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Magnetic, charge, and bond order in the two-dimensional Su-Schrieffer-Heeger-Holstein model
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Most nonperturbative numerical studies of electron-phonon interactions focus on model Hamiltonians where
the electrons interact with a phonon branch via a single type of microscopic mechanism. Two commonly
explored couplings in this context are the Holstein and Su-Schrieffer-Heeger (SSH) interactions, which describe
phonons modulating the on-site energy and intersite electron hopping, respectively. Many materials, however,
have multiple phonon branches that can each interact with electronic degrees of freedom in different ways. We
present here a determinant quantum Monte Carlo study of the half-filled two-dimensional (bond) SSH-Holstein
Hamiltonian, where electrons couple to different phonon branches via either the Holstein or SSH mechanism.
We map the model’s phase diagram and determine the nature of the transitions between charge-density wave,

bond-order wave, and antiferromagnetic order.
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I. INTRODUCTION

An electron interacting strongly with the lattice forms a
composite quasiparticle known as a polaron [1,2]. Polarons
can have large effective masses, which reflects the necessity
of rearranging the lattice degrees of freedom as the electron
moves [1-4]. If two electrons are present, they can bind
together in a bipolaron, which allows one electron to take
advantage of the distortion produced by the other to occupy
the same region of space. At half filling and on a bipartite
lattice, (bi)polarons tend to arrange themselves spatially into
insulating charge-density-wave (CDW) or bond-order-wave
(BOW) patterns, depending on the microscopic nature of
the electron-phonon (e-ph) coupling [5—13]. For the Holstein
interaction, for example, bipolarons tend to freeze into an
ordered Q = (7 /a, w/a) lattice in two dimensions (where a
is the lattice constant) leading to a CDW insulating phase.
Conversely, for the bond Su-Schrieffer-Heeger (SSH) inter-
action [14] on a single-band lattice, antiferromagnetic (AFM)
order can accompany BOW owing to a positive effective inter-
site exchange J that appears when the phonons are integrated
out [10,13,15]. However, optical SSH interactions on a multi-
orbital Lieb or perovskite lattice can lead to a bipolaron lattice,
like in the Holstein model, for certain parameter regimes and
filling values [8,12].

The thermal and quantum phase transitions to these various
ordered phases have mostly been studied via quantum Monte
Carlo (QMC) for each interaction in isolation, i.e., for either
a Holstein coupling of the electron density to the phonon dis-
placement [5,9,16-26] or an SSH coupling [8,10-13,15,27—
31] in which the phonon modulates the intersite hopping
(kinetic energy), but not both. Yet in real materials with
complex unit cells, several phonon branches can couple to
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the electrons. Moreover, the microscopic coupling mechanism
to individual branches can be different, leading to opposing
effects. The high-7, superconducting cuprates provide an in-
teresting case in point. In these materials, the presence of
a crystal field across the CuO; plane introduces an on-site
coupling to the bond-buckling optical oxygen models [32,33].
At the same time, the bond-stretching Cu-O modes (the so-
called half- and full-breathing modes) modulate the Cu-O
hopping integral ¢,4 [33,34]. The former coupling is naturally
described by a Holstein-like interaction, while the latter is
of the SSH type. When multiple coupling mechanisms are
present, one naturally expects rich competition between the
ordered phases created by the respective interactions.

Despite this relevance of multibranch models to real
materials, combined SSH-Holstein (SSHH) models have pre-
viously been studied via QMC only in one dimension [35].
In this case, the lower dimension precludes long-range order
at nonzero temperature, resulting in ground state correlations
with a power-law decay with increasing distance. The key
features of the one-dimensional (1D) phase diagram are the
presence of a metallic phase (spuriously absent in the pure 1D
SSH model) when the Holstein coupling is introduced, and
a competition between BOW and CDW correlations as the
associated e-ph couplings are varied [35]. There is a direct and
continuous transition between the states at strong coupling
while a Luther-Emery metallic phase, in which the doublons
and high kinetic energy bonds are disordered, intervenes at
weak coupling where the interactions compete. The 1D SSHH
model has also recently been studied in the context of design-
ing topological analogs to magnetic bits [36].

