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Systematic compactification of the two-channel Kondo model.
I. Consistent bosonization-debosonization approach and exact comparisons
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Capitalizing on recent work, which clarifies the consistent use of bosonization-debosonization methods to
study Kondo-type quantum impurity models even in nonequilibrium settings, we revisit the compactification
procedure of the two-channel Kondo model (by which it is rewritten more “compactly” using the single-channel
version of the model and exploiting separation and duality between spin and charge) and uncover some hidden
approximations that could limit its range of validity. This complements and extends, for two or any even number
of channels, beyond previous work on the Toulouse limit of these models, and reinforces the need for the use of
an extended framework in these calculations. We carry out a number of exact comparisons between the different
models and show that keeping track of the so-called consistency factors leads to full agreement between the
compactified and original versions of the model.
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I. INTRODUCTION

In the last few decades, the investigation of non-Fermi
liquids and strong correlations became one of the most active
frontiers in the study of quantum materials and devices. From
the theoretical standpoint, these are systems that typically
require the use of creative approaches for their study since
a direct application of perturbation-theory methods does not
capture the full gamut of phenomena. One example of such
is the separation of spin and charge into distinct branches
of collective excitations. Paradigmatic models where this
is observed are one-dimensional Luttinger liquids [1] and
Kondo-type quantum impurities [2]. The latter is particularly
interesting in the case of multichannel hosts, which give rise
to impurity overscreening and intermediate-coupling (local)
non-Fermi-liquid physics [3].

The multichannel-Kondo fixed point (the two-channel one
in particular) is notoriously unstable to channel anisotropy,
which makes its experimental realization famously difficult
[4,5]. Moreover, some of the fixed-point signatures (crucially,
the presence of a decoupled Majorana excitation) are sensitive
to finite-size effects or lattice discretization. These prompted
a theoretical program of finding related models that distill the
main elements responsible for the non-Fermi liquid physics
while, in the process, making it more accessible. (The hope
was to turn channel anisotropy into a marginal perturbation,
rather than a relevant one [6].) The main idea was to enforce
spin-charge separation (also sensitive to finite-size and lattice
effects) and use the fact that the Kondo interaction involves
only the spins, of the host and the impurity, to remove the
charge degrees of freedom and arrive at a more compact model
(i.e., formulated in terms of a smaller number of degrees
of freedom) that could be regularized without affecting the
fixed-point physics that would now move from intermedi-
ate to strong coupling as in the single-channel case. This

compactification of the model was done first using symmetry
and bootstrapping arguments [7] and later also via a more
methodical bosonization-based mapping [8].

Bosonization relies on describing the excitations of one-
dimensional fermionic systems via bosonic degrees of free-
dom when the dispersion is linear and no cutoff is present
[1,9,10]. If the number of fermions in the system is held
constant, the excitations over a filled Dirac-sea state are
particle-hole pairs that can be decomposed in terms of bosonic
operators that fully capture the corresponding spectrum. Un-
der these conditions, bosonization is an exact correspondence.
Conventionally, one of the key advantages of the bosonic
reformulation is that the bosons can be easily combined to
make the separation of charge and spin manifest. This is one of
the enabling factors that not only makes the compactification
program possible, but allows also related developments like
the identification of (solvable) Toulouse points in quantum
impurity models [11–13].

However, even for hosts with ideal conditions for bosoniza-
tion, we recently established that the presence of boundaries
or impurities can interfere with exact spin-charge-flavor sep-
aration. The consistent bosonization-debosonization (BdB)
framework that we put forth correctly captures the physics of
the boundary/impurity problem [14]. In particular, it respects
the symmetries and regularizations that the conventional
BdB formalism can inadvertently violate in a wide range
of problems [15]. This was first demonstrated in transport
calculations across single-mode junctions and later also in
a two-lead Kondo junction at the Toulouse limit [16] (in
qualitative agreement with subsequent numerical calculations
away from the solvable point [17]). It is thus natural to expect
that the compactification of the two-channel Kondo impurity
model will also be affected by the subtle breakdown of exact
spin-charge-flavor separation. A systematic rederivation of
the compactified model would then serve the dual purpose
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of exploring the limits of interaction-induced fermion frac-
tionalization (spin-charge separation and its generalizations)
while also further clarifying the essential aspects responsible
for the non-Fermi-liquid physics of multichannel quantum
impurities.

The purpose of this work is to present a systematic
approach to the compactification of the single-impurity mu-
tichannel (with even channel number) Kondo model that
incorporates the latest understanding regarding the proper reg-
ularization of the impurity-interaction terms while performing
bosonic-basis transformations. After presenting the model and
setting the notation in the next section, we show in Sec. III
how BdB can be used to refermionize the model into phys-
ical sectors aligned with the collective excitation of charge,
spin, etc. The following section presents detailed comparisons
between the original and different compact refermionized
versions of the model (by looking at three specific solvable
limits). The final section closes with a general discussion that
puts the different results in perspective.

II. TWO-CHANNEL KONDO MODEL

We will be primarily focused on the two-channel model
but generically interested in the multichannel model with an
arbitrary number of channels. This is because the limit of
large channel number can bring the fixed point into the weak-
coupling regime (the fixed-point coupling constant scales with
the inverse of the channel number). For technical reasons that
will became clear in the next section, we limit ourselves to
the case of even channel number and adopt a notation with
two channels only (additional channels can be included at any
point by introducing an extra internal index that plays no role
in the subsequent transformations of the model that we carry
out after bosonizing).

The case of primary interest consists thus of two channels
(L and R, when using “leads” notation) of noninteracting
spin- 1

2 fermions which are coupled via magnetic exchange to
a spin- 1

2 fixed-valence impurity (a spin-only degree of free-
dom). Explicitly, the Hamiltonian of the model is given by
[18]

H = H0 + H⊥
K + Hz

K ,

H0 =
∑
σ�

∫
dx ψ

†
σ�(x, t )(ivF ∂x )ψσ�(x, t ),

Hz
K =

∑
σ�

σJz
��Szψ

†
σ�(0, t )ψσ�(0, t ),

H⊥
K =

∑
σ,�

J⊥
��Sσ ψ

†
σ̄ �(0, t )ψσ�(0, t ), (1)

where we have introduced � = {L, R} = {−,+} and σ = {↓
,↑} = {−,+} as lead and spin indices, respectively, and the
notation σ̄ = −σ . The exchange coupling constants here are
taken to be spin-anisotropic (Jz

�� and J⊥
�� [19]), and factors of

1/2 often used in the definition of the fermion spin density
have been absorbed in them [6,7] (writing them explicitly is
also common in the literature and amounts to a rescaling of the
couplings; cf. [8,16,20]). This anisotropic formulation will be
natural, because the Abelian bosonization formalism that we

are going to employ treats these two types of terms differently,
as will be seen in the next section.

The fermionic degrees of freedom coupled to the impurity
are written in terms of one-dimensional chiral fields ψσ�(x, t )
and the energy spectrum has been linearized around the Fermi
levels (kσ�

F = μσ
� /vF ). This is a well-established procedure of

“unfolding,” in which one can take any impurity problem in
three dimensions and write it in terms of one-dimensional
fermions with a linearized spectrum. Notice that the L and R
labels identify the channel and not the physical type of chiral
mover (we use this notation because during the analysis of
the models we will carry out spin transport calculations, and
it will be natural to refer to the two channels as left/right
“leads”). Moreover, since the impurity interaction is taken
to be purely local and centered at the origin, we have the
freedom to work with all left (or right) movers only, and
which type we choose is a matter of convention (and one
can switch from one to the other at any time via a spatial-
inversion transformation that leaves the Kondo impurity terms
invariant). In addition, we allow that there can be a chemical
potential difference between the two fermion spin orientations
(spin bias) characterized by the magnetic field of each lead,
h� = μ

↑
� − μ

↓
� . These fields will be important when calculat-

ing the spin current through the impurity (notice that while the
standard two-channel Kondo model does not allow the flow of
a charge current, it does not preclude spin transport between
the two channels).

III. BOSONIZATION-DEBOSONIZATION

Bosonization refers to a transformation that rewrites an
original one-dimensional fermionic model (with a linear spec-
trum and no momentum cutoff [21]) in terms of bosonic
degrees of freedom. To carry out the bosonization proce-
dure, one needs to have a normal-ordered formulation of the
problem, where the vacuum expectation value (vev) for each
lead has been subtracted [22]. Notice the vev here refers to
the vacuum of H0, so it remains unmodified as interactions
are switched on and off adiabatically. Although nontrivial it
can be well defined even for Landauer-type nonequilibrium
settings (as is the case in our model in the presence of spin
bias) that we want to be able to consider.

