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The upconversion luminescence (UCL) assisted by inter-ion energy transfer has received widespread attention.
The inter-ion energy transfer microparameters are the fundamental physical quantities determining the UCL
process. However, the experimental exploration of the microparameters has not been reported due to challenges
in dynamics models. Here, we report on a universal periodic lattice microscopic rate equation model for upcon-
version dynamics and determination of the microparameters of energy transfer between ions. In periodic lattices,
we propose a processing method for ionic interactions, improving the accuracy of the microscopic model. The
random doping of luminescent ions in host lattices often leads to randomness in lattice geometric modeling.
Therefore, based on the proposed evaluation criterion for the randomness of lattice modeling, we develop a
multiple modeling method for periodic small-scale lattices to replace single modeling of large-scale lattices.
This eliminates the influence of randomness in lattice geometric modeling on microscopic model calculations,
significantly reducing the computational complexity of the microscopic model (reducing computational time by
three orders of magnitude) while ensuring model accuracy. Accurate correlation is actualized from micro-ion
interactions to macroluminescence. Using this microscopic model and combined with experimental data on
luminescence decay curves at multiple energy levels and ion doping concentrations, 19 inter-ion energy transfer
microparameters of Er3+ ions in β-NaYF4:Er3+ are determined.
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I. INTRODUCTION

Upconversion luminescence (UCL) is a nonlinear optical
process that converts the excitation of low-energy photons into
the emission of high-energy photons [1–4]. Lanthanide ion-
doped UCL materials have been widely used in biomedicine
[5–11], optical imaging [3,5,12–18], security and anticounter-
feiting [13,19–21], and data storage [12,13,21,22]. Inter-ion
energy transfer is the driving force for continuous UCL
[17,20,23,24], and the inter-ion energy transfer microparam-
eters are the fundamental physical quantities which are of
great significance for quantitatively predicting the UCL phe-
nomenon and revealing the upconversion mechanisms.

However, due to the inherent limitations of existing UCL
dynamic models in application, accurately determining the
inter-ion energy transfer microparameters based on the mod-
els has always been a challenge. The macroscopic rate
equation model is a classic statistical model characterizing
UCL [5,17,18,24–28]. However, it is limited by assumptions
of infinitely fast energy migration between ions and uniform
ion distribution [29]. Inokuti and Hirayama [30], Yokota and
Tanimoto [31], Martın et al. [32], and Zusman [33] introduced
dynamics models with analytical solutions for luminescence
systems with simple energy levels, but they cannot be used
for the nonlinear upconversion systems [34]. The microscopic
rate equation model [4,35,36] and the Monte Carlo method
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[13,37–39] can directly simulate the ion interactions in up-
conversion systems. However, the computational complexity
of large-scale ion clusters involving multiple energy levels,
physical processes, and time scales is very large, and there are
great difficulties in accurate calculations.

In this paper, we propose a universal and precise UCL
dynamics microscopic model with high computational effi-
ciency and accuracy, which can be used to determine the
microparameters of energy transfer between ions. In tradi-
tional microscopic models, to avoid a significant increase
in computational complexity, small-scale lattice geometric
modeling is usually used. However, we found that this will
lead to the neglect of lattice edge and size effects, result-
ing in substantial errors. By comprehensively modeling the
energy transfer processes in periodic lattices, we propose a
processing method for ionic interactions in periodic lattices
to improve the accuracy of the microscopic model. Based
on the proposed evaluation criterion for the randomness of
lattice geometric modeling, we establish a multiple model-
ing method for periodic small-scale lattices to eliminate the
influence of randomness in lattice modeling on microscopic
model calculations. This reduces the computational complex-
ity of the microscopic model while ensuring its accuracy.
Finally, utilizing our microscopic model, the energy transfer
microparameters between Er3+ ions in the β-NaYF4:Er3+
six-level system are determined by measuring the lumines-
cence decay curves at different energy levels and ion doping
concentrations and solving the inverse problem of this micro-
scopic model. From physical and mathematical perspectives,
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accurate correlation is actualized from micro-ion interactions
to macroluminescence. In this paper, we provide important
theoretical and computational tools for the regulation and
design of upconversion systems and promote the innovative
applications of UCL.

