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Systematic compactification of the two-channel Kondo model.
III. Extended field-theoretic renormalization group analysis
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We carry out a field-theoretical renormalization group procedure based on the Callan-Symanzik equation to
calculate the detailed flow for the (multi) two-channel Kondo model and its compactified versions. In doing so,
we go beyond the universal terms in the beta function we obtained using poor man’s scaling [see Phys. Rev.
B 110, 045109 (2024)] and culminate our analysis of how the compactified versions of the model fare against
the original one. Among other results, we explore the large-channel-number limit and extend our considerations
to the finite temperature crossover region. Moreover, we gain insights into the contradistinction between the
consistent vs conventional bosonization-debosonization formalisms, thereby advancing our understanding on
multiple fronts. In particular, we make use of renormalization-flow arguments to further justify the consistent
refermionization of the parallel Kondo interaction we presented earlier [see Phys. Rev. B 110, 045108 (2024)].
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I. INTRODUCTION

The initial development of the renormalization group (RG)
is intimately related to the efforts to tame the infinities that
appear in many of the perturbative calculations based on
quantum (field) theory, one of the earliest examples of which
goes back to the determination of the Lamb shift between
the 2s and 2p levels of the hydrogen atom [1]. In the early
1950s, Stückelberg and Petermann [2] introduced the notion
of infinitesimal Lie group transformations generated by oper-
ators connected to the renormalization of the electron charge.
Subsequently, parallel work by Gell-Mann and Low [3] and by
Bogoliubov and Shirkov [4] derived functional equations for
the quantum-electrodynamics propagators and vertices in the
general massive case.

About a decade later, the subsequent generalization to
arbitrary n-point correlation functions for general quantum
field theories and the connection with the ideas of scaling led
to the RG (differential) equations associated with the work
of Callan [5] and Symanzik [6]. Around the same time, the
field-theoretic RG methods were being applied to the Kondo
Hamiltonian [7,8] to understand its flow to strong coupling
at low temperatures. This flow was also being studied based
on mappings to the 1D Coulomb-gas problem and the inverse-
square Ising model, and via a direct scaling of the T matrix, in
a series of works by Anderson and collaborators culminating
with the poor man’s scaling (PMS) proposal [9] that preluded
the development of the Wegner-Wilson momentum shell RG
[10,11], the convergence with the scaling ideas from the study
of critical phenomena, and the development of the numerical
renormalization group (NRG) for the Kondo problem [12].
The PMS approach is directly equivalent to the field-theoretic
one when taken to the first order in the coupling expansion,
but a careful wave-function renormalization of the initial and
final T -matrix states is required to extend the equivalence

to the next order [13]. To even higher orders, the PMS pro-
cedure loses its alluring simplicity, and the field-theoretic
method based on the Callan-Symanzik (CS) equation pro-
vides a more systematic and general approach. Moreover,
the CS equation makes it clear how to perform higher-order
logarithmic-divergence resummations (the so-called leading-
logs, next-to-leading-logs, and so on) [14].

In the previous work of this series, we used a bosonization-
debosonization (BdB) procedure proposed earlier [15] to
show how to systematically derive compactified versions of
Kondo-type impurity models, and we performed some initial
comparisons in certain exact limits of the original (multi) two-
channel Kondo model and two different compatified versions
of it [16]. We further showed as well that their RG flows
are exactly equivalent to the level captured by PMS [17].
We have indications, however, that such equivalence is lost at
higher orders (as has to be the case, since exact comparisons
in special-case limits yield differing results, especially for
the nonequilibrium transport characteristics [16]). Exploring
those differences is the purpose of the present article, and it
requires a more systematic RG study than what standard PMS
affords. It can thus be better undertaken using a field-theoretic
approach based on the CS equations. That method has been
notably used in the context of Kondo-type models to study
their “large-M” perturbative solution [18–21] and to address
nonequilibrium steady-state regimes [22,23], both of which
will be seen to be physically interesting comparisons beyond
the general-case considerations.

The rest of our work is organized as follows. In the next
section we present some general aspects of the field-theoretic
RG method starting from specific auxiliary considerations
pertaining to spin systems (needed to handle the Kondo im-
purity) and followed by a presentation of the CS equation.
The two subsequent sections detail the RG flow calculations
first for the original model or direct scheme (recovering the
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PMS results), and then for the compactified models referred
as indirect schemes. In Sec. V the results are extended beyond
the third order in the beta function; differences arise and a
detailed comparison is given. In Sec. VI we present an ex-
tended version of the RG analysis that further clarifies the
differences between “schemes.” In the last two sections we
present alternative arguments for the refermionization of the
parallel Kondo interaction (used during the compactification
of the model), and we conclude by discussing and providing
highlights of the main findings. Several Appendixes provide
further details and additional results.

II. FIELD-THEORETICAL RG PROCEDURE

The multichannel Kondo model with spin and channel
anisotropy is given by a Hamiltonian of the form

H = H0 + H⊥
K + Hz

K ,

H0 =
∑
σ�α

∫
dx ψ

†
σ�α (x, t )(ivF ∂x )ψσ�α (x, t ),

Hz
K =

∑
σ�α

σJz
��Szψ

†
σ�α (0, t )ψσ�α (0, t ),

H⊥
K =

∑
σ�α

J⊥
��Sσψ

†
σ̄ �α (0, t )ψσ�α (0, t ), (1)

where each electron carries two nonspin “flavor” labels (that
combined give the total number of channels K = 2M), � =
{L, R} = {−,+}, and α = 1, . . . , M. In principle, this model
can be thought of as the two-channel model where each of
the two channels has an additional M-fold degeneracy. We
also have a spin index, σ = {↓,↑} = {−,+}, with the no-
tation σ̄ = −σ . In general, the exchange coupling constant
can be both spin- and channel-anisotropic. Channel anisotropy
in a restricted sense will mean that the coupling constants
of each � channel with the impurity spin are different while
the α-degeneracy is not broken. However, we are going to
be working (mostly) with the spin-anisotropic and channel-
isotropic model.

A. Popov-Fedotov parameterization

In order to be able to carry out efficient perturbative (dia-
grammatic) calculations for the model, it is better to rewrite
the impurity spin operators in terms of fermionic degrees of
freedom. In that way Wick’s theorem is applicable [24]; oth-
erwise, one is unable to use the standard diagram technique. A
way this can be done is by employing the Popov-Fedotov (PF)
method [25], in which we rewrite the spin degrees of freedom
in terms of pseudofermions

Simp =
∑
μ,ν

η†
μσμνην. (2)

Here the η’s are fermionic degrees of freedom, but with an
imaginary chemical potential so that the empty and doubly
occupied impurity spin states are automatically excluded.
We refer to them as pseudofermions partly because they do
not have a kinetic-energy contribution to the Hamiltonian,
as well as to distinguish them from the actual (electron)
fermionic degrees of freedom in the model, but for all intent

and purposes in the construction of Feynman diagrams they
are treated just like any other fermionic degree of freedom.
This spin-handling technique is described in further detail in
Appendix A.

Having the spin operators rewritten in terms of the PF
pseudofermions enables us to use a standard fermionic-path-
integral formulation of the model, in which the free part of the
action, written in terms of Grassmann variables, is now given
by

S0 = ρ0

∑
σ�α

∫ D

−D
dε

∫ β

0
dτ ψ̄σ�α (ε, τ )(ε + ∂τ )ψσ�α (ε, τ )

+
∑

σ

∫ β

0
dτ η̄σ (τ )(μ + ∂τ )ησ (τ ), (3)

where ρ0 is the one-dimensional density of states (per spin, per
channel), D is the energy cutoff for the fermions (the band-
width) in the model, and we introduced the pseudofermion
imaginary chemical potential, μ = −iπ/2β, as per the PF
prescription. We also performed a Fourier transformation
from position- to momentum-space representations, and re-
placed the summations over momenta by integrals in energy:

1

V

∑
k

� �→ ρ0

∫ D

−D
� dε. (4)

On the other hand, we have kept the action formulated
in imaginary time, τ , rather than switching to (Matsubara)
frequencies as usual. The reason for such a choice is the
relative simplicity of carrying out perturbative diagrammatic
calculations in this way. Indeed, integrals rather than fre-
quency summations present fewer subtleties when multiple
nested ones need to be evaluated at high orders in perturbation
theory.

The interacting part of the action is described by the
Kondo-exchange terms

SI = ρ2
0

∫ D

−D
dε dε′

∫ β

0
dτ

[
J⊥

∑
σ�α

η̄σ (τ )ησ̄ (τ )ψ̄σ̄ �α (ε, τ )

× ψσ�α (ε′, τ ) + Jz

∑
σσ ′

∑
�α

σσ ′η̄σ ′ (τ )ησ ′ (τ )ψ̄σ�α (ε, τ )

× ψσ�α (ε′, τ )

]
. (5)

Given S0, the noninteracting Green’s functions for
fermions and pseudofermions are given by

Gf
0(τ, ε) = e−τε[θ (τ )[1 − nF (ε)] + θ (−τ )nF (ε)],

Gpf
0 (τ, μ) = e−τμ[θ (τ )[1 − nF (μ)] + θ (−τ )nF (μ)], (6)

and one can use perturbative calculations to incorporate the
effects of SI in any physical quantity of interest.

B. Callan-Symanzik equation

For the purpose of finding the RG flow of the Kondo
couplings, we choose to focus on the electron self-energy. One
reason for this is that the self-energy is the simplest vertex
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function of the theory, and there is a convenient series ex-
pansion that allows its immediate computation. (Moreover, we
already performed exact comparisons of the self-energy in the
flat-band limit for the two compactifications being compared
here [16] and know that they are different.) We shall actually
be interested in the imaginary part of the retarded self-energy,
which is directly related to the scattering rate of the fermions
by the impurity and is obtained via an analytic continuation
of the perturbatively calculated Matsubara self-energy. As
such, it is a physical observable and thus expected to be scale
invariant. This allows us to obtain the RG flow by using the
CS equation, which in its generic form is given by the total
derivative of the observable [26]

d�i

dln(D)
= γs�

i, (7)

where γs is the corresponding anomalous scaling dimension
of �i. Importantly, the latter should be identically zero for
the case of a direct physical observable (independent of field
normalization and typically associated to a macroscopic sym-
metry) [27,28]. Here D is the cutoff of the model already
introduced above but entering the equation explicitly via its
differential logarithm (thus, it could be divided by another
arbitrary energy scale in order to make it dimensionless, a
natural choice for that reference scale would be the frequency
at which �i is evaluated). As we shall encounter below,
the CS equation will translate into a linear system of equa-
tions involving the known coefficients of the expansion of
the self-energy in powers of the coupling constant and the
unknown coefficients in the respective expansions of the beta
functions. As it turns out, this typically provides an overdeter-
mined but consistent system of equations (in all schemes not
just the direct one) that can be solved to find the RG flow of
the model encoded in the beta functions. Such calculations are
presented in the following several sections.

III. RG CALCULATION IN THE DIRECT SCHEME

In this section we illustrate the methodology for obtaining
the RG flow (beta functions) by using the CS equation. We
shall do it here for the original model (which we refer to as
the direct scheme) and leave the discussion of the calculation
based on the compactified versions of the model (or indirect
schemes) for subsequent sections.

A. Electron self-energy

The first step is to obtain the imaginary part of the elec-
tron self-energy, which we choose as our scale-invariant
observable. Although one does not have access to the exact
self-energy, it is possible to calculate it iteratively by using the
perturbative diagrammatic technique. The expansion is done
in the powers of the Kondo-exchange coupling constants. In
the diagrams to be presented below, a full line indicates the
electron propagator and a dashed line corresponds to a pseud-
ofermion one; the expressions for both were given in Eq. (6).
Each vertex carries one power of the coupling constant: J⊥ for
the spin-flip vertex and Jz/2 for the no-spin-flip one. Diagrams
are shifted in imaginary time in such a way that the leftmost
vertex is always at time τ0 = 0 and the rightmost at τ , while

FIG. 1. Second- and third-order diagrams contributing to the
electron self-energy (for a given α, not indicated). The Feynman rules
are as follows. Dashed lines are pseudofermion propagators, and the
solid lines represent regular-fermion ones. The number in front of a
diagram is its multiplicative factor. It counts the number of possible
vertex permutations, whether the spins are aligned or antialigned on
the Jz vertex, and the number of possible spin orientations along the
closed pseudofermion loop. There is, as well, an extra minus sign
coming from the pseudofermion loop itself.

internal vertices are integrated from 0 to β when evaluating
the diagram. Finally, the energy (momentum) of each internal
fermion propagator is independent and also has to be inte-
grated, in this case over the entire bandwidth determined by
D.

The second- and third-order self-energy diagrams are
shown in Fig. 1. Here we explicitly show two versions of the
third-order diagram that can be obtained from each other by
the reversal of the pseudofermion propagators. We refer to
them as particle-hole-related pairs. For some diagrams such
pairs do not exist. That is the case of the second-order dia-
grams, and some of the fourth-order ones that are symmetric
with respect to the reversal of pseudofermion line arrows. In
subsequent figures, when there is a particle and a hole version
of a diagram we will show only the hole one (to keep the
figures more succinct).

We shall now illustrate the calculation of the second- and
third-order contributions in order to provide some of the tech-
nical details (the calculations proceed in analogous ways for
higher-order contributions).

Let us first consider the J2
⊥ diagram (top left in Fig. 1); the

Feynman rules give

�(2,0)⊥(τ ) = −J2
⊥ρ0

∫ D

−D
dε1Gf

0(τ, ε1)Gpf
0 (τ, μ)Gpf

0 (−τ, μ).