Here, we study the two-dimensional (2D) single-band
SSHH model defined on a square lattice, sketched in the
lower right of Fig. 1, using determinant quantum Monte Carlo

©2024 American Physical Society
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FIG. 1. The low-temperature (" = ¢/16) phase diagram of the
SSH-Holstein model. Charge-density wave (CDW) order is present
at any gy for gin = 0. The bond-order wave (BOW) dominates at
large gyn. For gy < 0.7¢, antiferromagnetic (AFM) order is present
for low Holstein couplings in place of BOW. Bottom right (in the
blue zone): A sketch of the SSH-Holstein model. The SSH interac-
tion couples to the electron hopping, while the Holstein interaction
couples to the electron density. SSH phonons exist on lattice bonds
while Holstein phonons exist on site.

(DQMC). Our main result is the low-temperature phase di-
agram shown in Fig. 1. It exhibits transitions between Q =
(7 /a, = /a) CDW, BOW, and AFM orders depending on the
relative strengths of the SSH and Holstein couplings, gss, and
gnol- In what follows, we will discuss the various numeri-
cal measurements leading to this phase diagram. Our results
highlight the rich physics contained in e-ph models when one
allows for coupling to multiple phonon branches, which may
be relevant for understanding different classes of materials
such as the transition metal oxides.

II. MODEL AND METHODS

We will compute the equilibrium properties of the “bond”
SSHH model, where the in-plane phonon modes live on the
links connecting pairs of sites [14] and the Holstein modes
live on the sites themselves. We consider a 2D square lattice
with N = L? sites, where L is the linear size of the lattice. The
Hamiltonian is

H=—t ) (=X, e, +He) = p) i

(i.j)o i,o

qsh 2 52
X
+ Z <2M55h 2 Qih >

AZ
; Mo 0
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Here, 6;0 (¢ ja) are fermionic creation (destruction) operators
at site j and with spin o, ¢ is the nearest-neighbor hopping
integral, and p is the chemical potential. The model includes
two types of e-ph interactions: an on-site Holstein coupling

8hol to the fermionic density, and the SSH coupling g, to the
intersite hopping. The SSH e-ph coupling in units of energy
gssh 18 defined as ggh = assn/l/ (CMhwgsh); the Holstein
coupling gho can be defined similarly with its accompanying
parameters. X;; ; and Y; are independent SSH and Holstein
phonons defined on the bonds and sites, respectively. The
associated momentum operators for these phonons are P, ; and
f[i, respectively. The effective masses are taken to Mgy, =
My = 1, and the SSH and Holstein branches are dispersion-
less with energies wg, and wyy, respectively. Throughout, we
sett = 1 as our unit of energy, and adopt wpe] = wssy, = t. This
choice fixes the adiabatic ratio wgs,/Ep = 4]'1 (Er = 4t is the
Fermi energy for the half-filled band) for both sets of modes
and facilitates direct comparisons of the coupling strengths
ghot and ggsh. Finally, we fix u = —Zgﬁ01 /who! to maintain half
filling.

We study Eq. (1) using DQMC [37,38]. This method ex-
presses the finite temperature SSHH partition function as a
path integral over the space and imaginary-time dependent
phonon fields X;;(t) and Y;(t). The fermionic degrees of
freedom, which appear quadratically in the Hamiltonian, are
traced out analytically, so that the weight for the phonon
paths is a product of a bosonic contribution originating in
the pure phonon terms of Eq. (1) and a product of fermionic
determinants of each spin species. The configurations of these
fields are then sampled stochastically through a combination
of local moves at a single imaginary time value of each field
[Xi;j(t), Yi(7)], and global moves that change the field at all
imaginary-time values t simultaneously at a single spatial site
i or bond [39]. (The latter effectively samples configurations
that are strongly correlated in the imaginary-time direction
due to the kinetic energy terms PS and f[? in the Hamil-
tonian.) The algorithm scales as the cube of the number of
spatial sites, and (roughly) linearly with inverse temperature
B. Importantly, there is no sign problem in our model at any
filling [40—42] owing to the symmetric coupling of the up and
down fermionic species to the phonons.

