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Systematic compactification of the two-channel Kondo model.
II. Comparative study of scaling and universality
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Following up on the systematic compactification of the two-channel Kondo model [and its multichannel
extensions; see Ljepoja et al., Phys. Rev. B 110, 045108 (2024)] and the demonstration of its validity over
the past proposal of compactification, we resort to a study of scaling using Anderson’s simple poor man’s
procedure to carry out a comparative study of these two and the original model. By doing so we unveil a
universal agreement among the three models in how they flow upon scaling, and suggest the general limits
of such a concordance. In this way we further elucidate the conditions under which the standard simplifications
implicit in many bosonization-based mappings (particularly of quantum impurity models) can be used reliably,
and when the consistent bosonization-debosonization approach is needed.
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I. INTRODUCTION

A variety of perturbative and nonperturbative methods
have been developed and employed to access the evasive
intermediate-coupling fixed point of the two-channel Kondo
model. One of them, the compactification of Kondo-type im-
purity models, has relied on spin-charge separation and the
fact that the interaction involves only the spin sector (and
not the isospin; see below) in an attempt to shift the fixed
point to strong coupling. The original proposal along these
lines was nonconstructive and based entirely on symmetry
considerations [1]. It was a pedestrian approach to the com-
pactification of quantum impurity models that starts from the
observation that the full local symmetry of the bulk degrees of
freedom (assuming particle-hole symmetry at half-filling and
no gauge fields) for a single species of spin-half fermions is
SO(4) ∼ SU (2)spin × SU (2)iso [1,2]. Besides the spin algebra
in the singly occupied sector, one has an additional isospin
algebra between the empty and doubly occupied states of the
local Hilbert space—also sometimes referred as the η-spin
in the context of the Hubbard model [3]. (Nota bene that
this high degree of symmetry can be made more manifest
and better exploited using a Majorana description of the bulk
fermions [4,5].) These two algebras are then coupled to the
impurity in lieu of the spin algebras of two independent chan-
nels. The claim is that the impurity-spin dynamics is preserved
despite having now a single spin-full channel and, in that
sense, the resulting model being more compact.

A complementary way to define compactification could be
to compare two impurity models with the same number of
degrees of freedom in the bulk and say that an impurity-model
interaction is more “compact” than another if a larger fraction
of the symmetry generators of the bulk are involved in the
interaction with the impurity. In the above discussion of com-
pactifiction, the number of bulk degrees of freedom changed:

one carried out an ad hoc construction of a compactified two-
channel Kondo model by starting from the usual model and
substituting the electron spin densities of both channels by the
spin and isospin densities of a single channel [6]. As a result,
the number of generators involved in the interaction with the
impurity remains the same, but the fraction increases because
the total number of generators is now half as large.

In the compactified model, two physically distinct SU (2)
densities [7] of a single channel compete to screen the
impurity. Assuming their independence at the level of the
noninteracting theory (cf. the standard Sugawara construc-
tion [8–10]) would guarantee that their correlators emulate
the joint spin-density correlations of the original two-channel
Kondo model [1]. However, unlike in the original case, the
spin and isospin densities cannot both be active simultane-
ously at the “local site” of an impurity [11], since the band
spin and isospin are nonzero in separate sectors of the local
Hilbert space. These two observations are in tension, high-
lighting the limits of the construction. Since in a compactified
model the impurity would locally couple different symmetry-
representation sectors of a single channel of bulk fermions, the
properties of the bulk electrons would be affected differently
as compared with the noncompact model [12]. On the other
hand, the impurity dynamics is expected to stay the same, but
the spin/isospin alternation was argued to shift the non-Fermi-
liquid low-temperature fixed point towards infinite coupling
and render channel asymmetry from a relevant into a marginal
perturbation [11].

The original and compact versions of the two-channel
Kondo model were thus expected to share most of the intrigu-
ing aspects of the low-temperature impurity physics while
differing at the details in welcomed ways [13]. Moreover, a
number of subsequent studies [including the o(3)-Anderson]
gave partial support to these ideas [14–16], but the ultimate
fate of the fixed point stability remained largely unsettled.
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Interestingly and around the same time, the compactification
of the two-channel Kondo model was recast as a precise corre-
spondence between the original and compact versions of the
model via a bosonization-debosonization (BdB)-based map-
ping [17]. But since BdB can be exact under certain conditions
(which are the same as those assumed for compactification),
the original and compact models could be expected to be
identical in all aspects of the impurity physics. The fact that
they are not poses a conundrum that we addressed in the first
part of this study [18]. We resolved it by pointing out the
limitations of the conventional approach to BdB (and thus
to compactification), and we then used consistent BdB [19]
to give a more nuanced compact model, which we argued to
indeed be exactly equivalent to the original one and to go
into the conventionally compactified one only after a mean-
field-type reduction. We supported this by studying a number
of (nongeneric) special limits in which the models can be
handled without any approximations. We did not, however,
address the full models in their more physically interesting
regimes and the physics of their fixed points. The purpose of
the present article is exactly that.

In what follows, we shall study the Hamiltonians of the
original multichannel Kondo model and its different com-
pactifications with a focus on their scaling properties. On
physical grounds, the underlying expectation is that the scal-
ing of the Kondo coupling is a manifestation of observable
physics that should stay (relatively) unchanged under model
reparametrizations; in particular, it should not change at all if
the BdB-based mapping is indeed an exact correspondence.
In fact, the study of the crossover between UV and IR fixed
points is what came to be known as the Kondo problem and
played a pivotal role in the development of renormalization
group (RG) ideas [20]. The rest of this work is thus organized
as follows. (i) In the next section we present the standard
picture of scaling. We first go over the technical aspects us-
ing the original formulation of the model and doing it with
more detail than usual in order to be able to highlight the
important differences later. Then we repeat the calculations
for the compact versions of the model (taking the agnostic
point of view that they are different schemes for studying the
same physics, despite the different Hamiltonians). (ii) In the
following section we compare the results from the different
schemes and discuss the universal and nonuniversal aspects of
the physics. (iii) Finally, in the last section, we put things into
further perspective, comment on what questions still remain
open, and conclude.

II. POOR MAN’S SCALING

Along the way to solving the Kondo problem (finally
achieved via a numerical implementation of the full RG
program [20] followed by a tour-de-force Bethe ansatz so-
lution [21]), a rich set of innovative ideas and approaches
were developed for the study of strongly interacting quantum
systems. Among those, Anderson pioneered the use of scaling
ideas in a series of papers that culminated with his introduc-
tion of the poor man’s approach to scaling [22]. This insightful
work anticipated the development of the modern Wegner-
Wilson momentum-shell RG [23,24]. Here we give the details
of the poor man’s scaling calculation for the (multichannel)

Kondo model in all the three versions of it discussed previ-
ously (namely, the direct formulation and the two possible
compactified ones) [18], and up to third order in perturbation
theory.

A. Direct model formulation

Our starting point is thus the (multichannel) Kondo Hamil-
tonian written in terms of the adiabatic Landau quasiparticles
describing a Fermi-liquid metallic host interacting with a
single spin-1/2 magnetic impurity. It is given by the sum of
the free conduction electron Hamiltonian (H0) and the Kondo
interaction terms

HK =
∑
α,σ

∑
�k1,�k2

(Jσ Sσ c†
�k1σ̄ α

c�k2σα
+ σJzSzc

†
�k1σα

c�k2σα
).

To carry out the scaling, we are going to eliminate high-
energy excitations in the conduction band (edge states) and
find out how do the parameters of the Hamiltonian (Jz and
J⊥ = J+, J−) change under such eliminations [22,25,26]. Ex-
plicitly, we are going to project the eigenfunction of the
Hamiltonian into three parts, ψ0, ψ1, and ψ2, so that the
eigenvalue equation becomes

⎛
⎝H00 H01 H02

H10 H11 H12

H20 H21 H22

⎞
⎠

⎛
⎝ψ0

ψ1

ψ2

⎞
⎠ = E

⎛
⎝ψ0

ψ1

ψ2

⎞
⎠. (1)

Here ψ1 is a wave function component that describes a state
in which there are no electrons in the upper band edge and
no holes in the lower band edge (i.e., no high-energy exci-
tations); ψ0 corresponds to a state in which we have at least
one hole in the lower band edge; and ψ2 is the component
of the wave function where there is at least one electron in
the upper band edge. The Fermi energy is set to be zero so
that the single-electron states with energy in the range of
−D < ε < 0 are occupied and states with energies 0 < ε < D
are unoccupied (at zero temperature and in the absence of
the impurity for a conduction band of bandwidth 2D). Band-
edge states are states with energies −D < ε < −D + |δD| or
D − |δD| < ε < D. The elements of the Hamiltonian matrix
are organized so that Hnn′ are the terms of the Hamiltonian
that connect states ψn and ψn′ , where n, n′ = 0, 1, 2. We are
going to neglect the H02 and H20 elements of the effective
Hamiltonian, because they do not contribute to the leading
order in 1/D. Eliminating ψ0 and ψ2 from the eigenvalue
equation we get the effective eigenvalue equation for ψ1:

[H11+H12(E −H22)−1H21+H10(E −H00)−1H01]ψ1 =Eψ1,

(2)

where, in particular, H21 labels the component of the
Hamiltonian which creates a particle in an upper-band-edge
single-particle state with momentum �q. It is given by

H21 =
∑

α

∑
σ

∑
�k,�q

(Jσ Sσ c†
�qσ̄ α

c�kσα
+ σJzS

zc†
�qσα

c�kσα
).
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FIG. 1. Second-order processes for poor man’s scaling. The
dashed line represents the impurity, full lines are midband fermions,
and the double line is a scattered edge-state fermion. The two di-
agrams in the first row contribute to the scaling of the Jz coupling
constant. The four other diagrams contribute to the scaling of J⊥.