(8)

In this diagram there are no internal vertices, and so there
are no integrals in imaginary time. There is, however, an
internal fermionic propagator with energy ε1, which has to be
integrated over as indicated. We want to have the self-energy
as a function of frequency, ω, because we eventually want to
do an analytic continuation in order to extract the imaginary
part of the retarded self-energy. Using the Fourier convention
�2,0(ω) = ∫ β

0 dτeiωτ�2,0(τ ), and letting μ → iπ
2β

, we find

045110-3



LJEPOJA, BOLECH, AND SHAH PHYSICAL REVIEW B 110, 045110 (2024)

that the diagram contribution in frequency space is given by

�(2,0)⊥(ω) = −J2
⊥ρ0

∫ D

−D
dε1

1

2(ε1 − iω)
. (9)

Before the integration, we are going to carry out the analytical
continuation by replacing

1

(ε1 − i ω)
�→ 1

(ε1 − ω)
− iπδ(ε1 − ω). (10)

We keep only the imaginary part (that involves a delta function
and makes integration trivial), giving the second-order J2

⊥
contribution to the imaginary part of the self-energy as

�i
(2,0)⊥(ω) = π

2
J2
⊥ρ0. (11)

This is a constant contribution with no explicitly dependence
on ω. The contribution from the J2

z diagram is calculated in the
same way, the only difference being an overall multiplicative
factor,

�i
(2,0)z(ω) = π

4
J2

z ρ0. (12)

We switch now our attention to the third-order diagrams (bot-
tom row in Fig. 1). These are somewhat more involved to
evaluate than the second-order ones because they have an
internal vertex, so one has to first do the corresponding in-
tegration in imaginary time. The particle and hole third-order
diagrams translate, respectively, to the following expressions:

�
p
(3,0)(τ ) = 3

2
J2
⊥Jzρ

2
0

∫ D

−D
dε1

∫ D

−D
dε2

∫ β

0
dτ1 G f

0 (τ1, ε1)

× G f
0 (τ − τ1, ε2)Gp f

0 (τ, μ)Gp f
0 (τ1 − τ, μ)

× Gp f
0 (−τ1, μ),

�h
(3,0)(τ ) = −3

2
J2
⊥Jzρ

2
0

∫ D

−D
dε1

∫ D

−D
dε2

∫ β

0
dτ1

× G f
0 (τ1, ε1)G f

0 (τ − τ1, ε2)Gp f
0 (τ1, μ)

× Gp f
0 (τ − τ1, μ)Gp f

0 (−τ, μ). (13)

We proceed by doing the integral in τ1 to obtain expressions
for �

p
3,0(τ ) and �

p
3,0(τ ) that we can then Fourier transform

in τ . (If the perturbation is extended to higher orders, the
number of integrals grows accordingly.) The resulting particle
and hole frequency-dependent contributions are

�
p
(3,0)(ω) = 3

2
J2
⊥Jzρ

2
0

∫ D

−D
dε1

∫ D

−D
dε2

[ −i + tanh
(

βε2

2

)
2(ε1 − ε2)(ε1−iω)

]
,

�h
(3,0)(ω) = −3

2
J2
⊥Jz

∫ D

−D
dε1

∫ D

−D
dε2

×
[ (

1
2 + i

2

)
(i + eβε2 )

(1 + eβε2 )(ε1 − ε2)(ε1 − iω)

]
, (14)

where we also replaced μ → iπ
2β

, as per the PF prescription
for spin-1/2. The particle and hole contributions are now
added before the analytic continuation is done. We arrive at

FIG. 2. Fourth-order diagrams contributing to the J4
⊥ term in the

self-energy. We only show hole diagrams in the figures to keep them
more compact. (Of course, some diagrams such as the bottom one
shown here with two pseudofermion loops nested in each other are
symmetric with respect to the reversal of arrows and therefore have
no particle and hole distinction.) We give multiplicative factors in
front of each diagram.

a relatively simple expression,

�(3,0)(ω) = �
p
(3,0)(ω) + �h

(3,0)(ω)

= 3

2
J2
⊥Jzρ

2
0

∫ D

−D
dε1

∫ D

−D
dε2

[
tanh

(
βε2

2

)
(ε1 − ε2)(ε1 − iω)

]
,

(15)

and can proceed with the analytic continuation, using Eq. (10),
and the extraction of the imaginary part. We finally do the
energy integrals to obtain

�i
(3,0)(ω) = π

3

2
J2
⊥Jzρ

2
0

[
ln

(
D

ω
− 1

)
+ ln

(
D

ω
+ 1

)]
.

(16)

Of note is that the integration in energy was done in the zero-
temperature limit, in which the numerator of the integrand
becomes a sign function. Since we will assume that D is large
and ω small, we can expand the term in the brackets in powers
of ω̃ ≡ ω/D 	 1, and we keep only the leading (divergent)
logarithmic contribution

�i
(3,0)(ω) = −3πJ2

⊥Jzρ
2
0 ln(ω̃). (17)

This is the third-order contribution to the imaginary part of the
electron self-energy. It is the first order at which logarithmic
divergencies start to appear. In calculating this, and in all
other higher-order terms, we will be especially interested in
the constant and logarithmically divergent terms. (In a later
section, we shall discuss in detail what happens if additional
terms are also taken into account.)

Proceeding further, to the fourth order in the perturba-
tive expansion, we encounter the diagrams shown in Fig. 2,
which give a J4

⊥ contribution to the self-energy. Their calcu-
lation proceeds in an analogous way as above [29], and we
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FIG. 3. Fourth-order diagrams contributing to the J2
⊥J2

z term in the self-energy. The first row has one-pseudofermion-loop diagrams, while
the second row has two-pseudofermion-loop ones. Again, we show only hole diagrams, keeping in mind that the last two diagrams (second
row) are symmetric to the reversal of pseudofermion arrows and therefore do not have separate particle and hole versions.

find

�(4,0)⊥ = − J4
⊥ρ3

0

∫ D

−D
dε1

∫ D

−D
dε2

∫ D

−D
dε3

×
[

3
[ − 2 + tanh

(
βε2

2

)
tanh

(
βε3

2

)]
4(ε1 − ε2)(ε1 − ε3)(ε1 − iω)

]

�→ �i
(4,0)⊥ = 3πJ4

⊥ρ3
0 ln2(ω̃). (18)

This is only a J4
⊥ contribution to the self-energy; there is

also an analogous J2
⊥J2

z contribution, with a larger number of
diagrams as given in Fig. 3. Adding up all those with their
respective multiplicative factors we arrive at

�(4,0)⊥z

= J2
⊥J2

z ρ3
0

∫ D

−D
dε1

∫ D

−D
dε2

∫ D

−D
dε3

×
[

3 − 4eβε2 − 4eβε3 + 3eβ(ε2+ε3 )

2(1 + eβε2 )(1 + eβε3 )(ε1 − ε2)(ε1 − ε3)(ε1 − iω)

+ −1 + tanh
(

βε2

2

)
tanh

(
βε3

2

)
2(ε1 − ε2)(ε2 − ε3)(ε1 − iω)

]

�→ �i
(4,0)⊥z = 6J2

⊥J2
z ρ3

0 ln2(ω̃) (19)

(after analytic continuation, doing the energy integrals in the
zero-temperature limit, and expanding in ω̃).

Besides these two contributions, with J4
⊥ and J2

⊥J2
z , one can

look for a J4
z contribution as well, but it turns out that this

contribution is zero up to the dominant order we are keeping
here.

There are additional fourth-order diagrams contributing
to the electron self-energy that we did not touch upon as
yet. Namely, these are the channel-number-dependent con-
tributions, which, graphically, are given by diagrams with
band-fermion loops. Some of such diagrams are shown in
Fig. 4, where we display the contributions with J4

⊥. After
the usual calculations, their dominant imaginary self-energy
contribution is

�i
(4,1)⊥ = 2J4

⊥Mπρ3
0 [ln(2) − 1] + 2J4

⊥Mπρ3
0 ln(ω̃), (20)

where we have assumed an even number of channels and taken
K = 2M, with M an integer (or half-integer) number.

Finally, we have also the diagrams in Fig. 5, which con-
tribute to the J2

⊥J2
z terms in the electron self-energy. With a

similar procedure as for all the previous cases we find

�i
(4,1)⊥z = 4J2

⊥J2
z Mπρ3

0 [ln(2) − 1]

+ 4J2
⊥J2

z Mπρ3
0 ln(ω̃), (21)

and, again, there are no J4
z contributions.

At this point, we have finished computing all the contribu-
tions to the perturbative expansion of the electron self-energy
up to the fourth order in the coupling constant. Collecting all
of the terms we arrive at the full expression for the imaginary
part of the self energy. Writing it with increasing powers of the
coupling (columnwise) and decreasing degree of logarithmic
divergence (rowwise) one has

4ρ0

π
�i = [

P⊥
(2,0)g

2
⊥ + Pz

(2,0)g
2
z

] + [
P⊥z

(3,0)g
2
⊥gz

]
ln(ω̃) + [

P⊥
(4,0) g4

⊥ + P⊥z
(4,0) g2

⊥g2
z

]
ln2(ω̃)

+ [
P⊥

(4,1b) Mg4
⊥ + P⊥z

(4,1b) Mg2
⊥g2

z

]
ln(ω̃)

+ [
P⊥

(4,1a) Mg4
⊥ + P⊥z

(4,1a) Mg2
⊥g2

z

]
, (22)

where the numerical coefficients in the right-hand side of the
equation are

P⊥
(2,0) = 2, Pz

(2,0) = 1,

P⊥z
(3,0) = −12,

P⊥
(4,0) = 12, P⊥z

(4,0) = 24,

P⊥
(4,1a) = 8[ln(2) − 1], P⊥z

(4,1a) = 16[ln(2) − 1],

P⊥
(4,1b) = 8, P⊥z

(4,1b) = 16. (23)
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FIG. 4. Fourth-order diagrams contributing to the channel-
number-dependent J4

⊥ terms in the self-energy. The channel “flavor”
in the fermionic loop is independent of the “flavor” of the fermions
in the rest of the diagram (including also an α′, not indicated). There-
fore, the total channel number, K = 2M, will appear multiplying
their contribution to the self-energy (in addition to the multiplicative
factors shown here).

In Eq. (22) we have made use of the substitution g = Jρ0,
which is a usual convention (nota bene that latter we will
redefine it as g = 2Jρ0, but we did not do it as yet in or-
der to avoid for the time being fractional coefficients and
connect with different conventions found in the literature;
we shall always change the typography in order to alert the
reader of this change taking place). Since the P coefficients
are numerical prefactors in front of different powers of the
coupling constants, we have labeled them in a way that keeps
track of which P coefficient corresponds to which power.
These coefficients are going to be used in determining the
flow equations of the model. In general, we expect them
to be different between the direct and conventional schemes
(models). The reason being that in the conventional scheme

FIG. 5. Fourth-order diagrams contributing to the channel-
number-dependent J2

⊥J2
z terms in the self-energy. (Although it will

not play a role in the current calculations because we are not doing
impurity averaging, notice there is a single pseudofermion loop in
both diagrams, while in the previous figure the second diagram had
two such loops.)

we will have unphysical diagrammatic contributions to the
self-energy, which will change the numerical value of the P
coefficients. To what extent these changes actually reflect in
the beta functions themselves will be discussed in detail in
subsequent sections.

B. Calculation of the flow

As already argued above, considering that the imaginary
part of the retarded self-energy corresponds to the scattering
rate of the electrons by the impurity (a physical observable),
it should be relatively insensitive to the cutoff scale, provided
we allow the coupling constants to be adjusted. In other words,
�i(ω) should have a zero total derivative. This independence
of the regulator scale is encapsulated in the CS equation [see
Eq. (7)], which can be rewritten in expanded form as

(
− ∂

∂ln(ω̃)
+ βz(gz, g⊥)

∂

∂gz
+ β⊥(gz, g⊥)

∂

∂g⊥

)
�i(ω̃, gz, g⊥) = 0. (24)

This expression is obtained by expanding the total derivative
with respect to ln(D) in terms of partial derivatives,

d�i

dln(D)
= ∂�i

∂ln(D)
+ ∂gz

∂ln(D)

∂�i

∂gz
+ ∂g⊥

∂ln(D)

∂�i

∂g⊥
, (25)

replacing ∂�i/∂ln(D) = −∂�i/∂ln(ω̃), and introducing the
definitions of the beta functions for the two coupling constants

βz(gz, g⊥) ≡ ∂gz

∂ln(D)
,

β⊥(gz, g⊥) ≡ ∂g⊥
∂ln(D)

, (26)

From Eq. (24), we can find the beta functions iteratively if we
write them as a series expansion in the coupling constant with
unknown coefficients (e.g., to third order)

β⊥(gz, g⊥) = a1gzg⊥ + a2g3
⊥ + a3g⊥g2

z

βz(gz, g⊥) = b1g2
⊥ + b2g2

z + b3g2
⊥gz + b4g3

z . (27)

Since we know the first few terms of the perturbative expan-
sion of �i(ω̃, gz, g⊥), we can perform all the derivatives in
the CS equation to get a polynomial that can be arranged

in powers of gz, g⊥, and ln(ω̃), which are all regarded as
independent. Notice we do not include in our power counting
M scaling as the inverse of the Kondo coupling, the way it is
done in large-M approaches [18,19,21], but our conclusions
will be nevertheless equivalent up to the third order [30]. We
can then equate with zero each combined factor in front of
those powers and in such a way obtain a set of linear algebraic
equations for the coefficients of the beta functions:

a1 = P⊥z
(3,0) − 2Pz

(2,0)b1

2P⊥
(2,0)

, b1 = P⊥z
(3,0) − 2P⊥

(2,0)a1

2Pz
(2,0)

,

a2 = MP⊥
(4,1b)

2P⊥
(2,0)

, b2 = 0,

a3 = MP⊥z
(4,1b) − 2Pz

(2,0)b3

2P⊥
(2,0)

, b3 = MP⊥z
(4,1b) − 2P⊥

(2,0)a3

2Pz
(2,0)

,

b4 = 0. (28)

Notice that the equations for a1 and b1, as well as those for
a3 and b3, are the same equation just solved for a different
variable. Thus we cannot solve simultaneously for a1 and b1
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(respectively, a3 and b3), without introducing some other
set of equations to determine them. In this case, an
additional set of equations is easily obtained by considering
the spin-isotropic limit. Namely, since we know that
βz|gz=g⊥=g = β⊥|gz=g⊥=g ≡ β(g), that enables us to extract
two more equations that include the still unknown coefficients
of the beta functions

a1 = b1 + b2,

a2 + a3 = b3 + b4. (29)

These two additional relations help us solve the system and
determine the beta functions to be

β⊥(gz, g⊥) = −2gzg⊥ + 2M
(
g3

⊥ + g⊥g2
z

)
�→ −gzg⊥ + M

2

(
g3

⊥ + g⊥g2
z

)
,

βz(gz, g⊥) = −2g2
⊥ + 4Mg2

⊥gz

�→ −g2
⊥ + Mg2

⊥gz, (30)

where, in the second lines, we introduced the rescaling
gz,⊥ �→ gz,⊥/2 (and consequently βz,⊥ �→ βz,⊥/2) to facilitate
the comparisons with (our) poor man’s scaling results (cf.
Ref. [31]) and other field-theoretical RG results in the
literature that start with a different normalization of the initial
Hamiltonian [19,21].

There are, however, additional equations to those given
in Eq. (28), which we refer to as RG-consistency equa-
tions [since they indicate that the RG procedure can be used to
“consistently” resum the logarithmic divergences row by row
in Eq. (22)]. They are automatically satisfied by the solutions
for the coefficients of the beta functions. Explicitly in this
case, these equations are

2P⊥z
(3,0)a1 = 2P⊥z

(4,0) − P⊥z
(3,0)b2,

P⊥z
(3,0)b1 = 2P⊥

(4,0) (31)

and are very interesting on more than one account. First,
they are the only equations that contain the coefficients of
the ln2(ω̃) contributions to the electron self-energy. In fact,
the system in Eq. (28) is derived fully from the ln(ω̃) and
nonlogarithmic contributions to the self-energy alone. Second,
as one can also notice by inspecting the terms in Eq. (31),
they combine the lower-order coefficients of the beta function
with the higher-order ones of the self-energy. As expected,
the coefficients a1 and b1 can be completely derived using the
self-energy up to the third order in the coupling constant, and
one does not need to invoke higher-order terms of the self-
energy to find them. This means that, from Eq. (31), knowing
a1 and b1,2 we can find the fourth-order ln2(ω̃) coefficients
of the self-energy without actually doing any diagrammatic
calculation (which we nevertheless did to find the less di-
vergent parts). Notice that if the CS equation is found to be
consistent in doing such a reverse calculation and producing
the same result as the perturbative expansion, this constitutes a
nontrivial check for evaluation of the higher-orders diagrams.

IV. RG CALCULATION IN THE INDIRECT SCHEMES

Having illustrated the field-theoretic RG procedure in de-
tail for the (multi) two-channel Kondo model or the “direct
scheme” we will move on to applying the same procedure for
two different compactified versions of the model or “indirect
schemes.”

A. BdB-compactified (multi) two-channel Kondo model

The details of the BdB-based compactification of the
(multi) two-channel Kondo model has been presented earlier
[16]. Here we simply recall the result of that procedure for the
interaction part of the Hamiltonian,

HK = ñc,α ñ−
l,αJ⊥(S−ψsl,αψ†

s,α − S+ψ
†
sl,αψs,α )

+ ñc,α ñ+
l,αJ⊥(S−ψ

†
sl,αψ†

s,α − S+ψsl,αψs,α )

+ ñc,α (ñ+
l,α + ñ−

l,α ) Jz Sz : ψ†
s,αψs,α :

+ ñc,α (ñ+
l,α − ñ−

l,α ) Jz Sz : ψ
†
sl,αψsl,α :, (32)

where the fermionic fields are evaluated at the position of
the impurity (x = 0). Succinctly, the expression in Eq. (32) is
obtained by carrying out the standard bosonization procedure,
after which we rotate the model, for each value of α, into
so-called physical sectors where (instead of two-valued “spin”
and “lead” degrees of freedom) we have c, s, l , and sl labels
[16], and finally we end by debosonizing. Via such rotations,
the original model is mapped into one where only two sectors
would be coupled to the impurity, namely, s and sl , as ex-
pected on physical grounds since the impurity is a pure-spin
degree of freedom. However, we have argued that one needs
to take a departure from the “conventional” way of handling
these transformations, and introduce the ñ factors whereby the
sectors that are not directly coupled by the impurity dynam-
ics are still correlated to it. Intuitively, these factors can be
thought of as fermionic densities, but their rigorous origin is in
the products of (fractional) vertex operators of the respective
bosonic fields. The standard, what we refer to as conventional,
compactification result is recovered by letting all ñ → 1. This
limit, however, can produce unphysical results, since it al-
lows for processes which have no counterpart in the language
of the original fermions. To avoid that, we introduced the
consistent scheme, in which the ñ factors are preserved as
adiabatic operators and one utilizes their inherent properties
of idempotence (ñ2 = ñ) and co-nilpotence (ñ+ñ− = 0) for
each fermion history [17]. We shall now compare these two
schemes between them and with the direct one (since they
can all be thought of as different schemes for determining the
universal RG flow of the model).

B. Conventional scheme

The conventionally refermionized action has a standard
Gaussian part (including pseudofermions),

S0 = ρ0

∑
ν,α

∫ D

−D
dε

∫ β

0
dτ ψ̄να (ε, τ )(ε + ∂τ )ψνα (ε, τ )

+
∑

σ

∫ β

0
dτ η̄σ (τ )(μ + ∂τ )ησ (τ ) , (33)
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where ν = {c, s, l, sl} labels the physical sector, and α = 1, . . . , M labels the (additional) channel degeneracy for each sector.
On the other hand, the impurity interaction part of the action is given by

SI = −J+ρ2
0

∑
α

∫ D

−D
dε

∫ D

−D
dε′

∫ β

0
dτ η̄↓(τ )η↑(τ )ψ̄s,α (ε, τ )ψsl,α (ε′, τ )

− J−ρ2
0

∑
α

∫ D

−D
dε

∫ D

−D
dε′

∫ β

0
dτ η̄↑(τ )η↓(τ )ψ̄sl,α (ε, τ )ψs,α (ε′, τ )

− JA
+ρ2

0

∑
α

∫ D

−D
dε

∫ D

−D
dε′

∫ β

0
dτ η̄↑(τ )η↓(τ )ψsl,α (ε, τ )ψs,α (ε′, τ )

− JA
−ρ2

0

∑
α

∫ D

−D
dε

∫ D

−D
dε′

∫ β

0
dτ η̄↓(τ )η↑(τ )ψ̄s,α (ε, τ )ψ̄sl,α (ε′, τ )

+ Jzρ
2
0

∑
α

∫ D

−D
dε

∫ D

−D
dε′

∫ β

0
dτ (η̄↑(τ )η↑(τ ) − η̄↓(τ )η↓(τ ))ψ̄s,α (ε, τ )ψs,α (ε′, τ ), (34)

where we have introduced besides Jσ also JA
σ as coupling

constant notations just to highlight the terms that involve
anomalous vertices (A superscript). The value of σ = ± in-
dicates whether the impurity is flipping its spin up or down,
respectively. This notation is introduced just for the sake of
easier reading of the diagrams, and we still maintain, for
calculations purposes, JA

σ = Jσ = J⊥, for both values of σ .
Tracking the two types of vertices is interesting because it is
the mixing of anomalous vertices with the normal ones that
introduces unphysical contributions, and all of those come ini-
tially from the diagrams contributing to J4

⊥ in the self-energy.
There are two important differences in terms of the “diagram-
mar” of the conventional scheme vs the direct one: first, the
presence of the anomalous terms will produce diagrams with
reversed arrows on the fermion propagators and, second, if
one looks at the Jz vertex one notices that it involves only s
fermion scattering (the sl sector does not participate). In turn,
this means that one cannot put a Jz vertex in between two J⊥
ones, which limits the number of diagrams that can be made.

It is interesting to make an aside and point out how
corresponding conventional- and direct-scheme diagrams are
related. The reversal of propagators in the diagrams can
be accounted for by observing that the Green functions
obey G f

0 (−τ, ε) = −G f
0 (τ,−ε) = −G f

0 (τ, ε), where the last
equality is valid only under the integral in ε with symmetric
integration limits. This way any propagator oriented “left-
ward” in a conventional-scheme diagram can be made into
a “rightward” one as in the direct scheme. In the process, it
incurs an extra minus sign which is compensated by another
minus sign coming from the Wick contractions of anoma-
lous vertices. In Fig. 6 we show the diagrams that contribute
at the second and third orders in the coupling constant to
the s-fermion self-energy. Notice that in the diagrams with
anomalous vertices the sl-fermion propagator appears “re-
versed.” Using the property mentioned above the arrow can
be “turn back right,” thereby making those diagrams the same
as the others at the same respective order, but that introduces a
minus sign. However, the Wick contraction of two anomalous
vertices also produces an extra minus sign (as opposed to the
contraction of normal ones). As a result, all the diagrams in
the figure that have fermion propagators going leftward end up

giving the same contributions as the corresponding rightward
diagrams.

Explicitly, every second-order diagram in Fig. 6 gives the
same contribution, and collecting them we arrive at

�s,i
(2,0)⊥ = πρ0J2

⊥,

�s,i
(2,0)z = πρ0J2

z , (35)

and the same is true for the third-order diagrams that evaluate
to the same result and give a combined contribution to the
imaginary part of the self-energy given by

�s,i
(3,0)⊥z = −8πρ2

0 J2
⊥Jz ln(ω̃). (36)

Even though in Fig. 6 we have diagrams that have anoma-
lous vertices, these are not unphysical diagrams. They are
perfectly translatable in terms of direct-scheme fermions, be-

FIG. 6. Second- and third-order diagrams contributing to the s-
fermion self-energy (for a given α). At these orders of perturbation
theory there are no unphysical contributions present. For the second-
order diagrams we labeled the external “amputated” legs (as we did
also in Fig. 1), but we dropped those labels in higher-order diagrams.
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cause they do not mix normal and anomalous J⊥ vertices.
They correspond, in principle, to different lead contributions.
Diagrams with all normal vertices will translate into con-
tributions to the L-electron self-energy, while the ones with
all anomalous vertices will do the same for the R-electron
self-energy. Since the problems with the translatability of
conventional-scheme diagrams arise from diagrams that mix
normal and anomalous vertices, any diagrams that involve
only two spin-flip vertices are not able to produce the said
mixing in the self-energy expansion; remark that the external
legs of the diagrams (the ones that are amputated) have to
be oriented in the same direction. In other words, if in the
second-order diagram we mixed a normal and an anomalous
vertex, it would produce a diagram that has both external
s-fermion propagators going into the diagram, which is not
a self-energy diagram. This means that we expect the leading-
order beta functions to be the same between conventional
and direct schemes, and that for the discrepancy between the
two schemes to arise one should look at higher orders of the
coupling-constant expansion.

At the fourth order in J , there is only one type of con-
tribution in which unphysical diagrams can appear, namely,
the J4

⊥ contribution. Also, in addition to having these unphys-
ical contributions from diagrams similar to the ones we had
before, there will be additional diagrammatic contributions
to this order in the self-energy that were not present in the
direct-scheme calculations. All of this comes across precisely
in Fig. 7, where only diagrams in the first and fourth rows are
not unphysical. Comparing this set of diagrams with the one
that contributes to J4

⊥ in the direct scheme (cf. Fig. 2), one can
see that (in the conventional scheme) besides the unphysical
versions of the direct-scheme diagrams, one also encounters
“topologically” new diagrammatic contributions. The latter
are shown in rows three and six in the figure, and both of
them are unphysical. The reason they are disallowed in the
direct scheme is because they have two J+ (respectively J−)
vertices next to each other, which in the direct scheme would
mean to flip the fermion spin up (respectively down) two times
in sequence. There are no such contributions in the direct
scheme, for a spin-1/2 can be flipped only once consecutively
in each direction. All the above considerations about physical-
ity notwithstanding, the contribution from the J4

⊥ diagrams is

�s,i
(4,0)⊥ = 8πJ4

⊥ρ3
0 ln2(ω̃) − π3

4
J4
⊥ρ3

0 . (37)

Comparing it to the direct-scheme contribution, we see
that in addition to the coefficient in front of ln(ω̃) being
different, there is a constant term (i.e., independent of ω̃)
present as well. The appearance of this constant term will
not contribute to the beta function at this order (i.e., third
order in the coupling). We leave aside for the moment the
possibility of a modified beta function at higher orders (which
requires the inclusion of fifth- and higher-order contributions
to the self-energy). On the other hand, the fact that the P⊥

(4,0)
coefficient in the conventional-scheme self-energy is different
than in the direct scheme affects only the RG-consistency
equation [cf. Eq. (31)] and not the actual equations for the
coefficients of the beta functions given in Eq. (28). Since
one expects the conventionally refermionized theory to
be RG-consistent by itself, one expects that this modified

FIG. 7. Fourth-order diagrams contributing to the J4
⊥ term in the

conventional self-energy. Unphysical diagrams are those that “mix”
normal and anomalous vertices. Such diagrams are shown in rows
two and three (with a single pseudofermion loop), as well as five and
six (with two pseudofermion loops). These contributions will not be
possible to translate them into the language of the original L and R
fermions.

conditions will be satisfied with the modified coefficients of
the fourth-order self-energy. In the end, we expect the beta
functions to be the same between both schemes at this order,
since nowhere else besides the RG-consistency conditions do
the unphysical diagrams contribute.

The other contribution to the fourth-order self-energy is the
J2
⊥J2

z one. This one, however, does not include any unphysical
diagrams, since there is no way one can mix normal and
anomalous spin-flip vertices because there are only two of
those per diagram. (Each diagram can thus only have either all
normal or all anomalous spin-flip vertices.) So, in principle,
we shall have the same diagrams as in Fig. 3 except that
they come with different multiplicative factors. This makes
the contribution of the J2

⊥J2
z term be

�s,i
(4,0)⊥z = 16πJ2

⊥J2
z ρ3

0 ln2(ω̃) + π4

4
J2
⊥J2

z ρ3
0 . (38)
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As in the case of the J4
⊥ contribution, we have an additional

constant term, which, up to the current order of calculation,
does not affect the beta function.

