagnets,
the magnetoroton in the Laughlin state, and the Bogoliubov
composite fermion in paired states such as the Moore-Read
or the standard 331 Halperin state [58,78]. In the current
setting, however, it is possible to have charged quasiparticles
that are itinerant, when the charge of the particle is equally
split between the two valleys that experience opposite mag-
netic fields. The converse of this is also possible, namely,
in the current setting there are neutral particles that behave
as the ordinary charged particles in standard Landau lev-
els, as demonstrated for the intervalley excitons of the Ising
Chern magnet which have exactly opposite charges in the
two Landau levels with opposite magnetic field, as discussed
in Refs. [60–62]. Therefore, we would like to introduce a
notion to distinguish particles not only as charged and neutral
but also as itinerant or drifting quasiparticles. Quasiparticles
carry definite valley charges, which we denote by a vector
(δN↑

e , δN↓
e ), indicating their total electric charge in each of

the two valleys (in units where the electron charge is 1).
Thus the total quasiparticle electric charge is δN↑

e + δN↓
e .

Now, in the context of a pair of Landau levels where valleys
have opposite magnetic fields, we will say that a quasiparticle
is itinerant if their valley polarization is zero, namely, if

δN↑
e = δN↓

e , (itinerant quasiparticle), (18)

otherwise we will call the quasiparticle a drifting quasipar-
ticle. For example, when we add quasiparticles to the trivial
vacuum of fully empty valleys, the electrons would have num-
bers (δN↑

e , δN↓
e ) = (1, 0) or (δN↑

e , δN↓
e ) = (0, 1), and thus

they would be charged drifting particles, whereas a Cooper-
pair-like bound state of two electrons with (δN↑

e , δN↓
e ) =

(1, 1) would be a charged itinerant particle. Conversely, an
ordinary exciton with (δN↑

e , δN↓
e ) = (1,−1), which can be

added to the Ising Chern magnet vacuum, would be a neutral
drifting particle.
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Since the PH Halperin states are Abelian topologically
ordered states, their topological properties can be captured by
an Abelian Chern-Simons theory with a K-matrix and layer
resolved charge vectors [79] given by

K =
⎛
⎝m n 0

n m 0
0 0 −1

⎞
⎠, q↑ =

⎛
⎝1

0
0

⎞
⎠, q↓ =

⎛
⎝ 0

−1
1

⎞
⎠. (19)

All the bulk quasiparticles are expected to be fully gapped
and can be labeled by vectors of integers lT = (l1, l2, l3).
Their self-exchange statistical angle (topological spin) and
layer resolved charges are given by θl = π lT K−1l, δN↑/↓

e =
qT

↑/↓K−1l, while their braiding statistics (statistical phase
of a particle after full loop around another particle) is
θl,l′ = 2π lT K−1l′ [79]. The most elementary anyons are

ve↑ =
⎛
⎝1

0
0

⎞
⎠, vh↑ =

⎛
⎝−1

0
0

⎞
⎠, ve↓ =

⎛
⎝ 0

−1
0

⎞
⎠, vh↓ =

⎛
⎝0

1
0

⎞
⎠,

(20)

where ve↑, vh↑ denote the Laughlin-type quasielectron and
quasihole particles in the ↑ component and, similarly, ve↓, vh↓
the corresponding quasiparticles for ↓ component. All these
quasiparticles are anyons with fractional self-exchange sta-
tistical angle θv = πm/(m2 − n2). The quasielectrons have
a bump of electron density relative to the background PH
Halperin ground state, and the quasiholes a depletion, so the
layer-resolved charges of these quasiparticles are

ve↑ : (δN↑
e , δN↓

e ) =
(

m

m2 − n2
,

n

m2 − n2

)
. (21)

The corresponding layer-resolved charges of the quasielec-
tron ve↓ are obtained by swapping ↑↔↓ in the above formula,
and those of the quasiholes vh↑, vh↓ are minus those of the
corresponding quasielectrons. From the above, we see that the
v-type anyons are drifting quasiparticles because they have
unequal occupation of the two valleys whenever m �= n, such
as in the PH 331 state. Interestingly, we see that the total
charge of these quasiparticles is

ve↑ : δNe = 1

m − n
, (22)

and, therefore, for the PH-Halpering states with m = n +
2, these quasiparticles carry 1/2 of the electron charge
which is unequally split between both valleys according to
Eq. (21). This contrasts with the standard Halperin states in
multicomponent Landau levels (LLs), whose smallest quasi-
particles have charge (δNe)LLs = 1/(m + n) which is split as
(δN↑

e , δN↓
e )LLs = (m/(m2 − n2),−n/(m2 − n2))). For exam-

ple the standard, 331 Halperin state has smallest quasiparticles
with total charge 1/4 which is split as (3/8,−1/8), whereas
our 331 PH Halperin state has the smallest quasiparticles with
total charge 1/2, which is split as (3/8, 1/8). This difference
can be understood as a result of the particle-hole conjugation
of the ↓ component, which basically maps the layer pseu-
dospin polarization of the quasiparticle in the usual Landau
levels onto the total quasiparticle charge in the current setting:
(δN↑

e − δN↓
e )LLs → (δN↑

e + δN↓
e ).

Let us now consider some of the quasiparticles that are
obtained as bound states of pairs of the above elementary

anyons. The l vectors of these bound states are obtained by
adding those of the elementary anyons, and we label them as

fe = ve↑ × ve↓ =
⎛
⎝ 1

−1
0

⎞
⎠, fh = vh↑ × vh↓ =

⎛
⎝−1

1
0

⎞
⎠,

(23)

s↑ = ve↑ × vh↓ =
⎛
⎝1

1
0

⎞
⎠, s↓ = vh↑ × ve↓ =

⎛
⎝−1

−1
0

⎞
⎠.

(24)

The layer-resolved charges and the self-statistical exchange
phase of these quasiparticles are

fe : (δN↑
e , δN↓

e ) =
(

1

m − n
,

1

m − n

)
, θ f = 2π

m − n
, (25)

s↑ : (δN↑
e , δN↓

e ) =
(

1

m + n
,− 1

m + n

)
, θs = 2π

m + n
.

(26)

The particle fh has the same statistics and opposite layer-
resolved charges of fe, while s↓ has the same statistics and
opposite charges of s↑. Therefore, we see that fe, fh are
spinless particles with equal occupations of both layers and
therefore are also charged itinerant particles, while the s↑, s↓
are neutral spinful particles with opposite occupations of lay-
ers, and thus are drifting particles.

Remarkably, for the special class of PH-Halperin with
m = n + 2 that are consistent with the experiments of
Ref. [40], the fe, fh particles are spinless fermions (θ f = π )
with the same charge of an ordinary electron and hole, re-
spectively, but fractionalized onto halves residing on each
spin component (δN↑

e , δN↓
e ) = ±(1/2, 1/2). Despite being

charged, these particles are therefore intinerant quasiparti-
cles. Moreover their fermionic statistics imply that if a finite
density of these particles is added to the PH-Halperin state
vacuum, they can naturally form a compressible metallic
itinerant state. In contrast for these special states with m =
n + 2, the s↑, s↓ have, in general, fractional self-statistics
(θs = π/(n + 1)) and are drifting nonintinerant particles.

The spinless fermions fe, fh are nonlocal emergent parti-
cles and should not be confused with the microscopic electron
or hole, even though they have the same statistics and to-
tal charge. This can be seen, for example, by noting that
the statistical phase for moving fe around a loop encir-
cling the anyon ve↑ is θ fe,ve↑ = 2π/(m − n). For the special
states with m = n + 2, this is θ fe,ve↑ = π , which implies that
this fermion fe sees the anyon ve↑ as an effective π -flux
Abrikosov-like vortex. Such resemblance to the quasiparticles
of a superconductor is not a coincidence; it is known that in or-
dinary two-component Landau levels, the Halperin states with
m = n + 2 can be thought of as an interlayer paired state of
composite fermions [80–86]. In ordinary Landau levels, the
f particles would have been the charge neutral Bogoliubov
fermions descending from the composite fermion upon pair-
ing, and would have been an itinerant particle with opposite
charges in the two layers. However, as we discussed before,
our setting of valleys with opposite magnetic fields maps into
the traditional Landau-level setting after particle-hole con-
jugating one of the valleys. Under such transformation, the
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Bogoliubov composite fermion becomes a charged particle
but retains its itinerant character.

To close this section, we would like to connect the above
fractionalized quasiparticles to the standard local microscopic
particles. The standard electrons and holes with valley spins ↑
and ↓ can be obtained as

e↑ = (ve↑)m × (vh↓)n =
⎛
⎝m

n
0

⎞
⎠,

e↓ = (vh↑)n × (ve↓)m =
⎛
⎝−n

−m
0

⎞
⎠, (27)

h↑ = (vh↑)m × (ve↓)m =
⎛
⎝−m

−n
0

⎞
⎠,

h↓ = (ve↑)n × (vh↓)m =
⎛
⎝n

m
0

⎞
⎠. (28)

The above are local fermions, with charges (δN↑
e , δN↓

e ),
respectively, given by {(1, 0), (0, 1), (−1, 0), (0,−1)}. Inter-
estingly, the intervalley Cooper-pair-like boson obtained as
the bound state of two ordinary electrons in the two valleys
can also be alternatively obtained as the bound state of an
(m − n) multiple of fe composite-fermion-like particles:

c = e↑ × e↓ = ( fe)m−n =
⎛
⎝m − n

n − m
0

⎞
⎠. (29)

The above can be recognized as such an intervalley Cooper
pair because it is a self-boson which is local (i.e., has triv-
ial full braiding with any other quasiparticle modulo 2π )
and carries charges (δN↑

e , δN↓
e ) = (1, 1). For the PH-Halperin

states with m = n + 2 that are consistent with experiments,
Eq. (31) can be interpreted as saying that a bound state of
a pair fe composite-fermions forms an ordinary Cooper-pair
or, alternatively, that the fe composite fermion is one-half
of an ordinary Cooper pair. We see that the Cooper pair is
therefore the simplest fully local itinerant charged particle in
these states.

Conversely, the intervalley magnon exciton can be ob-
tained either as a bound state of an ↑ electron and a ↓ hole
or, alternatively, as an (m + n) multiplet of the s anyons from
Eq. (24), as follows:

m↑ = e↑ × h↓ = (s↑)m+n =
⎛
⎝m + n

m + n
0

⎞
⎠, (30)

and, analogously, we also have a valley-spin raising particle:

m↓ = e↑ × h↓ = (s↓)m+n =
⎛
⎝−m − n

−m − n
0

⎞
⎠. (31)

These local magnon-like particles carry charges
(δN↑

e , δN↓
e ) given, respectively, by (1,−1) and (−1, 1), and

thus are neutral spin-1 bosons, but are drifting (nonintinerant)
particles. We see, therefore, that the PH-Halperin states realize
a beautiful and colorful pattern of spin-charge separation.