One way to deal with the presence of a finite bias is to first
employ a field transformation to gauge away the chemical
potentials, bringing the model onto an effective equilibrium
zero-bias setting, and then subtract the vev for each spin
orientation on each lead (see Sec. II B of Ref. [14]). The price
to pay is that the impurity terms acquire a time dependence.
To see that, it is best to start from the model in its Lagrangian
formulation,

L0 =
∑
σ�

∫
dx ψ

†
σ�(x, t )(i∂t + ivF ∂x )ψσ�(x, t ),

Lz
K = −

∑
σ�

σJz
��Szψ

†
σ�(0, t )ψσ�(0, t ),

L⊥
K = −

∑
σ,�

J⊥
��Sσ ψ

†
σ̄ �(0, t )ψσ�(0, t ). (2)
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Removal of the chemical potentials from the distribution func-
tions [23] and normal ordering of the Lagrangian can now be
achieved by using a gauge field transformation of the form
ψσ�(x, t ) = e−i(μσ

� t+kσ�
F x)ψ̆σ�(x, t ). Applying this transforma-

tion we get

L0 =
∑
σ�

∫
dx : ψ̆

†
σ�(x, t )(i∂t + ivF ∂x )ψ̆σ�(x, t ) :

Lz
K = −

∑
σ�

σJz
��Sz : ψ̆

†
σ�(0, t )ψ̆σ�(0, t ) :

L⊥
K = −

∑
σ,�

J⊥
��Sσ eiσ̄h�t ψ̆

†
σ̄ ,�(0, t )ψ̆σ,�(0, t ). (3)

It is important to note that all the information about the (spin-
dependent) chemical potentials is now fully contained in the
exponential factors, eiσ̄h�t , in front of the spin-flip interaction
term. Going back to the Hamiltonian formalism we have

H0 =
∑
σ�

∫
dx : ψ̆

†
σ�(x, t )(ivF ∂x )ψ̆σ�(x, t ) :

Hz
K =

∑
σ�

σJz
��Sz : ψ̆

†
σ�(0, t )ψ̆σ�(0, t ) :

H⊥
K =

∑
σ,�

J⊥
��Sσ eiσ̄h�t ψ̆

†
σ̄ �(0, t )ψ̆σ�(0, t ). (4)

Only now, after normal ordering, can we proceed with the
bosonization of each term in the Hamiltonian in the usual
manner. The bosonization of the kinetic term, H0, is standard,
and we do not need to discuss it here. We shall focus on the
impurity-interaction terms. As anticipated, we can see that the
price for normal ordering is the introduction of an explicitly
time-dependent phase in the H⊥

K term (this will be dealt with
by using a suitable “inverse” gauge transformation after the
refermionization of the model is complete). Let us discuss that
term first.

A. Spin-flip interaction

The part of the Hamiltonian responsible for flipping the
spin of the scattered fermion with that of the impurity is what
we call the spin-flip interaction. It is given by H⊥

K in Eq. (4)
and involves the coupling constant J⊥

��. In order to bosonize
it we use the Abelian bosonization identity (in the standard
convention for left movers),

ψ̆σ,�(x, t ) = 1√
2πa

Fσ�(t ) e−iφσ�(x,t ), (5)

where Fσ� are the so-called Klein factors, which ensure proper
interspecies anticommutation relations; a is a short-distance
regularization parameter, similar but not equivalent to a lattice
spacing (in particular, not introducing any interplay of charge
and spin); and φσ� are new (chiral and compact) bosonic
degrees of freedom. Written in terms of these, the spin-flip
interaction becomes

H⊥
K = 1

2πa

∑
σ,�

J⊥
��Sσ eiσ̄h�t F †

σ̄ �Fσ�eiφσ̄�e−iφσ� , (6)

where the bosonic fields are evaluated at x = 0 and time t . In
order to separate the description of spin (s) processes from

those involving charge (c), lead (l), and other independent
degrees of freedom (sl), a standard canonical change of basis
is introduced:

φσ� = 1
2 (φc + σφs + �φl + σ�φsl ) (7)

so that

H⊥
K = ñcñ−

l

2πa
J⊥

LLS−eihLt F †
↑LF↓Leiφs e−iφsl

+ ñcñ−
l

2πa
J⊥

LLS+e−ihLt F †
↓LF↑Le−iφs eiφsl

+ ñcñ+
l

2πa
J⊥

RRS−eihRt F †
↑RF↓Reiφs eiφsl

+ ñcñ+
l

2πa
J⊥

RRS+e−ihRt F †
↓RF↑Re−iφs e−iφsl . (8)

This is where what we will call the consistent and conven-
tional bosonization schemes (or frameworks) start to diverge
from each other. As shown in Ref. [14], where the consis-
tent BdB formalism was introduced, the conventional scheme
amounts to having the products of vertex operators of the form
e

iφν
2 e

−iφν
2 [that appear after performing the change of basis

in Eq. (6) and carrying out the algebra without ever mixing
the two exponentials] being replaced by the identity operator
(and as explained in the Appendix, some gradient-of-the-field
contributions are missed). In the consistent scheme, on the
other hand, we preserve those products intact by introducing
the n-twiddle shorthand notation for them by defining the
(Fermi-density-like) operators ñ as follows:

√
2ñc ≡ e

iφc
2 e

−iφc
2 ,

√
2ñ�

l ≡ e
i�φl

2 e
−i�φl

2 . (9)

We shall sometimes refer to these operators as consistency
factors. It is important to notice that, after the algebra, it would
seem there is an extra overall factor of 1

2 in Eq. (8). That factor
is related to the procedure leading to consistent boundary
conditions [14,16], which ensure that the ñ factors behave as
(square roots of) single-lattice-point densities. Understanding
the origin of this factor is quite subtle, and we refer the reader
to Sec. IV B of Ref. [14].

The n-twiddles satisfy the properties of idempotency
((ñ±)2 = ñ±) and co-nilpotency (ñ+ñ− = 0). Their careful
bookkeeping is the cornerstone of the consistent bosonization
framework. As we shall see later (and as pointed out before
[14]; see the Appendix for a brief summary), their properties
are responsible for the disappearance of unphysical diagrams
in different perturbative expansions. They achieve that by
preventing mixing of “normal” and “anomalous” vertices in
the Feynman diagrams (which we will get to later in this
discussion). Note that for ñ → 1 we recover the conventional
scheme.

One can now postulate a set of new Klein factors in the
new basis (with an eye on defining new fermionic degrees
of freedom) [13,24,25]. Focusing on the bosonized spin-flip
interaction, we proceed further by identifying relations be-
tween bilinears of old and new Klein factors (there are four
arbitrary sign choices made here, corresponding to operator-
order ambiguity; we take those choices to be the same as in

045108-3



LJEPOJA, BOLECH, AND SHAH PHYSICAL REVIEW B 110, 045108 (2024)

the previous literature),

F †
↑LF↓L = Fsl F

†
s , F †

↓LF↑L = −F †
sl Fs,

F †
↑RF↓R = F †

sl F
†

s , F †
↓RF↑R = −Fsl Fs. (10)

With these relationships between bilinears, we arrive at the
final form for the bozonized spin-flip interaction in the new
basis,

H⊥
K = ñcñ−

l

2πa
J⊥

LLS−eihLt Fsl F
†

s eiφs e−iφsl

− ñcñ−
l

2πa
J⊥

LLS+e−ihLt F †
sl Fse

−iφs eiφsl

+ ñcñ+
l

2πa
J⊥

RRS−eihRt F †
sl F

†
s eiφs eiφsl

− ñcñ+
l

2πa
J⊥

RRS+e−ihRt Fsl Fse
−iφs e−iφsl . (11)

Using the bosonization identity to define a set of physical-
basis fermions:

ψ̆ν (x, t ) = 1√
2πa

Fν (t )e−iφν (x,t ) (12)

(with ν = c, s, l, sl), we can now debosonize the spin-flip
interaction in terms of these fermions that are aligned with the
different physical processes and conservation laws. Explicitly,

H⊥
K = ñcñ−

l J⊥
LL

(
S−eihLt ψ̆sl (0, t )ψ̆†

s (0, t )

− S+e−ihLt ψ̆
†
sl (0, t )ψ̆s(0, t )

)
+ ñcñ+

l J⊥
RR

(
S−eihRt ψ̆

†
sl (0, t )ψ̆†

s (0, t )

− S+e−ihRt ψ̆sl (0, t )ψ̆s(0, t )
)
. (13)

Proceeding further with the refermionization of the model,
we need to deal with the explicit time dependence in the
exponential factors. It is the inverse problem from the one
we tackled before the bozonization, where we translated from
a finite to a zero bias setting and normal ordered it. In or-
der to gauge away the explicit time dependence from H⊥

K ,
we choose the chemical potentials of s and sl sectors to be
μs = 1

2 (hR + hL ) and μsl = 1
2 (hR − hL ). (Notice this choice is

not unique, but all other choices can be seen to be physically
equivalent, and normal order does not play a role in the case of
the spin-flip interaction.) Therefore, upon carrying out a gauge
transformation of the form ψν (x, t ) = e−iμν (t+ x

vF
)
ψ̆ν (x, t ), we

finally recover a refermionized spin-flip interaction without
explicit time dependence:

H⊥
K = ñcñ−

l J⊥
LL(S−ψsl (0)ψ†

s (0) − S+ψ
†
sl (0)ψs(0)),

+ ñcñ+
l J⊥

RR(S−ψ
†
sl (0)ψ†

s (0) − S+ψsl (0)ψs(0)). (14)

As we can see from this expression, there are two terms in the
refermionized spin-flip part of the Hamiltonian. One is associ-
ated with ñ−

l and J⊥
LL, and it is the one that contains “normal”

vertices. The other one comes with ñ+
l and J⊥

RR and contains
what we call “anomalous” vertices (products of two creation
or two annihilation operators). In the conventional scheme,
since there are no ñ factors (in the expression above, they can
be set to one, ñ → 1), diagrams that mix the anomalous and
normal vertices are not prohibited. It is these diagrams that

give unphysical contributions in any perturbative calculation
and are the sure cause of discrepancies between different
BdB schemes. We shall elaborate more on this in the coming
sections, but now we switch to discussing the non-spin-flip
part of the Kondo interaction.

B. Parallel interaction

The part of the Hamiltonian in which electrons scatter on
the impurity without changing their spin is what we call the
parallel (or non-spin-flip) interaction, and it is given by

Hz
K = :Hz

K : =
∑
σ�

σJz
��Sz : ψ̆†

σ�(0, t )ψ̆σ�(0, t ) : . (15)

For this interaction term, the difference between how
bosonization is carried out in each scheme—and the resulting
refermionized Hamiltonians—is more striking than in the case
of the spin-flip interaction term. So it is best to first present
each BdB scheme separately and later compare the final re-
sults.

In the case of the conventional bosonization scheme one
uses the standard bosonization identity and performs a point-
splitting procedure to arrive at

:ψ†
σ�(x, t )ψσ�(x, t ) : = ψ

†
σ�(x, t )ψσ�(x, t ) − 1

2

= 1

2π
∂xφσ�(x, t ) (16)

(the fermion vev is assumed to be 1/2 for any species and at
any point in space [8] in the ideal-host situation required for
“exact” bosonization) and gets

Hz
K = 1

2π

∑
σ,�

σJz
��Sz∂xφσ�(0, t )

= 1

2π

(
Jz

LL + Jz
RR

)
Sz∂xφs(0, t )

− 1

2π

(
Jz

LL − Jz
RR

)
Sz∂xφsl (0, t ), (17)

where, in the second equality, the same change of basis as
before was used [26]. Debosonizing the parallel interaction,
with a similar identity used in reverse, one arrives at the
following expression:

Hz
K = (

Jz
RR + Jz

LL

)
Sz :ψ†

s (0, t )ψs(0, t ) :

+ (
Jz

RR − Jz
LL

)
Sz :ψ†

sl (0, t )ψsl (0, t ) : . (18)

On the other hand, carrying out the bosonization in the consis-
tent manner, we refrain from using the bosonization identity
for the diagonal fermion bilinears that was just used in the
conventional scheme. The reason is that such an identity as-
sumes that the limit of a → 0 has already been taken (yielding
the derivative of the bosons), and it does not allow one to
later carry out a change of basis without assuming that the
product of vertex operators of opposite signs is one. Instead,
in the consistent scheme, we start from the expression for
the parallel interaction, and we proceed to bosonize it using
the standard identity for individual fermionic fields that we
used for bosonizing the spin-flip part of the interaction. Upon
doing this transformation, and a subsequent rotation into the
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physical-sector basis, we find that the bosonized non-spin-flip
interaction is given by

Hz
K = 2

aπ
Szñcñ−

l Jz
LL(ñ+

s ñ−
sl − ñ−

s ñ+
sl )

+ 2

aπ
Szñcñ+

l Jz
RR(ñ+

s ñ+
sl − ñ−

s ñ−
sl )

= 2

aπ
Szñcñ−

l Jz
LL(ñ+

s − ñ+
sl )

+ 2

aπ
Szñcñ+

l Jz
RR(ñ+

s − ñ−
sl ), (19)

where we have introduced the ñ notation as defined in Eq. (9),
and in the second equality we have used properties of the
ñ factors to simplify the expression (namely, ñ+

ν + ñ−
ν =

1, to the desired order in an operator product expansion).
We know that ñl and ñc are constants of motion, be-
cause there is no overall change of total fermion number,
nor are there any fermions going from the L to the R lead
(i.e., there are no interlead terms), in the original formulation
of the two-channel Kondo model. Therefore, we keep those
two ñ while we choose to rewrite the remaining ones (those in
the s and sl sectors) using the identity 1

πa ñν = ψ†
ν ψν , which

we get from combining idempotency and the squaring of both
sides in Eq. (9),

2ñ = 2ñ2 = eiφe−iφ = 2πaψ†ψ . (20)

Using this identity and, in the second step, normal ordering as
outlined in Eq. (16), we arrive at

Hz
K = Szñcñ−

l Jz
LL(ψ†

s ψs − ψ
†
slψsl )

+ Szñcñ+
l Jz

RR(ψ†
s ψs − (1 − ψ

†
slψsl ))

= Szñcñ−
l Jz

LL(:ψ†
s ψs : − :ψ†

slψsl :)

+ Szñcñ+
l Jz

RR(:ψ†
s ψs : + :ψ†

slψsl :)

= ñc
(
ñ+

l Jz
RR + ñ−

l Jz
LL

)
Sz :ψ†

s (0, t )ψs(0, t ) :

+ ñc
(
ñ+

l Jz
RR − ñ−

l Jz
LL

)
Sz :ψ†

sl (0, t )ψsl (0, t ) : (21)

This is the BdB-refermionized parallel interaction in the
consistent scheme. In a similar way as in the case of the spin-
flip interaction, the parallel interaction has two parts: one with
the ñ−

l factor and the L-lead coupling constant, and the other
with the ñ+

l factor and the R-lead coupling constant. Setting
ñ± → 1 we recover the same expression as in the conventional
scheme in Eq. (18) in a similar way as is the case with
the perpendicular (spin-flip) interaction. Notice also that in
the channel-symmetric case, with Jz

RR = Jz
LL, the consistency

factors drop out from the spin sector of the model, which is
the same in both schemes (up to factors of 2 due to varying
boundary conditions [14]); but the spin-lead sector does not
“disappear” in the consistent case due to the presence of the
ñ-difference operator that is generically nonzero (and respon-
sible for an alternating sign in transport-setting calculations).

IV. COMPARING CONVENTIONAL AND CONSISTENT
BdB COMPACTIFICATIONS AGAINST DIRECT

CALCULATIONS

Over the next subsections, we are going to look at three
different simple limits of the two-channel Kondo model that
are not generic but allow for exact calculations: (a) the flat-
band, (b) the x-axis-Ising, and (c) the Toulouse limits. In the
first of these limits, the system is finite, and we are going
to calculate the (spin-sector) electron’s Green function and
self-energy. We will compare them as obtained from the con-
ventional and consistent BdB-refermionized versions of the
model, and contrast them also with those calculated within
the original formulation of the model. On the other hand, in
the other two limits, the system is infinite and can be modeled
in out-of-equilibrium situations. We are going to focus on the
spin current that is driven by a finite magnetic-field gradient
between channels (i.e., across the impurity) and compare the
results between before and after BdB refermionization (in
both schemes).

A. Flat-band limit

One limit of the two-channel Kondo model for which we
can calculate interesting physical quantities in both the direct
and BdB-compactified formulations of the model is the so-
called flat-band (or narrow-band [27]) limit [28,29]. In this
limit, electrons in the leads have a single energy level available
to them with energy that we are going to set to zero. (It can
also be regarded as the limit of zero Fermi velocity of linear-
dispersion channels with the band reduced to a single state
per channel for each spin.) In this simple yet very instructive
limit, the Hilbert space is finite and relatively small. Thus the
Hamiltonians are amenable to be exactly diagonalized.

The direct flat-band Hamiltonian is given by

H⊥
K = J⊥S+ ∑

�

c†
�,↓c�,↑ + J⊥S− ∑

�

c†
�,↑c�,↓,

Hz
K = JzS

z
∑

�

(c†
�,↑c�,↑ − c†

�,↓c�,↓), (22)

where � counts the two channels (� = {L, R} = {−1,+1}).
The kinetic part of the Hamiltonian is identically zero, be-
cause of the limit, or we can also consider a generic value of
the flat-band energy level and later set it to ε�,σ → 0.

On the other hand, the flat-band limit of the BdB-
refermionized Hamiltonian is given by (the kinetic term is
again zero)

H⊥
K = −J⊥ñcñ−

l (S+c†
sl cs + S−c†

s csl )

− J⊥ñcñ+
l (S+csl cs + S−c†

s c†
sl ),

Hz
K = Jzñcñ−

l Sz(c†
s cs − c†

sl csl )

+ Jzñcñ+
l Sz(c†

s cs + c†
sl csl − 1). (23)

As we have seen in previous sections, for a specific replace-
ment value of the ñ factors (namely, ñ → 1) one recovers
the conventionally refermionized Hamiltonian. Alternatively,
preserving the key operator properties of the ñ factors is what
we call the consistently refermionized model.

045108-5



LJEPOJA, BOLECH, AND SHAH PHYSICAL REVIEW B 110, 045108 (2024)

Both direct and (conventionally) refermionized Hamilto-
nians can be exactly diagonalized, which is an important
characteristic of the flat-band limit. By means of a full di-
agonalization of the Hamiltonian matrix, one easily finds its
eigenstates and eigenvalues, as well as evaluates its partition
function (either numerically or even symbolically, using a
computer-algebra system). In that way one can explore the
full spectrum and the exactly obtainable thermodynamic prop-
erties of the model.

However, because this is a very specific limit of a (reduced)
bulk given by a single level with its energy taken to be zero,
one a priori does not necessarily expect the bosonization
mappings to have matching limits. This is because in the
constructive-bosonization procedure one has to take the limits
of zero Fermi velocity (for a “narrow band”) and infinite
bandwidth consistently, and there could be problems with
the order of limits. That would be the naive explanation for
any mismatch we observe when comparing thermodynamic
quantities between the conventional and direct models, since
even in the direct model alone (no BdB involved) some results
change if one takes the zero-Fermi-velocity limit first or at
the end of the calculation. This could be seen more clearly
in the diagrammatic calculations for generalized flat-band
models with arbitrary ε�,σ that we shall discuss later [30].
(Incidentally, the results from the exact diagonalization of the
flat-band limit will then be useful to double check the results
of the frequency summations involved in the evaluation of
self-energy diagrams.)

We readily find that the partition functions differ between
the direct and conventionally refermionized models. As a
reflection of it, the usual construction for the “residual im-
purity entropy” in the conventional case gives, in units of
the Boltzmann constant, Simp = ln(1/2). Meanwhile, the direct
model gives Simp = ln(1/8) in the flat-band limit [31]. This
is an interesting result because in the BbB procedure we
refermionized the bulk (electronic) degrees of freedom, while
keeping the impurity unchanged, so it might seem surprising
that there is such a difference when taking the flat-band limit
in the two cases. But one of the reasons for the difference
is in the different eigenvalue degeneracies that arise in this
limit after reorganizing the degrees of freedom in the Hilbert
space during the BdB mapping. It is thus not surprising that
the ground-state degeneracies, and thus the residual entropies,
are affected.

On the other hand, calculating the residual impurity en-
tropy in the consistent scheme (handling the ñ carefully,
as will be detailed later in this section) we recover the
direct-calculation result. This would suggest that even in
this very specific limit the consistent way of compactify-
ing gives results that are in line with the direct calculation.
More than this agreement, however, it is the discrepancy
between the limits of the two compactification schemes (de-
spite being defined in identical Hilbert spaces) that indicates
a logical need of further comparisons. It is also relevant
to note that at high temperatures all the schemes coincide
and give the expected value of Simp = ln(2), since, in that
limit of large thermal fluctuations, the impurity is effec-
tively decoupled from the bulk and has two available states
(the spin-up and spin-down orientations) regardless of the
scheme.

Having compared the schemes in the context of thermo-
dynamic quantities, we next want to focus on the dynamic
properties; –that depend not only on the eigenvalues, but also
on the eigenvectors. Specifically, we choose to compare the
self-energies of the s-sector electrons between the limits of the
two BdB-refermionized models (conventional and consistent).
We explicitly use the Lehman representation of the finite-
temperature Green function in the Matsubara formalism,

Gs(iωn) = 1

Z

∑
n,m

|〈n|cs|m〉|2 e−βEn + e−βEm

iω + En − Em
, (24)

where |n〉 and En are the eigenstates and corresponding eigen-
values of the Hamiltonian, respectively. Knowing the full
Matsubara Green function, one can extract the self-energy us-
ing the standard Dyson equation. For the conventional scheme
the calculation is straightforward: ñ factors disappear from the
Hamiltonian (allowing for the unphysical mixing of different
vertices in the perturbative expansion), and we can find the
Green functions and self-energy by simple diagonalization.

On the other hand, the consistent case needs a more careful
treatment. In order to find the self-energy, one needs to find a
way to carefully deal with the ñ+

l and ñ−
l factors that appear

in the Hamiltonian in Eq. (23). One possible way to take
care of those factors is to define them as actual densities
of particles in the l sector (mathematically, this amounts to
choosing a lattice-like regularization and picking a particular
branch of the square root), namely, replacing ñ+

l → c†
l cl and

ñ−
l → cl c

†
l . That way, any combination of the anomalous and

normal vertices will carry a product of the l-sector particle
and hole densities, which is zero by construction. Therefore,
all of the unphysical diagrams are now excluded. However,
this way of doing calculations is over-restrictive, meaning that
some diagrams that are physically allowed are nevertheless
also excluded by this method. Those diagrams are the fourth-
and higher-order ones in the expansion for the self-energy
that have fermion loops in them. On physical grounds, a
fermion loop in such diagrams can involve, say, anomalous
vertices while the rest of the diagram has normal ones, or
vice versa. This would be a physically allowed contribution,
but the method where the ñ factors are defined as densities
would not include it, because it involves products of hole and
particle densities. As a consequence, by underestimating the
multiplicity factor of diagrams with fermion loops, this naive
method fails to capture the full multichannel character of the
original model (but notice it becomes evident only at high
orders in perturbation theory).

Alternatively, one can cast the consistent model into an
effective-two-channel model where one channel corresponds
to ñ−

l while the other one corresponds to ñ+
l . Introducing

a channel index to the fermions that matches the n-twiddle
index of each term and then taking ñ → 1 we have

H⊥
K = −J⊥S+c†

sl,−cs,− − J⊥S−c†
s,−csl,−

− J⊥S+csl,+cs,+ − J⊥S−c†
s,+c†

sl,+,

Hz
K = JzS

z(c†
s,−cs,− − c†

sl,−csl,−)

+ JzS
z(c†

s,+cs,+ + c†
sl,+csl,+ − 1). (25)
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FIG. 1. Behavior of the imaginary part of the fermion self-energy
(−i�) as a function of Matsubara frequency. The inset shows the
Green function (−iG) as a function of frequency. Both plots are for
a specific value of the isotropic-case coupling constant, J = 0.5, and
for β = 40. One can see that, for small frequencies, the conventional
and consistent schemes disagree to a significant degree.

Because of the independence of these channels, any mixing of
the anomalous and normal vertices is now prevented, but in
such a way that fermionic loops can be seen as corresponding
to independent n-twiddle histories. This effective-two-channel
consistent Hamiltonian is still not quadratic, but it is possible
to exactly diagonalize it and find the Green function and
self-energy in the same way as for the conventional model.
The results of such calculations are displayed in Fig. 1, where
we show the behavior of the s-sector self-energy (�s) as a
function of Matsubara frequency. In the inset we show the
behavior of the (purely imaginary) Green function as well.
By studying these plots, one can see that the disagreement
between the conventional and consistent schemes is greatest
in the low-frequency regime. In particular, for the lowest
Matsubara frequency (ω = π

β
) there is an order of magnitude

difference between the conventional and consistent results. To
further illustrate the difference between the schemes, in Fig. 2
we show the self-energy as a function of the coupling con-
stant for the lowest Matsubara frequency (for which we have
observed the largest disagreement between the two). Even for
small values of the coupling constant disagreement between
the conventional and the consistent calculations is clearly no-
ticeable, and only in the limit of J → 0 do the results match.
Moreover, one can see that for negative values of the coupling
constant the asymptotic large-frequency behaviors are strik-
ingly different. While the conventional self-energy saturates
to a value of − 1

2ω, that is not the case for the consistent
calculation. In the inset of Fig. 2 we show the values of the
coupling constant (Jc) at which the conventional self-energy
crosses the consistent result and starts saturating, as a function
of the inverse temperature. From the behavior of Jc one can
observe that at a low temperatures the conventional scheme
breaks down (and its self-energy saturates) “sooner” than at a
high temperatures, which points in the direction of a modified
infrared fixed point.

FIG. 2. Comparison of the fermion self-energies between differ-
ent BdB schemes. The self-energy is plotted as a function of the
coupling constant J⊥ = Jz ≡ J for a fixed frequency ω = π

β
, and

β = 40. The inset shows the value of coupling constant (Jc) at which
the conventional self-energy crosses the direct one, as a function of
temperature.

The source of all these listed discrepancies should be
looked for in the “mixing” of the regular and anomalous
vertices in the diagrams of the perturbative expansion of the
self-energy. Such mixings correspond to unphysical processes
(that would be violating channel conservation if expressed
in the direct formulation of the model) and generate the dis-
agreement between the consistent and conventional schemes.
Furthermore, inspecting the Hamiltonian in Eq. (25), we can
see that it is isomorphic to the direct-model Hamiltonian upon
the transformation

c†
s,− → c†

L,↑, c†
s,+ → c†

R,↑,

c†
sl,− → − c†

L,↓, csl,+ → − c†
R,↓. (26)

Because the two models are connected by such a mapping, we
expect that the corresponding self-energies for each degree
of freedom match between the consistent and direct formu-
lations. Indeed, that is what we observe. Stepping back, this
connection constitutes a compelling indication in favor of the
superiority of the consistent BdB-refermionization scheme
over the conventional one. Since it would always produce
matching results with the direct calculation even when con-
sidering a delicate scenario like the flat-band limit.

B. x-axis Ising limit

A limit of the anisotropic Kondo model in which the spin-
exchange interaction is only along a single (easy) axis is called
an Ising limit. We will choose it to be the x axis. In this limit
the impurity does not have any dynamic (its x-axis projection
is a conserved quantity), and the only remaining degrees of
freedom in the interaction term are from the electrons. The
problem is then Gaussian, and therefore amenable to a trivial
exact solution, both directly and also after compactification.
In terms of the original fermions, the Hamiltonian of the
x-axis Ising limit is obtained by setting Jy

�� = Jz
�� = 0 in an
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XYZ-exchange version of Eq. (1), which gives

H = H0 + Hx
K ,

H0 =
∑
σ�

∫
dx ψ

†
σ�(x, t )(ivF ∂x )ψσ�(x, t ),

Hx
K =

∑
σ,�

Jx
��Sxψ

†
σ̄ �(0, t )ψσ�(0, t ). (27)

As can be seen from the Hamiltonian, the interaction en-
tails only spin-flip processes (traced over spin). That means
that the only way electrons scatter off from the impurity is
by changing their spin. Our model is set up in such a way
that we have a spin bias on each lead [32] measured by
the lead magnetic fields hL and hR, which are given as the

difference between spin-dependent chemical potentials that
enter directly into the distribution functions for each lead in
a Landauer-type formulation. We shall not assume anything
about the relative values of these fields and keep the calcula-
tion as general as possible. These spin biases are responsible
for driving a spin current (and they would correspond to stan-
dard potential biases and charge currents, respectively, in the
case of a “charge Kondo circuit,” which has received renewed
theoretical and experimental attention recently [33–36]).

This limit of the Kondo model, being exactly solvable,
lends itself as a good testing ground to compare the differ-
ent BdB-compactification schemes and the direct calculation
among each other. The spin-current operator is defined as the
change of the spin difference between the two leads over time,
and it is given by

IS = ∂t

S

2
= i

2
[H,
S] = i

2

[
Hx

K ,
S
] = i

4

∑
σ�

Jx
��Sx�(σ − σ̄ )ψ†

σ̄ �ψσ�, (28)

where 
S is the spin difference across leads, given by 
S = 1
2

∑
σ,� σ�ψ

†
σ�ψσ�. Since there are spin biases, our model is out

of equilibrium (we assume a simplified Landauer-style setup with spin-dependent chemical potentials [37]), and in order to
calculate the average value of said current we turn to the Keldysh formalism and choose the following spinor basis:

� = (
ψκ=−

↑L ψκ=+
↑L ψκ=−

↑R ψκ=+
↑R ψκ=−

↓L ψκ=+
↓L ψκ=−

↓R ψκ=+
↓R

)T
, (29)

where the new index κ labels the Keldysh branch following a “minus-means-forward” convention. In this basis, the inverse local
Green function at the impurity site (the regularized local action, cf. Ref. [14]; see Ref. [38] for other examples) is given by the
matrix

G−1(ω)

2vF
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

is↑L −is↑L + i 0 0 −2SxtL 0 0 0
−is↑L − i is↑L 0 0 0 2SxtL 0 0

0 0 is↑R −is↑R + i 0 0 −2SxtR 0
0 0 −is↑R − i is↑R 0 0 0 2SxtR

−2SxtL 0 0 0 is↓L −is↓L + i 0 0
0 2SxtL 0 0 −is↓L − i is↓L 0 0
0 0 −2SxtR 0 0 0 is↓L −is↓L + i
0 0 0 2SxtR 0 0 −is↓L − i is↓L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (30)

where we introduce the notations Jx
�� = 4vFt� and sσ� =

tanh( ω−μσ
�

T�
), and T� is the temperature of each lead. Having

G−1(ω), we can invert it to find the appropriate Green func-
tions in the Keldysh formalism and use them in the expression
for the spin current (the average expectation value of the
spin-current operator):

〈IS〉 = 1

4

∑
σ�

Jx
��Sx�(σ − σ̄ )

∫
dω

2π
G−+

σ�,σ̄ �(ω). (31)

Replacing with the explicit expressions we get

〈IS〉 =
∫ ∞

−∞

dω

2π

[s↓L(ω) − s↑L(ω)]t2
L

1 + t2
L

+
∫ ∞

−∞

dω

2π

[−s↓R(ω) + s↑R(ω)]t2
R

1 + t2
R

. (32)

Although the ω integrals can be calculated for any temper-
ature, in order to keep the expressions simple we turn to

the zero-temperature limit. In this limit the sσ�(ω) functions
become Heaviside step functions and the integrals are trivial
to evaluate:

〈IS〉 = hLt2
L

π
(
1 + t2

L

)2 − hRt2
R

π
(
1 + t2

R

)2 . (33)

We can see that the total spin current consists of the sum of
the spin current leaving the L lead and that entering the R
lead, and the two are independent. The two current compo-
nents are driven by the respective lead magnetic fields, and
for an isotropic model and the special configuration of equal
fields, hL = hR, the current is identically zero. This is to be
expected since, for that configuration of the magnetic fields,
the difference of the lead spins stays the same over time due to
the fact that on both leads identical demagnetization processes
are taking place (which flip spin up to spin down fermions at
the same rate).