On the other hand, the part of the Hamiltonian that creates a
hole in a lower-band-edge single-particle state is given by H01,

H01 =
∑

α

∑
σ

∑
�k,�q

(Jσ Sσ c†
�kσ̄ α

c�qσα + σJzS
zc†

�kσα
c�qσα ),

and again we used �q to label the edge state. The reverse
processes are given by the Hermitian conjugates, H12 and H10,
respectively.

Now we can integrate out those edge states and observe
what is happening with the coupling constant. This is the
essence of the scaling procedure.

1. Second-order poor man’s scaling

The so-called T-matrix diagrams, depicting the different
contributions to scaling, are given in Fig. 1 to second order in
the coupling constants. All the diagrams in the left column are
what we call “particle” diagrams. Those are the processes that
are generated by the second term in the effective Hamiltonian
of Eq. (2). They create and then destroy destroy a particle (i.e.,
an electron) in the upper band edge. Similarly, the diagrams on
the right column correspond to the so-called “hole” processes,
given by the third term in the effective Hamiltonian, and they
create and destroy a hole in the lower band edge.

For example, the contribution of the topmost left diagram
in Fig. 1 is explicitly given by

J2
⊥

∑
α,α′

∑
σ,σ ′

∑
�q,�q′

∑
�k,�k′

Sσ̄ Sσ c†
�k′σ ′α′c�q′σ̄ ′α′

1

(E − H22)
c†

�qσ̄ α
c�kσα

,

where �q labels the momentum of a particle in the band edge.
We can approximate H22 with the noninteracting conduction
electron Hamiltonian, and in that way we keep only the
second-order processes,

H22 ≈ H0 =
∑

α

∑
σ

∑
�k

ε�kc†
�kσα

c�kσα
. (3)

Assuming that the top band edge is unoccupied in the initial
and final states, we can replace c�q′σ̄ ′α′c†

�q σ̄ α
→ δ�q′ �q δσ̄ ′σ̄ δα′α . In

that case the expression becomes

J2
⊥

∑
α

∑
σ

∑
�q

∑
�k,�k′

Sσ̄ Sσ c†
�k′σα

c�kσα

1

(E − ε�q + ε�k − H0)
.

If the energy E is measured relative to the ground state of the
conduction electrons, then one sets H0 = 0. Doing a summa-
tion over �q and approximating εq ≡ D, which is to say that the
band-edge width, |δD|, is infinitesimally small, we get

J2
⊥

∑
α

∑
σ

∑
�k,�k′

(
1

2
− σSz

)
c†

�k′σα
c�kσα

ρ0|δD|
(E − D + ε�k )

, (4)

where we have used the spin identity Sσ̄ Sσ = 1
2 − σSz, as well

as the fact that
∑

q = ρ0|δD|, where ρ0 is the free-electron
density of states [for the 1D case with εk = vF k, the density
of states is a constant, ρ0 = 1/(2πvF ); per spin, per channel].
There are thus two terms in the expression above. One is the
potential-scattering term given by

1

2
J2
⊥

∑
α

∑
σ

∑
�k,�k′

c†
�k′σα

c�kσα

ρ0|δD|
(E − D + ε�k )

, (5)

which will be important later when we discuss the so-called
wave-function renormalization. The second term in Eq. (4)
will contribute to the rescaling of the Jz coupling constant and
is given by

−J2
⊥

∑
α

∑
σ

∑
�k,�k′

σSzc
†
�k′σα

c�kσα

ρ0|δD|
(E − D + ε�k )

. (6)

This was the contribution of the “particle” process. Its
“hole” counterpart is given by the topmost right diagram in
Fig. 1. As already said, we get this diagram from the third
term in the effective Hamiltonian, and it is explicitly given by

J2
⊥

∑
α,α′

∑
σ,σ ′

∑
�q,�q′

∑
�k,�k′

Sσ Sσ̄ c†
�q′σ̄ ′α′c�k′σα

1

(E − H00)
c†

�kσα
c�q σ̄ α.

Notice that now we have H00 in the denominator. This is
because this diagram creates and destroys a hole in the lower
band edge with momentum �q. Again, assuming that H00 ≈ H0

and making the equivalent assumptions to those that we used
for the particle diagram, we arrive at

J2
⊥

∑
α

∑
σ

∑
�k,�k′

(
1

2
− σ̄Sz

)
c�k′σα

c†
�kσα

ρ0|δD|
(E − D − ε�k )

. (7)

Once again we have a potential scattering term,

1

2
J2
⊥

∑
α

∑
σ

∑
�k,�k′

c�k′σα
c†

�kσα

ρ0|δD|
(E − D − ε�k )

, (8)

as well as a term that will rescale the parallel coupling con-
stant,

−J2
⊥

∑
α

∑
σ

∑
�k,�k′

σ̄Szc�k′σα
c†

�kσα

ρ0|δD|
(E − D − ε�k )

. (9)

To second order, the two potential-scattering contributions,
Eqs. (6) and (8), combine into a constant energy shift since
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the operators combine into a fermion anticommutator, which
is a c-number. Thus, impurity potential scattering is indeed
not generated, as expected from particle-hole symmetry. The
c-number shift is going to lead to wave-function renormaliza-
tion, as mentioned before, when we move on to the third-order
calculation of scaling.

For now, we focus on the terms that rescale the parallel
Kondo interaction. Under the assumption that ε�k, E 	 D, and
adding the two terms that rescale Jz in a single expression, we
arrive at

ρ0J2
⊥

|δD|
D

∑
α

∑
σ

∑
�k,�k′

Sz(σc†
�kσα

c�k′σα
+ σ̄c�k′σα

c†
�kσα

),

which, after commuting c�k′,σ and c†
�k,σ

(the constant energy
shift cancels between the two spin projections), will lead to
the expression

2ρ0J2
⊥

|δD|
D

∑
α

∑
σ

∑
�k,�k′

σSzc
†
�kσα

c�k′σα
, (10)

and this implies the rescaling of the Jz coupling constant:

Jz → J ′
z = Jz + 2ρ0

|δD|
D

J2
⊥. (11)

The last four diagrams in Fig. 1 are processes that rescale
the J⊥ coupling constant. The contraction and summation over
the edge-state momentum proceed in the same way as in the
diagrams we just discussed. However, we have a different spin
structure at the vertices of the diagrams. Taking those two
things into account we get that the contribution of the middle
two diagrams is

− ρ0J⊥Jz
|δD|

D

∑
α

∑
σ

∑
�k,�k′

σ (Sσ Sz − SzSσ )c†
�k′σ̄ α

c�kσα

= ρ0J⊥Jz
|δD|

D

∑
α

∑
σ

∑
�k,�k′

σ 2Sσ c†
�k′σ̄ α

c�kσα

= ρ0J⊥Jz
|δD|

D

∑
α

∑
σ

∑
�k,�k′

Sσ c†
�k′σ̄ α

c�kσα
.

Moving to the last two diagrams, we obtain again the same
final expression (one just arrives to it in a slightly different
way),

− ρ0J⊥Jz
|δD|

D

∑
α

∑
σ

∑
�k,�k′

σ̄ (SzSσ − Sσ Sz )c†
�k′σ̄ α

c�kσα

= −ρ0J⊥Jz
|δD|

D

∑
α

∑
σ

∑
�k,�k′

σ σ̄Sσ c†
�k′σ̄ α

c�kσα

= ρ0J⊥Jz
|δD|

D

∑
α

∑
σ

∑
�k,�k′

Sσ c†
�k′σ̄ α

c�kσα
.

Adding all the contributions from the bottom four diagrams
in the figure, we get that they produce a rescaling of the
perpendicular coupling constant given by

J⊥ → J ′
⊥ = J⊥ + 2ρ0

|δD|
D

J⊥Jz. (12)

FIG. 2. Third-order poor man’s scaling processes containing one
fermionic loop. The diagram conventions are the same as for the
second-order ones. Notice the edge-state fermion (double line) al-
ways connects the two outermost vertices, and the labels of the
external fermion lines at the inner vertex enter the Hamiltonian as
summation variables and can be relabeled interchangeably when
collecting contributions. Here, again, the two diagrams in the first
row contribute to the scaling of the Jz coupling constant, while the
other four diagrams contribute to the scaling of J⊥.

This expression coincides with the previous one in the spin-
isotropic case, with J⊥ = Jz. Notice the rescaling indicates
that the effective couplings grow as the bandwidth is reduced
(for the antiferromagnetic case).

2. Third-order poor man’s scaling

In order to explore the existence of finite-coupling fixed
points, at which the growing of the coupling constants stops,
one needs to go beyond the leading order in the computation
of the flow upon scaling. For the case of the Kondo model, that
means considering the third-order corrections. As we shall
see, the numerical prefactor in these corrections depends on
the number of electronic channels interacting with the impu-
rity in a degenerate way (the number of values, K , that the α

index takes). For concreteness and easier comparison, we will
assume the two-channel case during the derivation and later
switch to the general result at the end.

To calculate third-order contributions to scaling, we pro-
ceed as before. But instead of approximating H22 and H00

with H0, we approximate them with H0 + HK , where HK is
the Kondo interaction, and then we expand 1/(E − H22/00)
up to the first order in HK . [Going to even higher order, one
cannot neglect any longer H02 and H20 in the derivation of
the effective Hamiltonian and has to revisit the derivation of
Eq. (2) to include those contributions.] The relevant corre-
sponding diagrams contributing to the third-order flow of the
coupling constant are those shown in Fig. 2. The terms in the
effective Hamiltonian connected to the top-left diagram (with
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a “particle”in the intermediate state) and the top-right diagram (with a “hole” in the intermediate state) are given by

J2
⊥Jz

∑
α,α′,α′′

∑
σ,σ ′,σ ′′

∑
�q1,�k1

∑
�k,�k′

∑
�k2,�q2

σSσ ′
SzSσ ′′

c†
�k1σ ′α′c�q1σ̄ ′α′

1

E − H0
c†

�kσα
c�k′σα

1

E − H0
c†

�q2σ ′′α′′c�k2σ̄ ′′α′′

= J2
⊥Jz

∑
α,α′,α′′

∑
σ,σ ′,σ ′′

∑
�q1,�k1

∑
�k,�k′

∑
�k2,�q2

σSσ ′
SzSσ ′′

c†
�k1σ ′α′c�q1σ̄ ′α′c†

�k′σα
c�kσα

c†
�q2σ ′′α′′c�k2σ̄ ′′α′′

1(
E − ε�k′ + ε�k + ε�k2

− ε�q2

)(
E + ε�k2

− ε�q2

)

and, respectively,

J2
⊥Jz

∑
αα′α′′

∑
σ,σ ′,σ ′′

∑
�q1,�k1

∑
�k,�k′

∑
�k2,�q2

σSσ ′
SzSσ ′′

c†
�q1σ̄ ′α′c�k1σ ′α′

1

E − H0
c†

�kσα
c�kσα

1

E − H0
c†

�k2σ̄ ′′α′′c�q2σ ′′α′′

= J2
⊥Jz

∑
αα′α′′

∑
σ,σ ′,σ ′′

∑
�q1,�k1

∑
�k,�k′

∑
�k2,�q2

σSσ ′
SzSσ ′′

c†
�q1σ̄ ′α′c�k1σ ′α′c

†
�k′σα

c�kσα
c†

�k2σ̄ ′′α′′c�q2σ ′′α′′
1(

E − ε�k′ + ε�k − ε�k2
+ ε�q2

)(
E − ε�k2

+ ε�q2

) .

In the second line of the first expression above, we set
H0 = 0, so that we are measuring energies from the ground
state, as we did in the second-order calculation. The diagram
contribution is obtained by contracting �k1 and �k2 as well as the
“fast” modes, �q1 and �q2. In addition, we approximate ε�q ≈ D
and

∑
�q → ρ0|δD|, and we assume ε�k, ε�k′ , E 	 D, so that

the expression for the diagram reduces to

J2
⊥Jz

∑
α,α′

∑
σ,σ ′

∑
�k,�k′

σSσ ′
SzSσ̄ ′

c†
�kσα

c�k′σα

∑
�k1

ρ0|δD|(
ε�k1

− D
)2 .

We can go from the summation in �k1 to an integration in
energy by using

∑
�k1

→ ∫ 0
−D+|δD| ρ0 dε1. Where we are inte-

grating over all the filled nonedge states (here ρ0 depends on
the dimensionality, and we take it to be a constant throughout
the calculation; in the more general case it can have an energy
dependence that contributes to the integral). After performing
the integration we arrive at the expression

ρ2
0 J2

⊥Jz
|δD|
2D

∑
α,α′

∑
σ,σ ′

∑
�k,�k′

σSσ ′
SzSσ̄ ′

c†
�k′σα

c�kσα. (13)

Using the spin-1/2 facts that Sσ̄ ′
Sz = − 1

2 σ̄ ′Sσ̄ ′
and

Sσ̄ ′
Sσ ′ = 1

2 + σ̄ ′Sz, we arrive at

−ρ2
0 J2

⊥Jz
|δD|
2D

∑
α,α′

∑
σ,σ ′

∑
�k,�k′

σ

(
σ ′

4
+ 1

2
Sz

)
c†

�k′σα
c�kσα

.

In a similar way as in the case of the particle diagram, for the
hole diagram we get a contribution of the form

−ρ2
0 J2

⊥Jz
|δD|
2D

∑
α,α′

∑
σ,σ ′

∑
�k,�k′

σ

(
σ ′

4
+ 1

2
Sz

)
c†

�k′σα
c�kσα

.

Together with the particle contribution, we get a potential
scattering term (which we disregard, since it is too high order
to contribute to the wave-function renormalization that will be
discussed below), and a term that contributes to the rescaling
of the Jz coupling constant

−ρ2
0 J2

⊥Jz
|δD|
2D

∑
α,α′

∑
σ,σ ′

∑
�k,�k′

σSzc†
�k′σα

c�kσα. (14)

After summing over the free spin and channel indices (σ ′ con-
tributing a factor of 2 and α′ contributing a factor of K = 2,
respectively), we arrive at the final contribution to the flow of
the parallel coupling constant

−2ρ2
0 J2

⊥Jz
|δD|

D

∑
α

∑
σ

∑
�k,�k′

σSzc†
�k′σα

c�kσα. (15)

The same procedure can be repeated for all the remaining
diagrams in Fig. 2. In that way one gets the scaling of the
coupling constants, up to third order, to apparently be

J ′
z 
 Jz + 2ρ0

|δD|
D

J2
⊥ − 2ρ2

0
|δD|

D
J2
⊥Jz + ρ2

0
|δD|

D
J3

z ,

J ′
⊥ 
 J⊥ + 2ρ0

|δD|
D

J⊥Jz − ρ2
0
|δD|

D
J⊥J2

z .

(16)

This includes only the contribution coming from the dia-
grams in Fig. 2, the ones with a fermionic loop that counts
the number of channels. There are, however, other diagrams
one can make that do not have a fermionic loop and might
seem to give a channel-independent contribution to the third-
order flow of the coupling constant. Such diagrams are shown
schematically in Fig. 3. As it turns out, these diagrams do
not contribute to the scaling of the coupling constant because
they belong to the class of “reducible” diagrams [27] which
can be created by combining lower-order contributions (see
Ref. [28] for an explicit calculation including these diagrams
in the framework of field-theoretic scaling and renormaliza-
tion). Namely, diagrams in Fig. 3 can be regarded as arising
from contracting an additional Kondo vertex to one of the
second-order diagrams shown in Fig. 1. (Or, alternatively, as
taking one of those second-order diagrams and replacing one
of its vertices by a renormalized one also taken from the same
set of second-order diagrams.) As such, these diagrams do
not contribute to the further independent scaling of the Kondo
coupling. There are, nevertheless, other corrections to the flow
that are still unaccounted for. We shall turn to those next.

3. Wave-function renormalization

At this point we need to pause and look back at the
potential-scattering contributions that we obtained while in-
tegrating out the band-edge states. We shall see that they
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FIG. 3. Third-order diagrams without fermionic loops. The dia-
grams in the first row are canceled partially by the ones in the second.
The remaining contribution does not, however, contribute to the flow
of the coupling constant since it belongs to a class of “reducible”
diagrams.

contribute as well to the rescaling of the coupling constant,
although indirectly. This effect is part of the so-called wave-
function renormalization.