VII. LOCALIZATION OF ITINERANT VS DRIFTING
PARTICLES AND THE ROBUSTNESS

OF THE HALL PLATEAU

We believe that the existence of itinerant charged particles
can have important consequences on the robustness of the
Hall plateau when the system is doped away from the precise
filling of the ideal incompressible state. To argue for this,
we begin by reviewing the mechanism behind the existence
of a Hall plateau for standard Laughlin or Halperin states
in the usual Landau levels in the same magnetic field. The
ideal fractional quantum Hall fluids exist at some precise
fractional proportion between the electron density and the
magnetic field. However, when the magnetic field or electron
density are slightly changed away from this exact proportion,
an experimental Hallmark of the fractional quantum Hall
effect is that σxy remains precisely quantized at the value
associated with the ideal fluid as if this proportion had not
changed. This occurs because the excess particles away from
the ideal filling are accommodated in the form of Laughin-like
quasiparticles added on top of the ideal vacuum. In standard
Landau levels, these quasiparticles are charged and therefore
drifting (nonitinerant), and thus easily localized and pinned by
the disorder potential. For sufficiently small densities of these
quasiparticles, they remain pinned at disconnected locations
and surrounded by the ideal Laughlin-like fluid with its chiral
edges intact and not connected through the bulk of the sample.
Therefore, experiments probing these edges still observe the
same quantized behavior as if the extra pinned quasiparticles
were not there.

Therefore, we see that the robustness of the Hall plateau
requires several key ingredients beyond the mere existence of
a parent ideal incompressible fluid, and a particularly crucial
ingredient is that the disorder potential is effective at pinning
the charged quasiparticles added to the parent ideal fluid. As
we have mentioned, in the traditional Laughlin and Halperin
states in standard Landau levels, all charged quasiparticles are
drifting particles (such as the Laughlin anyon or the electron)
whereas the itinerant particles are all neutral particles (such
as the magnetoroton or the Bogoliubov-composite-fermion of
the Moore-Read state). Because charged particles are nonitin-
erant, they can be easily pinned by the disorder potential, and
Hall plateaus tend to be robust.

However, in the current context of time-reversal invariant
pairs of Landau levels with opposite magnetic fields, charged
quasiparticles can be itinerant (such as the charged fe, fh

composite fermions of PH Halperin states discussed in the
previous section). Therefore, when a net excess charge is
added to the ideal incompressible PH Halperin state so the
filling deviates slightly from the ideal total filling ν = 1,
the system might be doped with a finite density of itinerant
charged quasiparticles which cannot be efficiently pinned by
the disorder potential. In the special case of the fe, fh parti-
cles, these are moreover charged fermions with can naturally
form a Fermi-fluid-like metallic state at finite density. These
itinerant charged particles will easily move across the sam-
ple and electrically connect the initially disconnected edges
through the bulk. The disorder potential will scatter them but
it will be much less efficient at pinning and localizing them,
as compared to the drifting quasiparticles. This will lead to
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smooth deviations of the Hall and longitudinal conductivities
away from those of the parent ideal PH Halperin state and,
in particular, degrade the quantization of its edge conduc-
tance. This is consistent with the experimental observations
of Ref. [40], which observed a smooth variation of the lon-
gitudinal and Hall resistances away from the presumed ideal
filling of ν = −3 and no clear sign of a robust Hall plateau.

Notice that this mechanism might not be as efficient at
destroying the Hall plateau of a simple Ising Chern magnet in
which particles occupy a single valley-resolved Chern band,
such as the state believed to be realized at ν = −1 in Ref. [40].
This is because, in this case, we expect that the simplest
itinerant charged quasiparticle is the Cooper-pair-like bound
state of two electrons in separate valleys. Notice that such a
Cooper pair would have to be made from two electrons on
the two valleys, and since one of the valley-resolved Chern
bands would be fully occupied in the Ising Chern magnet at
ν = −1, then this Cooper pair would have put an electron on
one of the empty and gapped moire bands that is not related by
time reversal to the occupied band. Thus, such Cooper-pair-
like bound states might have a larger gap than that of single
electrons and holes (which are not itinerant) or perhaps no
good Cooper-pair-like bound state of these electrons which
is well separated from the continuum might appear at low
energies. Thus, it might not be energetically favorable to add
it to the Ising Chern magnet vacuum when the charge density
deviates away from the ideal filling but instead to add usual
electrons or holes which are drifting (not itinerant) and thus
more easily pinned by the disorder. This is consistent with
the observation of the Hall plateau for the state at ν = −1
in Ref. [40].

In the Appendix, we discuss a toy model for bound states
of two particles in the case of opposite and also the same
magnetic fields. This model illustrates that when the bound
state is a charged but itinerant particle, there is a competi-
tion between the interaction that tries to localize the relative
distance between the two charges that experience opposite
magnetic fields while delocalizing the average position of the
center of the bound state. Thus, when the interaction scale
associated with the binding energy of the two components
is larger than the disorder potential that tries to localize its
average position, the disorder becomes inefficient at pinning
and ultimately localizing the itinerant particle. This picture
suggests that disorder is less efficient at localizing bound
states of particles whose constituents reside in bands with
opposite Chern numbers, even in comparison to completely
trivial bands that have no Berry phase geometry.

VIII. SUMMARY, DISCUSSION AND OUTLOOK

We have demonstrated that a subset of Halperin states
where particles are added to an empty band with Chern num-
ber C = 1 and holes are added to a filled band with opposite
Chern number C = −1, have exactly zero Hall conductivity
in spite of spontaneously breaking time-reversal symmetry.
These states are those for which the intraflavor (m) and in-
terflavor (n) exponents are related as m = n + 2. Moreover, in
the presence of separate particle number conservation for the
two flavors, they feature a fractional helical edge conductance
of e2/2h per edge. Therefore, these states behave from the

charge transport point of view as half of the standard quantum
spin Hall states [41–43] and are, therefore, consistent with
those observed in moiré tMoTe2 in Ref. [40].

We have also emphasized, using these PH-Halperin states
as examples, a crucial difference between the standard setting
of multicomponent systems in Landau levels with common
magnetic fields and our setting of pairs of Landau levels
with opposite magnetic fields. Namely, in standard Landau
levels, all itinerant quasiparticles are neutral (e.g., excitons
in quantum Hall ferromagnets, magnetoroton of Laughlin
state, Bogoliubov composite-fermion of Moore-Read state),
and charged particles are drifting particles which experience
Lorentz force. However, in the current setting of pairs of
Landau levels with opposite magnetic fields it is possible to
have charged particles that are itinerant when their charge
is equally split between the valleys experiencing effectively
opposite magnetic fields. In particular, we have seen that the
Bogoliubov composite fermion of the 331 PH-Halperin state
is a charged itinerant spinless fermion in the current setting.
The disorder potential can scatter these particles but is much
less efficient at pinning and localizing them because they are
itinerant. As a result, one expects that if these particles are
added to the parent ideal PH-Halperin state, for example, by
changing the electron density slightly away from the precise
filling, the disorder potential is less efficient at localizing
them and they can make a conducting metallic fluid that will
degrade the quantization of the conductance. This is consistent
with the experimental observation of no robust Hall plateau
surrounding the ideal filling fraction where the fractional
quantum spin Hall effect is observed, but instead a smooth
variation of the Hall resistance away from zero as a function
of filling in Ref. [40].

There are several important open questions for future stud-
ies which we would like to mention. One set of questions
pertains to investigating experimental probes which could
distinguish the PH-Halperin states from other possible states.
In this regard, we emphasize the importance of trying to
determine whether the state in Ref. [40] breaks time-reversal
symmetry, since the measurement of a vanishing Hall resis-
tivity is not enough to ensure this, as we have demonstrated.
Notably, the PH-Halperin states consistent with Ref. [40]
are expected to have a precise finite fractional spin polar-
ization according to Eq. (6), which should lead to net spin
contribution to magnetization which can be measured. Ad-
ditionally, we highlight that the PH-Halperin states we have
discussed have quasiparticles with minimal charge equal to
1/2 (see Fig. 2). This is in contrast with typical paired states
realized in half-filled Landau levels (including the standard
Halperin 331 and the Moore-Read states) which have quasi-
particles with minimal charge 1/4. For example, measuring
this charge would distinguish our state from a state in the
same universality class of a time-reversal invariant pair of
Moore-Read states constructed in the C = ±1 bands. Measur-
ing the fractional charge of quasiparticles is difficult but there
are important precedents from current-noise experiments in
quantum Hall settings [87,88]. Anyon interferometers could
also be used to measure the quasiparticle charge and statistics
[89]. Other interesting observables to further consider include
the spin/valley Hall-drag, which is expected to be quantized
according to Eq. (8), and could be probed by inter-facing the

045114-8



HALPERIN STATES OF PARTICLES AND HOLES IN … PHYSICAL REVIEW B 110, 045114 (2024)

PH-Halperin state with another magnetic state that would act
as spin battery inducing a nonzero spin-Hall-voltage. Other
possibilities include also measuring the thermal Hall conduc-
tance [90,91], which is expected to ideally be nonzero and
the same as an integer quantum Hall effect since the K-matrix
from Eq. (19) has two negative and one positive eigenvalue.
This would distinguish the PH-Halperin states from those with
time-reversal symmetry, which are ideally expected to have
vanishing thermal Hall conductance.

Another important open problem is to understand
which microscopic models and interactions stabilize the
PH-Halperin states in tMoTe2. Clearly, there are many non-
trivial realistic aspects of moiré tMoTe2 that our current
discussion is missing. However, we highlight that even un-
derstanding the competition of the PH-Halperin states and
other states in ideal pairs of Landau levels with opposite
magnetic fields remains relatively unexplored. We comment
in this regard that Ref. [60] demonstrated that for simple toy
models of short-ranged Gaussian interactions with a range
comparable to the moiré unit cell, the Ising Chern magnet
becomes unstable when the intraflavor repulsions V↑,↑ become
about 30% stronger than interflavor repulsion V↑,↓. References
[60,62] proposed that one possible set of states emerging in
this setting might be Laughlin states of excitons. But it would
be important to examine these possibilities in detailed many-
body numerical studies and search for PH-Halperin and other
possible states.

Our PH-Halperin states clearly illustrate that for a pair
of Chern bands with valley Chern numbers C = ±1, having
a gapped state with zero Hall conductivity does not imply
the absence of valley polarization or time-reversal symmetry.
Conversely, having zero valley polarization in this same set-
ting does not imply a zero Hall conductivity, as exemplified
by the excitonic Laughlin states constructed in Refs. [60,62],
which can be valley unpolarized but have a quantized integer
Hall conductivity σxy = e2/h. These examples highlight that
in the setting of pairs of valleys with opposite Chern numbers,
it is important to exercise some caution as the observation of
integer quantized Hall conductivities could be secretly dis-
guising nontrivial fractionalized states.

Finally, we close by mentioning that there are other inter-
esting PH-Halperin states that we have not focused on because
they do not fit the experimental observations of Ref. [40],
but which might appear in other experimental settings and
are also interesting theoretically. For example, from Eq. (10)
we see that another interesting subset of PH Halperin states
with integer Hall conductivity, σxy = e2/h, are those with
m = n + 1, such as the PH 332 state, which has fractional
valley fillings ν↑

e = 1/5 and ν↓
e = 4/5. Other interesting states

are those with m = n − 1, such as PH 112, which would have
Hall conductivity σxy = −3e2/h and valley fillings ν↑

e = 1/3
and ν↓

e = 2/3, and those with m = n − 2, such as PH 113,
which would have Hall conductivity σxy = −2e2/h and valley
fillings ν↑

e = 1/4 and ν↓
e = 3/4. These states further high-

light the aforementioned point that integer quantization of the
Hall conductivity might hide behind more interesting states
in disguise.