II. LIMITATIONS OF TRADITIONAL MICROSCOPIC
RATE EQUATION MODEL

The key to the microscopic rate equation model is to model
the interactions among many ions. By considering the ionic
interactions within the modeled lattice, the traditional micro-
scopic rate equation model (TMI) [4,35,36] can be used for
the microscopic characterization of inter-ion energy transfer
in upconversion systems. Taking the β-NaYF4:Er3+ system
as an example, the modeling steps of TMI are as follows.
First, the lattice geometric modeling is performed to obtain the
spatial coordinates rei (i = 1, 2, …, n) of Er3+ ions ei (i = 1,
2, …, n) in the modeled lattice E. The distance between ion ei

and e j is rei,e j = |re j − rei |. Secondly, considering the ionic
interactions within lattice E, the rate of the change of the
population probability pei

k of ion ei at energy level k over time
t is represented as

d pei
k

dt
= −

∑
k∗

(wa,kk∗ + wr,kk∗ + wnr,kk∗ ) pei
k

+
∑

k∗
(wa,k∗k + wr,k∗k + wnr,k∗k ) pei
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−
∑

m

⎡
⎣∑

s

⎛
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km
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d (s)
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pe j
m

⎞
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⎤
⎦

+
∑
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⎡
⎣∑

s

⎛
⎝C(s)

k∗m∗
∑
j �=i

d (s)
ei,e j

pe j
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⎞
⎠ pei
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⎤
⎦, (1)

where wa,kk∗ , wr,kk∗ , and wnr,kk∗ represent the stimulated
absorption rate, radiative relaxation rate, and multiphonon
relaxation rate for the single-ion process k → k∗, respectively;
C(s)

km is the energy transfer microparameter for the energy
transfer process k + m → k∗ + m∗; s = 6, 8, 10 represent
dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole
interactions, respectively; and d (s)

ei,e j
is the distance coefficient

between ions ei and e j :

d (s)
ei,e j

=
{

0, i = j,
r−s

ei,e j
, i �= j. (2)

The rate of the change of the population probability matrix
pk (E ) for all Er3+ ions in lattice E at energy level k over time
t is represented as

dpk (E )

dt
= −

∑
k∗

(wa,kk∗ + wr,kk∗ + wnr,kk∗ )pk (E )

+
∑

k∗
(wa,k∗k + wr,k∗k + wnr,k∗k )pk∗ (E )

FIG. 1. (a) The relationship between the time required to solve
the traditional microscopic rate equations and the number n of Er3+

ions in lattice E. The CPU is Intel Core i7-12700H. (b) At a small
lattice modeling scale, the luminescence decay curves obtained by
solving the traditional microscopic rate equations based on the lattice
geometric modeling at the same scale. The red, green, and blue lines
represent the luminescence decay curves obtained through lattice
geometric modeling at the same scale and solving the microscopic
rate equations for the first, second, and third times, respectively. (c)
At a large lattice modeling scale, the luminescence decay curves
obtained by solving the traditional microscopic rate equations based
on the lattice geometric modeling at the same scale. The solid line,
squares, and crosses represent the luminescence decay curves ob-
tained through lattice geometric modeling at the same scale and
solving the microscopic rate equations for the first, second, and third
times, respectively. In the subgraphs (b) and (c), the laser excitation
occurs within the time interval of −15 ms � t � 0 ms (not shown in
the figure).

−
∑

m

[∑
s

(
C(s)

km D(s)
E−E

)
pm(E ) ∗ pk (E )

]

+
∑
k∗m∗

[∑
s

(
C(s)

k∗m∗ D(s)
E−E

)
pm∗ (E ) ∗ pk∗ (E )

]
, (3)

where pk (E ) = [pe1
k

pe2
k · · · pen

k ]T; * denotes the
Hadamard product of the matrices; and D(s)

E−E is the
distance coefficient matrix between Er3+ ions in lattice
E, D(s)

E−E = [d (s)
ei,e j

]. Equation (3) is the complete form of TMI.
The relationship between the time required to solve the

traditional microscopic rate equations and the number n of
Er3+ ions in lattice E is shown in Fig. 1(a). As the number n
of Er3+ ions in lattice E increases, the computational time sig-
nificantly increases nonlinearly. To ensure the computational
feasibility of solving the forward and inverse problems of the
model, it is necessary to reduce the scale n of lattice geo-
metric modeling, which is a conventional strategy. However,
using small-scale lattice geometric modeling in TMI has the
following drawbacks:

045105-2



PERIODIC LATTICE MICROSCOPIC RATE EQUATION … PHYSICAL REVIEW B 110, 045105 (2024)

(1) The randomness of lattice geometric modeling is rel-
atively large. In the lattice geometric modeling of TMI, the
random doping of Er3+ ions in the β-NaYF4 lattice leads
to randomness in lattice geometric modeling. If the scale of
lattice geometric modeling is not large enough, the modeling
randomness will not be small. This leads to the modeled lattice
E not accurately representing the actual spatial distribution
of Er3+ ions. Under the influence of randomness in lattice
modeling, there is a significant deviation in the calculation
results of the microscopic rate equations [Fig. 1(b)]. To avoid
this phenomenon, it is necessary to increase the scale of lattice
modeling [Fig. 1(c)]. However, when n increases from 300
to 3300, the computational time increases by three orders of
magnitude.

(2) The bias caused by ignoring the lattice edge and size
effects is significant. (i) Analysis of the lattice edge effect:
Figure 2(a) qualitatively illustrates the distribution of Er3+
ions in space. The Er3+ ion numbered 0 is located at the edge
of lattice E. In TMI, only the ionic interactions in lattice E
are considered. Although the Er3+ ions numbered 5, 6, 7,
and 8 are located very close to the Er3+ ion numbered 0, their
interactions with the Er3+ ion numbered 0 are neglected due to
their location outside lattice E (i.e., neglecting the lattice edge
effect). When the scale of lattice modeling is small, the ratio
nedge/n is large (nedge is the number of Er3+ ions located at the
edge of lattice E), and the deviation caused by neglecting the
lattice edge effect is significant. (ii) Analysis of lattice size
effect: As shown in Fig. 2(b), there is a correlation between
the number neff of ions (blue) interacting with the investigated
ion (red) and the lattice modeling scale n, neff = n − 1. When
the lattice modeling scale n is small, neff is also small, leading
to a significant underestimation of the ionic interactions (i.e.,
the deviation caused by neglecting the lattice size effect is
significant). (iii) The impact of ignoring the lattice edge and
size effects: The periodic lattice microscopic rate equation
model (PMI, see Sec. III) proposed in this paper consideres
both the lattice edge effect [Fig. 2(c)] and the lattice size effect
[Fig. 2(d)]. Using TMI and PMI, the macroscopic energy-
transfer rates W (6)

et,22,n−es and W (6)
et,22,es corresponding to the

two models for the 4I13/2 + 4I13/2 → 4I15/2 + 4I9/2 process are
respectively calculated [Fig. 2(e)] (see Sec. A in the Supple-
mental Material [40] for details of calculations). When lattice
E contains 12, 12, and 10 β-NaYF4 unit cells in the x, y, and
z directions, neglecting lattice edge and size effects results in
an underestimation of approximately 12% in the macroscopic
energy-transfer rate.

Therefore, under the constraints of factors such as com-
putational time, randomness of lattice geometric modeling,
lattice edge effect, and lattice size effect, TMI struggles to
describe the microscopic interactions between ions efficiently
and accurately.

III. PERIODIC LATTICE MICROSCOPIC RATE
EQUATION MODEL

To overcome the shortcomings of TMI, we propose the
periodic lattice microscopic rate equation model (PMI), which
has high computational efficiency and wide applicability. This
proposed model considers the lattice edge and size effects,
greatly improving computational accuracy. We establish an
evaluation criterion for the randomness of lattice modeling.
Based on this, a multiple modeling method for periodic small-
scale lattices is proposed to replace the single modeling of
large-scale lattices. This eliminates the influence of random-
ness in lattice modeling on microscopic model calculations.
On the premise of ensuring model accuracy, the computational
time can be significantly reduced. Taking the β-NaYF4:Er3+
six-level system as an example, we will introduce this micro-
scopic model work in this section.

A. Processing method for ionic interactions in periodic lattices

We take β-NaYF4:Er3+ microcrystalline particle U with
a size of 1–2 µm (Fig. 3) as an example to illustrate the
processing method for ionic interactions in periodic lattices.
First, the lattice geometric modeling is performed to obtain
the spatial coordinates rei (i = 1, 2, …, n) of Er3+ ions ei

(i = 1, 2, …, n) in the modeled lattice E (see Sec. III B and
Sec. B in the Supplemental Material [40] for lattice modeling
methods). Secondly, periodic lattice modeling is performed
by translating lattice E along the vectors Mg (g = 1, 2, …)
to form a series of periodic lattices Vg. Particle U can be
seen as composed of lattice E and its periodically transla-
tional lattices Vg. The spatial coordinate of the ion vgi in Vg

is rvgi = rei + Mg, and the distance between ions ei and vgj is
rei,vgj = |re j − rei + Mg|.

Considering the interactions between the Er3+ ion ei in
lattice E and Er3+ ions (e j , vgj) in all lattices of the micro-
crystalline particle U, the rate of the change of the population
probability pei

k of ion ei at energy level k over time t is repre-
sented as

d pei
k

dt
= −

∑
k∗

(wa,kk∗ + wr,kk∗ + wnr,kk∗ ) pei
k +

∑
k∗

(wa,k∗k + wr,k∗k + wnr,k∗k ) pei
k∗

−
∑

m

⎡
⎣∑

s

⎛
⎝C(s)

km

∑
j �=i

d (s)
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pe j
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⎞
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k

⎤
⎦ +

∑
k∗m∗

⎡
⎣∑

s

⎛
⎝C(s)
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∑
j �=i

d (s)
ei,e j

pe j

m∗

⎞
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⎤
⎦

−
∑
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⎩

∑
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⎡
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∑
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⎛
⎝∑

j

d (s)
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⎞
⎠

⎤
⎦ pei
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⎫⎬
⎭ +

∑
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⎧⎨
⎩

∑
s

⎡
⎣C(s)

k∗m∗
∑

g

⎛
⎝∑

j

d (s)
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⎞
⎠

⎤
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⎫⎬
⎭, (4)
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where d (s)
ei,e j

and d (s)
ei,vgj

are the distance coefficients between ions ei and e j and between ions ei and vgj , respectively, and d (s)
ei,vgj

=
r−s

ei,vgj
. The fifth and sixth items on the right side of Eq. (4) represent the interactions between Er3+ ion ei in lattice E and Er3+

ion vgj in lattice Vg, i.e., the interaction term considering the lattice edge and size effects.
Based on Eq. (4), the rate of the change of the population probability matrix pk (E ) at energy level k for all Er3+ ions in lattice

E over time t is represented as

dpk (E )

dt
= −

∑
k∗

(wa,kk∗ + wr,kk∗ + wnr,kk∗ )pk (E ) +
∑

k∗
(wa,k∗k + wr,k∗k + wnr,k∗k )pk∗ (E )

−
∑

m

[∑
s

(
C(s)

km D(s)
E−E

)
pm(E ) ∗ pk (E )

]
+

∑
k∗m∗

[∑
s

(
C(s)

k∗m∗ D(s)
E−E

)
pm∗ (E ) ