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Topological phase transitions of interacting fermions in the presence
of a commensurate magnetic flux
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Motivated by recently reported magnetic-field-induced topological phases in ultracold atoms and correlated
Moiré materials, we investigate topological phase transitions in a minimal model consisting of interacting
spinless fermions described by the Hofstadter model with Coulomb interaction on a square lattice. For interacting
lattice Hamiltonians in the presence of a commensurate magnetic flux it has been demonstrated that the quantized
Hall conductivity is constrained by a Lieb-Schultz-Mattis (LSM) type theorem due to magnetic translation
symmetry. In this work, we revisit the validity of the theorem for such models and establish that a topological
phase transition from a topological to a trivial insulating phase can be realized but must be accompanied by
spontaneous magnetic translation symmetry breaking caused by charge ordering of the spinless fermions. To
support our findings, the topological phase diagram for varying interaction strength is mapped out numerically
with exact diagonalization for different flux quantum ratios and band fillings using symmetry indicators. We
discuss our results in the context of the LSM-type theorem.
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I. INTRODUCTION

Chern and topological insulators in condensed-matter
physics [1,2] are closely linked to the discovery of the inte-
ger quantum Hall effect (IQHE) [3,4]. The problem of free
electrons in a constant external magnetic field can be solved
analytically and it leads to an understanding of the quantiza-
tion of the Hall conductivity in terms of single-particle Landau
levels [5,6]. The characteristic high degeneracy and Chern
numbers of the Landau levels are a result of the magnetic
translation symmetry of electrons subject to an external mag-
netic field [7–9]. Similar symmetry constraints arising from
magnetic translation symmetry also extend to noninteracting
lattice Hamiltonians in the presence of a commensurate mag-
netic flux, such as the Hofstadter model on a square lattice
[10]. Actually, it can be shown that for a gapped Hall insulator
the Chern number C of the occupied bands is constrained by
a Diophantine equation of the form [7,11]

e2π i( p
q C−ρ) = 1, (1)

where p/q is the flux quantum ratio per unit cell and ρ is the
number of particles per unit cell. In particular, the Chern num-
ber cannot be equal to zero if ρ is not an integer, excluding a
trivial band insulating phase.

Recent theoretical predictions [12–17] of additional topo-
logical invariants protected by translation symmetry in an
external magnetic field have ignited a renewed interest in
the Hofstadter model. Furthermore, there has been important
experimental progress in cold atom gases [18,19] and twisted
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bilayer materials [20,21] where the range of the flux quantum
ratio can now go up to one elementary flux quantum �0

per unit cell. In particular, a bosonic fractional quantum Hall
phase has been recently detected in the former [22], and the
formation of odd-denominator fractional quantum Hall states
in graphene at high magnetic fields have been optically de-
tected using excited Rydberg excitons in an adjacent transition
metal dichalcogenide monolayer [23].

For interacting systems, the classification of topological
phases is more challenging than in the noninteracting case
since the ground state is no longer given by a product state of
single-particle Bloch wave functions. However, even without
resorting to Bloch states in the Brillouin zone, it is possible
to define a many-body Chern number using twisted boundary
conditions which corresponds to adiabatic flux insertion and
is thus related to the Hall conductivity [24]. This is now
a well-established technique in mapping out topological
phase diagrams of interacting Chern insulators [25,26] and
especially relevant for fractional Chern insulators, which are
beyond a conventional mean-field description [27,28] and
hence require a genuine many-body treatment. Due to the
similarity of the Brillouin zone and the set of possible twisted
boundary conditions, both forming a torus, it is a natural
question to ask whether magnetic translation operators
impose the same constraint, Eq. (1), on interacting systems.

An earlier and more well-known example of a filling-
enforced constraint on quantum many-body systems is the
(generalized) Lieb-Schultz-Mattis (LSM) theorem. Originally
formulated for a one-dimensional half-integer spin chain
[29], it has been generalized to higher dimensions [30] and
many-body systems with conserved particle number on a
periodic lattice [31]. Resting on the commutation relation
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between the “large gauge transformation” and the trans-
lation operator [31,32], the theorem determines whether a
translation-invariant Hamiltonian at a certain filling is allowed
to have a nondegenerate ground state or not. Specifically, a
unique ground state, separated by a gap from excited states, is
prohibited for noninteger fillings.

In the presence of an external magnetic field the algebra
of translation operators changes to the magnetic translation
algebra and integer fillings now correspond to qρ ∈ Z due to
an enlarged magnetic unit cell [33]. Even more importantly
is the possibility to generalize Eq. (1) to genuine many-body
systems [33–37] and to exclude trivial band insulators at cer-
tain fillings. The proof is based on using within Laughlin’s
gauge argument the commutation relation of the large gauge
transformation with the product of the magnetic translation
operator and a flux insertion operator [33] in the thermody-
namic limit. It may therefore be viewed as a corollary or
variation of the generalized LSM theorem. This generalization
can also be proven exactly for all finite-size systems on which
the generalized LSM theorem applies [35]. We will therefore
call it the LSM-type theorem in the following.

Crucially, the LSM-type theorem for the IQHE relies on
a nondegenerate ground state such as a noninteracting band
insulating state. In the case of ground-state degeneracy, how-
ever, which commonly takes place at a phase transition due to
spontaneous symmetry breaking (SSB), the theorem’s impli-
cations have to be reevaluated.

In this work we scrutinize the physical implications of
many-body magnetic translation invariance on the Hall con-
ductivity in the light of SSB. In particular, the role of the
specific choice of a given cluster, on which the validity of the
LSM-type theorem and the mechanism of SSB depend in a
subtle way, will be examined. For this purpose, we perform
exact diagonalization (ED) calculations of the interacting Hof-
stadter model on a square lattice for a wide range of different
band fillings and flux quantum ratios. Such calculations are
useful since they capture qualitative differences between dif-
ferent clusters. In the context of Hofstadter physics, ED allows
us to study the effect of the discrete lattice (high flux quantum
ratio) but also the parameter regime, where the single-particle
physics is approximately described by Landau levels (low flux
quantum ratio). As a particular example for SSB, we investi-
gate the translation symmetry-breaking charge-density-wave
(CDW) state in the (long-range) Coulomb interaction regime.
For the identification of topological phase transitions we make
use of symmetry indicators [35].

This paper is organized as follows: In Sec. II we review
basic properties of lattice Hamiltonians in the presence of a
commensurate flux (in particular the Hofstadter model), the
magnetic translation algebra and the constraint imposed by
the LSM-type theorem on the Hall conductivity. In Sec. III we
provide an intuitive explanation backed by numerical calcula-
tions on how this constraint is circumvented by SSB. We use
ED to discuss the possibility of topological phase transitions
from Chern insulator to a checkerboard-pattern CDW phase
for a half-integer flux quantum ratio. We expand the ED study
by investigating all numerically feasible flux quantum ratios
and integer band fillings of the interacting Hofstadter model
on a square lattice in Sec. IV. We close our analysis by giving
a thorough and rigorous account of the role of SSB in Sec. V

that addresses the remaining formal and technical questions of
the applicability of the LSM-type theorem in integer as well
as fractional quantum Hall systems. Finally, in Sec. VI we
conclude our findings and discuss future directions.

II. LATTICE HAMILTONIANS IN COMMENSURATE
MAGNETIC FLUX

A. Hofstadter model

To understand how a tight-binding Hamiltonian is affected
by an external magnetic field, one can consider a particle of
charge −e moving around a surface that is pierced by a flux
�. The wave function obtains an Aharonov-Bohm phase of
−2π�/�0, where �0 = hc/e is the magnetic flux quantum,
which can be seen by considering the change in the Lagrange
function L → L − eṙA/c on adding a flux � which leads to
the phase

e−i e
h̄c

∫
drA(r) (2)

due to the change in the action S[r] = ∫ t
0 dt ′L[ṙ, r] in the

path weight eiS[r]/h̄. On a single-orbital lattice model an
external magnetic field can be implemented by including
so-called Peierls phases to the hopping matrix elements for
spinless fermions [10,38]. Such phases can be interpreted
as Aharonov-Bohm phases originating from a magnetic flux
piercing the different plaquettes of the given lattice:

c†
R′cR → c†

R′cRe−i e
h̄c

∫ R′
R A(r′ ) dr′ =: c†

R′cRe−iφR′ ,R . (3)

The flux through a set of plaquettes enclosed by the path
R1, R2, . . . , Rn, R1 is given by the sum φR2,R1 + φR3,R2 +
· · · + φR1,Rn . A spin-polarized (or equivalently spinless)
single-orbital nearest-neighbor (NN) tight-binding Hamilto-
nian on a square lattice with a flux quantum ratio �/�0 = ϕ

per plaquette becomes

Ĥ = − t
∑
m,n

c†
m+1,ncm,n

− t
∑
m,n

e−2π iϕmc†
m,n+1cm,n + H.c., (4)

which is the Hofstadter model in the Landau gauge [10].
Different choices for the phases φR′,R are equivalent up to a
unitary gauge transformation c†

m,n → eiλm,n c†
m,n [39] as long as

the flux piercing each of the plaquettes is the same [40]. The
Chern numbers of the band spectrum of Eq. (4) are uniquely
determined by a specific Diophantine equation for all possible
ϕ [4,41].