Note added. Recently, we became aware of Ref. [92],
which also contains theoretical proposals to understand the
observations of Ref. [40]. The time-reversal broken symmetry

state with p = 2 discussed in Ref. [92] with partial fillings
(ν↑

e , ν↓
e ) = (1/4, 3/4), is the same as the 331 PH-Halperin

state we have discussed here, i.e., they have the same universal
properties.
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APPENDIX: TOY MODEL OF COMPETITION
OF INTERACTIONS AND LOCALIZATION OF CHARGED
ITINERANT PARTICLES IN PAIRS OF TIME-REVERSAL

INVARIANT LANDAU LEVELS.

To illustrate this mechanism more concretely, let us con-
sider a toy model of two particles with different charges q1, q2

and experiencing different magnetic fields B1, B2. The oper-
ator that generates translations within a Landau level is the
magnetic momentum, which for each of these particles takes
the form

Q1
a = π1

a + B1q1εabr1
b, Q2

a = π2
a + B2q2εabr2

b. (A1)

These particles have noncommutative magnetic momenta:[
Qi

a, Q j
b

] = ih̄εabδ
i jqiBi. (A2)

Now the operator that generates the translations of these
two particles together while preserving their relative positions
is the total magnetic momentum, which has commutation
relations:

Qa ≡ Q1
a + Q2

a, [Qa, Qb] = ih̄εabδ
i j (q1B1 + q2B2). (A3)

From the above, it follows that a particle made as a bound
state of these two particles would be itinerant if the above
momenta commute, otherwise it would be drifting. For the
standard Landau level setting where each particle experiences
equal magnetic fields B1 = B2, we see that only charge-
neutral bound states (q1 = −q2) are itinerant while charged
bound states are drifting. On the other hand for the case
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of pairs of time-reversal invariant Landau levels with oppo-
site fields B1 = −B2, we have the converse situation where
charge neutral (q1 = −q2) bound states are drifting, whereas
a charged bound state with equal charges on the two compo-
nents (q1 = q2) is itinerant.

Despite having a commutative total momentum, these itin-
erant bound states in time-reversal-invariant pairs of Landau
levels have nontrivial differences with respect to simple itin-
erant bound states in a trivial band without any Berry phases
whatsoever. To see this, let us consider introducing the guid-
ing center position (or projected position) operators for each
particle defined as follows:

Ri
a = − εab

qiBi
Qi

b = ri
a − εab

qiBi
π i

b. (A4)

We can then define a relative distance d and average posi-
tion R of the pair of particles as follows:

d ≡ R1 − R2, R ≡ R1 + R2

2
. (A5)

These operators obey the following algebra:

[da, db] =
(

1

q1B1
+ 1

q2B2

)
ih̄εab, (A6)

[Ra, Rb] = 1

4

(
1

q1B1
+ 1

q2B2

)
ih̄εab, (A7)

[Ra, db] = 1

2

(
1

q1B1
− 1

q2B2

)
ih̄εab. (A8)

We see therefore that in Landau levels with B1 = B2, the
algebras of relative distance and average position commute
for bound states of particles with equal charge q1 = q2. How-
ever, for time-reversal pairs of Landau levels with B1 = −B2

and bound states of particles with equal charge q1 = q2, the
relative distance operator does not commute with the aver-
age position operator. This contrasts with trivial bands where
relative and average positions of two particles will always
commute. Now, the interaction between the particles depends
on their relative distance and thus would like to fix this op-
erator, whereas the disorder potential wants to localize the
particles and pin their average positions. But the Heisenberg
uncertainty prevents optimizing both properties simultane-
ously. There is, therefore, a competition between disorder
and interactions in our setting of Landau levels with opposite
fields. If the interaction is stronger, the system will prefer
making more certain the relative distance d, leading to strong

quantum fluctuations on the average position, R, thus reduc-
ing the ability of disorder to localize and pin these particles.
This is a delocalization mechanism that would not be present
in trivial bands with fully trivial Berry phases where projected
position operators commute.

To illustrate this, let us consider a toy harmonic
Hamiltonian of the form

H =
∑

a

U

l2
B

dada + V

l2
B

(
R1

aR1
a + R2

aR2
a

)
. (A9)

The term proportional to U is a cartoon for an attractive in-
teraction potential that tries to minimize the distance between
the particles and V is a cartoon for a disorder potential trying
to pin the particles at the origin. Let us assume that the two
particles have the same charge q1 = q2 = q, but let us contrast
two cases: (a) when B1 = B2 = B and (b) B1 = −B2 = B. We
have taken a unit length lB = (h̄/|qB|)1/2. In case (a), one finds
two decoupled Harmonic oscillators: one for the d and another
for the R variables with frequencies and mean fluctuations in
the ground state given by

h̄ωd = 4U + V,
〈
d2

x + d2
y

〉 = 2l2
B, (A10)

h̄ωR = V,
〈
R2

x + R2
y

〉 = l2
B

2
. (A11)

We see, therefore, that there is no competition between
interactions and disorder in this case, and the relative and
average positions can be simultaneously localized on a similar
length scale comparable to the magnetic length lB irrespective
of the values of U and V . Now, in case (b) we find two degen-
erate oscillators, one generated by the pair of operators dx, Ry

and another generated by the pair dy, Rx. The frequency of
these oscillators and fluctuations in the ground state are

h̄ω =
√

V (4U + V ), (A12)

〈
R2

x + R2
y

〉 = l2
B

2

√
4U + V

V
,

〈
d2

x + d2
y

〉 = 2l2
B

√
V

4U + V
.

(A13)

The above clearly illustrates the competing tendencies of
interactions and disorder in case (b). When the interaction
dominates the disorder (U 
 V ), the system optimizes the
localization of the relative distance d at the expense of de-
localizing the average position R.

[1] J. Cai, E. Anderson, C. Wang, X. Zhang, X. Liu, W. Holtzmann,
Y. Zhang, F. Fan, T. Taniguchi, K. Watanabe et al., Nature
(London) 622, 63 (2023).

[2] Y. Zeng, Z. Xia, K. Kang, J. Zhu, P. Knüppel, C. Vaswani,
K. Watanabe, T. Taniguchi, K. F. Mak, and J. Shan, Nature
(London) 622, 69 (2023).

[3] H. Park, J. Cai, E. Anderson, Y. Zhang, J. Zhu, X. Liu, C. Wang,
W. Holtzmann, C. Hu, Z. Liu et al., Nature (London) 622, 74
(2023).

[4] F. Xu, Z. Sun, T. Jia, C. Liu, C. Xu, C. Li, Y. Gu,
K. Watanabe, T. Taniguchi, B. Tong et al., Phys. Rev. X 13,
031037 (2023).

[5] Z. Lu, T. Han, Y. Yao, A. P. Reddy, J. Yang, J. Seo, K. Watanabe,
T. Taniguchi, L. Fu, and L. Ju, Nature (London) 626, 759
(2024).

[6] A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe,
T. Taniguchi, M. Kastner, and D. Goldhaber-Gordon, Science
365, 605 (2019).

[7] C.-C. Tseng, X. Ma, Z. Liu, K. Watanabe, T. Taniguchi,
J.-H. Chu, and M. Yankowitz, Nat. Phys. 18, 1038
(2022).

[8] M. Serlin, C. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu,
K. Watanabe, T. Taniguchi, L. Balents, and A. Young, Science
367, 900 (2020).

045114-10

https://doi.org/10.1038/s41586-023-06289-w
https://doi.org/10.1038/s41586-023-06452-3
https://doi.org/10.1038/s41586-023-06536-0
https://doi.org/10.1103/PhysRevX.13.031037
https://doi.org/10.1038/s41586-023-07010-7
https://doi.org/10.1126/science.aaw3780
https://doi.org/10.1038/s41567-022-01697-7
https://doi.org/10.1126/science.aay5533


HALPERIN STATES OF PARTICLES AND HOLES IN … PHYSICAL REVIEW B 110, 045114 (2024)

[9] P. Stepanov, M. Xie, T. Taniguchi, K. Watanabe, X. Lu, A. H.
MacDonald, B. A. Bernevig, and D. K. Efetov, Phys. Rev. Lett.
127, 197701 (2021).

[10] Y. Xie, A. T. Pierce, J. M. Park, D. E. Parker, E. Khalaf,
P. Ledwith, Y. Cao, S. H. Lee, S. Chen, P. R. Forrester et al.,
Nature (London) 600, 439 (2021).

[11] T. Li, S. Jiang, B. Shen, Y. Zhang, L. Li, Z. Tao, T. Devakul,
K. Watanabe, T. Taniguchi, L. Fu et al., Nature (London) 600,
641 (2021).

[12] W. Zhao, K. Kang, Y. Zhang, P. Knüppel, Z. Tao, L. Li, C. L.
Tschirhart, E. Redekop, K. Watanabe, T. Taniguchi et al., Nat.
Phys. 20, 275 (2024).

[13] E. Anderson, F.-R. Fan, J. Cai, W. Holtzmann, T. Taniguchi,
K. Watanabe, D. Xiao, W. Yao, and X. Xu, Science 381, 325
(2023).

[14] P. J. Ledwith, G. Tarnopolsky, E. Khalaf, and A. Vishwanath,
Phys. Rev. Res. 2, 023237 (2020).

[15] C. Repellin and T. Senthil, Phys. Rev. Res. 2, 023238
(2020).

[16] A. Abouelkomsan, Z. Liu, and E. J. Bergholtz, Phys. Rev. Lett.
124, 106803 (2020).

[17] P. Wilhelm, T. C. Lang, and A. M. Läuchli, Phys. Rev. B 103,
125406 (2021).

[18] Z. Liu, A. Abouelkomsan, and E. J. Bergholtz, Phys. Rev. Lett.
126, 026801 (2021).

[19] H. Li, U. Kumar, K. Sun, and S.-Z. Lin, Phys. Rev. Res. 3,
L032070 (2021).

[20] Y. Sheffer and A. Stern, Phys. Rev. B 104, L121405 (2021).
[21] V. Crépel and L. Fu, Phys. Rev. B 107, L201109 (2023).
[22] J. Dong, J. Wang, P. J. Ledwith, A. Vishwanath, and D. E.

Parker, Phys. Rev. Lett. 131, 136502 (2023).
[23] H. Goldman, A. P. Reddy, N. Paul, and L. Fu, Phys. Rev. Lett.

131, 136501 (2023).
[24] N. Morales-Durán, N. Wei, J. Shi, and A. H. MacDonald, Phys.

Rev. Lett. 132, 096602 (2024).
[25] A. P. Reddy and L. Fu, Phys. Rev. B 108, 245159 (2023).
[26] X.-Y. Song, Y.-H. Zhang, and T. Senthil, Phys. Rev. B 109,

085143 (2024).
[27] Z. Guo, X. Lu, B. Xie, and J. Liu, arXiv:2311.14368.
[28] Z. Dong, A. S. Patri, and T. Senthil, arXiv:2311.03445.
[29] B. Zhou, H. Yang, and Y.-H. Zhang, arXiv:2311.04217.
[30] J. Dong, T. Wang, T. Wang, T. Soejima, M. P. Zaletel, A.

Vishwanath, and D. E. Parker, arXiv:2311.05568.
[31] Y. H. Kwan, J. Yu, J. Herzog-Arbeitman, D. K. Efetov, N.