Having the expression for the spin current in the direct
formulation of the model, we can turn our attention to the
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conventional scheme and compare with the expression we get
in that case. In the conventional BdB scheme the x-Ising limit
is compactly refermionized into

Hx
K = Jx

LLSx(ψsl (0)ψ†
s (0) − ψ

†
sl (0)ψs(0))

+ Jx
RRSx(ψ†

sl (0)ψ†
s (0) − ψsl (0)ψs(0)). (34)

The spin current, as was the case in the direct calculation, is
given by the change of 
S over time, where 
S is the spin dif-
ference between the two leads. In the refermionized language,
because the basis is rotated into the physical sectors, the spin
difference is given by 
S = Nsl . The spin current operator is
then given as the commutator of Nsl and the refermionized

Hamiltonian:

IS = ∂t

S

2
= i

2

[
Hx

K , Nsl
] = i

2
Jx

LLSx(ψslψ
†
s + ψ

†
slψs)

− i

2
Jx

RRSx(ψ†
slψ

†
s − ψslψs). (35)

In order to get the average spin current, the appropriate
Green functions need to be obtained. We can calculate them
proceeding similarly as before but with with the necessary
generalizations. We are still adding a Keldysh index to deal
with the nonequilibrium character of the problem, but this
time we need to introduce a Nambu structure as well, due to
presence of “anomalous” processes. We adopt the following
spinor basis:

� = (ψ−
s (ω) ψ+

s (ω) ψ−†
s (ω̄) ψ+†

s (ω̄) ψ−
sl (ω) ψ+

sl (ω) ψ
−†
sl (ω̄) ψ

+†
sl (ω̄))T , (36)

where ω̄ = −ω and we restricted the frequencies to the positive semiaxis (in order to avoid double counting). The inverse Green
function matrix is given by

G−1(ω)

2vF
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iss −iss + i 0 0 2SxtL 0 2SxtR 0
−iss − i iss 0 0 0 −2SxtL 0 −2SxtR

0 0 is̄s −is̄s + i −2SxtR 0 −2SxtL 0
0 0 −is̄s − i is̄s 0 2SxtR 0 2SxtL

2SxtL 0 −2SxtR 0 issl −issl + i 0 0
0 −2SxtL 0 2SxtR −issl − i issl 0 0

2SxtR 0 −2SxtL 0 0 0 is̄sl −is̄sl + i
0 −2SxtR 0 2SxtL 0 0 −is̄sl − i is̄sl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (37)

where, similarly as before, we defined sν = tanh( ω−μν

2Tν
) and

s̄ν = tanh( ω+μν

2Tν
). Getting the appropriate Green functions, by

inverting G−1(ω), and using them in Eq. (35), we find that the
average spin current is now given by

〈IS〉 =
∫ ∞

0

dω

2π

[ss(ω) − s̄s(ω)]
(
t2
R − t2

L

)
t4
L − 2t2

L

(
t2
R − 1

) + (
t2
R + 1

)2

+
∫ ∞

0

dω

2π

[ssl (ω) − s̄sl (ω)]
(
t2
R + t2

L

)
t4
L − 2t2

L

(
t2
R − 1

) + (
t2
R + 1

)2 . (38)

Again this time, the integrals in ω can be done for finite
temperature, but for the sake of simplicity we restrict our-
selves to the zero-temperature limit. Doing them we find the
average spin current in the conventional scheme to be

〈IS〉 = − 1

π

μs
(
t2
R − t2

L

) + μsl
(
t2
R + t2

L

)
(
t2
R − t2

L

)2 + 2
(
t2
R + t2

L

) + 1

= 1

π

hLt2
L − hRt2

R(
t2
R − t2

L

)2 + 2
(
t2
R + t2

L

) + 1
, (39)

where, in going to the second line, we have used the fact
that μs = 1

2 (hR + hL ) and μsl = 1
2 (hR − hL ). Comparing the

expression for the spin current in Eq. (39) with the one ob-
tained in the direct calculation, given by Eq. (33), we see
that in the conventional scheme there is a “mixing” of the
processes from the L and R leads. Instead of the total spin

current being the difference of the demagnetization currents
produced separately in each lead, we get a more complicated
expression as evidenced by the combined appearance of tR
and tL in the common denominator. Notice that if either of
tR or tL is zero, the respective lead is decoupled from the
impurity (its spin is conserved) and the spin current reduces
to the demagnetization current of the coupled lead, with the
exact same expression as found in the direct calculation,
Eq. (33).

A further comparison of the conventional and direct
schemes is given in Fig. 3 for the symmetric model and an-
tialigned lead magnetic fields (h = hL = −hR). We can see
that, for a small coupling constant t , the differential spin
conductances, though not matching, exhibit similar behavior
(as t → 0 they in fact match). This agreement is evident
from the power expansions, where in the second order in
t the conventional and direct results match but for higher
orders they do not. This is as expected, because unphysical
diagrams (the ones mixing the “anomalous” and “normal”
vertices; cf. [14]) are expected to appear at fourth and higher
orders in a perturbative expansion. In addition, for t → ∞, the
conventional-scheme result for the differential conductance
saturates to the conductance quantum, while in the direct
calculation it reaches that value (at t = 1) but then goes back
down to zero (reminiscent of the similarly contrasting results
for the charge current in the two-lead Kondo model [16,39]).

The unphysical mixing of the “normal” and “anomalous”
vertices disappears in the consistent-scheme calculation due
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FIG. 3. Comparison of differential spin conductance (GS =
dIS/dh with h = hL = −hR), calculated exactly in both the conven-
tional and the consistent schemes, the latter coinciding with the
direct calculation as explained in the text. The plot is in units of
the quantum of conductance, GQ = 1

2π h̄ , and as a function of the
isotropic coupling constant t = tL = tR.

to properties of the ñ factors. In that case the Hamiltonian is
given by

Hx
K = ñcñ−

l Jx
LLSx(ψsl (0)ψ†

s (0) − ψ
†
sl (0)ψs(0))

+ ñcñ+
l Jx

RRSx(ψ†
sl (0)ψ†

s (0) − ψsl (0)ψs(0)). (40)

The local-action matrix is exactly the same as in the con-
ventional case in Eq. (37), except that this time the coupling
constant tL is multiplied by ñ−

l and the coupling constant tR
is multiplied by ñ+

l (the overall factor of ñc is inconsequential
for this discussion) and because of the co-nilpotence property
(ñ+

l ñ−
l = 0) any processes that would have mixed the L and

R leads are zero. One way of calculating the spin current
is by calculating it separately for the two eigenvalues of ñl .
We can first take ñ−

l = 1 and ñ+
l = 0 and calculate the spin

current (basically obtaining the contribution from the L lead).
Afterwards, we can repeat the calculation for the other case,
with ñ−

l = 0 and ñ+
l = 1, obtaining the contribution from the

R lead. Adding the two we get the total spin current to be
exactly as in Eq. (33). And, of course, the results match at
finite temperatures as well.

C. Toulouse point

By Toulouse point (or Toulouse line) one refers to an
exactly solvable limit in the parameter space of the one- or
two-channel Kondo or Anderson single-impurity model in
which the Hamiltonian is quadratic in terms of refermionized
degrees of freedom [11–13,40]. The transformation of the
two-channel Kondo model into its Toulouse point is achieved
by the following unitary transformation [12]:

U = eiγsφsSz
, (41)

which is applied after bosonization of the model and rota-
tion into physical sectors, as outlined in previous sections,
and followed by the subsequent debosonization to recover
a Hamiltonian given in terms of fermionic fields (for a
full derivation, see Sec. III of Ref. [16] and consider the
special case of J⊥

LR = J⊥
RL = 0). This transformation mixes

band and impurity degrees of freedom and goes beyond
the simple compactification of the model. Going into the
Toulouse limit we set γs = 1, which in the two-channel
case is sometimes called the Emery-Kivelson transformation.
After such a transformation, the parallel Kondo interac-
tion is fine-tuned so as to be absorbed into the kinetic
term and we are left only with the spin-flipping term that,
after the transformation, acquires the following bosonized
form:

H⊥
K = ñcñ−

l

2πa
J⊥

LLeihLt S−Fsl F
†

s e−iφsl

− ñcñ−
l

2πa
J⊥

LLe−ihLt S+F †
sl Fse

iφsl

+ ñcñ+
l

2πa
J⊥

RReihRt S−F †
sl F

†
s eiφsl

− ñcñ+
l

2πa
J⊥

RRe−ihRt S+Fsl Fse
−iφsl . (42)

Further, one can define d† = S+Fs [25], which (upon a sim-
ilar debosonization as those discussed previously) leads to a
refermionized spin-flipping interaction of the form

H⊥
K = ñcñ−

l J⊥
LL(ψsl (0)d − ψ

†
sl (0)d†)

+ ñcñ+
l J⊥

RR(ψ†
sl (0)d − ψsl (0)d†), (43)

where we have chosen the resonant-level and spin-lead-
sector chemical potentials to be μd = − 1

2 (hR + hL ) and μsl =
1
2 (hR − hL ), respectively, in order to gauge away from the
Hamiltonian the time-dependent phases (after all the BdB
transformations were already completed).