B. Magnetic translation algebra

Since hopping amplitudes and fluxes of the Hamiltonian in
Eq. (4) are translation invariant, one can identify two unitary
translation operators in x and y direction defined by

T̂ M
x c†

m,n

(
T̂ M

x

)† = e−2π iϕnc†
m+1,n

T̂ M
y c†

m,n

(
T̂ M

y

)† = c†
m,n+1. (5)

These operators, consisting of the action of a symmetry oper-
ation in real space times a unitary and space-dependent gauge
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transformation are commonly denoted magnetic translation
operators [8,9]. They generally do not commute with each
other. Acting on a Hilbert space of Ne particles they satisfy
[42]

T̂ M
x T̂ M

y = e−2π iϕNe T̂ M
y T̂ M

x , (6a)

T̂ M
x T̂ M

y = e−π iϕNe T̂ M
x+y, (6b)

which is referred to as the magnetic translation algebra
or Girvin-MacDonald-Platzman algebra [43]. According to
Eq. (6) these operators form a higher-dimensional projective
representation [44–46] for ϕNe /∈ Z, in contrast to the usual
one-dimensional irreducible representations for the Abelian
translation group. A consequence is a symmetry-protected
degeneracy of the energy spectrum: For example, the macro-
scopic degeneracy of single-particle Landau levels stems from
the magnetic translation symmetry of free particles [8].

For a noninteracting lattice Hamiltonian such as the Hofs-
tadter model and for a flux quantum ratio

ϕ = p

q
, (7)

where in the following p and q will always be chosen to be
coprime, the single-particle band structure obtains a symmetry
protected q-fold degeneracy. This can be seen as follows:
Since (T̂ M

x )q, T̂ M
y are commuting translation operators accord-

ing to Eq. (6a) for Ne = 1, they can be used to define Bloch
states |kx, ky〉 with eigenvalues e−iqkx , e−iky (where we have set
the lattice constant to 1). Then, since

T̂ M
y

(
T̂ M

x |kx, ky〉
) = e−i(ky−2πϕ)

(
T̂ M

x |kx, ky〉
)

(8)

we obtain that T̂ M
x |kx, ky〉 is a new eigenstate of T̂ M

y , hence

T̂ M
x |kx, ky〉 ∝ |kx, ky − 2πϕ〉. (9)

As a consequence |kx, ky〉, . . . , |kx, ky − 2πϕ(q − 1)〉 span
a q-dimensional irreducible projective representation space
with degenerate energy eigenvalues. This also explains why
according to Eq. (1), the Chern number can only change
modulo q because the topological phase transition of a band
is accompanied with the simultaneous closure of q band gaps.
A complete derivation of Eq. (1) is given in Appendix A.

For interacting systems ED calculations have to be re-
stricted to finite systems. The infinite plane becomes a cluster
with its boundaries being glued together forming a torus.
Besides piercing each plaquette with a flux, it is now possible
to insert fluxes through the noncontractible loops of the torus
[24,40], see Fig. 1. They can be varied by imposing twisted
boundaries onto the system, which keep the fluxes through
the individual plaquettes invariant. The Hamiltonian in Eq. (4)
becomes

Ĥ (θx, θy) = − t
Nx∑

m=1

Ny∑
n=1

e−iθxδm,Nx c†
m+1,ncm,n

− t
Nx∑

m=1

Ny∑
n=1

e−2π iϕme−iθyδn,Ny c†
m,n+1cm,n

+ H.c., (10)

with twisted boundary θx in x direction and θy in y direction.
Nx/y is the number of sites in x/y direction. We will always

FIG. 1. Toroidal lattice geometry of a finite cluster in real space
with two fluxes corresponding to twisted boundary conditions θx and
θy through the noncontractable loops of the torus. A translation in y
direction relates the loops L1 and L2 to each other. Their Aharonov-
Bohm phases differ by the flux 2πϕNx through the surface between
the two loops.

consider Nx/q ∈ N, unless stated otherwise. This choice au-
tomatically satisfies the quantization condition that the total
flux through all of the plaquettes can only be zero modulo 2π ,
as sources of magnetic flux may only emit integer multiples
of �0 [8,47].

Importantly, a tight-binding Hamiltonian of the form of
Eq. (10) is not translation invariant for arbitrary Nx, Ny. Let
the Aharonov-Bohm phase around a noncontractable loop L2

in x direction for fixed n be
Nx∑

m=1

φ(m+1,n),(m,n) = θx. (11)

Around a similar loop L1 for fixed n − 1 we identify

Nx∑
m=1

φ(m+1,n−1),(m,n−1)

=
Nx∑

m=1

(φ(m+1,n−1),(m,n−1)

+ φ(m+1,n),(m+1,n−1) + φ(m,n),(m+1,n) + φ(m,n−1),(m,n) )

+
Nx∑

m=1

φ(m+1,n),(m,n) = 2πϕNx + θx, (12)

where we have used φR′,R = −φR,R′ . Note that the first four
terms in between the equal signs generate a loop around a
plaquette with flux ϕ. We see that generically the magnetic
field piercing the torus also contributes to the phase, see Fig. 1.
The loop defined in Eq. (12) is only equal to θx modulo 2π if
Nx is an integer multiple of q. For Ny an analogous condition
for closed loops with fixed m holds. Consequently, under
translation the Hamiltonian transforms as [48]

T̂ M
x Ĥ (θx, θy)

(
T̂ M

x

)† = Ĥ (θx, θy − 2πϕNy)

T̂ M
y Ĥ (θx, θy)

(
T̂ M

y

)† = Ĥ (θx + 2πϕNx, θy), (13)
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FIG. 2. Finite-size Nx × Ny cluster. The arrows represent differ-
ent noncontractible loops of the torus.

see Fig. 2, so the system is only translation invariant if Nx and
Ny are integer multiples of q [8,9].

C. Constraints imposed by the LSM-type theorem
on the Hall conductivity

It is possible to define a many-body Chern number
of the ground state |
(θx, θy)〉 with the Berry connection
A = i〈
(θx, θy)|∇θ|
(θx, θy)〉), which is related to the Hall-
conductivity by Laughlin’s gauge invariance argument [24].
This Chern number is also well defined on adding arbitrary
interactions to the Hamiltonian as long as an energy gap
separates the ground-state manifold from excitations for all
twist angles. A natural question that arises is whether it is
possible to generalize Eq. (1) to many-body systems. In the
context of the generalized LSM theorem it can be shown that
[33–35]

e2π i( p
q Cmany-body−ρ) = 1 (14)

with the many-body Chern number Cmany-body. This holds pro-
vided that a given twist angle combination (θx, θy) is mapped
to q different twist angles under translation and the system
has a unique ground state for each θ (see Appendix A). In
the following we will refer to Eq. (14) as the LSM-type the-
orem. Clusters, where the LSM-type theorem strictly holds,
are those where the Hamiltonian Ĥ (θx, θy) is transformed
into q different Ĥ (θ ′

x, θ
′
y) under translation. We will call

these clusters LSM clusters. On the other hand, if translation
maps θ onto itself so that the Hamiltonian commutes with
the translation operator, then we will speak of a non-LSM
cluster. Naturally, every cluster containing cxq × cyq lattice
sites (cx, cy ∈ N) is a non-LSM cluster as a consequence of
Eq. (13) but can be made into an LSM cluster by adding
one row either in the x or y direction. For example, for ϕ =
1/2 the cluster displayed in Fig. 2 with Nx = 4 and Ny = 5
would be an LSM cluster, but it could be changed into a non-
LSM cluster by either adding or removing one row in the y

direction. It is important to realize that Eq. (14) cannot be
proven for non-LSM clusters, even though it is to be expected
that observables such as the Hall conductivity should not
change in a significant way by adding a single row in the x
or y direction when approaching the thermodynamic limit.

Interaction terms, such as nearest-neighbor or long-range
Coulomb interaction, do not affect the translation invari-
ance of the Hamiltonian. Therefore, one may not anticipate
interaction-driven topological phase transitions from a non-
trivial Chern insulating to a trivial insulating phase because
of the LSM-type theorem Eq. (14). On the other hand, suf-
ficiently large Coulomb interaction is expected to induce
localized charge ordered phases such as Wigner-crystal or
CDW states [25,49,50] that have zero Hall conductivity. In
Secs. III and IV we will provide numerical evidence for the
intuitive claim that long-range interaction drives the system
into a topologically trivial CDW state, before rigorously dis-
cussing in Sec. V how SSB of translation invariance leads to
a breakdown of the constraint on the Hall conductivity given
by the LSM-type theorem.

III. TOPOLOGICAL PHASE DIAGRAM
OF THE INTERACTING HOFSTADTER MODEL

FOR HALF-INTEGER FLUX QUANTA

The noninteracting NN Hofstadter model with ϕ = 1/2
has symmetry-protected Dirac cones due to time-reversal in-
variance (TRI) [51,52] because every closed loop contains an
integer multiple of π fluxes.

We include next-nearest-neighbor (NNN) hoppings to
break TRI,

Ĥ =
Nx∑

m=1

Ny∑
n=1

( − te−iθxδm,Nx c†
m+1,ncm,n

− te−iθyδn,Ny e−πmic†
m,n+1cm,n

− t ′e−iθxδm,Nx e−iθyδn,Ny e−π (m+1/2)ic†
m+1,n+1cm,n

− t ′e−iθxδm,Nx eiθyδ1,Nx eπ (m+1/2)ic†
m+1,n−1cm,n

)
+ H.c., (15)

where the Peierls phases are again determined with Eq. (2)
in Landau gauge. We set t = 1 = 2t ′. The band structure and
Brillouin zone are shown in Fig. 3. The energetically lower
band of the single-particle band structure has a Chern number
of C = 1, in agreement with Eq. (1). We include nearest-
neighbor Coulomb interactions:

Ĥint(V ) = V
Nx∑

m=1

Ny∑
n=1

(n̂m,nn̂m+1,n + n̂m,nn̂m,n+1). (16)

that drive the Chern insulating phase into a trivial insulating
phase. In the limit V � t we expect at half-filling a CDW
phase. If we imagine the cluster to be in a checkerboard
structure, then the two ground-state wave functions will be
a product state of all particles being localized at “black” or
“white” squares, instead of the delocalized Wannier functions
of a Chern insulator. The charge order is indicated by the static
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FIG. 3. Band spectrum of the t-t ′–Hofstadter model for
ϕ = 1/2 along the high-symmetry path �(0, 0) → X (π/q, 0) →
M(π/q, π/q) → �(0, 0) of the magnetic wallpaper group p4m′m′.
The choice of hopping parameters of t = 1 = 2t ′ results in a rela-
tively flat band structure, mimicking the physics of Landau levels.
The single-particle energy gap is exactly equal to 4t .

structure factor

S(K ) = 1

(NxNy)2

∑
r,r′

e−iK(r−r′ )〈n̂rn̂r′ 〉, (17)

which for a checkerboard pattern will have a peak at K =
(π, π ), whereas S(K ) approaches zero at other K. In addition,
quantum phase transitions of interacting systems are indicated
by the fidelity metric [53–55]

g(V, δV ) = 2

NxNy

1 − |〈
0(V )|
0(V + δV )〉|
δV 2

, (18)

where in our case |
0(V )〉 is the ground state of Ĥ + Ĥint(V ).
In the vicinity of a critical point one expects a peak of the
fidelity metric, irrespective of whether a possible order pa-
rameter is commensurable with the chosen cluster. Instead of
the fidelity metric given in Eq. (18) we evaluate the negative
second derivative of the ground-state energy with respect to V ,
which is closely related to the fidelity metric [53,54] and pro-
vides qualitatively the same information, but is numerically
less costly to evaluate:

χE (V ) = −d2E0(V )

dV 2
. (19)

In particular, the peak of χE (V ) also indicates a phase
transition.

The topology of the ground state(s) can also change con-
comitantly with a CDW phase transition [25]. Whereas the
phase transition to the CDW phase can occur due to an
avoided crossing of ground states with a different order pa-
rameter, a topological phase transition must have a level
crossing at some twist angle θ . The Chern number is ex-
pected to change from 1 in the Chern insulating phase to 0
in the CDW phase at high V . It is then possible to focus on
the rotation eigenvalues at the three high-symmetry points
(θx, θy) = (0, 0), (π, π ), and (0, π ) [which by C4 symmetry
is related to the point at (π, 0)], where the level crossing must
occur [25]. This is the case because the Chern number is given

modulo 4 by the eigenvalues of the rotation operators [35]:

e− π iC
2 = W (0,0)

C+
4

W (π,π )
C+

4
W (0,π )

C2
, (20)

with

W
(θx,θy )

Cn
= 〈
(θx, θy)|Cn|
(θx, θy)〉, (21)

and the rotation operators (for arbitrary flux ϕ) defined by

C+
4 c†

m,n(C+
4 )† = ei(2πϕmn−2πϕ(Nx+1)m+ πϕ

2 (Nx+1)2 )

× c†
−n+Nx+1,m, (22)

(with Nx = Ny) and

C2c†
m,nC

†
2 = ei(2πϕn(Nx+1)−πϕ(Nx+1)(Ny+1))

× c†
−m+Nx+1,−n+Ny+1. (23)

Note that in this form (C+
4 )4 = 1 = C2

2 . A gauge transforma-
tion has to be added to the pure rotation because we do not
use a gauge with a rotation-symmetric vector potential for the
Hamiltonian: It cannot be defined for certain cluster geome-
tries such as q × q clusters. For the following calculations
for non-LSM clusters the Hamiltonian Ĥ (θ), Eq. (15), will be
considered, however, exclusively in the regime of twist angles
θ where the change of the symmetry eigenvalue and hence the
level crossing is identified.

We first display calculations for Nx × Ny clusters of the
Hamiltonian in Eq. (15), where both Nx and Ny are multi-
ples of q = 2. These clusters are non-LSM clusters, so they
are technically not constrained by Eq. (14) and the θ de-
pendence of an eigenstate can yield a trivial Chern number.
Note that these clusters are also compatible with the checker-
board pattern CDW. In Fig. 4 we display calculations of a
C4-symmetric cluster with 4 × 4 sites at θ = (0, 0) using an
implicit restarted Arnoldi method implemented in Arpackpp.
The phase transition from the Hall insulating to the CDW state
is clearly indicated by a jump in the CDW structure factor
and a peak in χE (V ) at V = 2.068 ± 0.04. In the CDW phase,
the system has a quasidegenerate (= degenerate up to some
finite-size splitting) twofold ground state, corresponding to
the two possible charge-density-wave patterns with a small
finite-size gap. The symmetry eigenvalue W (0,0)

C4
of the lower-

energy ground-state changes from −i to 1, which indicates a
Chern-trivial phase of the ground state according to Eq. (20).
We verified the absence of accidental crossings for different
twist angles in the CDW phase, which ensures that the many-
body Chern number of the lower-energy ground state is well
defined.

To take into account finite-size effects, calculations on a
4 × 6 cluster have also been performed. Note that this cluster
breaks C4 rotation symmetry, so instead of Eq. (20) the many-
body Chern number is determined with

eπ iC = W (0,0)
C2

W (0,π )
C2

W (π,0)
C2

W (π,π )
C2

. (24)

There is no qualitative difference in the results of these cal-
culations compared to those shown in Fig. 4. The phase
transition occurs at V = 2.078 ± 0.003 and is again accom-
panied by a change of the Chern number of the ground state,
given by the symmetry indicator in Eq. (24).
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FIG. 4. ED of a non-LSM 4 × 4 cluster. (a) Static structure fac-
tor SCDW at K = (π, π ) corresponding to a checkerboard pattern.
(b) Energy of the ground state E0 and first two excited states (E1, E2).
(c) Energy gap between E0 and (E1, E2). (d) Second derivative of E0

as a function of the interaction strength V/t . The interaction strength
is varied in steps δV = 4/1000. The IQHE and CDW phases are
displayed in white and blue, respectively.

Next we consider a 4 × 5 cluster, which is an LSM cluster
as Ny is an odd number. The Hamiltonian now transforms
under translation, according to Eq. (13), as

T̂ M
x Ĥ (θx, θy)

(
T̂ M

x

)† = Ĥ (θx, θy + π ), (25)

which is reflected in the θ-dependent many-body energy spec-
trum, see Fig. 5. As a result, any single state with an energy
gap for all twist angles must have a nontrivial Chern number
according to Eq. (14). In addition, the ground-state degener-
acy of the CDW phase increases, as a checkerboard pattern is
not commensurable with the lattice dimensions anymore. In
the limit of t → 0, V = 1 there is a 10-fold ground-state de-
generacy with an excitation gap of V . This can be understood
from the fact that the reciprocal lattice vector K = (π, π ) is
not in the reciprocal lattice of clusters for odd Ny.

How does the phase transition occur and can we still speak
of a topological phase transition? The system is driven into the
CDW by an avoided crossing, where the nondegenerate Hall
insulating state turns into 10 quasidegenerate CDW states.
The system undergoing an avoided crossing instead of a level
crossing is symmetry protected by the LSM-type theorem
[56]. For larger LSM clusters, the discontinuous nature of
the phase transition that is evident for the non-LSM clusters
studied before will become more apparent. While it is true
that the lowest-energy ground state and the other quasidegen-
erate states (assuming that they are all gapped with respect

FIG. 5. θ-resolved energy spectrum of Ĥ (θ) with ϕ = 1/2 for the
two lowest eigenstates for (a) an LSM 4 × 5 cluster and (b) a non-
LSM 4 × 4 cluster. The spectrum of the LSM cluster is periodic in
θy with a periodicity of π . For better clarity, the energies are plotted
with a color gradient, where red denotes the global maximum and
blue the global minimum.

to each other) are individually topologically nontrivial, the
sum of their Chern numbers must be equal to zero as they
are adiabatically connected to Chern-trivial states at t → 0,
V = 1. This situation is displayed in Fig. 6. In this sense the

FIG. 6. Ground state and ground-state quasidegeneracy of a
(a) Hall insulating versus (b) trivial insulating state. In the trivial
insulating state, each gapped quasidegenerate ground state possesses
a nontrivial Chern number. In both cases the ground state(s) have to
be separated by some energy gap 
E from excitations.
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FIG. 7. ED of an LSM 4 × 5 cluster. (a) Energy of the ground
state E0 and first two excited states (E1, E2). (b) Energy gap between
E0 and (E1, E2). (c) Second derivative of E0 as a function of the
interaction strength V/t . The interaction strength is varied in steps
δV = 4/1000. The IQHE and CDW phases are displayed in white
and blue, respectively. The two images correspond to two orthogonal
states that minimize Ĥint and that are related to each other by two
virtual hoppings.

phase transition is still topological, which will be discussed
more carefully in Sec. V.

Calculations are shown in Fig. 7. Since the LSM-type
theorem prohibits a topological phase transition of the lowest-
energy ground state, there is no obvious choice for a particular
twist angle θ anymore. We pick θ = (0,−πϕNy), where the
Hamiltonian is at least C2 invariant. The phase transition is
still indicated by a peak of χE (V ) at V = 2.71 ± 0.01, al-
though due to strong finite-size effects and the cluster not
being commensurable to the CDW order, it appears broad
on the logarithmic scale. It should be noted that even at

V = 10 there are still considerable energy gaps between the
three quasidegenerate ground states. This can be understood
by considering perturbation theory. The two ground states of
a commensurate cluster are related by Ne virtual hoppings
with an amplitude of t/V , whereas in a noncommensurate
cluster hybridization between some of the ground states will
approximately take

√
ρNe virtual hoppings, as the CDW order

is incommensurable with the lattice geometry by one row,
leading to a much larger splitting between the lowest-energy
levels.

In Fig. 8 we display calculations of the CDW structure
factor at all K points corresponding to the 4 × 5 cluster.
Since K = (π, π ) is no longer contained, the CDW structure
factor for V = ∞ shows a peak at Kx = π , Ky = ±4π/5
of SCDW(K ) = 0.082(6). While charge order is clearly
indicated at large V , SCDW(K ) grows more slowly than
in the commensurate non-LSM clusters studied before.
Some order does emerge after the phase transition at V = 4
indicated by SCDW(K ) = 0.045(9) compared to V = 2 with
SCDW(K ) = 0.025(4); however, even at V = 20 one finds
SCDW(K ) = 0.053(6), which is still far away from the value
at t = 0, V = 1.

Comparing our results from the non-LSM clusters with
the LSM cluster, the discontinuous phase transition into a
topologically trivial CDW phase is less clear indicated in the
LSM cluster, as the level crossings in the non-LSM clusters
lead to a jump of the CDW structure factor and a change
of the lowest-energy ground-state topology. In comparison,
the avoided level crossing with continuous S(K ) and χE of
the LSM cluster makes the identification of phase boundaries
more challenging, as well as the fact that the change in the
topology of the system can only be described by considering
all quasidegenerate ground states together. In conclusion, the
increased ground-state degeneracy due to the incommensu-
rability of the checkerboard charge order with LSM clusters
and the loss of rotation symmetry as well as the symmetry
protected avoided crossing are finite-size effects: This implies
that the physics of the phase transition in the thermodynamic
limit is more adequately described by non-LSM clusters,
which clearly indicate a first-order transition.

We close this section by appending a comment on the
interplay between the topological phase transition of the
ground-state wave function, the CDW transition, and the sym-
metries of the cluster. Using ED calculations, it is possible
to map out the phase boundaries at zero temperature of the

FIG. 8. Static structure factor of the Hofstadter Model on a 4 × 5 cluster at (a) V = 2, (b) V = 4 and (c) V = ∞. Corresponding to the
cluster dimensions, the wave vectors of the reciprocal lattice are given by Kx = −π, −π/2, . . . , π/2 and Ky = −4π/5, −2π/5, . . . , 4π/5.
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Hamiltonian with respect to some parameter using the lowest-
energy ground state. The topological phase transition may
then not occur at the same parameter as the CDW transition
transition solely due to finite-size effects; in particular this is
often caused by the cluster not having the same symmetries
as the infinite plane [25,26]. In our case there will be no
topological phase transition of the lowest-energy ground-state
wave function at all for LSM clusters, where the Hamiltonian
does not commute with the translation operator, while we
found perfect overlap between both transitions for non-LSM
clusters. We have already argued that for the characteriza-
tion of the topological phase transition one has to consider
the topology of all quasidegenerate ground states, instead of
the lowest-energy one. On non-LSM clusters, however, the
topological phase transition is also accompanied by a topo-
logical phase transition of the lowest-energy ground state by a
level crossing. One arrives therefore at the seemingly para-
doxical but by no means contradictory result that in the case of
actual translation invariance, the Chern number of the ground
state is not constrained by the LSM-type theorem, whereas in
the other cases the LSM-type theorem is strictly valid and one
finds a topological phase—that, however, is protected only by
a finite-size gap.

IV. TOPOLOGICAL PHASE TRANSITIONS FOR VARIOUS
FLUX QUANTUM RATIOS

We want to complete the numerical study of Sec. III and
inquire the possibility of topological phase transitions of the
Hofstadter model for flux quantum ratios ϕ �= 1/2 and particle
densities ρ �= 1/2 that can still be explored within the limits
of ED. In contrast to other methods, ED has the advantage
that the aforementioned influence of the cluster geometry on
the validity of the LSM constraint can be inquired; in addition,
a mean-field ansatz is difficult to implement for band fillings
other than 1/2, where the order parameter is unknown. This is
already an issue for the Hofstadter model on the honeycomb
lattice [57] but especially problematic on the square lattice.

In the following, the Hamiltonian is always of the form

Ĥ = Ĥ (θ) + Ĥint(V ), (26)

where Ĥ (θ) has been defined in Eq. (10). NNN-hopping is
not included as NN-hopping is sufficient to break TRI. Here
Ĥint(V ) provides the long-range Coulomb interaction

Ĥint(V ) =
Nx∑

m�m′=1

Ny∑
n�n′=1

V

rmin
n̂m,nn̂m′,n′ , (27)

where rmin is taken to be the smallest distance on the torus
geometry. The interaction range is now truly long range
and decays like 1/r, in contrast to Eq. (16), where nearest-
neighbor Coulomb interaction was considered to be sufficient
to obtain a CDW at half filling.

We perform calculations for the flux quantum ratios p/q =
1/5 and p/q = 2/5 with a particle density corresponding to
both one or two occupied Hofstadter bands. The critical in-
teraction strengths for each flux quantum ratio and number
of particles as well as the single-particle gap 
E of the
noninteracting band structure is displayed in Table I. As a
general trend, smaller single-particle bandwidths correspond

TABLE I. Critical interaction strengths Vcrit and single-particle
band gaps 
E for varying flux quanta, particle numbers, and lattice
dimensions. The particle number Ne always corresponds to an integer
filling of noninteracting bands.

p/q Ne Nx × Ny 
E Vcrit

1/5 5 5 × 5 1.553699 22.652 ± 0.002
1/5 10 5 × 5 0.520147 4.7875 ± 0.0125
2/5 5 5 × 5 0.157179 4.918 ± 0.002
2/5 10 5 × 5 1.539145 17.775 ± 0.025

to smaller Vcrit. Plots of the single-particle band structures are
presented in Appendix B.

Plots for the static structure factors are provided in Ap-
pendix C for the closest numerically evaluated interaction
strengths before and after the phase transition occurs into the
CDW regime. The onset of charge order is clearly indicated by
the jump of SCDW at several K values. In addition, for clusters
with ρ = 2/5 we observe a breaking of C4 rotation symmetry.

V. SPONTANEOUS TRANSLATION
INVARIANCE BREAKING

In view of the previous numerical results, in this section we
want to inquire the relation between spontaneous translation
symmetry breaking and the topological phase transition from
Chern to trivial insulators with magnetic translation symme-
try more rigorously, aware that the LSM-type theorem is a
nonperturbative result. It is clear that for macroscopically
large systems, the physics behind the phase transition cannot
change in a meaningful way depending on the specific cluster
geometry. Nevertheless, in the following argumentation we
will have to carefully distinguish between LSM- and non-
LSM clusters by virtue of the fact that some properties are
only mathematically well defined in one or the other. An
example is the LSM-type theorem itself, which strictly holds
only for LSM geometries. Nonetheless, the physical relevance
of these properties has to be the same in the thermodynamic
limit, independent of the lattice geometry.

We start by considering integer fillings—that is an integer
number of Hofstadter bands are occupied. These cases have
been investigated numerically in this work. Then we continue
with the consideration of fractional fillings and the differences
between lattice and continuum models in this context. For
convenience, when translation symmetry is addressed, we
always have the magnetic translation operator T̂ M

a in mind
unless stated otherwise.

A. Integer quantum Hall effect

The formation of a CDW phase for a translation-invariant
Hamiltonian requires spontaneous symmetry breaking of
translation invariance. In the thermodynamic limit, the Hamil-
tonian will obtain a set of degenerate ground states. For
example, in Sec. III we have studied the formation of two
quasidegenerate states that display a checkerboard pattern.
The wave function that describes a real sample (at zero
temperature) will be a superposition of these ground states
that breaks translation symmetry, in the case of the two
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checkerboard states by being localized on the “black” or
“white” lattice sites. In compliance with our numerical cal-
culations we want to understand this mechanism and its
physical implications on the LSM-type theorem now for pos-
sibly macroscopic systems, but still of finite size. We need
to understand why quasidegeneracy is essential for the phase
transition into a topologically trivial insulating state and why
its origin must be given by the spontaneous breaking of trans-
lation symmetry as opposed to some other cause.

On non-LSM clusters, i.e., clusters where the magnetic
translation operators commute with the Hamiltonian, sponta-
neous breaking of translation symmetry must be accompanied
by a set of quasidegenerate ground states that are eigenstates
of the translation operators with different crystalline momenta
K. While the different merely quasidegenerate eigenstates (in
particular the ground states) of the Hamiltonian are naturally
eigenstates of the translation operator for these finite-size
clusters, a superposition of states belonging to different K
breaks translation invariance.

1. Symmetry breaking and local order parameter

Why does the ground-state wave function of a real sam-
ple break translation symmetry? In the following we will
assume that the symmetry-breaking phase also has a local
order parameter, such as the varying charge density. Then the
macroscopic wave function will collapse on any measurement
of the local order parameter into one of the symmetry-broken
states. The system is trapped in the symmetry-broken state
[58]. A flux insertion to measure the Hall conductivity within
the linear response regime is too small a perturbation to let
the system tunnel into another ground state, in particular if the
broken symmetry is discrete. Note that this argument relies on
the existence of a local order parameter, a point to which we
will come back to in the next subsection.

We have seen that the CDW phase comes with a quaside-
generate ground-state spectrum and a translation symmetry-
breaking state best describes the real system. How is this
connected to topology? On non-LSM clusters Eq. (14) does
not strictly hold anymore. This manifests itself in the fact that
in that case it is possible to have gapped eigenstates of Ĥ (θ)
for all twist angles θ with a trivial many-body Chern number,
which justified the use of symmetry indicators to detect the
topological phase transition in Sec. III.

2. Necessity of quasidegeneracy

Is a ground-state quasidegeneracy then required to set up
a topologically trivial phase and does it have to be related
to spontaneous symmetry breaking of translation symmetry?
Let us first address the question of degeneracy. In the case of
LSM clusters they must have a quasidegeneracy of a multiple
of q according to Eq. (14), if they are supposed to belong
to a trivial insulating phase; otherwise, the sum of the Chern
numbers of the ground states could not be zero and the ground
states would not be adiabatically connected to localized, hence
topologically trivial, CDW states. On non-LSM clusters that
have no long-range structure of period q [59] one also expects
to find quasidegeneracy [31]. If the physical origin of the
quasidegeneracy is the formation of a CDW, then the num-
ber of ground states may in fact only change depending on

whether the CDW pattern is commensurable with the given
cluster as we have seen in Sec. III. However, the very presence
of many ground states must pertain to all possible impurity-
free clusters.

3. Degree of quasidegeneracy

Why is the degeneracy a multiple of q for non-LSM clus-
ters? Consider mean-field theory: If the formation of a CDW is
modeled by an on-site potential of an effective single-particle
Hamiltonian, then the unit cell of the effective Hamiltonian
must contain an integer multiple of a flux quantum for the
single-particle band structure to be topologically trivial ac-
cording to Eq. (1). This is only possible if it contains a
multiple of q original unit cells plaquettes resulting in an
integer multiple of q different possible positions of the on-site
potential and hence an integer multiple of q different ground
states. Note that one considers different mean-field Hamil-
tonians for a single Hamiltonian of the many-body system.
The ground states are degenerate, as the different mean-field
Hamiltonians are equivalent to each other under translation on
non-LSM clusters.

4. Uniqueness of translation symmetry breaking

Why is the spontaneous breaking of the translation symme-
try the origin of the quasidegeneracy in a topologically trivial
phase? We have argued, why a quasidegeneracy of ground
states in a translation-invariant Hamiltonian in an external
magnetic field is essential to have a trivial Hall conductivity.
An example for a different discrete symmetry that may be
broken spontaneously is TRI, which can in principle occur
at a flux quantum ratio of p/q = 1/2, where the Hamiltonian
commutes with the TR operation if one only includes nearest-
neighbor hoppings in the Hamiltonian. In case of spontaneous
TRI breaking, the Hamiltonian would have two time-reversal
partners as ground states that do not have to break translation
symmetry. In Ref. [33], Eq. (14) is argued to hold in the
thermodynamic limit if the ground state is an eigenstate of
the magnetic translation operator. If translation maps a flux
(associated to some twist angle) to a different flux according
to Eq. (13), then ground states possess an effective trans-
lation symmetry, expressed through the modified translation
operator

˜̂T M
x = F̂y(2πϕNy)T̂ M

x , (28)

where F̂y(2πϕNy) is a flux insertion to exactly compensate the
change of Aharonov-Bohm phases around noncontractable
loops of the given cluster. Let us pick one of the two time-
reversal partners. Under the tacit assumption that this state
cannot transform into its partner by translation or adiabatic
flux insertion, the Hall conductivity would then still be quan-
tized to nonzero values, as the effective translation symmetry
maps the state onto itself. A topologically trivial phase hence
requires SSB of translation symmetry.

The above argument should hold for systems with a local,
gauge-invariant order parameter, too. What happens in topo-
logically ordered systems though, where the assumption that
a state maps to itself under adiabatic flux insertion is violated?
Such a system could be realized in the form of reentrant
superconductivity with presumed triplet pairing which has
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been observed in UTe2 [60] and moiré systems [61]. A BCS
superconductor in 2D has a topologically fourfold quaside-
generate ground state due to the presence of cooper pairs
[62]; higher ground-state degeneracy could be obtained by
different pairing mechanisms, such as charge-4e pairing [63]
or, hypothetically, by anyon pairing superonductivity [64]. In
the presence of a magnetic field, however, these systems will
break translation symmetry as a consequence of the breaking
of U(1) symmetry [65]: Since in a two-particle Hilbert space
the operation

T̂ M
x T̂ M

y

(
T̂ M

x

)†(
T̂ M

y

) = e4π iϕ (29)

effectively acts as a U(1) symmetry on the gap function
(which transforms like a pair of two particles), magnetic trans-
lation symmetry has to be broken in the superconducting state.
An exception is provided for q = 2: Since in the two-particle
Hilbert space translation operators commute, it is possible
to obtain a translation-invariant gap function. Filling half a
Hofstadter band at q = 2 would require, according to Eq. (30),
a fourfold degenerate ground state for a trivial Hall conductiv-
ity, which would be provided by the BCS state. In additian,
as argued above, at q = 2 the Hofstadter Hamiltonian for
nearest-neighbor hopping has TRI, further suggesting a trivial
Hall insulating state. Whether such a state can be realized
would be an interesting question for future research.

5. Strong-coupling limit

We want to provide a final proof as to why the Hall con-
ductivity for sufficiently strong long-range interaction has to
be trivial, independent of the filling factor, lattice geometry,
and underlying tight-binding Hamiltonian. In the limit of
infinitely strong interaction strength, ground states must min-
imize 〈Ĥint〉. The set of ground states will then only consist of
charge-ordered states |
̃i〉 that do not hybridize with respect to
the tight-binding Hamiltonian, i.e., 〈
̃i|Ĥ |
̃ j〉 = 0, as going
from one state to the other would require multiple fermions to
hop to a different lattice site, provided the interaction is long
ranged. As a consequence, ground states will not be affected
by a flux insertion so that only zero Hall transport is possible.
Finite t/V � 1 leads to negligible corrections; in the case of
ϕ = 1/2 = ρ and non-LSM clusters, for example, these are of
the order of O(t/V )Ne .

B. Fractional quantum Hall effect

We now discuss the more general case of fractional fillings,
in particular the fractional quantum Hall effect (FQHE) of
which the Hofstadter model provides an excellent platform
for [22,28,66,67]. Here a genuine many-body treatment is
inevitable as the presence of quasiparticles in a topologi-
cally ordered system does not permit the usual mean-field
ansatz [68]. In contrast to integer fillings, ground-state de-
generacy is enforced by the generalized LSM theorem in the
fractional Hall insulating phase and the LSM-type theorem
becomes [35]

e2π i( p
q C−ρ)D = 1, (30)

with qρ = m̄/D and coprime m̄, D, where D is equal to
the ground-state degeneracy, and C, which is now to be

interpreted as the Chern number per ground state, is a rational
fraction of D. We will argue why the characteristic topological
properties of these ground states, among others the LSM-type
theorem Eq. (30), are protected by magnetic translation sym-
metry before arguing why CDW states are trivial nevertheless.

One of the hallmarks of the FQHE is topological order
that manifests itself on a torus geometry as ground-state
degeneracy due to the presence of quasiparticles in the
thermodynamic limit [69]. The number of ground states is
independent of the chosen cluster as its origin lies in the
quasiparticle statistics and not in some long-range structure
in real space. For the calculation of the Hall conductivity, the
joint Chern number of all ground states has to be computed,
in contrast to the integer filling states in Sec. V A, where
we argued that a flux insertion should be seen as a small
perturbation that does not allow a ground state to tunnel into
a different ground state. However, in the case of the FQHE,
the different ground states have to transform into each other
under flux insertion as argued in [69,70] from a field-theoretic
perspective. Let

˜̂Fx/y(�0) (31)

be a combination of a flux insertion operation of �0 and a
gauge transformation (see Eq. (D5)) that maps a ground state
to another ground state. Then

˜̂Fx(�0) ˜̂Fy(�0) ∼= e−2π i/D ˜̂Fy(�0) ˜̂Fx(�0). (32)

The symbol ∼= restricts Eq. (32) to the ground-state sub-
space. Equation (32) implies at least D ground states as the
flux insertion operators obey the same algebra as magnetic
translation operators. This transformation behavior as well as
the ground-state degeneracy [71] can be proven exactly for
some non-LSM clusters as demonstrated in Appendix D, even
though, similarly to the generalized LSM theorem and LSM-
type theorem, there are some technicalities depending on the
chosen cluster. In particular, as any stable exact degeneracy
has to be symmetry protected, Eq. (32) strictly holds only if
the topologically degenerate ground states (that is degenerate
in the thermodynamic limit even in the presence of impurities
or lattice potential [70]) are related by magnetic translation
symmetry [see Eq. (D2) and Eq. (D3)]. Otherwise finite-size
splittings lead to a change of the algebra in Eq. (32), provided
the adiabatic flux insertion is slow compared to finite-size
gaps, which is not an issue in the thermodynamic limit. Since
the different states transform into each other, when inserting
flux to measure the Hall conductivity, the contribution of all
ground states has to be summed.

What happens in the CDW phase regime? In the limit
t → 0, V = 1 it is clear that CDW states do not transform
under a flux insertion and should hence be eigenstates of
both flux insertion operators, implying that the flux insertion
operators in Eq. (31) now commute. This already implies at
least D2 quasidegenerate ground states, compared to the D
ground states of the FQHE; see Appendix D. In addition, the
number of ground states also has to be an integer multiple of
q, according to Eq. (30). The quasidegeneracy turns into sets
of D exactly degenerate ground states if they are related by
translation, as then they transform under irreducible projective
representations DK

M of the translation group [8]. It should be
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noted that these degenerate states possess different crystalline
momenta, when expressed in the eigenbasis of either T̂ M

x
or T̂ M

y . This alone, however, does not indicate spontaneous
symmetry breaking. In the FQHE regime this difference in
momentum is carried by quasiparticles known as visons in the
context of quantum Hall physics [33,72]. Instead, in the CDW
phase regime there have to be D copies of each DK

M . In the case
that the many-body translation operators commute and states
transform under the usual one-dimensional irreducible repre-
sentations of the translation group, the symmetry protection
of the ground-state degeneracy is lifted and only maintained in
the thermodynamic limit. The ground states of the FQHE then
all carry the same momentum, whereas the CDW are again
characterized by different momenta [72].

C. Continuous space

So far only lattice Hamiltonians have been considered.
We close this section by touching briefly on free interacting
particles. The absence of a periodic lattice potential implies
continuous translation invariance in the infinite plane. On a
torus, following the argumentation leading to Eq. (13), a twist
angle θ can be transformed into any other twist angle by a
suitable translation. This property is independent of the cho-
sen sample dimensions so that the LSM-type theorem always
applies exactly. In fact, translation invariance implies that the
Chern numbers of each Landau level have to be equal to 1,
which can be seen in the following way. It is possible to divide
a torus, being pierced by N�0 unit flux quanta, into a grid of Nc

virtual plaquettes with a flux of p/q flux quanta per plaquette,
so that N�0 = Nc p/q. A filling factor of nLL occupied Landau
levels leads to an average particle density of

ρ = N�0 nLL

Nc
= p

q
nLL, (33)

particles per virtual plaquette. With coprime p, q and accord-
ing to Eq. (14) this immediately implies that

C − nLL = 0 mod q. (34)

Since this argument is independent of the partition of the
torus, Eq. (34) has to hold for all q, leading to C = nLL.

At sufficiently large long-range interactions, a quantum
Hall system can be expected to be driven into a Wigner crystal
phase with zero Hall conductance [73]. In case the classical
Wigner lattice does not contain an integer number of flux
quanta, even in the limit of strong coulomb interaction, finite
kinetic energy may cause the electrons to condense into stripe
or bubble patterns that may lead to further reduction of transla-
tion symmetry [74,75]. From the previous paragraph it follows
that either the number of ground states would have to be
infinite which can be ruled out for finite clusters or there has
to be a gapless excitation spectrum. This is realized, at least in
the low-energy sector, by Goldstone modes as a consequence
of the breakdown of continuous translation symmetry: In a
Wigner crystal electrons order periodically and hence possess
gapless phononlike excitations [76]. The stability of such a
charge ordering in the case of free particles depends on the
electrons being subject to a long-range interaction (especially
at finite temperature, where long range interaction provides
a loophole of the Hohenberg-Mermin-Wagner theorem [77]).

Indeed, in the case of the FQHE sufficiently short-ranged in-
teraction actually stabilizes the incompressible quantum Hall
liquid state [66,78].

It should also be noted that the breakdown of translation
invariance is a necessary but not sufficient criterium for a triv-
ial Hall conducting phase. Although Wigner crystallization,
where the crystallized electrons possess a trivial Hall con-
ductivity, is used to explain transitions from FQH phases to
reentrant IQH phases [79,80], nonzero Hall conductivity may
coexist with electrons forming crystalline order [73] and can
be caused by collective excitations, which is backed by exper-
imental data [81–83]. The existence of crystalline order itself
in quantum Hall systems is by now well established and has
been observed directly using high-resolution scanning tunnel-
ing microscopy [84]. Direct measurements of the Hall conduc-
tivity, however, are impeded by the presence of finite longi-
tudinal resistivity characteristic to Wigner crystal phases. Ex-
perimental evidence indicates that Wigner crystals are trivially
insulating if they are pinned by impurities [85]. As we have
demonstrated in Sec. V B, a periodic lattice potential can play
the same role, which comes to fruition in moiré systems [86].

VI. CONCLUSION AND OUTLOOK

In this paper we have studied topological phase transitions
of the interacting Hofstadter model from a Chern insulat-
ing to a trivially insulating charge-density-wave phase for
various flux quantum ratios and particle numbers. The con-
straint on the quantization of the Hall conductivity due to
LSM-type theorem, depending on translation symmetry that
in particular rule out a Chern-trivial phase, is circumvented
via spontaneous breaking of translation symmetry driven by
long-range interaction. Qualitative differences between the
inquired cluster geometries emerge depending on whether
they have to strictly obey the LSM-type theorem. On a large
class of clusters the topological phase transition occurs via a
symmetry protected level crossing with a jump of the charge
density wave structure factor indicating a discontinuous phase
transition into a topologically trivial CDW phase. Only on a
specific set of cluster geometries it is seen that a topologically
nontrivial phase is protected by a finite-size gap which, how-
ever, quickly goes to zero in the thermodynamic limit.