All those terms that contributed to potential scattering in
the second-order calculation (and that we have so far ne-
glected) need to be taken into account if we are going to
consider third-order impurity-scattering processes. The first
potential-scattering terms that we came across were from the
two topmost diagrams in Fig. 1 and were given by Eqs. (5)
and (8), respectively. We are now interested in the (relative)
ground-state energy shift that is induced by these contribu-
tions. So we set �k′ = �k and replace the sums over �k for
integrals in energy,

1

2
J2
⊥ρ2

0 |δD|
∑

α

∑
σ

∫ 0

−D+|δD|

dε

(E − D + ε)
,

1

2
J2
⊥ρ2

0 |δD|
∑

α

∑
σ

∫ D−|δD|

0

dε

(E − D − ε)
.

(17)

Notice the difference in the integration limits between particle
and hole diagrams. This is because in the particle diagram we
are integrating over the (filled) particle states and in the hole
diagram over the (empty-particle) hole states. One can readily
see that both of the integrals turn out to be exactly the same.
We add them up and carry them out to obtain

J2
⊥ρ2

0 |δD|
∑

α

∑
σ

ln

(
E − D

E − 2D

)

≈ −4J2
⊥ρ2

0 |δD|
(

ln(2) − E

2D

)
, (18)

where, going into the second line, we have also done the
summations in σ and α, as well as expanded the logarithm
and kept only terms that are linear in E .

Additional potential-scattering terms that we have not yet
considered are shown in Fig. 4. These are processes involving
two Sz vertices. Doing the edge-mode integration, which is
done in a same way as for any other second-order diagram,

FIG. 4. Second-order diagrams contributing to potential scattering.

one arrives at

1

4
J2

z ρ0|δD|
∑

α

∑
σ

∑
�k,�k′

c†
�k′σα

c�kσα

1

(E − D + ε�k )
. (19)

As in the previous cases, calculating the expectation value that
gives the shift in the ground-state energy (with �k′ = �k), and
taking into account that both, particle and hole, diagrams give
the same integral in energy, one gets

1

2
J2

z ρ2
0 |δD|

∑
α

∑
σ

ln

(
E − D

E − 2D

)

≈ −2J2
z ρ2

0 |δD|
(

ln(2) + E

2D

)
. (20)

Adding the two energy-shift contributions we finally arrive at
the total shift being

−
(

ln(2) + E

2D

)(
2J2

z ρ2
0 |δD| + 4J2

⊥ρ2
0 |δD|). (21)

The ground-state energy shift coming from the third-order
diagrams can be disregarded, because it will contribute to a
higher order in the flow equations. These energy shifts are new
terms in our Hamiltonian introduced by the scaling procedure.
Basically, after the scaling procedure we move away from our
original Kondo Hamiltonian to a new one which we can write
as

H ′ − ln(2)
(
2J2

z ρ0|δD| + 4J2
⊥ρ2

0 |δD|)

− E

(
J2

z ρ0
|δD|

D
+ 2J2

⊥ρ2
0
|δD|

D

)
,

where H ′ has the same form as the original Hamiltonian (free
electrons plus Kondo interaction), with coupling constants J ′

⊥
and J ′

z given by the scaling laws in Eq. (16). We see that our
“new” Hamiltonian is energy dependent through the second
term in the above expression. This energy dependence can be
removed by solving the secular equation

E = 1(
1 + J2

z ρ0
|δD|

D + 2J2
⊥ρ2

0
|δD|

D

)H ′

− ln(2)

(
2J2

z ρ0|δD| + 4J2
⊥ρ2

0 |δD|)(
1 + J2

z ρ0
|δD|

D + 2J2
⊥ρ2

0
|δD|

D

) .

The second term is a constant that gives a uniform shift
in energy. We can simply disregard it, since we are free to
choose the zero of energy. That way we get that the energy-
independent effective Hamiltonian is given by(

1 − J2
z ρ0

|δD|
D

− 2J2
⊥ρ2

0
|δD|

D

)
H ′. (22)
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To third order, this gives the following modified scaling laws
for the coupling constants:

J ′
⊥ = J⊥ + 2ρ0

|δD|
D

J⊥Jz − 2ρ2
0
|δD|

D
J2

z J⊥ − 2ρ2
0
|δD|

D
J3
⊥,

J ′
z = Jz + 2ρ0

|δD|
D

J2
⊥ − 4ρ2

0
|δD|

D
J2
⊥Jz. (23)

Notice the J3
z term disappeared from the flow of Jz, while a

J3
⊥ term appeared in the flow of J⊥. One can now redefine the

coupling constants by absorbing the density of states, g⊥ =
2ρ0J⊥ and gz = 2ρ0Jz, to arrive at the following expressions
for the so-called β functions:

dg⊥
d ln(D)

= −g⊥gz + M

2
g⊥g2

z + M

2
g3

⊥,

dgz

d ln(D)
= −g2

⊥ + Mgzg
2
⊥, (24)

where we included the dependence on the number of channels,
K = 2M. (We had been assuming M = 1, or the two-channel
case, but it is straightforward to check that one simply needs
to insert a factor of M in all the cubic terms and the resulting
expression is valid for arbitrary K ∈ N.) As we will see later,
these functions capture important information about the low-
energy physics of the (multichannel) Kondo model, so we are
interested in knowing if the compactification procedure is able
to capture it.

B. Conventionally compactified model

After a mapping to 1D and focusing again in the two-
channel case (to keep the notation simpler; one can reinsert the
generic value of M at the end), the conventional refermioniza-
tion [18] of the spin-flip interaction is given by

H⊥
K = −J⊥S− ∑

k,k′
c†

k,sck′,sl − J⊥S+ ∑
k,k′

c†
k,sl ck′,s

+ J⊥S− ∑
k,k′

c†
k,sl c

†
k′,s − J⊥S+ ∑

k,k′
ck,sl ck′,s, (25)

while, at the same time, the parallel (or Ising) part of the
Kondo interaction is given by

Hz
K = 2SzJz

∑
k,k′

c†
k,sck′,s. (26)

As we did for the direct-model calculation, we can single
out the parts of Hamiltonian that create a particle in the upper
band edge,

H⊥
21 = −J⊥S− ∑

k,q

c†
q,sck,sl − J⊥S+ ∑

k,q

c†
q,sl ck,s

+ J⊥S− ∑
k,q

c†
q,sl c

†
k,s + J⊥S− ∑

k,q

c†
k,sl c

†
q,s

and

Hz
21 = 2SzJz

∑
k,q

c†
q,sck,s.

Likewise, we can also specify the parts of the Hamiltonian
that create a hole in the lower band edge (these can be obtained

from the above by swapping k and q and performing hermitian
conjugation as needed),

H⊥
01 = −J⊥S− ∑

k,q

c†
k,scq,sl − J⊥S+ ∑

k,q

c†
k,sl cq,s

− J⊥S+ ∑
k,q

cq,sl ck,s − J⊥S+ ∑
k,q

ck,sl cq,s

and

Hz
01 = 2SzJz

∑
k,q

c†
k,scq,s.

These terms and their Hermitian conjugates will be used in
the effective Hamiltonian of Eq. (2). The ensuing calculation
proceeds similarly as before. Notice, however, that in the case
of the conventionally compactified model we have interac-
tion vertices that either create or destroy a pair of fermionic
degrees of freedom at the same time. These are what we
will call anomalous vertices, to distinguish them from normal
ones, which (at the same time) create one fermion and destroy
another while conserving their total number.

1. Second-order scaling

Processes contributing to the coupling-constant flow up to
the second order in the conventional compactification of the
Kondo model are given in Fig. 5. They are separated into
groups depending on the different ways they contribute to the
scaling. The first group of diagrams, labeled (a), will can-
cel each other and their combined contribution will be zero.
Therefore, there will be no contribution to parallel scattering
generated in the sl sector. One can see how the cancellation
happens by the fact that they have the same internal structure
while the external fermionic-leg arrows are reversed between
the two rows. (This reversal introduces a relative minus sign
and hence the cancellation.)