Regnault, and B. A. Bernevig, arXiv:2312.11617.
[32] C. Wang, X.-W. Zhang, X. Liu, Y. He, X. Xu, Y. Ran, T. Cao,

and D. Xiao, Phys. Rev. Lett. 132, 036501 (2024).
[33] J. Yu, J. Herzog-Arbeitman, M. Wang, O. Vafek, B. A.

Bernevig, and N. Regnault, Phys. Rev. B 109, 045147 (2024).
[34] C. Xu, J. Li, Y. Xu, Z. Bi, and Y. Zhang, Proc. Natl. Acad. Sci.

USA 121, e2316749121 (2024).
[35] T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev.

Lett. 106, 236804 (2011).
[36] D. Sheng, Z.-C. Gu, K. Sun, and L. Sheng, Nat. Commun. 2,

389 (2011).
[37] N. Regnault and B. A. Bernevig, Phys. Rev. X 1, 021014 (2011).
[38] E. Tang, J.-W. Mei, and X.-G. Wen, Phys. Rev. Lett. 106,

236802 (2011).
[39] K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Phys. Rev. Lett.

106, 236803 (2011).

[40] K. Kang, B. Shen, Y. Qiu, Y. Zeng, Z. Xia, K. Watanabe, T.
Taniguchi, J. Shan, and K. F. Mak, Nature (London) 628, 522
(2024).

[41] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[42] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[43] B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802

(2006).
[44] F. Wu, T. Lovorn, E. Tutuc, I. Martin, and A. H. MacDonald,

Phys. Rev. Lett. 122, 086402 (2019).
[45] T. Devakul, V. Crépel, Y. Zhang, and L. Fu, Nat. Commun. 12,

6730 (2021).
[46] A. P. Reddy, F. Alsallom, Y. Zhang, T. Devakul, and L. Fu, Phys.

Rev. B 108, 085117 (2023).
[47] N. Mao, C. Xu, J. Li, T. Bao, P. Liu, Y. Xu, C. Felser, L. Fu, and

Y. Zhang, arXiv:2311.07533.
[48] V. Crépel, N. Regnault, and R. Queiroz, Commun. Phys. 7, 146

(2024).
[49] Y. Jia, J. Yu, J. Liu, J. Herzog-Arbeitman, Z. Qi, N. Regnault,

H. Weng, B. A. Bernevig, and Q. Wu, arXiv:2311.04958.
[50] B. Li, W.-X. Qiu, and F. Wu, Phys. Rev. B 109, L041106 (2024).
[51] N. Morales-Durán, J. Wang, G. R. Schleder, M. Angeli, Z.

Zhu, E. Kaxiras, C. Repellin, and J. Cano, Phys. Rev. Res. 5,
L032022 (2023).

[52] K. Kang, Y. Qiu, K. Watanabe, T. Taniguchi, J. Shan, and K. F.
Mak, arXiv:2402.04196.

[53] Y.-H. Zhang, arXiv:2402.05112.
[54] Z. D. Shi, H. Goldman, Z. Dong, and T. Senthil,

arXiv:2402.12436.
[55] J. May-Mann, A. Stern, and T. Devakul, arXiv:2403.03964.
[56] C.-M. Jian and C. Xu, arXiv:2403.07054.
[57] B. I. Halperin, Helv. Phys. Acta 56, 75 (1983).
[58] G. J. Sreejith, A. Wójs, and J. K. Jain, Phys. Rev. Lett. 107,

136802 (2011).
[59] We use units of electron charge qe = 1 and h̄ = 1, but will

restore explicit units at the end in a few selected formulas.
[60] N. Stefanidis and I. Sodemann, Phys. Rev. B 102, 035158

(2020).
[61] Y. H. Kwan, Y. Hu, S. H. Simon, and S. A. Parameswaran, Phys.

Rev. Lett. 126, 137601 (2021).
[62] Y. H. Kwan, Y. Hu, S. H. Simon, and S. A. Parameswaran, Phys.

Rev. B 105, 235121 (2022).
[63] S. A. Trugman and S. Kivelson, Phys. Rev. B 31, 5280 (1985).
[64] F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).
[65] If desired, these interactions can also be converted to standard

particle-particle representation in both components by perform-
ing the partial particle-hole conjugation described in Ref. [60].

[66] P. J. Ledwith, A. Vishwanath, and D. E. Parker, Phys. Rev. B
108, 205144 (2023).

[67] K. Yang, Phys. Rev. B 58, R4246(R) (1998).
[68] M.-F. Yang and M.-C. Chang, Phys. Rev. B 73, 073304 (2006).
[69] C. L. Kane, M. P. A. Fisher, and J. Polchinski, Phys. Rev. Lett.

72, 4129 (1994).
[70] X.-G. Wen, Phys. Rev. B 43, 11025 (1991).
[71] X.-G. Wen, Phys. Rev. Lett. 64, 2206 (1990).
[72] X.-G. Wen, Phys. Rev. B 44, 5708 (1991).
[73] A. H. MacDonald, Phys. Rev. Lett. 64, 220 (1990).
[74] J. Wang, Y. Meir, and Y. Gefen, Phys. Rev. Lett. 111, 246803

(2013).
[75] N. R. Cooper, B. I. Halperin, and I. M. Ruzin, Phys. Rev. B 55,

2344 (1997).