As for as the channel-number-dependent contributions (the
ones coming from diagrams with fermion loops), they do
not include any unphysical contribution. The reason being
the same as for the second-order contributions. If one looks
closely at the J4

⊥ fermion-loop diagrams (cf. Fig. 4), we see
that the lower two vertices are similar as in the second order
diagrams. So they both have to be either normal or anoma-
lous, and mixing is not possible. Furthermore, the upper two
vertices involved in the fermionic loop are separated from the
bottom two, and they can also both be anomalous or normal
(independent of the bottom ones), and mixing is again not
possible. In particular, there could be a diagram that has two
anomalous vertices in the fermionic loop, while the other two
vertices are normal (or vice versa). That, however, would be
perfectly translatable to the direct scheme and not unphysical.

The α index in the fermion loop is independent of that in the
base line of the diagram and contributes an M multiplicity.
Thus, the conventional-scheme contribution from fermion-
loop diagrams is

�s,i
(4,1)⊥ = 4πJ4

⊥Mρ3
0 [ln(2) − 1] + 4πJ4

⊥Mρ3
0 ln(ω̃),

�s,i
(4,1)⊥z = 12πJ2

⊥J2
z Mρ3

0 [ln(2) − 1] + 12πJ2
⊥J2

z Mρ3
0 ln(ω̃).

(39)

Once again we find a slightly different result as compared
to the direct scheme. This is a consequence of the Jz vertex
scattering involving only the s-sector fermions and having
physically allowed mixing of normal and anomalous vertices.
It is interesting to note that this allowed mixing of normal and
anomalous vertices in the conventional scheme is analogous
to the mixing of different channels in the same diagrams in
the direct scheme. Collecting all the contributions, as we did
in the direct-scheme calculation, we arrive at

4ρ0

π
�i

s = [
P⊥

(2,0)g
2
⊥ + Pz

(2,0)g
2
z

] + [
P⊥z

(3,0) g2
⊥gz

]
ln(ω̃) + [

P⊥
(4,0) g4

⊥ + P⊥z
(4,0) g2

⊥g2
z

]
ln2(ω̃)

+ [
P⊥

(4,1b) Mg4
⊥ + P⊥z

(4,1b) Mg2
⊥g2

z

]
ln(ω̃)

+ [
P⊥

(4,0a)g
4
⊥ + P⊥z

(4,0a)g
2
⊥g2

z

] + [
P⊥

(4,1a) Mg4
⊥ + P⊥z

(4,1a) Mg2
⊥g2

z

]
, (40)

where the conventionally calculated coefficients are now given
by

P⊥
(2,0) = 4, Pz

(2,0) = 4,

P⊥z
(3,0) = −32,

P⊥
(4,0) = 32, P⊥z

(4,0) = 64,

P⊥
(4,1a) = 16[ln(2) − 1], P⊥z

(4,1a) = 48[ln(2) − 1],

P⊥
(4,1b) = 16, P⊥z

(4,1b) = 48,

P⊥
(4,0a) = −π3, P⊥z

(4,0a) = π3. (41)

It is evident that in the conventional scheme we have co-
efficients that are different than in the direct calculation. The
question is whether this will lead to different beta functions.
The ansatz for the beta functions and the set of equations to

determine their coefficients turn out to be the same as they
were in the direct scheme and given by Eqs. (27) and (28),
respectively. Filling in with the now-different self-energy P
coefficients of Eq. (41), one nevertheless arrives at exactly
the same beta functions as in the direct case (with all of the
RG-consistency equations satisfied as well). The additional
ω̃-independent terms that appear in the conventional scheme,
as expected, do not change the third-order beta functions.
Remarkably, the presence of the unphysical diagrams does not
affect the universal physics of the model (see our conclusions
from poor man’s scaling [17]).

C. Consistent scheme

The consistently refermionized action is given by the same
Gaussian terms as above and the following Kondo-interaction
terms:

SI = −ñc,α ñ−
l,αJ−

∫ D

−D
dε

∫ D

−D
dε′

∫ β

0
dτ η̄↓(τ )η↑(τ )ψ̄s,α (τ, ε)ψsl,α (τ, ε′)

− ñc,α ñ−
l,αJ+

∫ D

−D
dε

∫ D

−D
dε′

∫ β

0
dτ η̄↑(τ )η↓(τ )ψ̄sl,α (τ, ε)ψs,α (τ, ε′)

− ñc,α ñ+
l,αJA

−

∫ D

−D
dε

∫ D

−D
dε′

∫ β

0
dτ η̄↓(τ )η↑(τ )ψ̄s,α (τ, ε′)ψ̄sl,α (τ, ε)

− ñc,α ñ+
l,αJA

+

∫ D

−D
dε

∫ D

−D
dε′

∫ β

0
dτ η̄↑(τ )η↓(τ )ψsl,α (τ, ε)ψs,α (τ, ε′)

+ ñc,α ñ−
l,αJz

∫ D

−D
dε

∫ D

−D
dε′

∫ β

0
dτ [η̄↑(τ )η↑(τ ) − η̄↓(τ )η↓(τ )][ψ̄s,α (τ, ε)ψs,α (τ, ε′) − ψ̄sl,α (τ, ε)ψsl,α (τ, ε′)]

+ ñc,α ñ+
l,αJz

∫ D

−D
dε

∫ D

−D
dε′

∫ β

0
dτ [η̄↑(τ )η↑(τ ) − η̄↓(τ )η↓(τ )][ψ̄s,α (τ, ε)ψs,α (τ, ε′) + ψ̄sl,α (τ, ε)ψsl,α (τ, ε′)]. (42)
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One can see that, besides the ñ factors that serve to prevent
the appearance of unphysical diagrams, the biggest difference
between the consistent and conventional compactifications is
that the Jz vertex now scatters both s- and sl-sector fermions.
Since the two sectors are now contributing in a more symmet-
ric way to the action, we expect that the s and sl self-energies
will be at a similar footing. This is already quite a contrast
to the conventional scheme, where using the sl self-energy
leads to a smaller number of algebraic constraints and is not
enough to determine the coefficients of the beta functions to
the desired order (see Appendix B for more details).

Having the ñ consistency factors present, as already
explained, prevents the mixing of anomalous and normal ver-
tices in any given fermion line of the diagrams. (Some mixing
is thus allowed in fermion-loop diagrams, since it does not
produce unphysical contributions.) The diagrams then look
the same as in the direct case, except for some of the arrow
orientations and the presence of the ñ∓

l,α factors at the vertices.
They correspond to all-normal and all-anomalous vertices (per
fermion line), respectively. There are no contributions from
mixing normal and anomalous spin-flip processes, since such
mixing is prevented by the co-nilpotence of the consistency
factors. The multiplicative factors in front of the integrals
are thus the same as in the direct scheme, thereby producing
the same self-energy result as in that scheme for each of the
ñ contributions. To put it more precisely, the result for the
consistent-scheme imaginary-part of the retarded self-energy
is related to the direct-scheme one by

�i
Consistent = (ñ−

l,α + ñ+
l,α )�i

Direct = �i
Direct, (43)

where we have used the properties of idempotence and
“completeness” (ñ−

l,α + ñ+
l,α = 1). This means that the beta

functions produced from the consistent-scheme calculation
are the same as in the direct scheme and thus coincide also (at
this order) with the conventional one as well. Regardless of
the matching results, the advantages of the consistent scheme
over the conventional one are that we can use either the s or
sl self-energy to find the beta functions, and we avoid any
unphysical contributions in a systematic way.

Another way one can be convinced of the fact that the
consistent and direct schemes produce the same results (at all
orders) is by noticing that the set of (mapping) transformations

ñ−
l,αψ̄s,α �→ ψ̄↑Lα,

ñ−
l,αψ̄sl,α �→ −ψ̄↓Lα,

ñ+
l,αψ̄s,α �→ ψ̄↑Rα,

ñ−
l,αψ̄sl,α �→ −ψ↓Rα (44)

returns the consistently refermionized action back into the
(original) direct one. Therefore, it is to be expected that they
will produce identical results in all respects. One can think
of the consistently compactified model as a rewrite of the
original model in terms of physical-sector degrees of freedom.

D. Comparison of results up to third order

We found that all three schemes for calculating the RG flow
of the (multi) two-channel Kondo model give the same result

for the third-order beta functions, namely,

β⊥(gz, g⊥) = −gzg⊥ + M

2

(
g3

⊥ + g⊥g2
z

)
,

βz(gz, g⊥) = −g2
⊥ + Mg2

⊥gz. (45)

This is the same result one obtains by doing poor man’s
scaling [17]. This means that all three schemes capture well
the universal physics of the Kondo model. This is a not un-
expected though somewhat surprising result, considering the
appearance of some unphysical processes in the conventional
scheme. However, as we have seen, those contributions end up
affecting only the RG-consistency equations and not the equa-
tions used to calculate the coefficients of the beta functions.
Nevertheless, the self-energy (and therefore the electron scat-
tering rate) after the conventional compactification is different
than in the other two models. So one should expect differences
among them to manifest away from the IR fixed point, i.e.,
at relatively high temperatures or in nonequilibrium quanti-
ties (like the differential spin conductance that we discussed
earlier [16]).

V. RG FLOW BEYOND THIRD ORDER

So far we have calculated the RG flow up to the third order
in the coupling constant. We have seen that although there
are, in the conventional scheme, unphysical terms contributing
to the imaginary part of the retarded self-energy, the flow re-
mains the same as it was in the direct calculation. Comparing
this to our previous results [16,17], we observe that it fits into a
general narrative that despite certain physical quantities being
different between schemes, the universal physics remains the
same.

In the next few subsections, we would like to compare the
schemes going beyond the third-order flow. More precisely,
we want to calculate the channel-number-independent fourth-
order terms in the beta functions. We want to check whether
at this order (which will bring in more egregious examples
of unphysical contributions), the beta functions are still the
same between schemes or not. In order to do such a compar-
ison, we compute the self-energy up to the fifth order in the
coupling constant but taking into account only diagrams that
have no fermion loops. Calculations of high-order fermion-
loop diagrams can be found elsewhere [19], and they do not
involve any unphysical contributions when in the conventional
scheme; so for our current purposes of comparison they are of

FIG. 8. Examples of fifth-order diagrams with fermionic loops.
Each of the two diagrams will have many more pseudofermionic
contractions than shown (but for the analysis of physicality only the
full-line fermionic propagators are needed to check for mixing of
normal and anomalous vertices). These diagrams, with the fermionic
contractions as shown, do not harbor any unphysical contributions.
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FIG. 9. Fifth-order diagrams (focusing only on connectivity) contributing to the fermionic self-energy. There are two classes of diagrams,
those with a single pseudofermion loop and those with two pseudofermion loops (we separated them by a horizontal line in the figure). The
diagrams are the same in all the three schemes, and what changes (from one scheme and vertex assignment to another) are the multiplicative
factors, labeled here by fn and dm, with n ∈ {1, . . . , 12}, and m ∈ {1, . . . , 8}. Coupling-constant wise, there are only two contributions to the
imaginary part of the retarded self-energy (the J4

⊥Jz and J3
z J2

⊥ contributions), and a different set of fn’s and dm’s is needed for each of the two.

little value. Schematic examples of such diagrams are shown
in Fig. 8, and from there it is obvious why they will purport no
unphysical contributions: the bottom part of the diagram is ef-
fectively either a third- or second-order diagram, respectively,
and as such cannot mix normal and anomalous vertices, while
the loops themselves are also second or third order and do not
allow mixing either, because one would not be able to close
them if that was the case.

A. Direct scheme

The relevant diagrams contributing to the fifth-order self-
energy are given in Fig. 9, where we show the general form of
the diagrams and keep their multiplicative factors as scheme
and vertex-label dependent. There will be only two types
of vertex-label contributions to the fifth-order self-energy,
namely, the J4

⊥Jz and the J3
z J2

⊥ ones. Their multiplicative fac-
tors are collected and summarized in Tables I and II for the
direct and conventional schemes, respectively. It is important
to note that the reason why f11 = 0 in the direct scheme is
not some fortuitous cancellation between different combina-
tions of vertices; it is due to the fact that in that case one
is not able to construct such a contraction, since one would
need to connect with pseudofermion propagators vertices of
the same spin-flip “polarity.” As in the case of the lower-

order calculations, we are showing only the hole diagrams
with the implicit understanding that we have calculated both
hole and particle contributions, and the calculations proceed
in a similar way. Although the integrals in Matsubara time
are now somewhat more complicated, the real incremental

TABLE I. Multiplicative factors for the direct-scheme calcula-
tion of the self-energy. They are given for the only two possible
vertex combinations, J2

⊥J3
z and J4

⊥Jz.

J2
⊥J3

z contribution

f1 = −10 f2 = 4 f3 = −2 f4 = −4
f5 = 4 f6 = −2 f7 = −2 f8 = −2
f9 = 2 f10 = 4 f11 = 0 f12 = 4
d1 = −6 d2 = 6 d3 = −2 d4 = −2
d5 = −2 d6 = −2 d7 = −2 d8 = 6

J4
⊥Jz contribution

f1 = −5 f2 = 2 f3 = −1 f4 = −2
f5 = 2 f6 = −1 f7 = −1 f8 = −1
f9 = 1 f10 = 2 f11 = 0 f12 = 2
d1 = −3 d2 = 3 d3 = −1 d4 = −1
d5 = −1 d6 = −1 d7 = −1 d8 = 3
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TABLE II. Multiplicative factors for the self-energy diagrams in
the conventional-scheme calculation.

J2
⊥J3

z contribution

f1 = −8 f2 = 0 f3 = −8 f4 = −4
f5 = 0 f6 = −4 f7 = −4 f8 = −4
f9 = 4 f10 = 0 f11 = −8 f12 = 4
d1 = −4 d2 = 4 d3 = 4 d4 = 0
d5 = 4 d6 = 4 d7 = 4 d8 = 8

J4
⊥Jz contribution

f1 = −12 f2 = 4 f3 = −4 f4 = 0
f5 = 4 f6 = −8 f7 = −8 f8 = −8
f9 = 8 f10 = 4 f11 = −12 f12 = 0
d1 = −12 d2 = 12 d3 = 4 d4 = 8
d5 = 4 d6 = 4 d7 = 4 d8 = 8

challenge was in calculating the principal-value energy in-
tegrals to obtain the ω̃ dependence of the imaginary part of
the retarded self-energy. (It required lengthier computations as
well as cross-checks with numerical integration to make sure
that the principal value was evaluated correctly each time.)
Additionally, before the energy integrals, the τ -integration re-
sults were compared to the flat-band limit results for which the
exact solution up to arbitrary order in the coupling constant is
available via exact diagonalization [16].