For future studies, it would be interesting to inquire inter-
acting quantum spin Hall phases subject to half integer flux
quanta, where LSM-type theorems also impose a constraint on
the Z2 invariant [87], in particular it is far less clear whether a
finite-size gap can stabilize a genuine topological many-body
phase, as the definition of the Z2 invariant often relies on field-
theoretic arguments or a Schmidt decomposition which can be
problematic in the case of quasidegeneracy. A tool that may
be more suited to study SSB for larger systems, even though
the subtleties of the lattice geometry may be lost, is DMRG,
where the obtained ground state usually spontaneously breaks
symmetries if the true ground state is quasidegenerate [88].
Finally, while the present study focuses on the Hofstadter
Hamiltonian as a popular toy model, in particular in the study
of cold-atom gases [18], our results may also be of value
for quantum Hall phases in Moiré superlattices, where the
flux quantum per unit cell can be of the order of a unit flux
quantum [89,90].
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APPENDIX A: PROOF OF THE HALL
CONDUCTIVITY CONSTRAINT

Here we outline how to deduce Eq. (1) and its many-body
generalization. The Chern number of Bloch states |
n(k)〉
occupying a gapped band is given by

Cn = − 1

2π

∫
BZ

dS∇k × An(k) (A1)

with the Berry connection

An(k) = i〈
n(k)|∇k|
n(k)〉. (A2)

It is possible to rewrite Eq. (A1) using Stokes’s theorem as
a line integral over the boundary of the Brillouin zone [41].
Then the wave function must be chosen to be smooth over the
entire Brillouin zone but cannot satisfy the boundary condi-
tion of the Brillouin zone if it has a nonzero Chern number.
For the Bloch states defined in the leadup to Eq. (8) we can
define a smooth gauge with the boundary conditions

|kx + 2π/q, ky〉 = |kx, ky〉
|kx, ky + 2π〉 = e−iqCkx |kx, ky〉. (A3)

Furthermore, we specify the wave functions to satisfy [7]

T̂ M
x |kx, ky〉 = e−itkxq|kx, ky − 2πϕ〉, (A4)

where the integer t will be model specific [in the case of the
Hofstadter model with only nearest-neighbor hopping, they
are given by a specific Diophantine equation [41] as a special
case of Eq. (1)]. We then identify

e−iqkx |kx, ky〉 = (
T M

x

)q|kx, ky〉 = e−itkxq2 |kx, ky − 2π p〉
= e−itkxq2−iC pqkx |kx, ky〉, (A5)

leading to

Cϕ − 1

q
= 0 mod 1. (A6)

If we do not occupy a single band, but many bands with a
number of particles per unit cell ρ, then Eq. (1) follows.

For many-body systems, Eq. (14) can be shown analo-
gously [35]. The only major difference is that the many-body
translation operators technically depend on twist angles re-
sulting in some additional gauge transformations in the proof.
For example,

T̂ M,θx
x c†

m,n

(
T̂ M,θx

x

)† = e−iθxδm,Nx e−2π iϕnc†
m+1,n

T̂
M,θy

y c†
m,n

(
T̂

M,θy
y

)† = e−iθyδn,Ny c†
m,n+1 (A7)

commute with the Hofstadter Hamiltonian in Eq. (10), pro-
vided Nx/y are integer multiples of q. In addition, while for

single particles on the infinite plane one can pick any(
T̂ M

x

)α
,
(
T̂ M

y

)β
(A8)

with αβ = q to define a set of Bloch vectors (where for
convenience one choses α = q, β = 1), in the many-body
case the translations that map one twist angle to another one
are determined by the cluster geometry. If translations in the
x-direction result according to Eq. (13) in α′ different twist
angles and translations in the y-direction result in β ′ different
twist angles, then Eq. (14) follows if α′β ′ = q. Otherwise for
α′β ′ < q one obtains a weaker quantization condition or none
in the case of α′ = β ′ = 1.

APPENDIX B: SINGLE-PARTICLE BAND STRUCTURES

The single-particle band structures of the Hofstadter
model are displayed in Fig. 9 along the high-symmetry
path �(0, 0) → X (π/q, 0) → M(π/q, π/q) → �(0, 0) of
the magnetic wallpaper group p4m′m′.

APPENDIX C: STATIC STRUCTURE FACTORS

Static structure factors of the Hofstadter model for ϕ, ρ =
1/5, 2/5 are displayed in Fig. 10.

APPENDIX D: GROUND STATES
UNDER FLUX INSERTION

In this Appendix we want to deduce Eq. (32) in the frac-
tional quantum Hall regime and discuss the consequences for
the CDW phase.

On a torus, a FQH phase has a D-fold quasidegenerate
ground state. Let the particle density be

ρ = n

qD
, (D1)

where n and D are coprime. We consider in the following only
non-LSM clusters with Nx = nxq and Ny = nyq. The algebra
of magnetic translation operators obeys

T̂ M
x T̂ M

y = e−2πϕiNe T̂ M
y T̂ M

x , (D2)

where

e−2πϕiNe = e−2π
p
q iNxNyρ = e−2π i

pnnx ny
D = e−2π i m

D (D3)

and we stipulate coprime m and D (note that this may not
always be possible depending on the flux quantum ratio and
particle number per unit cell, e.g., in the case of n = 1, q = 7
and D = 3). As a consequence, the ground states are exactly
degenerate. Under continuous flux insertion of a flux � during
a time T , say, without loss of generality in y direction, the
hoppings of the Hamiltonian change as

c†
m+1,ncm,n → c†

m+1,ncm,ne−i �
�0

1
Nx

t
T , (D4)

which is unitarily equivalent to a twisted boundary of
�t/�0T . The form of Eq. (D4) has the advantage that it leaves
the Hamiltonian translation invariant, i.e.,[

T̂ M
α , Ĥ

(
�t

T

)]
= 0, (D5)

where here and in the following α will denote either x or y.
Note that the insertion of a flux quantum �0 does not produce
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(a) (b)

FIG. 9. Band spectra of the Hofstadter model for (a) ϕ = 1/5 and (b) ϕ = 2/5.

a measurable Aharonov-Bohm phase, as it is periodic in �0.
Consequently, Ĥ (�0) and Ĥ (0) are equivalent up to a gauge
transformation.

We define the “large gauge transformation” [33]

Ûα = exp

⎛
⎝−2π i

Lα

∑
m,n

rαc†
m,ncm,n

⎞
⎠, (D6)

where rα is the α component of (m, n). It is easy to verify that
Ĥ (�0) = ÛαĤ (0)Û †

α . We can now define the operator

˜̂Fα (�0) = Û †
α F̂α (�0) (D7)

with the usual flux insertion operator

F̂α (�) = T̂ exp

(
− i

h̄

∫ T

0
dtĤ

(
�t

T

))
(D8)

and time-ordering operator T̂ . Consequently, ˜̂Fα (�0) is to be
interpreted as an operator that introduces a flux quantum �0

adiabatically through the action of F̂α (�0) for large-enough T ,
and then the gauge transformation with Û †

α converts Ĥ (�0) to

the original Hamiltonian Ĥ (0). Summarizing, ˜̂Fα (�0) maps
a ground state of the Hamiltonian to a ground state of the
Hamiltonian in the same gauge.

In the presence of translation invariance we can say more
about the algebra of ˜̂Fα (�0). If translations commute with the
Hamiltonian, then any translation will commute with F̂α (�0);
on the other hand, by defining ᾱ = y if α = x and ᾱ = x if
α = y

T̂ M
α Ûα = ÛαT̂ M

α exp (2π iρNᾱ ) = ÛαT̂ M
α exp

(
2π i

nnᾱ

D

)

(D9)

with coprime nnᾱ and D according to Eq. (D3) and

T̂ M
α Uᾱ = UᾱT̂ M

α . (D10)

This in turn implies

T̂ M
α

˜̂Fα (�0) = ˜̂Fα (�0)T̂ M
α exp

(
−2π i

nnα

D

)
, (D11)

whereas T̂ M
α and ˜̂Fᾱ (�0) commute.

Now, let |
〉 be an eigenstate of T M
y ,

T̂ M
y |
〉 = e−iKy |
〉. (D12)

Then

T̂ M
y

(
T̂ M

x |
〉) = e2π i m
D e−iKy

(
T̂ M

x |
〉), (D13)

but also

T̂ M
y ( ˜̂Fy(�0)−pny |
〉) = e2π i m

D e−iKy ( ˜̂Fy(�0)−pny |
〉). (D14)

Since all D states carry a unique Ky momentum, and an adi-
abatic flux insertion can only map a ground state to another
ground state, it follows that

˜̂Fy(�0)−pny |
〉 ∝ T̂ M
x |
〉 (D15)

and
˜̂Fx(�0)|
〉 ∝ |
〉. (D16)

Conversely one finds in the eigenbasis of T̂ M
x

T̂ M
x ( ˜̂Fx(�0)−pnx |
〉) = e2π i m

D e−iKx ( ˜̂Fx(�0)−pnx |
〉) (D17)

and ˜̂Fx(�0) is now diagonal. This implies a similar trans-
formation behavior between translations and flux insertion
according to

˜̂Fy(�0)−pny ∼= T̂ M
x

˜̂Fx(�0)−pnx ∼= (
T̂ M

y

)†
.