All runs begin with a “seed input,” in which phonon vari-
ables have a structure similar to the expected BOW or CDW
phase, based on the relative values of the e-ph couplings gho
and g This practice helps reduce the number of warm-up
sweeps that are needed to reach thermal equilibrium. Our
code then runs through 320 imaginary time slices of § = 16/t
(At = 0.05/1) for a total of around 10° steps.

We characterize the SSHH model by measuring the
equilibrium structure factors associated with the different
types of order. The relevant real-space correlation func-
tions are Co (1) = Y ;{04 (r +1)O04 (1)), where O(r) = ny 4 —
My, Oc(t) =nep 4y, and Op(r) = (c); ¢p, +He)
for spin (s), charge (c), and bond kinetic energy in the X di-
rection (bx, with an analogous definition of Cy,), respectively.
The corresponding structure factors are obtained by a Fourier
transform S, (q) = 1lv > €97C,(r). Note, our normalization
is such that the structure factors are lattice size independent in
high-temperature phases (short-range spatial correlations), but
grow linearly with N with the onset of long-range order. We
will also present results for other standard observables such as
the average electron and phonon energies, double occupancy,
etc. Additional details can be found in the Appendixes.
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FIG. 2. (a) AFM S, (b) CDW S,, and (c) BOW S}, structure fac-
tors vs Holstein coupling gp at inverse temperature g = 16/t, and
half filling for L = 8 (solid symbols) and L = 10 (open symbols). An
abrupt collapse of bond order occurs as gno grows for SSH couplings
above the critical value, accompanied by a decrease in AFM order,
and a rise in CDW order. Error bars are present, but smaller than
marker size.

III. RESULTS

To determine the phase boundaries shown in Fig. 1, we
measured the evolution of the relevant structure factors in
the (gnol, gssh) plane. Figure 2 plots results for the AFM [S;,
Fig. 2(a)], CDW [S,., Fig. 2(b)], and BOW [S,,, Fig. 2(c)]
structure factors for a family of fixed gy, while sweeping gpol
from weak to strong coupling. These results were obtained
at a fixed temperature 7 = ¢/16, which is low enough that
the structure factors reflect the ground state properties of the
system for our parameters, i.e., the correlation length of the
order in question exceeds the linear lattice size.

Focusing first on small gy, we find that the model is
dominated by BOW order for gsn > gssh.c &~ 0.7¢. This is
reflected in the large value of Sj, at small gy, which grows
in proportion to lattice size so that Sy, /N is independent of N,
indicative of long-range bond order.

As gno increases, Sy, undergoes an abrupt collapse, sug-
gesting a first-order phase transition. The value of the critical
ghol,c decreases as ggn goes down, as does the amplitude
of Spc. At the same time, the strength of the CDW begins
to increase continuously with gp, once the BOW order has
collapsed, as shown in Fig. 2(b). With the formation of CDW
correlations, there is also a concomitant drop in the electron
kinetic energy [Fig. 3(a)], increase in the double occupations
[Fig. 3(b)], and a change in slope of the e-ph Holstein inter-
action energy [Fig. 3(c)]. These results show that hopping is
rapidly phased out in favor of ordered double occupancy as
the Holstein coupling begins to dominate. This behavior is
very similar to the formation of CDW order in the pure 2D
Holstein model [5,7,9,17,18,20-23,43-47].

These ggh 2 0.7t results demonstrate the presence of a
first-order transition between a BOW and a CDW phase as
a function of gy, at large g.n. However, the situation is

(
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FIG. 3. (a)x/y kinetic energy, (b) double occupancy, and (c) Hol-
stein electron-phonon coupling on an L = 8 system at half filling.
Electronic kinetic energy and double occupancy are close to constant
in the low gy regime where AFM order is expected for gy < 0.7¢
and BOW are expected for gg = 0.7¢.

quite different at lower values of ggy. In the pure bond-SSH
model, there is a phase transition from AFM order to BOW
as the value of g increases [11]. AFM is stabilized in this
model because the electrons can only simultaneously tunnel
on a modulated bond if they are of opposite spin [11]. This
mechanism is in contrast to the AFM order found in the Hub-
bard model, in which on-site repulsion U penalizes double
occupancy while favoring the residual exchange interaction
arranging sites antiferromagnetically.