Doing the calculations in the direct scheme, i.e., with the
factors from Table I, one arrives at the expression for the fifth-
order logarithmic contributions to the imaginary part of the
retarded self-energy to be

�i
(5,0)a = C1 − 11

8 π3J4
⊥Jzρ

4
0 ln(ω̃) + 16πJ4

⊥Jzρ
4
0 ln3(ω̃),

�i
(5,0)b = C2 − 11

16π3J2
⊥J3

z ρ4
0 ln(ω̃)

+ 8πJ4
⊥Jzρ

4
0 ln3(ω̃), (46)

where we have used labels C1 and C2 to denote some numeri-
cal constants (independent of ω̃) [32], which will play no role
in the CS calculation to find the fourth-order terms in the beta
functions. Proceeding further with the calculation becomes
rather complicated in the generic spin-anisotropic case, as it
involves an underdetermined system of equations that requires
additional input to solve it (see Appendix C). On the other
hand, the spin-isotropic limit is solvable using only the linear
system one obtains from the CS equation alone.

We shall thus discuss the spin-isotropic calculation here
and then come back and remark on the spin-anisotropic case.
The series ansatz for the beta function is a bit different than
what we had originally for the lower-order calculation. The
reason is that we only want to find the channel-number-
independent part of the additional term in the fourth-order beta
function. In order to do that, we have to explicitly include the
channel number into the ansatz,

β(g) = a1g2 + a2g3 + a2MMg3 + a3g4, (47)

where we separated explicitly the channel-independent parts
from the channel-dependent one. Another way to look at why
the ansatz is set up like that is to stress that we did not calculate
the fifth-order diagrams with fermion loops. This means that,
to extract from CS equations for the ansatz coefficients that are
linearly independent, the highest order we can go to is Mg4.
So we need to have a way of extracting coefficients in powers
of both M and g, and that is what the proposed ansatz enables
us to do.

As far as the self-energy is concerned, we have already
calculated lower-order contributions in the previous sections,
and in the spin-isotropic limit, including now also the fifth-
order contribution, it reads

4ρ0

π
�i = P(2,0)g

2 + P(3,0) g3 ln(ω̃) + P(4,0) g4 ln2(ω̃) + P(5,0a) g5 ln3(ω̃)

+ P(4,1b) M g4 ln(ω̃) + P(5,1a) M g5 ln2(ω̃)

+ P(4,1a) M g4 + [P(5,0b) + P(5,1b) M] g5 ln(ω̃)

+ P(5,1c) M g5. (48)

We have introduced labels here also for the contributions
from the fifth-order diagrams with fermion loops (the channel-
number-dependent ones), but in our present calculation we
will disregard them. Interested readers are referred to Ap-
pendix D to see the calculation redone in the spin-isotropic
limit with the contribution of the fermion-loop diagrams in-
cluded. The needed coefficients of the self-energy are given by

P(2,0) = 3,

P(3,0) = −12,

P(4,0) = 36,

P(4,1a) = 24[ln(2) − 1],

P(4,1b) = 24,

P(5,0a) = −96,

P(5,0b) = 12π2. (49)

One proceeds now in the same way as we did in the case
of the lower-order calculation. Namely, we replace into the
CS equation and extract from it equations that connect the P
coefficients of the self-energy with the coefficients of the beta-
function ansatz. The set of equation one arrives at are

a1 = P(3,0)

2P(2,0)
, a2 = 0,

a2M = P(4,1b)

2P(2,0)
, a3 = P(5,0b)

2P(2,0)
, (50)
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FIG. 10. Example of an unphysical contribution to the electron
self-energy in the conventional scheme and its attempted translation
to the direct scheme. The double label assignments on the right
diagram highlight the need for (unphysical) off-diagonal propagators
to represent those processes in the original direct language.

as well as a set of RG-consistency equations

a1 = 2P(4,0)

3P(3,0)
, a2 = 0, a1 = 3P(5,0a)

4P(4,0)
, (51)

which are automatically satisfied by the solutions of Eqs. (50)
with the given values of the P coefficients.

This way we are able to calculate the beta function (with a
channel-number-independent fourth-order term) is

β = −2g2 + 4Mg3 + 2π2g4

�→ −g2 + Mg3 + π2

4
g4. (52)

This is the RG flow in the spin-isotropic limit of the (multi)
two-channel Kondo model (taken beyond the standard first
two terms). It was a straightforward calculation once the self-
energy is given, since it is unequivocally determined by the
CS equation.

B. Conventional scheme

In the conventional scheme, the calculation will proceed in
the same way as in the direct one. However, in this scheme and
as was the case for the lower-order calculation, we are going to
have unphysical contributions to the self-energy. Moreover, at
this order there will be a larger number of diagrams that do not
have a valid translation in terms of the direct-scheme fermions
and processes. All these unphysical contributions come from
the J4

⊥Jz diagrams. This is as expected, considering that in
those diagrams there are more than two spin-flip vertices
present, which allows for the mixing of normal and anomalous
ones.

As already mentioned in the previous section, the set of
available diagrams is going to be the same in all schemes
(shown in Fig. 9) but with different multiplicative factors. For
the conventional scheme, the multiplicative factors are given
in Table II. There are two main differences when comparing
the conventional multiplicative factors with the direct ones
(given in Table I). The first is that the f11 coefficient is no
longer zero. For the J2

⊥J3
z contributions, this is a direct con-

sequence of the fact that the Jz vertex scatters only s-sector
fermions. On the other hand, for the J4

⊥Jz contribution, this
diagram appears because in the conventional scheme one is
able to connect two spin-flip vertices of the same polarity
(either J+ with J+ or J− with J−) with a single fermion
propagator, which is a consequence of allowing for the mixing
of normal and anomalous vertices (see Fig. 10 for an ex-
ample). For a systematic comparison, we can distinguish the
unphysical contributions as “fully” and “partially” unphysical.
Partially unphysical diagrams are untranslatable only when

they mix normal and anomalous vertices, while in all other
cases they have a valid translation in terms of the original
(direct-scheme) fermions. Fully unphysical diagrams, in con-
trast, are the ones that are untranslatable for any combination
of vertices. These are diagrams that cannot be made at all in
the direct scheme, but they exist in the conventional scheme
and always mix normal and anomalous vertices. At this or-
der, we encounter the first appearance of a fully unphysical
diagram (the one we selected for Fig. 10). We can see that
the valid conventional-scheme diagram would translate into
one that violates conservation of both “lead” and “spin” along
the propagators in the direct-scheme diagram. The second
noticeable difference between Tables I and II is that, in the
conventional scheme, a number of other multiplicative factors
are zero. In fact, there are no other zeros in the direct scheme
besides f11. Once again, the reason for the appearance of
these zeros in the conventional scheme is the nonexistence of
sl-fermion scattering from the Jz vertices.

The calculation now proceeds in an identical way as in the
direct scheme. The same as in the lower-order case, we arrive
at an expression for the imaginary part of the retarded self-
energy of the same form as that in Eq. (48) but with different
coefficients given by

P(2,0) = 8,

P(3,0) = −32,

P(4,0) = 96,

P(4,1a) = 64[ln(2) − 1],

P(4,1b) = 64,

P(5,0a) = −256,

P(5,0)b = 68

3
π2. (53)

The beta-function ansatz is still the same, so the equations one
finds for their coefficients are the same as well. The RG-
consistency equations are still satisfied; however, we arrive
at a different channel-independent fourth-order term in the
RG-flow than we did in the direct scheme. Namely, the con-
ventional beta function is found to be

β = −2g2 + 4Mg3 + 11π2

8
g4

�→ −g2 + Mg3 + 11π2

64
g4. (54)

Comparing results, the conventional scheme gives a fourth-
order coefficient that is about one-and-a-half (precisely
1.45 . . . = 16/11) times smaller than the one from the
direct-scheme, a consequence of the presence of unphysical
processes among the conventional diagrams.

C. Consistent scheme

The consistent scheme produces the same result as the
direct one. In this scheme, unphysical diagrams are precluded,
since the mixing of anomalous and normal vertices is inhibited
by the ñ factors. The result for the self-energy is the same
as given in Eq. (43). In fact, the results coincide with the
direct-scheme ones to all orders in the coupling constant (and,
as previously discussed, it can be obtained using either the s-
or the sl-fermion self-energy).
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FIG. 11. Comparison of the RG flow in the direct (left panel)
and conventional (right panel) schemes for M = 1. In the beyond-
third-order flow, the position of the fixed point in the direct scheme
shifts to g⊥ = gz � 0.47, and for the conventional scheme to g⊥ =
gz � 0.53 (but be reminded that this flow diagrams exaggerate the
differences, because they include only M-independent contributions
at the fourth order; including all—see Appendix D—the fixed points
would shift further, to 0.38 and 0.42, respectively).

D. Comparison of results beyond third order

In conclusion, we have shown that the presence of what
we dubbed “unphysical diagrams” in the conventional scheme
causes a discrepancy between the RG flows calculated in the
conventional scheme as opposed to the direct (or consistent)
one. This discrepancy between schemes is more obvious in the
spin-anisotropic case (results and details of that calculation
are given in Appendix C). In Fig. 11 we show the graphic
comparison of the flows in the two schemes. One can see that,
in the conventional scheme, the fixed point occurs at a higher
value of the coupling than in the direct scheme. Moreover,
the flow itself is similar in the two schemes above and along
the diagonal (which represents the spin-isotropic flow), but
below the diagonal they differ significantly in the way they ap-
proach the respective fixed points. However, this discrepancy
is caused by the channel-number-independent terms in the
beta function, which in the large-channel-number limit would
be disregarded. Below we shall investigate what happens with
the comparison of the different schemes in such a limit.

1. Large-M limit

Calculating the beta function in the large-channel-number
limit would proceed by keeping, at each order in the coupling-
constant (g) expansion of the self-energy, only the highest
powers of the channel number (K = 2M) that are possible at
that order (and in accordance with the order of the calcula-
tion). In other words, one keeps the self-energy diagrams that
have the largest number of fermion loops at the last kept order
in the coupling constant expansion. Figure 8 shows examples
of such diagrams for the fifth order; they are effectively fourth-
order contributions in the large-M approximation (since, near
the fixed point, each power of M would lower the order of
the diagram by one [19]). Other fifth-order diagrams with no
fermion loops are then disregarded (i.e., those in Fig. 9 that
were responsible for the discrepancies discussed above). In
such a calculation, one would have to proceed also to the
sixth order as well, but keep only the diagrams that have two
fermion loops (disregarding the ones with no or one fermion
loop only), since they also represent effective fourth-order
contributions; see Fig. 12 for an example of such diagrams.

FIG. 12. Examples of sixth- and seventh-order diagrams that
contribute to the self-energy in the large-M limit. The diagram in the
first row is a sixth-order diagram with two fermionic loops [which
could be labeled as (6,2)] and thus gives an M2 contribution to
the self-energy. The two bottom diagrams are both seventh-order
ones with two fermionic loops [labeled as (7,2)], and they also give
M2 contributions. All of these diagrams produce always “physical”
contributions (i.e., “translatable” or not unphysical) when in the
conventional scheme.

The same logic applies to the seventh-order contribu-
tions, one would only keep the diagrams with two fermion
loops (i.e., effective fifth-order diagrams). Examples of those
higher-order contributions are also shown in Fig. 12, where we
refrain from showing all of the other possible pseudofermion
contractions to keep the diagrams simple, since all we are
interested in are the fermion propagators and their loops.
At this point the question arises whether or not to include
other fifth-order diagrams, such as those from Fig. 9, that
would reintroduce the discrepancies among schemes. The
choice to exclude them is justified if one is interested in the
(“Mainstem”) RG-flow from weak coupling and constitutes
an additional prescription for how the large-M limit is defined
[33]; cf. Ref. [34] and see also Ref. [35] and Sec. VI.

By looking at the diagrams in Figs. 8 and 12 we see
that, for the purpose of translation among schemes, these
diagrams can be separated into two parts. One is the set of
loops themselves. Such loops will always be of second or third
order in the coupling. One can make higher-order loops for
higher-order diagrams, but such diagrams shall be neglected
since, the way we defined the large-M limit, at each order
we keep only the diagrams with the largest possible number
of loops. The second- and third-order loops do not mix the
anomalous and normal vertices. A second-order loop cannot,
because if it did one would not be able to make a loop (one
would have to contract two fermionic creation/annihilation
operators in order to close a mixed loop). A third-order loop
always involves the Jz vertex and only two J⊥ ones, so the
same argument as for the second-order loops still holds.
The other part of the diagram (its “baseline”) is effectively
like either a second- or third-order self-energy diagram (with
dressed pseudofermions), since one had to reserve as many
vertices as possible to make as many loops as possible. In such
second- and third-order diagrams there is no mixing of normal
and anomalous vertices if one seeks to calculate the s-sector
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self-energy. Trivial mixing, where a loop might be with all
anomalous vertices and the baseline or another loop with all
normal ones, or vice versa, does not produce any unphysi-
cal (untranslatable) contributions. As a result, this analysis
reaches the conclusion that all of the diagrams in the large-M
limit (up to arbitrarily high order in the coupling) are going
to be translatable from the conventional to the direct scheme.
Therefore, we do not expect any discrepancies between the
beta functions obtained from two schemes in this limit.

This and the previous analyses point to the limit of
applicability of the scheme based on the conventional com-
pactification of the model. In an appropriately defined large-M
limit, it always produces a “physical” result to all orders
of the perturbative expansion. But away from the large-M
approximation, it is only “physical” for low orders in the
expansion (going beyond a third-order expansion in the cou-
pling constant, the beta function already includes the effects
of unphysical contributions).