In group (b) we have the diagrams that are made up by
combining normal and anomalous vertices. This is an impor-
tant characteristic of the conventionally refermionized model,
that it allows for such mixing of normal and anomalous ver-
tices in a diagram. And it is this mixing of the normal and
anomalous vertices that is responsible for the appearance of
“unphysical” diagrams which are impossible to translate into
the language of the original, direct-model, fermions. Combin-
ing them we get an expression that introduces a new term to
our original Hamiltonian which takes the form of an anoma-
lous potential scattering (i.e., scattering independent of the
impurity spin)

J2
⊥

∑
k,k′

ck,sl ck′,sl
ρ0|δD|

(E − D + εk′ )

+ J2
⊥

∑
k,k′

c†
k,sl c

†
k′,sl

ρ0|δD|
(E − D − εk′ )

. (27)

Such a term has no correlate in the original Kondo Hamilto-
nian and has the form of a fermionic pair creation/annihilation
operator. However, in the limit when D � E , εk and if we
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(a)

(b)

(c)

(d)

(e)

FIG. 5. Second-order poor man’s scaling processes. The dashed
line represents the impurity, full lines are inner-band fermions, and
the double line is the scattered edge-state fermion. They are separated
into five groups based on their contributions. Diagrams in group (a)
cancel among each other. Diagrams in group (b) are unphysical (“un-
translatable”), and they give a new vertex in the Hamiltonian which
is zero when we keep the calculation to order 1/D. Diagrams in
groups (c) and (d) contribute to the scaling of J⊥ and Jz, respectively.
Diagrams in group (e) contribute to potential scattering, which will
affect the wave-function renormalization.

are keeping only 1/D contributions, this processes are zero
(being the Fourier transform of the product of two fermionic
creation/annihilation operators at the same real-space loca-
tion, the site of the impurity).

On the other hand, diagrams in group (c) of Fig. 5 con-
tribute to the renormalization of the Jz coupling constant.

Their combined contribution is

4J2
⊥ρ0

|δD|
D

Sz
∑
k,k′

c†
k,sck′,s. (28)

Comparing this term with the parallel interaction in the con-
ventionally compactified Hamiltonian, Eq. (26), we arrive at
the same flow as we obtained in the direct-model calculation.

Meanwhile, the diagrams that contribute to the scaling of
the perpendicular coupling constant, J⊥, are shown as group
(d) in Fig. 5. Their combined contribution to the flow is

−2J⊥Jzρ0
|δD|

D
S+∑

k,k′
c†

k,sl ck′,s − 2J⊥Jzρ0
|δD|

D
S+∑

k,k′
ck,sl ck′,s.

(29)

As was the case with the parallel interaction, the flow that
we obtain using the conventionally compactified model is the
same as in the direct calculation. In addition to the flow of J⊥,
these diagrams also contribute to potential scattering as

J2
⊥

∑
k,k′

(c†
k,sck′,s + c†

k,sl ck′,sl )
ρ0|δD|

(E − D + εk′ )

+ J2
⊥

∑
k,k′

(ck,sc
†
k′,s + ck,sl c

†
k′,sl )

ρ0|δD|
(E − D − εk′ )

. (30)

These contributions will be dealt with in the same way as
in the direct calculation (by incorporating the effects of the
associated wave-function renormalization).

Finally, the last two diagrams in the Fig. 5, the ones in
group (e), contribute solely to the potential scattering leading
to wave-function renormalization. They give

J2
z

∑
k,k′

c†
k,sck′,s

ρ0|δD|
(E − D + εk′ )

+ J2
z

∑
k,k′

ck,sc
†
k′,s

ρ0|δD|
(E − D − εk′ )

.

(31)

Looking at all the diagrammatic contributions to the
second-order scaling of the conventionally refermionized
model, one sees that we arrive at the same flow as in the
direct calculation. Even though, as shown in Fig. 6, there are
diagrams that are unphysical. It just so happens that they do
not contribute to the scaling of the Kondo interaction and,
furthermore, this unphysical contribution disappears in the
limit of a large cutoff. As in the direct-model calculation, we
proceed further to look at the third-order contributions.

2. Third-order scaling

The relevant third-order T-matrix diagrams are shown in
Fig. 7. Diagrams in group (a) contain only normal vertices
and contribute to the flow of the parallel coupling constant.
Notice we have two different contributions to the flow; they
are the J2

⊥Jz and the J3
z contributions. Additionally, in group

(b) we have diagrams that mix normal and anomalous vertices
(the middle vertex is normal while the ones on the left and
right are anomalous) and also contribute to the flow of the
parallel coupling constant. It is important to note that the di-
agrams in group (b), although mixing normal and anomalous
vertices, are not themselves unphysical. Meaning, they have
a valid translation into the direct-model language. The reason
for that is that the two outer vertices on the left and right in
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FIG. 6. Examples of translation of conventional-model diagrams
into the direct-model language. The first row shows that a conven-
tional diagram that mixes normal and anomalous vertices would
translate into a process that needs to flip from L to R “on the fly,”
along a single fermion propagator (which is not allowed by H0).
This is an example of an unphysical contribution to the scaling
taken from group (b). On the other hand, the second row shows
how a very similar diagram, taken from group (a), but with two
normal vertices translates without problems (and the same would
be true, mutatis mutandis, for the corresponding diagram with two
anomalous vertices).

these third-order diagrams have to be either both anomalous
[as in group (b)] or both normal [as in group (a)], since they
have to be able to form a fermion loop. In turn, that means that
along the fermion loop there will not be mixing of vertices and
that the loop will always be translatable. As far as the middle
vertex is concerned, it is always translatable also since it
makes no contractions, it is just a free, open vertex. This goes
further than just for the flow of the Jz coupling constant. Since,
as we saw in the previous section, no/open fermion-loop
diagrams (the ones shown in Fig. 3) are not contributing, every
third-order diagram one makes in the conventional language
will be translatable in terms of the direct-model fermions, and
therefore physical.

The calculation of the contributions from these diagrams
proceeds in the same way as it was done for the direct
model. Contractions are done in the same way weather we
are contracting anomalous or normal vertices in the fermion
loop (they are just one reversal of the fermionic-propagator
direction away from each other). Carrying out the calculation
for all the diagrams that contribute to the flow of the parallel
coupling constant we arrive at their full combined contribution
being

2J3
z Sz ρ

2
0 |δD|
D

∑
k,k′

c†
k,sck′,s − 4ρ2

0 J2
⊥JzS

z |δD|
D

∑
k,k′

c†
k,sck′,s.

(32)

This is the same contribution as in the direct case, which
is as expected considering that there are no unphysical
contributions in these third-order diagrams. In addition to
the spin-scattering contributions, there are also potential-
scattering terms that were disregarded here since they will
only influence the flow at the fourth order (which is higher
than what we are aiming for and results practical within a poor
man’s framework).

Diagrams in group (c) of Fig. 7 contribute to the rescaling
of the perpendicular coupling constant. For these diagrams, in
the same way as for the diagrams in group (b), mixing of the
anomalous and normal vertices is physical and translatable.

(a)

(b)

(c)

FIG. 7. Third-order poor man’s scaling diagrams for the conven-
tionally compactified model. The dashed line represents the impurity,
full lines are inner-band fermions, and the double line is a scattered
edge-state fermion with momentum �q. Diagrams in group (a) those
that contribute to the rescaling of the parallel coupling constant
where all the vertices are normal. Diagrams in group (b) also con-
tribute to the scaling of Jz, but involve two anomalous spin-flip
vertices. Finally, the set of diagrams in group (c) contributes to the
scaling of the J⊥ coupling.

In this case, however, only the middle vertex can be either
anomalous or normal, while the ones on the left and right are
always normal. Once again, their contribution is calculated
using the same steps we used to calculate the direct-model
diagrams, and we arrive at

J2
z J⊥S+ ρ2

0 |δD|
D

∑
k,k′

c†
k′,sck,sl ,
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FIG. 8. Example of translation of a third-order, conventional-
scheme, poor man’s scaling diagram with no fermion loop. As
always, the dashed line represents the impurity, full lines are
fermions, and a double line is the scattered edge-state fermion.

which is, as expected, the same contribution we had in the
direct scaling scheme.

Open-loop diagrams similar to those in Fig. 3, by the same
arguments as in the direct-model scheme, do not contribute to
the flow. They continue, even in the conventional framework,
to belong to the class of reducible diagrams, since they can be
made from combining lower-order conventional-scheme dia-
grams. The fact that these diagrams do not contribute means
that all of the possible unphysical diagrams at the third order
do not affect the flow of the Kondo couplings (since all the
unphysical contributions can only come from the open-loop
diagrams). It nevertheless might be interesting to look at an
example of such a reducible unphysical diagram, which we
show in Fig. 8.

The diagram shown can be thought of as constructed from
the first diagram in Fig. 6 plus an additional anomalous Kondo
vertex, hence it is reducible. In the diagram of Fig. 8 we have
two anomalous vertices and one normal one. Looking at the
translation in terms of direct-model fermions, we can see that
it asks for two propagators that involve unphysical changes
(of either only channel or both spin and channel orientation)
along the contraction. In addition, we can see that such a
diagram would contribute to the actual rescaling of the Kondo
vertex (as opposed to the second-order unphysical diagrams
that generate an additional interaction in the Hamiltonian). It
is a fortunate property of the poor man’s scaling procedure
that these diagrams are disregarded based on the fact that they
are reducible, otherwise one would have had additional un-
physical contributions to the third-order flow of the coupling
constant.

3. Wave-function renormalization

The terms contributing to the wave-function renormal-
ization are given by Eqs. (30) and (31). To get the actual
contribution we assume that k = k′ and change from the sum-
mation in momentum to an integration in energy. The reason
why the unphysical diagrams do not contribute is that, for
k = k′, the contributions from the terms in Eq. (27) are zero.
The absence of these unphysical contributions means that
the wave-function renormalization is exactly the same as in
the direct-scaling scheme. This can be confirmed by
doing the calculation in the conventional scheme and
arriving at

−(
2J2

z ρ2
0 |δD| + 4J2

⊥ρ2
0 |δD|)

(
ln(2) − E

2D

)
, (33)

which is the same as we found in the direct-model calculation.
Since the terms coming directly from the rescaling of the
Kondo vertices are also the same between the two schemes,
as we have seen in the previous section, this means that the
final expression for the β functions will be the same in both
the conventional and direct schemes.

Next we can proceed to do the poor man’s scaling using
the consistent compactification scheme in order to compare it
to the results of the direct and conventional calculations.

C. Consistently compactified model

In the conventional-scheme calculation, products of vertex
operators of the form exp(iφν/2) exp(−iφν/2) are treated as
standard products of exponentials with opposite-sign argu-
ments and taken to give one (the identity operator). Whereas in
the consistent-scheme calculation, we preserve those products
intact by only introducing a shorthand notation for them [19],
namely, the (Fermi-density-like) operators ñ defined as

√
2ñc ≡ ei φc

2 e−i φc
2 ,

√
2ñ


l ≡ ei

φl
2 e−i


φl
2 . (34)

We shall sometimes refer to these operators as consistency

factors. They satisfy the properties of idempotence, (ñ±)
2 =

ñ±, and co-nilpotence, ñ+ñ− = 0, for each independent ñ-
history [18]. These properties of the ñ’s turn out to be exactly
was is needed in order to eliminate the unphysical diagrams
from the calculation of the coupling-constant flow.

Within the consistent refermionization scheme, the spin-
flip part of the Hamiltonian mapped into

H⊥
K = ñcñ−

l J⊥S− ∑
k,k′

ck,sl c
†
k′,s − ñcñ−

l J⊥S+ ∑
k,k′

c†
k,sl ck′,s

+ ñcñ+
l J⊥S− ∑

k,k′
c†

k,sl c
†
k′,s − ñcñ+

l J⊥S+ ∑
k,k′

ck,sl ck′,s,

whereas the parallel interaction became

Hz
K = ñc (ñ+

l + ñ−
l ) JzS

z
∑
k,k′

c†
k,sck′,s

− ñcJzS
z
∑
k,k′

(ñ+
l ck′,sl c

†
k,sl + ñ−

l c†
k,sl ck′,sl )

= ñcñ−
l JzS

z
∑
k,k′

(c†
k,sck′,s − c†

k,sl ck′,sl )

+ ñcñ+
l JzS

z
∑
k,k′

(c†
k,sck′,s − ck′,sl c

†
k,sl ). (35)

In this consistent framework, anomalous and normal ver-
tices of the spin-flip part of the interaction are separated in
such a way that normal vertices come multiplied with ñ−

l ,
while the anomalous ones come with ñ+

l . This fact prevents
the mixing of anomalous and normal vertices because of
the co-nilpotence of the consistency factors. That means that
there will not be any diagrams like the ones in group (b)
of Fig. 5. This is one of the main outcomes of preserving
of the consistent consistency factors: they prevent otherwise
allowed unphysical diagrams from contributing to the cal-
culations. Additionally, in comparison with the conventional
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scheme, one notices that the Jz vertex scatters both s- and
sl-sector fermions (mirroring the parallel interaction in the
direct scheme).

1. Second-order scaling

For the second-order contribution we can draw the same
diagrams as the ones shown in Fig. 5, but excluding the un-
physical ones in group (b), since the consistency factors make
their contributions vanish. The diagrams in groups (c) and (d)
are still contributing to the flow of Jz and J⊥, respectively,
while the diagrams in group (e) still contribute to the flow via
the wave-function renormalization.

In addition, we also have the diagrams in group (a)
contributing to the flow of Jz. Those diagrams, in the
conventional-scheme calculation, were canceling between the
two rows. However, in the consistent-scheme case, the dia-
grams in the first (second) row come multiplied by ñ− (ñ+)
and this difference prevents the cancellation between them.
These diagrams are going to contribute to the flow of Jz

(and help preserve the consistent s-sl balance of the parallel
Kondo interaction). The calculation of these diagrams (using
fermionic contractions and spin identities) proceeds in the
same way as in the conventional- and direct-scheme calcu-
lations.

It is important, however, to illustrate at this point how the
ñ’s are treated in the consistent scheme. For that, we can
first take a look at the diagrams in group (c) as an example.
The diagrams in the top row of this group are “anomalous”
(meaning that they combine two anomalous vertices). Since
each anomalous vertex comes multiplied by ñ+

l , the contri-
bution from these diagrams will be multiplied by ñ+

l ñ+
l . On

the other hand, the diagrams in the bottom row are “normal,”
and their contribution is multiplied by ñ−

l ñ−
l . Other than those

factors, the diagrams coming from contracting two normal or
two anomalous vertices contribute equally. Calling upon the
idempotence property (ñ2 = ñ) of the adiabatically conserved
local fermionic densities, we have that the contribution from
these diagrams is given by

2J2
⊥ρ0

|δD|
D

ñcñ−
l Sz

∑
k,k′

c†
k,sck′,s

+ 2J2
⊥ρ0

|δD|
D

ñcñ+
l Sz

∑
k,k′

c†
k,sck′,s. (36)

This gives the flow of Jz for the fermion-impurity parallel
scattering in the s-sector. In order to check if the sl-sector
part consistently flows in the same way, we need to include
also the diagrams in group (a) of Fig. 5. As opposed to
the conventional-scheme case, where those diagrams were
mutually canceling each other between the two rows, in the
consistent-scheme case the two rows come with different ñ
factors, and so the cancellation is avoided. As a result, they
separately, but in the same manner, contribute to the scaling
of Jz and the two parts of the vertex flow as one (meaning
they have the same flow). Therefore, the full expression of the
scaling of the Jz coupling constant coming from both group

(a) and group (c) diagrams is given by

2J2
⊥ρ0

|δD|
D

ñcñ−
l Sz

∑
k,k′

(c†
k,sck′,s − c†

k,sl ck′,sl )

+ 2J2
⊥ρ0

|δD|
D

ñcñ+
l Sz

∑
k,k′

(c†
k,sck′,s − ck′,sl c

†
k,sl ). (37)

This preserves the s-sl structure of the vertex and gives us the
second-order flow of the parallel coupling constant, Jz, to be
the same as the one we obtained from both of the two previous
calculations. The same outcome is found when calculating the
second-order flow of the J⊥ coupling constant. It is important
to remark that in the consistent scheme, since mixing of the
anomalous and normal vertices is prohibited, there can be no
additional unphysical interactions appearing in the model like
the ones in Eq. (27). This is an advantage of the consistent
scheme as opposed to the conventional one.

2. Third-order flow

The third-order diagrams contributing to the flow of the
coupling constants in the consistently compactified model are
the same as those already given in Fig. 7 for the conventional
case. Even the diagrams in group (b), that seemingly combine
normal and anomalous vertices, are valid contributions, the
reason being that the vertices forming the fermion loop can
have either ñ− or ñ+ at them regardless of the consistency
factor assigned to the middle vertex of the diagram. This is
because, when doing the fermionic loop contraction, one does
the trace over its vertices before multiplying by the remaining
ñ factors and utilizing their co-nilpotence property. In addi-
tion, when it comes to the actual contribution coming from
the fermionic contractions in the third-order diagrams, they
are independent of the ñ’s at the outer diagram vertices. To
give an illustration of how the calculation proceeds let us call
that contribution (modulo consistency factors) �3 and take the
example of the middle vertex being a normal one (it would
be the same for an anomalous one, just with ñ+

l instead as
the common central-vertex factor). Diagrams with normal and
anomalous outer vertices will give the following combined
contribution

Tr(ñ−
l · ñ−

l ) ñ−
l × �3 + Tr(ñ+

l · ñ+
l )ñ−

l × �3

= Tr(ñ−
l + ñ+

l )ñ−
l × �3 = 2ñ−

l × �3. (38)

In obtaining this result, we used the properties of the con-
sistency factors that ñ±ñ± = ñ± and also ñ+ + ñ− = 1. The
mechanism of how the consistent scheme allows for the
mixing of normal and anomalous vertices in the third-order
fermion-loop diagrams is now evident. As one can see from
the above equation, the vertices involved in the fermion loop
are under a trace operator, and that prevents the direct multi-
plication of their consistency factor(s) by additional ñ factors
which would seem, in certain cases, to produce a zero based
on the co-nilpotence property [the case of the second term
in Eq. (38)]. The fact that one can mix vertices like that
in these third-order diagrams has an elegant interpretation if
one thinks of the comparison to the direct-model calculation.
In that case, we had the L and R leads, and, since there is
no interlead scattering, those labels are not mixed in any
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FIG. 9. Example of translation attempt of a fourth-order, conventional, poor man’s scaling diagram with no fermion loop. As always, the
dashed line represents the impurity, full lines are fermions, and a double line is the scattered edge-state fermion (joining the two outer vertices).
One can see that this particular example would translate into an unphysical process in the direct language. In other words, this conventional
diagram is untranslatable. Furthermore, one would be unable to make a diagram with such a topology/connectivity and all spin-flip vertices
in the direct language. It would require connecting two S+ or two S− operators with a fermion propagator, which in the original formulation of
the model is not allowed (for spin-1/2 band fermions).

of the above-considered diagrams except for the third-order
fermionic-loop diagrams (or any diagrams at higher orders
including fermionic loops in general) where, in a loop, one can
have either L or R fermions regardless of the lead assignment
of the external fermion legs. To put it differently, fermionic
loops count the number of leads (which is just 2 in the two-
lead case), and that is what the trace of the identity gives in
the consistent framework [the last step in Eq. (38)]. Indeed,
one can back-translate the ñ−

l terms in the Hamiltonian as
corresponding to the L lead, and the ñ+

l ones to the R lead.
Then the fact that one can have both normal and anomalous
vertices in a loop is needed to count the number of “channels”
in the model.

Calculating all of the third-order diagrams, in the way
described above, we arrive at exactly the same contribution
as we had with the direct formulation of the model. The
flow of the Kondo coupling constants will thus be the same
between the two schemes (as expected, since the consistent
compactification does not introduce unphysical processes, nor
does it under- or over-count the physical ones).

III. UNIVERSALITY

The result of comparing the direct calculation and the two
different bosonization-debosonization schemes is that the β

function(s) for the Kondo coupling constant(s) comes out to
be the same in all three cases, namely,

β(g) = −g2 + Mg3, (39)

where we have quoted the result for the fully isotropic case
to keep the discussion simpler. (The conclusions would be
similar in the case with spin anisotropy, since it turns out to
be an irrelevant perturbation in the Wilsonian sense.) Recall
that we are calling M the number of channel pairs and one
can perform a pairwise compactification of the original Kondo
model. In the large-M limit, the infrared fixed point is pertur-
batively accessible as the (first) zero of the flow toward strong
coupling, and it is reached for g� = 1/M.

These coincident results for the beta function are as ex-
pected; since we have seen that there are no unphysical
(compactified-scheme) diagrams involved in the scaling of
the Kondo interaction up to the third order in the cou-
pling constant. In contrast, going to one higher order one

recognizes that there will be two distinct sets of contributions.
One of them will comprise the contributions from diagrams
with fermionic loops (i.e., M-dependent contributions). These
have been calculated in the literature [29–31], but using field-
theoretical methods that we shall discuss later [32]. They do
not involve untranslatable contributions, since the presence of
fermionic loops still severely restricts the unphysical com-
bination of anomalous and normal vertices (at the leading
order in M if one moves to even-higher orders in the coupling
constant) and are delicate to access within a T-matrix-based
approach to scaling. The other set of contributions comes
from diagrams of order J4 without any fermionic loops, and
thus no M dependence; cf. Ref. [33]. An (untranslatable)
example of such a diagram is shown in Fig. 9, together with
its attempted translation into direct-model language [34]. One
can see that such a diagram would contribute to the rescaling
of the parallel coupling constant in the conventional scheme,
while in the direct-scheme language it would correspond to a
diagram with (in this case both) the channel flavor or the spin
orientation being flipped along a single fermion propagator
(which is unphysical, as we already argued at length above).

Even though they are unphysical, diagrams like the one
in Fig. 9 will alter the beta function found in the calcula-
tion based on the conventionally compactified model. One
would like to know if and how that change affects the low-
temperature universal aspects of the physics (by modifying,
for instance, the thermodynamic scaling exponents). To that
end, let us assume that we know the fourth-order (in g) contri-
bution, and the resulting flow is given by

β(g) = −g2 + Mg3 + ag4, (40)

where the fourth-order coefficient a takes different numerical
values according to the conventional- or the direct/consistent-
scheme calculations (since, as we have just seen, the
conventional scheme includes unphysical contributions to that
coefficient [35]).

One can then find the infrared fixed point, g�, by solving
for β(g�) = 0. One way of determining the shifted fixed point
location is by applying Newton’s root-finding method, where
for each/(the first) iteration we use the previous/(third-order)
fixed-point location (1/M), and we would iterate for each
added order in the expansion of the beta function. Following
that procedure we arrive at g� = (1 − a1)/M + O(a2

1), where
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a1 = a/M2. Here we have assumed that a1 is small and ex-
panded to keep only the linear terms. Notice, however, that we
did not assume that the channel number is particularly large,
we assumed only that M > 1 in order to study the behav-
ior around a perturbatively accessible intermediate-coupling
fixed point (the expansion will, of course, be more accurate
the larger M is). The derivative of the beta function at the
fixed point is then � ≡ β ′(g�) = 1/M + O(a2

1). As there is
no linear correction, this is an unchanged result from the
previous/third-order, and we shall see that this fact is re-
sponsible for the relative insensitivity of the (“universal”)
thermodynamic scaling exponents [36].

The first thing we need to do now, in order to study the be-
havior near the infrared fixed point, is to define the (crossover)
Kondo temperature, TK , and figure out the running of the
coupling constant. These can be done by separating variables
in the definition of the beta function and integrating:∫ ω

D
d (ln(ω′)) =

∫ gr

g0

dg′

β(g′)
, (41)

where D is the energy cutoff or band edge, gr (ω) is the running
coupling constant at energy ω, and g0 is the bare coupling con-
stant. The integral on the r.h.s. of the equation is not as easy
to compute as in the case of the third-order beta function. But
since we are interested in the behavior of the model around
the fixed point (g�), we can make some approximations that
are accurate near the relevant fixed points (notice that further-
removed fixed points, appearing due to the higher orders in the
expansion, are unphysical in any case since the flow can never
reach them starting from the Gaussian fixed point). Namely,
we can approximate the beta function as

β(g) ≈ �

(
g

g�

)2

(g − g�). (42)

Basically, we replace the original higher-order-in-g correc-
tions to the flow with a lower-order interpolant that has the
same location of and slope at g� as the higher-order beta
function does (i.e., g� and �, respectively). Of course, it also
has the second-order zero at g = 0 that corresponds to the
ultraviolet fixed point. The integral is now again elementary
and the equation for the running coupling becomes

ln

(
ω

D

)
= (g�)2

�

∫ gr

g0

dg′

(g′)2(g′ − g�)

= g�

gr�
− g�

g0�
+ 1

�
ln

[
(g� − gr )g0

(g� − g0)gr

]
. (43)

From this equation we can find the Kondo temperature by
using that it can be (conventionally) defined as the temperature
at which the running coupling constant becomes 2

3 g�. This
corresponds to the local minimum of the beta function that

lies in between the UV and IR fixed points [37]. Using this
conventional definition for the Kondo temperature, and units
in which the Boltzmann constant was set to one, we have

ln

(
TK

D

)
= 3/2

�
− g�

g0�
+ ln

[
g0/2

g� − g0

] 1
�

. (44)

Choosing g0 	 g�, the equation simplifies, and we can solve
for the Kondo scale

TK = De− g�/�

g0
+ 3

2�

(
g0/2

g� − g0

) 1
�

. (45)

Now one can use this expression as a boundary condition to
write the running coupling constant for ω 	 TK as

gr (ω) = g� − 1

2
gr (ω)e

3
2 − g�

gr (ω)

(
ω

TK

)�


 g�

1 +
√

e
2 (ω/TK )�

. (46)

This is a very generic type of behavior also found in other
asymptotically free theories [38]. We can see that the fre-
quency scaling exponent is given by �, which at linear order
is not affected by the fourth-order contributions to the beta
function. This means that the exponent is going to be the same
(at this level of approximation) whether we use the consistent
or the conventional schemes, even though the conventional
scheme does have unphysical terms contributing. Therefore,
as far as the leading-order universality of the low-temperature
physics is concerned, conventional and consistent schemes
would still produce the same generic results, even though their
beta functions start to differ.

Indeed, now that we have the running coupling constant,
we can proceed further and use it to calculate the impurity
entropy and specific heat. To do so we start from the perturba-
tively obtained impurity contribution to the free energy that is
given by

Fimp(T ) = −E0 − T ln(2) + 1
2π2T (Mg3 − 3

4 M2g4) + O(g4).
(47)

This result was obtained in the literature using a diagrammatic
expansion and keeping only terms that are linear in temper-
ature [30,39]. Due to the scaling invariance of the impurity
free energy, we can replace the g appearing in its expression
with the running coupling constant corresponding to some
frequency scale given by the temperature T , namely, gr (T ).
The temperature that we choose is in the range of the Kondo
temperature but still smaller than it, T � TK . This enables
us to keep only the lower-order terms in the temperature
expansion. (This assumption is important, as we shall see,
in determining which orders are kept and which suppressed.)
The working expression for the free energy thus becomes

Fimp(T ) = −E0 − T ln(2) + 1

4
π2T

(
2Mg3

r (T ) − 3

2
M2g4

r (T )

)
+ O

(
g4

r (T )
)

≈ −E0 − T ln(2) + 1

4
π2T

[
1

2M2
− 6

a1

M
ξ

(
T

TK

)�

− (3 − 12a1)ξ 2

(
T

TK

)2�]
+ O(T (T/TK )3�), (48)
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where we used the expression for gr (T ) taken from Eq. (46)
and introduced the constant ξ = √

eg�/2. In addition, we re-
placed g� = (1 − a1)/M in the final expression. Inspecting
the resulting free energy, one identifies three terms that are
important to consider. The first one is the term that is linear
in T . This term contributes to the residual impurity entropy,
S0 = ln(2) − π2/8M2, and does not have any a1 dependence.
The other two are the terms that are linear and quadratic
in (T/TK )�. Since the temperature is in a small range just
below TK , both of these terms are comparable in magnitude.
However, the term that is linear in (T/TK )� is multiplied by
a1/M, which is a small coefficient even for a finite M > 1.
Additionally, since M ∼ 1/

√
a1, we know that a1/M ∼ a3/2

1 ,
which is beyond the linear-order approximation in a1 used so
far. Therefore, the term is suppressed and should be dropped
(unless one introduces even higher powers of the coupling in
the analysis, since those can be seen to contribute at a similar
order in a1 to the next-order correction of the slope of the beta
function at the fixed point).

Having determined the leading contribution to the impurity
free energy, one can then calculate the impurity specific heat
to find

Cimp ≈ 3 − 12a1

2
π2ξ 2�(1 + 2�)

(
T

TK

)2�

. (49)

Inspecting this expression, one can see that a1 enters only in
the multiplicative coefficient, but not in the scaling exponent
which stays the same, α = 2�, as it would have been without
including the fourth-order contribution to the beta function.
In addition, the result is in fair agreement with that obtained
perturbatively in the large-M limit [29,30,40], as well as with
Bethe ansatz [41,42] and Conformal Field Theory [9,43] cal-
culations. This further solidifies the picture that the unphysical
diagrams in the conventional scheme, like the one in Fig. 9,
do contribute to the flow at higher orders, but not to the uni-
versal aspects of the physics around the IR fixed point of the
model.

Another interesting situation in which we can compare the
two compactification schemes is with the addition of chan-
nel anisotropy. This is better visualized in the context of a
quantum-dot realization of the model [44–47]. The electrons
in our formulation of a “mesoscopic” multichannel Kondo
model will then have a total of 2M microscopic channels or
flavors (in addition to the spin). We will have two macroscopic
groups of flavors, that we can refer to as the leads (L and R)
of a gedanken transport-experiment setup, and they each will
have a further M-fold degeneracy (the “conduction channels”
of each lead in the mesoscopic setting), giving a total of
2M flavors. It is on this lead-flavor index (L or R) that the
coupling constant will depend on in the channel-anisotropic
case that we want to consider here [48]. Thus, for each of
the M-degenerate conduction channels, we have the gL and gR

coupling constants that can be different from each other. The
reason why we choose this way of defining a multichannel
model is in order to obtain a simpler (compact) model in terms
of the physical flavors (c, l , s, and sl) introduced after the
bosonziation procedure. Carrying out all the calculation in the
direct scheme, we arrive at the spin- and channel-anisotropic

flow given by the beta functions

βα
⊥ = −gα

z gα
⊥ + M

4
gα

⊥
(
gα

z

)2 + M

4
gα

⊥
(
gᾱ

z

)2

+ M

4
gα

⊥(gᾱ
⊥)2 + M

4
(gα

⊥)3,

βα
z = −(gα

⊥)2 + M

2
gα

z (gα
⊥)2 + M

2
gα

z (gᾱ
⊥)2, (50)

where ᾱ takes the values L or R when α is R or L, respectively.
This is the result for the most general case of a (multi) two-
channel model with spin and channel anisotropy. We checked
that it correctly recovers previous poor man’s scaling calcu-
lations that have been carried out only for less general cases
and/or to lower orders [22,25–28].

Performing the calculation in the conventional scheme,
one will recover the exact same result. For the multichannel
model, defined as we have, one can do the rotation into the
physical sectors for each of the M conduction channels. In the
conventional scheme gL describes the coupling of the normal
vertex with the impurity, while gR goes with the anomalous
coupling. Mixing of these two types of processes can lead
to unphysical contributions, but not until higher orders are
reached.

IV. INTERIM CONCLUSION AND SUMMARY

In concluding, let us first recapitulate our findings regard-
ing the bosonization-debosonization (BdB) procedure that
was used to compactify the (multi) two-channel Kondo model.
On the one hand, the comparative results of poor man’s scal-
ing confirm our earlier findings for the consistent BdB of the
model [18]; namely, that the consistently compactified model
is an exact reparameterization of the original multichannel
Kondo Hamiltonian in terms of an alternative set of fermions,
each separately associated with the model’s different physical
sectors. Along the way, our next-to-leading-order diagram-
matic calculations helped clarify the role and properties of the
consistency factors given by the n-twiddle operators which are
crucial to enable the compact reparameterization to be exact.

On the other hand, the conventionally compactified model,
quite remarkably, gives the same results for the beta func-
tion(s) up to the order computed here (which, some could
argue, captures all the universal aspects of the low-energy
physics) and deviates only at higher orders. Correspondingly,
the low-energy thermodynamics near the infrared fixed point
of the model is also identical in all the calculational schemes
considered. This is in contradistinction with our earlier find-
ings that certain exact results involving finite systems or
special limits are different for the conventional scheme (in
particular those involving nonequilibrium transport calcula-
tions) [18]. The reason for the surprising agreement of the beta
functions is that the dynamics of the impurity itself restricts
the appearance (or manifestation) of unphysical processes un-
til higher orders of perturbation are reached. This serendipity
implies that for other types of impurities one would need to
check, on a case-by-case basis, if similar restrictions are also
present or not before trusting results involving the conven-
tional use of BdB in the calculations. Moving beyond Abelian
bosonization, it would be natural to ask, in further studies,
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how and to what extent are these findings mirrored in the
non-Abelian formalism.

The caveats of the previous paragraph notwithstand-
ing, the conventional way of compactifing the (multi)
two-channel Kondo model still constitutes an appealing
approach to the study and possible realization of (local) non-
Fermi liquid physics in impurity-based systems. Indeed, the
original/conventional compactification was not claimed to
be exact. Rather, it was supposed to capture only the most
desirable aspects of the low-energy physics near the IR fixed
point [1]. Our findings are in agreement with that scenario pro-
vided the systems are probed in near-equilibrium conditions.
It had also been argued that compactification moves the IR
fixed point of the two-channel Kondo impurity (M = 1) from
intermediate to strong coupling and turns channel asymmetry
into a marginal operator (thus turning the limiting separatrix
that flows from the two- to the one-channel fixed points into a
strong-coupling fixed line [11]). Since our scaling calculations
are perturbative, we cannot confirm that scenario. However,
for M > 1, both the L-R symmetric and asymmetric cases
have intermediate-coupling fixed points that are perturbatively
accessible. We find in these cases that the conventional com-
pactification of the model does not change the beta function
even in the presence of channel asymmetry, which remains a
relevant operator.

We thus saw that the study of the compactification of the
(multi) two-channel Kondo model was valuable to further our
understanding of the BdB formalism. In that framework, the

comparative study of scaling allowed us to identify the limits
of validity of the conventional implementations of BdB-based
mappings. Interestingly, those limits turned out to coincide
with the conventional wisdom for the limits of universality of
Kondo models. However, so far we argued only qualitatively
about those limitations. In order to do it quantitatively, we
would need to go further and study the next-to-next leading or-
ders of scaling, i.e., the leading nonuniversal corrections. That
is a task that falls outside the practical use of the poor man’s
scaling approach presented here. Instead, one needs to resort
to a more systematic implementation of the RG program using
field-theoretic methods (but such a calculation is more techni-
cally involved and will require a separate presentation [32]).
Let us anticipate that, to the same order for the beta functions
as considered here, we shall see that the field-theoretic RG
calculations exactly validate our current results.
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