The AFM order for small ggy in the pure SSH model
persists in the SSHH model for small gpo. For example, for
gssh = 0.5¢ and small g, we remain in a state characterized
by a higher magnitude of electronic kinetic energy accompa-
nied by a weakly enhanced spin correlation S [Fig. 2(a)]. In
this case, the AFM correlations are weak because the bonds
are only weakly disturbed at small g, Upon increasing either
&ssh OT ghol, the AFM state gives way to BOW or CDW order.
The CDW phase boundary has a change in slope at gno ~
t. This corresponds well to where the extrapolation of the
AFM-BOW boundary intersects the CDW phase, demonstrat-
ing further consistency between the different order parameter
measurements.

Figure 3 plots several other relevant observables for the
same parameter sets. The BOW order breaks the x/y symme-
try on a square lattice, since alternating large and small kinetic
energy bonds select one of these axes along which to align.
This phenomenon is evidenced in Fig. 3(a). For g, > 0.8¢
and small gy, the system is in a BOW state and the kinetic
energies along the x and y directions have two distinct values
(differing by up to a factor of 3). Increasing gp, causes this bi-
furcation to collapse as the system transitions from the BOW
phase to the CDW phase. For g = 0.5¢, there is no BOW at
any gho and the x and y kinetic energies are equal across this
cut through the phase diagram.

Having described the phase transitions which occur at fixed
gssh With increasing gy (horizontal sweeps in Fig. 1) we can
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FIG. 4. (a) x/y kinetic energy and (b) BOW S, vs gsn. Antifer-
romagnetic order feeds into BOW formation, transitioning at around
8sshe = 0.71¢ — 0.72¢.

complete our picture of the phase diagram by studying vertical
sweeps in Fig. 1, i.e., trajectories at fixed gy, with increasing
gssh- These are given in Fig. 4. The expected transition into
a BOW phase is confirmed by a sharp rise in Sy, [Fig. 4(b)]
and a kinetic energy bifurcation [Fig. 4(a)]. The critical value
of gwn 1s almost independent of gy, reflecting the nearly
horizontal AFM-BOW boundary of Fig. 1.

IV. CONCLUSIONS

We have mapped the low-temperature phase diagram of
the 2D SSHH model at half filling in the (gho1, gssh) plane.
Starting in an AFM phase found at weak couplings, we
found that increasing gin up to a critical value results in
x/y symmetry breaking as the intersite hopping modulates
into a regular pattern, creating a BOW. For every value of
gssh, however, a critical value of gpo exists that destroys
the BOW and replaces it with a CDW. We find that the
enhancement of BOW at higher g, delays the CDW onset
(i.e., requiring larger gpo1); this behavior is due to the direct
competition between the phases, as BOW favors quantum
fluctuations and CDW prefers electron localization. In many
models with competing interactions, e.g., the 1D extended
Hubbard Hamiltonian [48-50], the transition between differ-
ent phases changes from second order at weak coupling to
first order at strong coupling. We do not see firm evidence
for such a tricritical point here. However, it is possible we are
not yet at strong enough coupling. The largest value of the
effective (attractive) U = —Zg%ml /ol in our phase diagram
of Fig. 1 is |Ue| ~ 2t. The strong-coupling (first-order) char-
acter in the 1D extended Hubbard model occurs only beyond
U, V;) = (5.89¢, 3.10¢) [51], and would likely require even
larger values in the 2D geometry studied here.

Our work parallels exploration of the interplay of in-
dividual forms of e-ph interaction with on-site electron-
electron interactions (a Hubbard U) [7,39,52]. In the case
of the Hubbard-SSH Hamiltonian at half filling there is no
fermion sign problem [31,40—42] and the low-temperature

antiferromagnetic to BOW phase can be effectively charac-
terized [11]. As this work was done entirely for § = 16/¢, a
fruitful investigation would be to characterize the transition
temperatures between the AFM and BOW transitions in the
presence of Holstein phonons.
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APPENDIX A: AVERAGE FILLING VERSUS
CHEMICAL POTENTIAL

Figure 5 plots the average site occupation (n) =
[lv Zi’a <C,T,gci,g> as a function of the chemical potential p for
three representative points in the (g, ghol) phase diagram.
Specifically, curves are shown in the AFM (¢/2,0), CDW
(0, 1.2¢), and BOW (¢, 0) phases. All three curves show a
plateau around half filling, indicating that each phase has a
gap in their single-particle energy spectrum. In other words,
they are insulating. One may notice the sharper approach to
the CDW plateau in Fig. 5(b), a feature that has also been
reported in Fig. 7 of Ref. [23].

The plateaus of CDW/BOW order [Figs. 5(b) and 5(c)]
are longer than that of AFM order. This is due to the types
of symmetries being broken in such regions: continuous for
AFM order, and discrete for CDW/BOW order. While con-
tinuous symmetry breaking is forbidden in two dimensions,
the correlation length £ grows as e!/T; at sufficiently low
temperatures such as 7 =1¢/16, the correlation length has
outpaced the system size L, allowing us to access effectively
zero-T physics.
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FIG. 5. The average site density (n) as a function of the chemical
potential  at wgy, = wpo = t, recorded in three representative points
(gssh» &not) Of the phase diagram: (a) AFM, (b) CDW, and (c) BOW.
A shift in the half-filling value of 4 is present via — 21, and these
plots have been shifted by said amount to coincide with half filling at
w=0.
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FIG. 6. Pairing structure factor S;.yave (a) and Sy.wave (b) as func-
tions of Holstein coupling gy, for four fixed values of gin. The
s-wave structure factor has a peak at the AFM-CDW boundary,
though the value is too small to be associated with long range order.
The d-wave structure factor is everywhere small (short ranged in real
space), but it is largest in the AFM phase. This parallels the known
connection between spin-density-wave order and d-wave pairing in
the Hubbard model.

APPENDIX B: SUPERCONDUCTING CORRELATIONS

Figure 6(a) shows the s-wave pairing structure factor,
Ss-wave, at different fixed g, as a function of gyo. The Holstein
model itself has a CDW ground state at half filling ((n) = 1),
and supports superconductivity when doped [23,53]. There-
fore, we interpret the peak in S;_y,yve to be associated with loss
of the competing CDW correlations once gssn = ghol-

In the Hubbard model, d-wave superconductivity is asso-
ciated with AFM correlations, which are strongest near half
filling. Given the presence of weak AFM correlations in the
bond SSH model [10,13,15], it is then natural to wonder
whether similar unconventional pairing can appear in our
model. To explore this possibility, Fig. 6(b) shows the pairing
structure factor S;.yave at different fixed gg and increasing
ghol- We observe that S;_ywave turns downward to lower values
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FIG. 7. Kinetic energy (a), charge structure factor S, (b), and

total energy (c) for B = 12/t, 16/t, and 20/t. The SSH coupling

gssh = 1. Since the data for § = 16/t and B = 20/t coincide, we

conclude B = 16/t is sufficiently large to be sampling the properties
of the ground state.

once the system exits the AFM phase and enters the CDW
phase. Likewise, comparing the plots for increasing ggsn, we
see that Sy wave falls as the BOW phase is approached. Thus
there appears to be a correlation between d-wave pairing
and AFM in the present model; however, it should be noted
that Sy_wave 1S too small to be consistent with any long-range
superconducting order.

APPENDIX C: ADDITIONAL RESULTS AT LOWER T

Figure 7 shows three measurements: kinetic energy, charge
structure factor, and total energy, at 8 = 12/¢t, 16/t, and
20/t for ggsn =t and 1.5¢ < gpot < 1.8¢. Results for 8 = 16/t
overlap well with lower-temperature data 8/t = 20, to within
statistical errors, indicating that 8 = 16/t is sufficiently large
to use throughout this work in sampling the 7 = 0 phases. We
have verified the same is true throughout the phase diagram of
Fig. 1.
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