045114-11

https://doi.org/10.1103/PhysRevLett.127.197701
https://doi.org/10.1038/s41586-021-04002-3
https://doi.org/10.1038/s41586-021-04171-1
https://doi.org/10.1038/s41567-023-02284-0
https://doi.org/10.1126/science.adg4268
https://doi.org/10.1103/PhysRevResearch.2.023237
https://doi.org/10.1103/PhysRevResearch.2.023238
https://doi.org/10.1103/PhysRevLett.124.106803
https://doi.org/10.1103/PhysRevB.103.125406
https://doi.org/10.1103/PhysRevLett.126.026801
https://doi.org/10.1103/PhysRevResearch.3.L032070
https://doi.org/10.1103/PhysRevB.104.L121405
https://doi.org/10.1103/PhysRevB.107.L201109
https://doi.org/10.1103/PhysRevLett.131.136502
https://doi.org/10.1103/PhysRevLett.131.136501
https://doi.org/10.1103/PhysRevLett.132.096602
https://doi.org/10.1103/PhysRevB.108.245159
https://doi.org/10.1103/PhysRevB.109.085143
https://arxiv.org/abs/2311.14368
https://arxiv.org/abs/2311.03445
https://arxiv.org/abs/2311.04217
https://arxiv.org/abs/2311.05568
https://arxiv.org/abs/2312.11617
https://doi.org/10.1103/PhysRevLett.132.036501
https://doi.org/10.1103/PhysRevB.109.045147
https://doi.org/10.1073/pnas.2316749121
https://doi.org/10.1103/PhysRevLett.106.236804
https://doi.org/10.1038/ncomms1380
https://doi.org/10.1103/PhysRevX.1.021014
https://doi.org/10.1103/PhysRevLett.106.236802
https://doi.org/10.1103/PhysRevLett.106.236803
https://doi.org/10.1038/s41586-024-07214-5
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1103/PhysRevLett.122.086402
https://doi.org/10.1038/s41467-021-27042-9
https://doi.org/10.1103/PhysRevB.108.085117
https://arxiv.org/abs/2311.07533
https://doi.org/10.1038/s42005-024-01641-6
https://arxiv.org/abs/2311.04958
https://doi.org/10.1103/PhysRevB.109.L041106
https://doi.org/10.1103/PhysRevResearch.5.L032022
https://arxiv.org/abs/2402.04196
https://arxiv.org/abs/2402.05112
https://arxiv.org/abs/2402.12436
https://arxiv.org/abs/2403.03964
https://arxiv.org/abs/2403.07054
https://doi.org/10.1103/PhysRevLett.107.136802
https://doi.org/10.1103/PhysRevB.102.035158
https://doi.org/10.1103/PhysRevLett.126.137601
https://doi.org/10.1103/PhysRevB.105.235121
https://doi.org/10.1103/PhysRevB.31.5280
https://doi.org/10.1103/PhysRevLett.51.605
https://doi.org/10.1103/PhysRevB.108.205144
https://doi.org/10.1103/PhysRevB.58.R4246
https://doi.org/10.1103/PhysRevB.73.073304
https://doi.org/10.1103/PhysRevLett.72.4129
https://doi.org/10.1103/PhysRevB.43.11025
https://doi.org/10.1103/PhysRevLett.64.2206
https://doi.org/10.1103/PhysRevB.44.5708
https://doi.org/10.1103/PhysRevLett.64.220
https://doi.org/10.1103/PhysRevLett.111.246803
https://doi.org/10.1103/PhysRevB.55.2344


INTI SODEMANN VILLADIEGO PHYSICAL REVIEW B 110, 045114 (2024)

[76] R. Landauer, Philos. Mag. 21, 863 (1970).
[77] M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).
[78] D. X. Nguyen, K. Prabhu, A. C. Balram, and A. Gromov, Phys.

Rev. B 107, 125119 (2023).
[79] X.-G. Wen, Quantum Field Theory of Many-Body Systems: From

the Origin of Sound to an origin of Light and Electrons (Oxford
University Press, Oxford, 2004).

[80] N. Read and D. Green, Phys. Rev. B 61, 10267
(2000).

[81] F. D. M. Haldane and E. H. Rezayi, Phys. Rev. Lett. 60, 956
(1988).

[82] M. Greiter, X. G. Wen, and F. Wilczek, Phys. Rev. B 46, 9586
(1992).

[83] T.-L. Ho, Phys. Rev. Lett. 75, 1186 (1995).
[84] I. Dimov, B. I. Halperin, and C. Nayak, Phys. Rev. Lett. 100,

126804 (2008).

[85] A. Sharma, A. C. Balram, and J. K. Jain, Phys. Rev. B 109,
035306 (2024).

[86] N. Read and E. Rezayi, Phys. Rev. B 54, 16864 (1996).
[87] L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev.

Lett. 79, 2526 (1997).
[88] R. de-Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G.

Bunin, and D. Mahalu, Phys. B: Condens. Matter 249-251, 395
(1998).

[89] J. Nakamura, S. Liang, G. C. Gardner, and M. J. Manfra, Nat.
Phys. 16, 931 (2020).

[90] M. Banerjee, M. Heiblum, A. Rosenblatt, Y. Oreg, D. E.
Feldman, A. Stern, and V. Umansky, Nature (London) 545, 75
(2017).

[91] M. Banerjee, M. Heiblum, V. Umansky, D. E. Feldman, Y.
Oreg, and A. Stern, Nature (London) 559, 205 (2018).

[92] Y.-H. Zhang, arXiv:2403.12126.

045114-12

https://doi.org/10.1080/14786437008238472
https://doi.org/10.1103/PhysRevLett.57.1761
https://doi.org/10.1103/PhysRevB.107.125119
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevLett.60.956
https://doi.org/10.1103/PhysRevB.46.9586
https://doi.org/10.1103/PhysRevLett.75.1186
https://doi.org/10.1103/PhysRevLett.100.126804
https://doi.org/10.1103/PhysRevB.109.035306
https://doi.org/10.1103/PhysRevB.54.16864
https://doi.org/10.1103/PhysRevLett.79.2526
https://doi.org/10.1016/S0921-4526(98)00139-2
https://doi.org/10.1038/s41567-020-1019-1
https://doi.org/10.1038/nature22052
https://doi.org/10.1038/s41586-018-0184-1
https://arxiv.org/abs/2403.12126