(D18)

As a consequence we find for the commutation relation be-
tween the two flux insertion operators

˜̂Fx(�0)pnx ˜̂Fy(�0)pny = e−2π i m
D ˜̂Fy(�0)pny ˜̂Fx(�0)pnx (D19)

or
˜̂Fx(�0) ˜̂Fy(�0) = e2π i n f

D ˜̂Fy(�0) ˜̂Fx(�0), (D20)

where f is some natural number coprime to D, so that f p =
1 mod D, which exists according to Bézout’s identity.

How do the above results change in a CDW phase? In that
case, the symmetry-broken states should be eigenstates of flux
insertion operations as argued in Sec. V A, hence

˜̂Fα (�0)|
〉 = eiγα |
〉. (D21)
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FIG. 10. Static structure factors of the Hofstadter model on 5 × 5 clusters shortly before (left panels) and after (right panels) the phase
transition. Ne = 5 and ϕ = 1/5 [(a) and (b)], Ne = 5 and ϕ = 2/5 [(c) and (d)], Ne = 10 and ϕ = 1/5 [(e) and (f)], and Ne = 10 and ϕ = 2/5
[(g) and (h)].
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We can transform |
〉 into a state orthogonal to it by
translation:

˜̂Fα (�0)
(
T̂ M

x

)lx (T̂ M
y

)ly |
〉

= exp

(
2π i

nnᾱlα
D

)
eiγα

(
T̂ M

x

)lx (T̂ M
y

)ly |
〉 (D22)

Therefore, there must be at least D2 orthogonal quasidegener-
ate CDW states. To be more precise, if

(
T̂ M

α

)D|
〉 ∝ |
〉, (D23)

then the CDW states transform exactly like single particles in
a D × D cluster with periodic boundary conditions and m/D
flux quanta per unit cell. It is well known that these states
belong to DK=0

M , the irreducible projective representation of
the translation group at K = 0. In general K distinguishes
all different possible projective representations of the trans-
lation group belonging to a cluster, just like the well-known

one-dimensional irreducible representations of the translation
group [8]. Assuming (

T̂ M
α

)Dδα |
〉 ∝ |
〉 (D24)

with the smallest possible δα , then all of the CDW states be-
long to D copies of DK

M for each Kα = 0, 2π/δα, . . . , 2π (δα −
1)/δα . Finally, we want to make two remarks. In the case
δα = 1 (this could for example be realized for q = D = 3), all
CDW states transform under the same projective irrep DK=0

M
which does not contradict the notion of symmetry breaking,
as the projective irreducible representations of the translation
group are higher dimensional. Second, the minimal required
number of quasidegenerate ground states in the CDW regime
is higher than would be the case for ordinary translation
symmetry (without an external magnetic field), where both
the CDW and the topologically ordered phase can have the
same number of ground states, providing no clear sign for
topological order.
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[73] Z. Tešanović, F. Axel, and B. I. Halperin, “Hall crystal” versus
Wigner crystal, Phys. Rev. B 39, 8525 (1989).

[74] R. Côté and H. A. Fertig, Collective modes of quantum Hall
stripes, Phys. Rev. B 62, 1993 (2000).

[75] M. M. Fogler, A. A. Koulakov, and B. I. Shklovskii, Ground
state of a two-dimensional electron liquid in a weak magnetic
field, Phys. Rev. B 54, 1853 (1996).

[76] T. Banks and B. Zhang, On the low density regime of homoge-
neous electron gas, Ann. Phys. 412, 168019 (2020).

[77] B. I. Halperin, On the Hohenberg–Mermin–Wagner theorem
and its limitations, J. Stat. Phys. 175, 521 (2018).

[78] S. A. Trugman and S. Kivelson, Exact results for the fractional
quantum Hall effect with general interactions, Phys. Rev. B 31,
5280 (1985).

[79] V. Shingla, S. A. Myers, L. N. Pfeiffer, K. W. Baldwin, and
G. A. Csáthy, Particle-hole symmetry and the reentrant integer
quantum Hall Wigner solid, Commun. Phys. 4, 204 (2021).

[80] Y. Liu, C. G. Pappas, M. Shayegan, L. N. Pfeiffer, K. W. West,
and K. W. Baldwin, Observation of reentrant integer quantum
Hall states in the lowest Landau level, Phys. Rev. Lett. 109,
036801 (2012).

[81] R. Narevich, G. Murthy, and H. A. Fertig, Hamiltonian theory
of the composite-fermion Wigner crystal, Phys. Rev. B 64,
245326 (2001).

[82] H. Yi and H. A. Fertig, Laughlin-Jastrow-correlated Wigner
crystal in a strong magnetic field, Phys. Rev. B 58, 4019 (1998).

[83] X. Zhu, P. B. Littlewood, and A. J. Millis, Sliding motion of
a two-dimensional Wigner crystal in a strong magnetic field,
Phys. Rev. B 50, 4600 (1994).

[84] Y.-C. Tsui, M. He, Y. Hu, E. Lake, T. Wang, K. Watanabe, T.
Taniguchi, M. P. Zaletel, and A. Yazdani, Direct observation of
a magnetic-field-induced Wigner crystal, Nature (London) 628,
287 (2024).

[85] P. T. Madathil, K. A. Villegas Rosales, Y. J. Chung, K. W. West,
K. W. Baldwin, L. N. Pfeiffer, L. W. Engel, and M. Shayegan,
Moving crystal phases of a quantum Wigner solid in an ultra-
high-quality 2D electron system, Phys. Rev. Lett. 131, 236501
(2023).

[86] B. Padhi, R. Chitra, and P. W. Phillips, Generalized Wigner
crystallization in moiré materials, Phys. Rev. B 103, 125146
(2021).

[87] J. Wu, T.-L. Ho, and Y.-M. Lu, Symmetry-enforced quantum
spin Hall insulators in π -flux models, arXiv:1703.04776 [cond-
mat.str-el].

[88] S. Jiang, D. J. Scalapino, and S. R. White, Ground-state phase
diagram of the t − t ′ − j model, Proc. Natl. Acad. Sci. USA
118, 2109978118 (2021).

[89] C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao,
J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K.
Watanabe, K. L. Shepard, J. Hone, and P. Kim, Hofstadter’s but-
terfly and the fractal quantum Hall effect in moiré superlattices,
Nature (London) 497, 598 (2013).

[90] M. Sánchez Sánchez and T. Stauber, Correlated phases and
topological phase transition in twisted bilayer graphene at one
quantum of magnetic flux, Phys. Rev. B 109, 195167 (2024).

[91] J. Zhao, M. Thakurathi, M. Jain, D. Sen, and J. K. Jain, Density-
functional theory of the fractional quantum Hall effect, Phys.
Rev. Lett. 118, 196802 (2017).

045107-17

https://doi.org/10.1038/s41567-019-0670-x
https://doi.org/10.1038/s41586-021-03685-y
https://doi.org/10.1016/j.aop.2004.05.006
https://doi.org/10.1103/PhysRevB.95.241103
https://doi.org/10.1103/PhysRevB.104.184501
https://doi.org/10.1103/PhysRevA.76.023613
https://doi.org/10.1103/PhysRevB.104.125107
https://doi.org/10.1103/PhysRevLett.96.060601
https://doi.org/10.1103/PhysRevB.41.9377
https://doi.org/10.1103/PhysRevLett.55.2095
https://doi.org/10.1103/PhysRevB.70.245118
https://doi.org/10.1103/PhysRevB.39.8525
https://doi.org/10.1103/PhysRevB.62.1993
https://doi.org/10.1103/PhysRevB.54.1853
https://doi.org/10.1016/j.aop.2019.168019
https://doi.org/10.1007/s10955-018-2202-y
https://doi.org/10.1103/PhysRevB.31.5280
https://doi.org/10.1038/s42005-021-00709-x
https://doi.org/10.1103/PhysRevLett.109.036801
https://doi.org/10.1103/PhysRevB.64.245326
https://doi.org/10.1103/PhysRevB.58.4019
https://doi.org/10.1103/PhysRevB.50.4600
https://doi.org/10.1038/s41586-024-07212-7
https://doi.org/10.1103/PhysRevLett.131.236501
https://doi.org/10.1103/PhysRevB.103.125146
https://arxiv.org/abs/1703.04776
https://doi.org/10.1073/pnas.2109978118
https://doi.org/10.1038/nature12186
https://doi.org/10.1103/PhysRevB.109.195167
https://doi.org/10.1103/PhysRevLett.118.196802