VI. EXTENDED RG ANALYSIS AND UNIVERSALITY

So far we have seen that a difference arises between the
direct (or consistent) and conventional schemes when going
beyond the third order in the flow equations of the (multi)
two-channel Kondo model. It can be argued, however, that
at this order the beta functions are already nonuniversal (and
thus, from the point of view of the universal aspects of the
physics, all three schemes are interchangeable). Indeed, in the
“conventional lore” (invoking the scaling limit and comparing
theories differing simply on the cutoff scale at which the bare
coupling is defined), the universal parts of the beta function
are only its g2 and g3 terms, for which all “schemes” give
the same result. This assumes that the couplings in the two
schemes are related in a flow-restricted way (see below).
More general schemes, some going beyond the perturbative
definition of the theories, could have their couplings related
in more general (even nonanalytic) ways [36] and then the
universality could be even further restricted to the g2 term
only [37]. Our comparison of the direct and indirect schemes,
connected to the direct one by BdB-based compactification
procedures, goes beyond the simple situation of two theories
related purely by scaling. However, in all these cases, the
theories are perturbatively defined and share a similar UV
Gaussian fixed point with a decoupled impurity, so the cor-
respondence among beta functions extends to the g3 terms as
well, as we indeed found. Remarkably, the agreement between
the direct- and consistent-scheme beta functions extends even
beyond, and to all orders of perturbation theory, underlining
the fact that the consistent BdB procedure is an exact mapping
not circumscribed to the scaling limit.

Let us discuss in more detail the universal aspects of scal-
ing in perturbatively defined theories as applied to the results
of the previous sections. We start from the spin-anisotropic
beta functions given by these arbitrary-coefficient expressions

β⊥(gz, g⊥) = a1gzg⊥ + a2g3
⊥ + a3g⊥g2

z,

βz(gz, g⊥) = a1g2
⊥ + (a2 + a3)g2

⊥gz (55)

(notice they coincide in the spin-isotropic limit, gz = g⊥ = g,
in which we recover the single-coupling-constant case ex-

tensively discussed in the literature). Performing a change
of the variables of the form g⊥ = ḡ⊥ + c2ḡ⊥ḡz and gz =
ḡz + c2ḡ2

⊥, where (i) the two sets of coupling constants co-
incide at the “tree level” since there are no divergences and
thus no ambiguities in their definitions, and (ii) the next
terms in the mapping are dictated by the leading order of the
respective RG flows [36,38,39] (in accordance with the large-
river picture that focuses on the mainstem flow and ignores
“(dis)tributaries” associated with microscopic (and other, like
large-M deviation) details [40])—, we arrive at the same beta
functions for the redefined couplings

β̄⊥(ḡz, ḡ⊥) ≡ dḡ⊥
dln(D)

= a1ḡzḡ⊥ + a2ḡ3
⊥ + a3ḡ⊥ḡ2

z,

β̄z(ḡz, ḡ⊥) ≡ dḡ⊥
dln(D)

= a1ḡ2
⊥ + (a2 + a3)ḡ2

⊥ḡz. (56)

But notice that this is true only for the beta function(s) up
to third order. Going beyond the third order, the RG flow is
no longer universal, in the sense that a change of variables
will lead to different fourth-order coefficients that will depend
on the arbitrary parameter in the change of variables (c2). Or,
differently put, an “error” in identifying the position along the
flow at which the bare coupling constants are defined affects
the beyond-third-order details of that flow.

We now ask the reader to recognize that this universality
of the third-order beta function would be retained even if the
beta function were to be ω̃ dependent (via its coefficients
a1,2,3). This is important because next we want to compare
the ω̃ (or cutoff) dependent beta functions obtained by direct-
and conventional-scheme calculations up to third order in an
extended-RG sense. They will be obtained using the same CS
method as earlier, but instead of keeping only constant and
divergent [power-of-log(ω̃)] terms, one allows also for integer
powers of ω̃ in the self-energy. Physically, this corresponds
to stretching beyond the IR-fixed-point-dominated region and
into the low-T part of the crossover regime of the Kondo
model. We argue that certain aspects of that regime are also
universal in the same sense as above.

We thus recalculate the self-energy, but this time keeping
and reorganizing the expression in powers of ω̃. We have
ω̃0 (those terms already calculated), as well as ω̃2 and ω̃4

contributions, etc. There are no odd powers of ω̃ in the series
expansion of the self-energy. The diagrams and calculations
are the same as they were before, it is just that in doing the
series expansion of the final contribution for each of them we
go beyond the dominant contribution and keep also the first
few subdominant terms. We can write a formal expansion for
the self-energy as

�i(ω̃) = �i
0[ln(ω̃)] + ω̃2�i

2[ln(ω̃)] + ω̃4�i
4[ln(ω̃)] + · · · ,

(57)

where �i
0 is the ln(ω̃)-dependent contribution given by the

expression in Eq. (22), while �i
2 and �i

4 are the alike ω̃2 and
ω̃4 coefficients of an integer-frequency-powers reorganization
of the expansion, respectively. In the direct scheme they are
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given by

4ρ0

π
�i

2 = P⊥z
(3,0)(2) g2

⊥gz + P⊥
(4,0)(2) ln(ω̃) g4

⊥

+ P⊥z
(4,0)(2) ln(ω̃) g2

⊥g2
z ,

4ρ0

π
�i

4 = P⊥z
(3,0)(4) g2

⊥gz + [P⊥
(4,0)(4a) + P⊥

(4,0)(4b) ln(ω̃)] g4
⊥

+ [
P⊥z

(4,0)(4a) + P⊥z
(4,0)(4b) ln(ω̃)

]
g2

⊥g2
z . (58)

As one can see, in addition to the P coefficients we had
for the logarithmically divergent part of the self-energy [see
Eqs. (23) and (41) for the direct and conventional schemes, re-
spectively], we have additional coefficients which we labeled
with the powers of ω̃ they are associated with. For the direct
scheme they are

P⊥z
(3,0)(2) = −6, P⊥

(4,0)(2) = 12, P⊥z
(4,0)(2) = 24,

P⊥z
(3,0)(4) = −3, P⊥

(4,0)(4a) = 3, P⊥
(4,0)(4b) = 6,

P⊥z
(4,0)(2a) = 6, P⊥z

(4,0)(2b) = 12. (59)

On the other hand, for the conventional scheme, the self-
energy contributions have a slightly different form than in the
direct case. One finds

4ρ0

π
�i

2 = P⊥z
(3,0)(2) g2

⊥gz + [P⊥
(4,0)(2a) + P⊥

(4,0)(2b) ln(ω̃)] g4
⊥

+ [
P⊥z

(4,0)(2a) + P⊥z
(4,0)(2b) ln(ω̃)

]
g2

⊥g2
z ,

4ρ0

π
�i

4 = P⊥z
(3,0)(4) g2

⊥gz + [P⊥
(4,0)(4a) + P⊥

(4,0)(4b) ln(ω̃)] g4
⊥

+ P⊥z
(4,0)(4)

[
P⊥z

(4,0)(4a) + P⊥z
(4,0)(4b) ln(ω̃)

]
g2

⊥g2
z , (60)

and the coefficients are now given by

P⊥z
(3,0)(2) = −4, P⊥

(4,0)(2a) = 4, P⊥z
(4,0)(2b) = 8,

P⊥z
(4,0)(2a) = −4, P⊥z

(4,0)(2b) = 16, P⊥z
(3,0)(4) = −2,

P⊥
(4,0)(4a) = 14

3 , P⊥
(4,0)(4b) = 4, P⊥z

(4,0)(4a) = 4
3 ,

P⊥z
(4,0)(4b) = 8. (61)

We can see that the main difference between the conventional-
and the direct-scheme subdominant contributions to the self-
energy (besides the value of the P coefficients) is in the actual
log-power structure of the contributions. In the conventional
scheme we have an ω̃2 ln(ω̃) contribution that is absent in the
direct one.

We can now use the same beta-function ansatz as before
[see Eq. (27)], but for this calculation the coefficients in front
of the powers of the coupling constant are now integer-power
series in ω̃,

an(ω̃) = an,0 + an,2 ω̃2 + an,4 ω̃4,

bm(ω̃) = bm,0 + bm,2 ω̃2 + bm,4 ω̃4, (62)

where n = 1, 2, 3 and m = 1, 2, 3, 4. Applying the CS equa-
tion on the self-energy in Eq. (57), we can calculate the above
coefficients in the expansion. We treat all the powers of ln(ω̃)
and ω̃ as independent in the CS equation in order to obtain
the equations for the coefficients. Carrying out the calculation
we arrive at the following extended beta functions (including

the usually neglected regular cutoff dependence) for the direct
scheme:

β⊥ = −(1 + ω̃2 + ω̃4) g⊥gz + M

2
g3

⊥ + M

2
g⊥g2

z,

βz = −(1 + ω̃2 + ω̃4) g2
⊥ + Mg2

⊥gz. (63)

We find that, in this scheme, only the lowest-order term in
each beta function has any ω̃ dependence. The rest of the
terms stay the same as when we kept only the dominant
contributions in the self-energy.

The result is significantly different in the conventional
scheme (with respect to the flow of the spin-flip coupling
constant). The beta functions are

β⊥ = −(1 + ω̃2 + ω̃4) g⊥gz + M

2

(
1 + 2 ω̃2 + 8

3
ω̃4

)
g3

⊥

+ M

2

(
1 − 2 ω̃2 − 8

3
ω̃4

)
g⊥g2

z,

βz = −(1 + ω̃2 + ω̃4) g2
⊥ + Mg2

⊥gz. (64)

The extended RG flow of gz is the same for both schemes
while that of g⊥ is different (they are thus different only
in the spin-anisotropic case). This echoes the fact that the
unphysical diagrams are present in only the g4

⊥ conventional
contributions to the self-energy. This is an interesting result,
since the difference between the beta functions obtained via
the two different calculation schemes extends now to the uni-
versal terms. This helps to further set the limits of applicability
of the conventional BdB scheme. At vanishing temperature
and for large cutoff (or small frequency) one has that ω̃ → 0
and the universal parts of the beta functions are the same
as in the direct calculation. On the other hand, if one wants
to move away from the low-temperature limit and explore
the crossover regime of the model, the conventional scheme
starts to be affected by the inclusion of unphysical processes
affecting the universal part of the flow (a brief illustration of
this is given in Appendix E).

VII. CONSISTENT REFERMIONIZATION OF THE
PARALLEL KONDO INTERACTION REVISITED

One of the main differences between the consistent and
conventional schemes of compactification of the (multi) two-
channel Kondo model is that the Jz vertex in the conventional
scheme only scatters s-sector fermions. This results in an
asymmetry between the two physical sectors that couple to the
impurity in the conventional scheme. As we have seen in the
previous sections, this fact forces one to choose the s-fermion
self-energy to use in the CS equation to determine the beta
functions, as opposed to the consistent scheme in which we
are free to choose either-sector self-energy.

We derived the more symmetric form of the compacti-
fied parallel Kondo coupling via the use of consistent BdB
arguments [16], but they were subtler than in the case of
the perpendicular coupling; cf. Ref. [15]. An alternative way
to understand the symmetric-footing appearance of sl-sector
fermions in the Jz vertex in the consistent scheme is by
noticing that (even if one did not include it in the starting com-
pactified Hamiltonian), already from second-order rescaling,
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FIG. 13. Examples of poor man’s scaling (T -matrix) diagrams
which produce the rescaling of the consistent-scheme parallel inter-
action involving sl-sector fermions in the (multi) two-channel Kondo
Hamiltonian.

parallel scattering of sl-sector fermions is generated by the
RG flow (provided the ñ factors in the perpendicular scattering
are treated consistently). In other words, one can start with the
consistently refermionized spin-flip part of the Hamiltonian
while leaving the no spin-flip part as in the conventional
case, and the model will still flow towards the consistently
refermionized model.

This can best be seen within the poor man’s scaling formal-
ism [17]. The diagrams that are involved in the creation of this
“new” parallel sl-sector scattering are shown in Fig. 13. They
show how, even if we did not start with the consistent parallel
interaction but used the conventional one instead (i.e., having
only s-sector fermions scatter on the vertex), the rescaling of
the Jz vertex involves processes with sl-sector fermions in the
external legs. Indeed, starting from the consistent spin-flip and
conventional parallel interaction, a new Hamiltonian term is
created at the second order that now needs to be included
in the original Hamiltonian to see how it feeds back into the
flow and make the whole procedure consistent. In such a way
one arrives at the consistently refermionized parallel interac-
tion without doing it explicitly (and having to worry about
refermionizing ñ’s [16]). In the CS calculation, the need for
the introduction of an additional interaction term manifests as
an inconsistency in the set of equations for the beta-function
coefficients. Namely, the RG-consistency equations given by
Eq. (31) will no longer be satisfied if one uses this semicon-
sistent scheme, where the spin-flip interaction is consistent but
the parallel one is conventional. The latter we rewrite as

Hz
K = Jz(ñ+

l,α + ñ−
l,α )Szψ̄s,αψs,α, (65)

where we have used the property of the n-twiddles that ñ+
l,α +

ñ−
l,α = 1 to be able to make contractions with the consistent

spin-flip part of the Hamiltonian. The inconsistencies appear-
ing in the system of CS equations are a consequence of the
fact that P⊥

(4,0) will have a consistent value, since the spin-flip
vertices are refermionized consistently, while P⊥z

(3,0) will have
a conventional value, since Jz was refermionized in a conven-
tional way. One needs to introduce an additional (sl-sector)
interaction to fix the RG consistency. Taking inspiration from
the PMS formalism, it becomes obvious that this additional
interaction is the one that scatters sl-sector fermions on the Jz

vertex. More precisely, in order to have the RG-consistency
equations satisfied, the parallel part of the Kondo interaction,
in a refermionized language, would need to be of the form

Hz
K = Js

z (ñ+
l,α + ñ−

l,α )Szψ̄s,αψs,α

+ Jsl
z (ñ+

l,α − ñ−
l,α )Szψ̄sl,αψsl,α, (66)

where we have allowed for s- and sl-sector fermions to
scatter with different coupling constants. With this enlarged

coupling-constant space, we can capture simultaneously the
conventional (Js

z = Jz, Jsl
z = 0) as well as the consistent (Js

z =
Jsl

z = Jz) versions of the Hz
K interaction. Moreover, the intro-

duction of the necessary additional interaction has turned the
semiconsistent model into an RG-consistent one. It is now
natural to ask if Js

z = Jsl
z is where the model will flow to under

the RG process [41]. The corresponding CS equation is of the
form(

− ∂

∂ln(ω̃)
+ βs

z

∂

∂gs
z

+ βsl
z

∂

∂gsl
z

+ β⊥
∂

∂g⊥

)
�i = 0. (67)

All the RG-consistency equations are now automatically sat-
isfied and the beta functions can be calculated in an analogous
fashion as in the previous sections. However, the system of
equations turns out to be underdetermined with the introduc-
tion of the Jsl

z interaction. One way to increase the number of
equations is by using the consistent and spin-isotropic limit.
This limit is defined as gs

z = gsl
z = g = g⊥, and it provides six

additional equations. As it turns out, these additional equa-
tions are still not enough to find the three beta functions.
Additional information about the beta function is inferred
from the PMS procedure. Namely, it can be seen in PMS that
there will not be any J3

z terms in the beta function. This can be
seen by noticing that the wave-function renormalization when
Js

z 
= Jsl
z is given by

W = 1 − (
Js

z

)2
ρ2

0
|δD|
2D

− (
Jsl

z

)2
ρ2

0
|δD|
2D

(68)

(where we have, for the sake of brevity, put J⊥ → 0, which
is enough in this case, since we are interested in only the
behavior of the parallel interaction). New coupling constants
obtained after reducing the cutoff and following the PMS
procedure up to the third order are given by

Js ′
z � Js

z + (
Js

z

)3
ρ2

0
|δD|
2D

+ Js
z

(
Jsl

z

)2
ρ2

0
|δD|
2D

,

Jsl ′
z � Jsl

z + (
Jsl

z

)3
ρ2

0
|δD|
2D

+ Jsl
z

(
Js

z

)2
ρ2

0
|δD|
2D

. (69)

In order to obtain the correct flow, one needs to multiply
the new coupling constants with the wave-function renormal-
ization. So the flow, up to third order, is actually given by

W Js ′
z � Js

z ,

W Jsl ′
z � Jsl

z , (70)

and, therefore, it does not have any J3
z terms and we are jus-

tified in demanding that the beta functions obey this also for
the CS-based calculation. This additional constraint is enough
to solve the algebraic system and obtain the full RG flow

β⊥ = −1

2
g⊥

[
gs

z + gsl
z

] + M

2
g3

⊥ + M

4
g⊥

[(
gs

z

)2 + (
gsl

z

)2]
,

βs
z = −g2

⊥ + Mg2
⊥gs

z,

βsl
z = −g2

⊥ + Mg2
⊥gsl

z . (71)

One can see that the coupling constants gs
z and gsl

z appear
symmetrically in the flow of g⊥ and flow in the same way to
the same fixed-point value. This means that, even though we
might start with two different values for them, the RG flow
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FIG. 14. Third-order flow diagram of the coupling constants ga
z

and gr
z for the fixed-point value of the spin-flip coupling constant

(g⊥ = 1/M), plotted for M = K/2 = 1. One can see that the RG flow
is toward the consistent-model fixed point (gr

z = 0).

will ultimately lead them to a renormalized model with Js
z =

Jsl
z (i.e., the consistent model with Jz = 1/M). To examine the

flow further, it may be more instructive to make a change of
variables and introduce ga

z = 1
2 (gs

z + gsl
z ) and gr

z = gs
z − gsl

z . In
this way the consistent model is recovered for gr

z → 0. The
beta functions for the redefined coupling constants are

β⊥ = −g⊥ga
z + M

2

[
g3

⊥ + g⊥
(
ga

z

)2] + M

8
g⊥

(
gr

z

)2
,

βa
z = −g2

⊥ + Mg2
⊥ga

z,

βr
z = Mg2

⊥gr
z. (72)

By analyzing these flow equations, one can immediately
see that gr

z is marginally irrelevant and will flow towards zero
(i.e., to the consistently compactified model). Therefore, when
introducing the additional interaction one can as well take
Js

z = Jsl
z = Jz and thereby obtain the consistently refermion-

ized model that is RG stable (since gr
z = 0 is a stable fixed

hyperplane).
In Fig. 14 we show the flow of ga

z and gr
z for the fixed-point

value of g⊥ = 1/M and M = 1. One can see from the
figure that, no matter what the level of asymmetry between
Js

z and Jsl
z is, the model flows toward the consistent-scheme

limit. This is also true for any other initial value of g⊥ one
chooses; gr

z always flows to zero. These considerations thus
provide an alternative way of motivating the consistently
refermionized term of the parallel (no-spin-flip) part of the
Kondo interaction.

VIII. CONCLUSION AND SUMMARY

In the first article of this triptych [16], we set out to re-
visit the compactification of Kondo-type quantum impurity
models. When using a methodical BdB-based approach to
compactification, one could expect that the procedure results

in an exact mapping. We showed that in order to achieve such
a one-to-one correspondence between the original and the
compactified models it is essential that we use the consistent
BdB formalism as against the conventional one [15], and in
doing so we also developed the consistent formalism further.
We formulated the way to treat the z-axis portion of the
Kondo coupling term consistently, which involved additional
subtleties as compared to the spin-flip part that we had studied
in our past work. The step of debosonization required making
guided choices in handling the n-twiddle factors while recon-
structing fermion operators. These choices are corroborated
by the RG analysis of a more general class of models that one
can obtain within the consistent-BdB treatment of the spin-flip
terms by judiciously combining poor man’s scaling and field-
theoretic treatments, as we discussed in the preceding section.
A second key extension in the consistent BdB formalism was
the discovery of an additional consideration in the consistent
treatment of the n-twiddle operators necessitated in dealing
with diagrams containing fermionic loops: the importance
of keeping track of fermion histories and requiring that n-
twiddles satisfy idempotence and co-nilpotence only within
each independent history [16,17].

In contrast with the earlier studies of boundary field theo-
ries that compared the different BdB schemes [15], the most
unexpected result of the present work is perhaps the seemingly
unreasonable effectiveness of the conventionally compactified
(multi) two-channel Kondo model. We trace it to the restric-
tions in the local electron-impurity scattering process due to
the spin algebra of the impurity. As it happens, that turns out
to suffice to make the conventional scheme recover fully the
first two orders of the beta functions (usually considered to
be the only universal parts); this was one of the highlights of
the second article in this series that presented in detail the cor-
responding poor man’s scaling calculations [17]. We further
saw here that similar restrictions to the electron-impurity scat-
tering are present (to all orders) in the subset of self-energy
diagrams that define the so-called (mainstem) large-M limit
of the original model. As a result the beta functions obtained
using the conventionally compactified model are exact in that
limit (even to all orders, going beyond the universal aspects of
the physics).

Here we also presented an extended RG calculation that
builds upon the basic framework but takes it conceptually fur-
ther with ideas inspired in effective field theories [26,42] and
(hyper)-asymptotic analysis [43]. It demonstrates how using
a cutoff-dependent beta function one can capture (and resum)
not only the logarithmic divergences and cutoff-independent
terms, but also the like contributions (constant and logarith-
mic) within the 1/D corrections to the self-energy (i.e., within
its subdominant terms). The leading orders of these correc-
tions can be argued to be universal in a similar (field-theoretic)
sense as the leading terms in the standard beta function are,
and they capture the universal aspects of the Kondo crossover
(farther away from the infrared fixed point). This corresponds
to a minimal inclusion of microscopic details via a single
physical scale identified with the cutoff of the Kondo-type
model (given, for instance, by the Schottky scale of a par-
ent Anderson-type impurity model [44]) that indicates when
the low-energy description stops sufficing. Those corrections
are thus reflected in a finite-temperature regime of the free
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energy and thermodynamic quantities close to but above the
Kondo temperature. They are usually of limited interest due
to the difficulty in isolating them experimentally (or even
calculate them theoretically) but are interesting in the context
of the conventional vs consistent comparisons. After the in-
clusion of the 1/D corrections, both compactifications start
to differ from each other at higher temperatures even for the
extended-sense-universal equilibrium aspects of the physics
(that are captured by minimal models with finite cutoffs but
still do not depend on the cutoff value, and are also inde-
pendent of further microscopic details of particular physical
realizations).

In conclusion, our proposal for the consistent compactifi-
cation of the (multi) two-channel Kondo model is argued to
be exact. It passes all the comparison tests we made across
this series of three articles: different exact results in solvable
limits were in matching accordance with the original model
[16], the universal part of the RG flow coincided [17], and
even the nonuniversal aspects of the flow agreed as we saw in
here. On the other hand, although the conventional compacti-
fication is not exact, we found that it constitutes an excellent
approximation that correctly captures many aspects of the
physics.

At this point, let us pause and zoom out to place this work
in the bigger context of using bosonization to study low-
dimensional correlated systems. Coming from the motivation
of generalizing bosonization to nonequilibrium problems
[15], it was discovered that for the case of a tunneling junc-
tion there was a discrepancy between the direct calculations
and those obtained after a BdB procedure. Its diagnosis re-
vealed that the conventionally implemented BdB procedure
violated the symmetries of the original problem. A criti-
cal and careful deconstruction of the subtle technicalities of
the BdB procedure led to the emergence of the consistent
BdB formalism [15]. Note that, since a standard unfolding
procedure was used to map the zero-dimensional problem
to a model of one-dimensional chiral fermions with linear
dispersion, BdB was expected to be exact for the whole
many-body spectrum. As a result, the junction study offered
an ideal and controlled situation for the purpose of system-
atic comparisons with direct results. This is also the case
for the Kondo-type models comprehensively studied in the
subsequent papers, including this one [15–17], and for many
other zero-dimensional and boundary models. Hence we can
be sure that the source of discrepancy lies in the BdB steps
and not in any of the presteps, such as linearization, which
might be necessary in some other cases (see footnote [21]
of Ref. [16]). That also implies that, once the linearization
step is performed, the implications of our finding of sym-
metry violations will need to be evaluated on a case-by-case
basis.

It follows now by extension that the matching of
conventional-BdB with consistent-BdB and direct results
for the next-to-lowest-order RG beta-function terms, despite
the nonconservation of originally conserved quantities, is
serendipitous. Furthermore, the discrepancies start to show
at the lowest nontrivial order in perturbation and can be
manifest, depending on the problem, not only in the finite-
temperature and nonequilibrium physics, but also in the
universal regime of the low-energy thermodynamics. It is thus

imperative to be cognizant of the consistent BdB procedure
to reliably avail the advantages of one of the ubiquitous tech-
niques to study low-dimensional correlated systems that can
also be used far from equilibrium.

Since the conventional scheme can be obtained as a
mean-field type approximation of the consistent one, we
can envision the possibility of refining the approximation by
including fluctuation corrections. This could be an interesting
avenue for further developments that would help clarify open
questions like the mechanisms for breaking of universality
in out-of-equilibrium settings (like steady-state regimes in
quantum dots). Further on, it would be interesting to revisit
the case of multiple impurities and, away from the dilute
limit, investigate the possible implications for the study of
low-dimensional disorder systems [45] (for both magnetic and
nonmagnetic impurities). Finally, pursuing additional stud-
ies of the formal mathematical structure of consistent BdB
might open up another set of interesting avenues for inquiry.
One example of such directions would be to systematically
compare consistent BdB with the non-Abelian bosonization
framework.
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APPENDIX A: POPOV-FEDOTOV DIAGRAMMATIC
TECHNIQUE

In our analysis of the Kondo-model self-energy, it is con-
venient to represent the impurity spin in the diagrammatic
expansion using some auxiliary-particle technique that en-
ables one to apply Wick’s theorem [24]. We opted for using
Popov-Fedotov (PF) pseudofermions [25,46], a constraint-
free option where each impurity spin state is represented by
a fermionic degree of freedom.

The basic idea of this technique is as follows. To start, one
writes the impurity spin as

Simp =
∑
μ,ν

η†
μσμνην, (A1)

where the η’s are auxiliary fermionic degrees of freedom that
satisfy standard anticommutation relations,

{η†
μ, ην} = δμν. (A2)

These fermionic degrees of freedom describe the dynamics
of the spin impurity and enable us to use standard pertur-
bative field theoretical methods for finding the flow of the
coupling constants. On the other hand, the downside of this
type of fermionic spin representations is the enlargement of
the impurity Hilbert space with the appearance of unphysical
states that would also contribute to the partition function. One
needs to remove those spurious contributions, and different
auxiliary-particle techniques tackle that in different ways (of-
ten introducing constraints). The PF approach is by including
a purely imaginary chemical potential.
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For concreteness, we shall focus here on the spin- 1
2 case.

(The spin-1 case can be handled very similarly; larger spins
and other algebras have also been implemented in the lit-
erature but required nontrivial generalizations.) There are in
total four states per impurity in the PF basis: a spin-singlet
state with no fermions, two states with a single fermion (a
spin-doublet state), and another spin-singlet state with two-
fermion occupancy (with opposite spin orientations). The
partition function for some PF-enlarged model is thus given
by Z = Z0 + Z1 + Z2, where we define

Z0 = Tr[δ(N ) e−β(H−μN )] = Tr[e−βH ],

Z1 = Tr[δ(N − 1) e−β(H−μN )] = eβμ Tr[e−βH ],

Z2 = Tr[δ(N − 2) e−β(H−μN )] = e2βμ Tr[e−βH ], (A3)

with N being the number of PF fermions at the impurity
site and μ an as-yet-unspecified chemical potential for those
fermions, while H can be our Kondo Hamiltonian in which the
spin operators have been replaced by the auxiliary fermionic
degrees of freedom. From the original model, the only phys-
ical contribution to the partition function is Z1; the other
two contributions (Z0 and Z2) are unphysical and come from
the empty and doubly occupied PF-fermion states. The PF
trick consists in eliminating these unphysical contributions
to the partition function by introducing an imaginary chemi-
cal potential, say, μ = i

2
π
β

(or the opposite sign choice), for
the PF fermions. In that way, the unphysical contributions
cancel each other (we have Z0 + Z2 = 0), and the only re-
maining contribution to the partition function is the physical
one (Tr[e−βH ] = e−βμZ1 = −iZ).

We shall also refer to the PF fermions with this imaginary
chemical potential as the pseudofermions. These new pseud-
ofermions are treated the same way as any other fermionic
degree of freedom in the theory. The free Matsubara propaga-
tor is simply given by

GPF
0 (ωm) = 1

μ − iωm
, (A4)

where the imaginary chemical potential can be interpreted as
shifting by 1

2 the index of the Matsubara frequencies from
their standard fermionic values, ωm|Fermi = π

β
m|m∈Zodd , and

thus altering all frequency summations. Due partly to this,
and for high orders in perturbation theory, we will find it
more convenient to adopt a Fourier-transformed representa-
tion, carry out imaginary-time integrals instead of frequency
summations, and then Fourier-transform back the final results
for analytic continuation to real frequencies.

APPENDIX B: THE sl-FERMION SELF-ENERGY

When doing the CS calculation of the RG flow in the
indirect schemes, we have a choice of whether we use the
s- or sl-fermion self-energy. As it turns out, in the conven-
tional scheme that choice needs to be made carefully, since
the sl-fermion self-energy does not by itself provide enough
information to enable the determination of the beta functions.
The reason is that, in that scheme, the Jz vertex scatters only
s-sector fermions, limiting the number of possible diagrams
one can make. As a result, there is no J2

z contribution to

the self-energy. That is evident, since there is no way one
can make a self-energy diagram with external (amputated)
legs being sl-sector fermions by using two Jz vertices that
scatter only s-sector fermions. In addition, the multiplicative
factors are going to be different (as compared to those in
the s-fermion self-energy) for any diagrams that have one or
more Jz vertices in them. Taking all of this into account, one
arrives at the same result as in Eq. (40), only in this case the P
coefficients will have different values, namely,

P⊥
(2,0) = 4, Pz

(2,0) = 0,

P⊥z
(3,0) = −16,

P⊥
(4,0) = 32, P⊥z

(4,0) = 32,

P⊥
(4,1a) = 16[ln(2) − 1], P⊥z

(4,1a) = 16[ln(2) − 1],

P⊥
(4,1b) = 16, P⊥z

(4,1b) = 16,

P⊥
(4,0a) = −π3, P⊥z

(4,0a) = π3. (B1)

Two noticeable differences are thus the lack of Pz
(2,0), and

P⊥z
(4,0) being negative. Both of those differences are direct

results of not having sl-fermion scattering on the Jz vertex.
This, on the other hand, is a direct consequence of the usage of
the conventional BdB scheme for refermionization. The beta
functions ansätze are still the same, Eq. (27), as they were
when using the s-fermion self-energy. But the resulting equa-
tions to calculate the coefficients in the ansätze are, instead,

a1 = P⊥z
(3,0)

2P⊥
(2,0)

,

a2 = MP⊥
(4,1b)

2P⊥
(2,0)

, b1,2,3,4 = ????,

a3 = MP⊥z
(4,1b)

2P⊥
(2,0)

, (B2)

where we have used question marks to indicate the coefficients
that remain undetermined. We can also see, by comparing to
the set of equations found before, in Eq. (28), that the lack of
the second-order J2

z contributions breaks the connection that
existed between the a1 and b1 coefficients (as well as a3 and
b3). In fact, the entire flow of the Jz coupling constant stays
undetermined.

In addition, we again have the consistency equations

2P⊥z
(3,0)a1 = 2P⊥z

(4,0) − P⊥z
(3,0)b2,

P⊥z
(3,0)b1 = 2P⊥

(4,0). (B3)

One can use those equations to find some of the unknown
coefficients. Therewith, one could find b1 from the second
consistency equation. But that would mean that in order to
calculate the beta function to second order in the coupling
constant one would have to go to a higher order in the self-
energy than is needed when using the s-fermion self-energy.
Additionally, and more importantly, we arrive at the value
b1 = −4, which disagrees not only with the direct scheme,
but also with the conventional one using the s-fermion self-
energy. On the other hand, since we know a1, the coefficient b2

can be calculated from the first of the consistency equations.
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One finds b2 = 0, which is as expected. However, the isotropic
limit is no longer satisfied for such values of b1 and b2. The
rest of the coefficients of βz remain undetermined. From all of
this, it is evident that if one wants to determine the “correct”
RG flow, in the conventional language one needs to choose
the s-fermion self-energy for the CS-based calculation. Oth-
erwise one runs into an undetermined and inconsistent system
of equations. On the other hand, in the consistent scheme,
where s and sl sectors enter on an equal footing, there is no
need to work with only the s self-energy. In fact, both s- and
sl-fermion self-energies are equal in the consistent scheme,
producing the same coefficients and the same equations for
the beta functions.

APPENDIX C: BETA FUNCTION OF THE
SPIN-ANISOTROPIC KONDO MODEL BEYOND

THIRD ORDER

Moving away from the spin-isotropic limit, the system
of linear constraints arising from the CS equation becomes
underdetermined. This continues to be the case even when one
includes (as we did for the lower-order calculation) additional
equations coming from the spin-isotropic limit. One therefore
needs even more equations added to the system in order to
have a single solution.

The procedure for finding the beta functions is the same
as in the isotropic case. To get the fourth-order RG flow, we
assume beta-function ansätze of the form

β⊥(gz, g⊥) = a1gzg⊥ + a2g3
⊥ + a2MMg3

⊥ + a3g⊥g2
z

+ a3MMg⊥g2
z + a4g⊥g3

z + a5g3
⊥gz,

βz(gz, g⊥) = b1g2
⊥ + b2g2

z + b3g2
⊥gz + b3MMg2

⊥gz (C1)

+ b4g3
z + b4MMg3

z + b5g2
⊥g2

z + b6g4
⊥,

where we separated explicitly the channel-dependent from the
channel-independent parts of the beta functions. We do this for
the same reason as in the spin-isotropic case: we computed
only the channel-independent fifth-order contributions (the
non-fermion-loop diagrams) to the self-energy. Therefore, we
have to do an expansion of the CS equation in both coupling
constant and channel number, and make sure that we keep
only equations that are of order lower than g5M. So we collect
coefficient prefactors in front of each gaMb power (where
a + b � 5) and get a set of linear constraints on the ansatz
coefficients. The imaginary part of the retarded self-energy,
to which we are applying the CS equation, is going to be the
same as in Eq. (22) with the terms in Eq. (46) added to it. This
produces a system of equations, but we still have the problem
of it being underdetermined. We can fix this by introducing
additional conditions. One such a condition is what we call
the “perturbative Toulouse limit.” In it, we assume that gz does
not flow along the gz = g� line, where g� is a fixed point of the
spin-isotropic model (that is not underdetermined). In other
words, one asks that

βz(gz → g�, g⊥) = 0. (C2)

With the help of this additional constraint on the RG flow,
one can calculate all of the unknown coefficients in Eq. (C1)

and arrive at

β⊥ = −gzg⊥ + M

2

(
g3

⊥ + g⊥g2
z

) + π2

4
g3

⊥gz,

βz = −g2
⊥ + M g2

⊥gz + π2

4
g2

⊥g2
z, (C3)

where we have already made the substitution of g⊥ → g⊥/2
and gz → gz/2. These are the spin-anisotropic RG-flow equa-
tions calculated in the direct scheme. We can repeat the whole
calculation in the indirect schemes. The consistent scheme,
as expected, gives the same result as the direct one. On the
other hand, as we have seen for the case with spin isotropy,
conventional compactification produces a different RG flow

β⊥ = −gzg⊥ + M

2

(
g3

⊥ + g⊥g2
z

)
+ 41π2

96
g3

⊥gz − 49π2

192
g⊥g3

z,

βz = −g2
⊥ + M g2

⊥gz + 11π2

64
g2

⊥g2
z . (C4)

As we can see, the beta functions of all three schemes agree
completely up to the third-order expansion (even though there
is an unphysical diagram already present), but at fourth order
the conventional scheme starts to diverge from the other two.
Not only are there different beta function coefficients between
them, but there is a whole new term in the conventional-
scheme RG flow of g⊥ that does not exist in the direct (or
consistent) scheme.

APPENDIX D: FULL BETA FUNCTION OF THE KONDO
MODEL BEYOND THIRD ORDER

In our calculations of the fourth-order RG flow, we
have taken into account only the fifth-order channel-number-
independent contributions to the self-energy. This was done
for brevity, because for those contributions we have unphysi-
cal diagrams contributing in the conventional scheme, but not
for the channel-number-dependent ones. The latter contribu-
tions to the fifth-order self-energy have been been calculated
before in the spin-isotropic limit [19]. We can use those re-
sults, in combination with the result we derived, to arrive at
the full fourth-order beta function of the (multi) two-channel
Kondo model. The self-energy is again of the form as in
Eq. (48), but now instead of ignoring the P(5,1a) and P(5,1b)

coefficients, we use their values given by

P(5,1a) = −168,

P(5,1b) = 48[5 − 3 ln(2)]. (D1)

On the other hand, the beta-function ansatz is slightly changed
to include a channel-number-dependent fourth-order term

β(g) = a1g2 + a2g3 + a2MMg3 + a3g4 + a3MMg4. (D2)

The system of equations one arrives at (via the CS procedure)
with this higher-order self-energy and beta-function ansatz is
the same as in Eqs. (50) and (51), with the addition of an extra
linear constraint on the coefficients and an additional RG-
consistency requirement. The former addition is the relation
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needed for determining the a3M coefficient of the beta function

a3M = P(5,1b) − 4P(4,1a)a1

2P(2,0)
= 8[1 + ln(2)], (D3)

while the latter additional RG-consistency condition is

P(5,1b) = 2P(4,1b)a1 + 3
2 P(3,0)a2M . (D4)

This is the same situation one would find using the conven-
tional scheme for the compactification of the model. It is
as expected, since the fifth-order channel-number-dependent
contributions to the self-energy are, as we have discussed
in the main text, all translatable. Therefore, in the channel-
number-dependent part of the fourth-order beta function we
do not expect to see any disagreement between schemes.

Explicitly, the full fourth-order RG flow of the spin-
isotropic model is

β = −2g2 + 4Mg3 + 2π2g4 + 8 [1 + ln(2)]Mg4

�→ −g2 + Mg3 + π2

4
g4 + [1 + ln(2)]Mg4, (D5)

and, as we have established by analyzing the diagrammatic
contributions, the fourth-order channel-number-dependent
part of the flow is going to be the same across schemes,
and the difference in the conventional scheme will be in the
channel-number-independent terms only.

APPENDIX E: SUBDOMINANT CONTRIBUTION TO THE
RUNNING COUPLING CONSTANT AND SCALING

Here we investigate further the effects of keeping the sub-
dominant terms in the RG analysis. For such a task, it is
convenient and more instructive to do it in the spin-isotropic
limit, for which all three schemes give the same result for the
universal part of the beta function (even in the extended sense,
which indicates a very broad applicability of the conventional
compactification scheme, since it can also be used to resum
the subdominant terms in the self-energy). Having obtained
the beta functions including the first subdominant order, one
can calculate the running coupling constant. This provides
information on how physical quantities scale with temperature
and their scaling dimensions. Unlike when dealing with only
the dominant part of the RG flow, calculating the running
coupling constant is now not so straightforward anymore. The
reason is that the differential equation one uses to determine
it is no longer separable, since the beta function itself is ω̃

dependent.
Explicitly, the differential equation we are hoping to solve

is

dg

dln(ω̃)
= −(1 + ω̃2) g2 + Mg3

≈ �

(
g

g�

)2

(g − g�) − ω̃2g2, (E1)

where we have have approximated the dominant part of the
beta function using its slope � and the fixed point value
g�. Basically (cf. Ref. [17]), we replace the original higher-
order-in-g corrections to the dominant flow with a lower-order
interpolant that has the same location of and slope at g� as

the higher-order beta function does. We can introduce the
deviation of the coupling constant from the fixed point as
g = g� + h, and keeping only terms that are linear in h, the
differential equation in Eq. (E1) is reduced to a linear and
inhomogenous equation for h

dh

dω̃
− �

ω̃
h = −ω̃(g�)2. (E2)

This differential equation can be solved using standard meth-
ods to obtain its general solution,

g(ω̃) = g� + a0 ω̃� − ω̃2 (g�)2/(2 − �), (E3)

where a0 is an integration constant that we can fix using the
condition that g(ω̃ → tK ) = 2 g�/3, with tK ≡ TK/D as Kondo
temperature divided by the cutoff. This gives us an explicit
expression for the running of the coupling constant,

g(ω̃) = g� − g�

[
1

3
− g� t2

K/(2 − �)

](
ω̃

tK

)�

− ω̃2 (g�)2/(2 − �). (E4)

Comparing this result with the dominant running coupling
constant expression [17] we see that, besides the ω̃ depen-
dence that scales with the Kondo temperature, we also have
an additional ω̃2 dependence that is scaled by some other tem-
perature scale that we call t� and define it as t� = √

2 − �/g�.
So the running coupling constant can be expressed as

g(ω̃) = g� − ξ

(
ω̃

tK

)�

−
(

ω̃

t�

)2

, (E5)

where ξ = g� [1/3 − g� t2
K/(2 − �)]. The physics governed

by the scale t� plays in at higher temperatures than the Kondo
temperature (i.e., t� > tK ). This means that as one moves
towards higher temperatures (away from tK ) subdominant
contributions become gradually more important. Having de-
termined the scaling of the running coupling constant makes
it possible to calculate the scaling of any physical quantity
that can be expressed in terms of it. In particular, the scaling
of the self-energy itself can be considered. From it, using the
fact that the scattering rate due to the Kondo interaction and
the imaginary part of the retarded self-energy are connected
through τ = 1/[2Im(�)], the scaling of the scattering rate
itself can be derived. This gives access to the temperature
dependence of the resistivity, an important quantity which can
be calculated using Kubo’s formula (which is an integral in ω̃

of the scattering rate). Doing that calculation, one obtains an
impurity contribution to the resistivity that scales as

ρ(T ) ≈ ρ0

(
T

TK

)�

+ ρ1

(
T

T �

)2

, (E6)

where ρ0 and ρ1 are unspecified numerical coefficients.
Besides the low-temperature scaling with the Kondo temper-
ature, one can also see (in the high-temperature deviations)
the appearance of the new scale, T �, that the resistivity will
be sensitive to at those higher temperatures. While its exper-
imental determination becomes much more difficult, the new
energy scale is nevertheless also universal in principle.
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