One can calculate spin currents in a similar way as we did
above for the case of the x-Ising limit. However, since the
Toulouse limit corresponds to a strong-coupling limit of the
original model, we do not have any exact direct calculation
to compare results with. One can only compare conventional
and consistent schemes with each other, and one can still
look at which of them corresponds to the expected physical
picture of spin transport at the Toulouse point. We are going
to look at the conventional BdB scheme first. It is obtained by
letting ñc → 1 and ñl → 1 in the Hamiltonian of Eq. (43). The
resulting Hamiltonian is now quadratic despite corresponding
to a strong-coupling situation in terms of the original degrees
of freedom.

To calculate we shall be using again the Keldysh local-
action method to address the question of spin transport
(including as well a Nambu representation of the degrees of
freedom due to the presence of “anomalous” vertices in the
model). To take all that into account, we adopt the follow-
ing spinor basis that mirrors the one used in the previous
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section:

� = (d−(ω) d+(ω) d−†(ω̄) d+†(ω̄) ψ−
sl (ω) ψ+

sl (ω) ψ
−†
sl (ω̄) ψ

+†
sl (ω̄))T (44)

(with the s-band fermion now replaced by the impurity d fermion that absorbed it after the rotation). Defining, as before,
sν = tanh( ω−μν

2Tν
) and s̄ν = tanh( ω+μν

2Tν
), we get the local-action matrix:

G−1(ω)

2vF
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω − μd 0 0 0 −tRR 0 −tLL 0
0 −ω + μd 0 0 0 tRR 0 tLL

0 0 ω + μd 0 tLL 0 tRR 0
0 0 0 −ω − μd 0 −tLL 0 −tRR

−tRR 0 tLL 0 issl −issl + i 0 0
0 tRR 0 −tLL −issl − i issl 0 0

−tLL 0 tRR 0 0 0 is̄sl −is̄sl + i
0 tLL 0 −tRR 0 0 −is̄sl − i is̄sl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (45)

where we have used the rescaled coupling constants J⊥
LL = 2vFtLL and J⊥

RR = 2vFtRR (notice the factor-of-two difference with
the similar rescaling used in the previous section). The expression for the average spin current can be found in a similar way
as we did for the x-Ising-limit calculation. Namely, by evaluating the commutator of the 
S = Nsl operator and the interaction
Hamiltonian. This gives

〈IS〉 = i

2
J⊥

LL(〈ψsl d 〉 − 〈d†ψ
†
sl〉) − i

2
J⊥

RR(〈ψ†
sl d 〉 − 〈d†ψsl〉). (46)

Finding the appropriate Green-function matrix elements, one can calculate the spin current

〈IS〉 =
∫ ∞

0

dω

2π

8 ω2 t2
LL t2

RR [ssl (ω) − s̄sl (ω)]

t8
LL − 4 t6

LL t2
RR + t8

RR + (
ω2 − μ2

d

) + 2 t4
RR

(
ω2 + μ2

d

) + 4 t2
LL t2

RR

(
3 ω2 − t4

RR − μ2
d

) + 2 t4
LL

(
ω2 + 3t4

RR + μ2
d

) .

(47)

The integral in ω in the expression for current is rather com-
plicated, but it might be illustrative to do it for the special
case when the magnetic fields of the two leads are equal
in magnitude but of opposite alignment (hL = −hR ≡ h, and
μsl = −h) and in the spin isotropic limit (tLL = tRR ≡ t/2). In
that combined limit, the current becomes

〈IS〉 = 1

2π

∫ ∞

0
dω

t4

2(t4 + ω2)
[ssl (ω) − s̄sl (ω)]

→
T →0

1

2π

∫ −μsl

0
dω

t4

(t4 + ω2)
= t2

4π
arctan

(
h

t2

)
. (48)

In doing the integral in ω we took the zero-temperature limit
so that ssl (ω) − s̄sl (ω) becomes a Heaviside step function.
Having the expression for the average current we can find
the differential conductance in the same way we did for the
x-axis Ising limit (by taking the derivative with respect to the
lead magnetic field). In the case of zero bias (h = 0), we get
that the differential conductance is one half of the quantum
of conductance, and it is independent of the strength of the
coupling constant t .

Having obtained the conventional result, we can now look
at the consistent scheme. Since the only difference between
these schemes is the now explicit presence of the ñ factors, all
the formal calculation of the spin current remains the same.
We will have the same spinor and the same local-action ma-
trix, with the only difference of a redefinition of the coupling
constants, where tLL will carry a factor of ñ−

l while tRR will
have a factor of ñ+

l . Studying the full integral expression for
the spin current given above, we can see that the numerator
contains a product of the two coupling constants associated

with the L and R leads. Thus, due to the co-nilpotence prop-
erty of the consistency factors, this product is always zero
in the consistent scheme, and, consequently, the spin current
is identically zero at all temperatures. Looking in terms of
differential conductance we see that, for the zero bias config-
uration, the conventional scheme gives a constant differential
conductance of 1

2 GQ while the consistent schemes gives a
zero differential conductance, both regardless of the coupling
strength.

Since we do not have an exact direct result to compare with
and determine which scheme yields the correct answer, we can
instead resort to physical-plausibility arguments to decide it.
For that, let us refer to the schematic depiction given in Fig. 4
and discuss first the situation with a single channel (say, L, for
concreteness). Since the lead is magnetized with more up than
down spins, there can be an excess of up spins at the location
of the impurity (whose spin will tend to point down due to the

FIG. 4. Pictorial representation of a two-channel Kondo model
in the presence of equal and opposite magnetization of the two
channels. If the impurity points down (up), it can flip spins with an
up (down) electron from the L (R) lead. The two processes can then
alternate, and an effective spin current is generated.

045108-11



LJEPOJA, BOLECH, AND SHAH PHYSICAL REVIEW B 110, 045108 (2024)

antiferromagnetic coupling). Along the Toulouse line, the Jz

coupling is constant and maximal (as compared to J⊥ [41]),
and antialignment is an energetically favorable configuration;
but a spin-flip process could let a spin from the lead flip down
while the impurity flips up without any change of the energy
due to the Jz coupling. The resulting high-energy down-spin
electron in the lead could relax due to intralead processes
implicit in the Landauer setup, but in the absence of other
leads the impurity is locked pointing up and the process will
not repeat (and even if it did, the lead magnetization would
fluctuate in opposite directions each time, since the total spin
of the system is conserved).

If we now include a second channel with opposite mag-
netization, it will allow for the opposite spin-flip processes
at the impurity. For relatively small values of Jz, the im-
purity is now not locked and can alternatively flip up and
down while interacting with the L and R channels, respec-
tively. This allows a continuous demagnetization process to
take place in locked step at both leads. However, as the Jz

coupling grows stronger, an initially down-pointing impurity
would attract an up spin from the R lead (despite the opposite
magnetization of the lead, due to which it will not have a
tendency to flip the impurity). If now a L-lead up-spin electron
tries to flip the impurity, the process is frustrated, since it
is not exchange-energy neutral any longer, because flipping
the impurity would make it ferromagnetically aligned with
the R electron (an energetically unfavorable configuration).
A large parallel interaction is thus expected to suppress the
demagnetization process of the leads and eventually make the
spin current go to zero, as also predicted by the consistent
Toulouse-point calculation. On the other hand, the conven-
tional calculation seems to correspond to a situation when Jz

and J⊥ are always comparable. In the absence of the n-twiddle
factors, different channels do not have separate dynamics and
the frustration of alternate spin-flip processes is lost.

Beyond two channels, there is no Toulouse limit [42],
but one can still try to address the case of maximal parallel
interaction for the multi-two-channel version of the model
(notice one would still be able to find a Toulouse-like point
if one were to neglect the Klein factors). In this case, the
larger the number of channels the more effective would
the parallel interaction be in blocking spin-flip processes,
because the fixed-point scaling of Jz is compensated by the
sum of the channel contributions, but not so for the scaling of
J⊥, leading to a suppressed impurity dynamics.

V. SUMMARY AND DISCUSSION

To summarize the insights gained from our work and to
frame the discussion, let us rewrite the Hamiltonian of Eq. (1)
explicitly for the spin-isotropic case,

H = H0 + HK , HK =
∑
�,α

J�� �σ�α (0) · �S, (49)

where σ i
�α (x) = ψ

†
σ ′�α (x) [σ i]σ ′σ ′′ ψσ ′′�α (x) is the (doubled)

spin density of the �α-th channel; the sums over repeated
indices are implicit. Here [σ i] are the usual Pauli matrices,
and we introduced an additional internal index to the fermions
(α = 1, . . . , M) so that the (even) total number of channels is
2M.

After a systematic BdB-refermionization (separately for
each value of α), the model can be recast as [43]

H = H0 + HK , HK =
∑
�,α

ñc,α ñ�
l,αJ�� �τ�α (0) · �S (50)

with �τ�α (x) = �
†
�α (x) · [�σ ] · ��α (x), where the spinor is de-

fined as �Lα = (ψs,α −ψsl,α )T for �=L, or as �Rα =
(ψs,α −ψ

†
sl,α )T for �=R, respectively. If one now follows the

conventional scheme of approximating ñ → 1, then the c and
l sectors are completely decoupled from the impurity and one
recovers the usual compactified version of the Kondo model
[6,7] that is specified with only half as many band degrees of
freedom as compared with the direct formulation in Eq. (49).

In contrast with the single-channel Kondo model, the case
of two channels is special (and generalizes to any even num-
ber of channels). Because while in both cases one observes
the phenomena of spin-charge separation, unveiled by the
bosonization of the models, the additional two-valued channel
index allows for a further fractionalization and reorganization
of the degrees of freedom that leads to a natural debosoniza-
tion. In turn, this systematic BdB-refermionization shows
that the separation of charge, spin, and channel is not com-
plete. Specifically, a subtle coupling of the channel sector to
the spin sector, that manifests itself at the boundary (i.e.,
the location of the impurity), is responsible for capturing the
full relation between spin and channel conservation during
the spin-exchange processes with the impurity. The conven-
tional approximation can then be interpreted as neglecting
the correlation effects of this residual coupling and enabling
the complete compactification of the model. Interestingly, the
two-channel case can be ubiquitous, arising from the two
chiralities present when considering impurities in Luttinger
liquids, multi-impurity models, or their combinations [9,44].
An additional side effect of the residual coupling of different
sectors is manifest in the nondecoupling of emergent Majo-
rana degrees of freedom at the impurity site; they decouple
only in the conventional scheme [12,45]. The implications of
this for the prospects of (topological) quantum-information
storage deserve to be studied further.

The comparisons presented in Sec. IV demonstrate that,
for M =1, a consistent treatment of Eq. (50), or its spin-
anisotropic extension, recovers the exact same results as in the
original model, while a conventional “mean-field” treatment
of the consistency factors gives fair but approximate results
that tend to agree with the exact ones only at weak coupling.
Since it is well known that the introduction of additional chan-
nels calls for the effective impurity coupling to be rescaled as
J/M [2,18], one can expect that the conventional compactifi-
cation becomes more reliable in the large-M limit. However,
the original claims were that compactification serves the
purpose of (stabilizing and) moving the fixed point from in-
termediate to strong coupling. This could be in tension with
the large-M limit of the compactified model and is also not
observed in similarly compactified versions of the Anderson
impurity model [46] (cf. also the Majorana formulations of
the two-channel Kondo model [47]). A renormalization-group
analysis of these issues will be discussed in followup articles
[30,48]. We shall find that, despite the differences highlighted
here, the universal aspects of the low-energy physics do agree
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among the different formulations of the model, including the
conventionally compactified one, and the fixed points can be
regarded as equivalent in that sense [49].

The present work supports and complements our previous
results for the Toulouse point of the two-lead Kondo model
[16,39], while further clarifying the role of the n-twiddle
factors in the perturbative definition of that limit. Further
work exploring the nonperturbative definition and algebraic
properties of these unusual operators will be an important
avenue for further studies. Speculatively, these would have the
potential to open new field-theoretic paradigms for the subtle
coupling of separate (dark) matter sectors to well established
existing theories that were inferred using (low-order) pertur-
bative calculations and matching experimental data (as in the
celebrated Standard Model of particle physics [50]).
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APPENDIX: MORE ON PRODUCTS
OF VERTEX OPERATORS

One of the central ideas of the consistent BdB framework is
to point-split all products of fermion fields before the BdB ma-
nipulations. One then maintains the points separate during all
the ensuing transformations and only takes the limit of coin-
ciding points when ready to carry out the final debosonization
step.

The above procedure is what guarantees a consistent
refermionization of the models (that has the corresponding
implicit UV regularization) and avoids pitfalls when manip-
ulating bosonized terms like, for instance, the spin-flip term
ψ

†
↑�(x)ψ↓�(x). Considering the vertex-product rendition of

this term, not including Klein factors and multiplicative fac-
tors, and carrying out the usual manipulations, (cf. with the
“conventional” treatment in Ch. 28 Sec. IV of Ref. [9], where
point splitting is not done and the last step in the equation be-
low would be an equality), one has

lim
x′→x

eiφ↑�(x)e−iφ↓�(x′ ) = lim
x′→x

ei[φ↑�(x)−φ↓�(x′ )]


= ei[φs (x)+�φsl (x)] (A1)

since, in the last step, although the contributions from ∂φs

and ∂φsl can be dropped (because those fields are still present
in the expression), those from ∂φc and ∂φl are those fields’
leading contributions and should not be ignored. As a result
one has

lim
x′→x

eiφ↑�(x)e−iφ↓�(x′ ) = ñcñl ei[φs (x)+�φsl (x)], (A2)

where the n-twiddle factors are the notational tool we in-
troduced to streamline the calculations and avoid these

inconsistencies [see Eq. (8)]. Below, we summarize and ex-
tend some key consistent BdB results presented previously in
Sec. IV of Ref. [14].

During the point unsplitting of the final debosonization
step, one finds point-split products of so-called vertex op-
erators of the type exp(iλφ) exp(−iλφ) that have nontrivial
operator product expansions (OPEs). The values of λ depend
on the particular bosonic transformations carried out; here we
need to consider λ = 1 and λ = 1/2.

The first case relates directly to Mandelstam’s formula [see
Eq. (5)]. The Klein factors drop out, and one has

eiφ

√
2

e−iφ

√
2

= πa ψ†ψ → n. (A3)

The vertex operators on the left-hand side have been explic-
itly written with the normalization needed for their OPEs to
be consistent with the anticommutator of lattice fermions. We
can then, by convention, identify their product as a pointlike
fermionic-particle density n (call it also n+, and introduce
the notation n− for the corresponding holes). From the anti-
commutation properties (that derived in terms of the bosons
require careful re-normal-ordering, cf. Ref. [51]), it immedi-
ately follows that n2 = n and n+n− = 0, which we refer to
as idempotence and co-nilpotence, respectively. One also has
n+ + n− = 1.

The λ = 1/2 case is closely related but even more delicate.
This is what prompts the definition of the n -twiddle factors,

ñ = 1√
2

eiφ/2e−iφ/2 → √
n, (A4)

where the last identification is done by comparing OPEs (and
other careful considerations that we do not repeat in here), and
double checked by a composite-operator OPE showing that
ñ2 → n. The property of co-nilpotence is directly inherited
from Eq. (A4), since ñ+ñ− → √

n+n− = 0. The fact that one
is using the positive branch of the square root function, to-
gether with the positive definiteness of the sum ñ+ + ñ−, gives
the “resolution of the identity” for the n-twiddles, ñ+ + ñ− →
1, since

(ñ+ + ñ−)2 = (ñ+)2 + (ñ−)2 → n+ + n− = 1. (A5)

Just like co-nilpotence, the property of idempotence (ñ2 =
ñ) is also natural but needs to be adopted separately, and the
considerations given in the main text (see Sec. IV A, as well as
the subsequent renormalization-group studies [30,48]) show
that it needs to be supplemented by the additional property of
independent n-twiddle histories for high-order diagrammatic
processes. This is because the n -twiddle factors entering the
refermionized interaction terms correspond to different sec-
tors (c and l) than the individual fermions present in those
terms (s and sl) and therefore have quantum and thermal
fluctuations independent of each other and of the other sectors.
Taken together, these three properties guarantee the matching
of all results of the original model and the one refermionized
using consistent BdB (which does not happen when conven-
tional BdB is used instead).
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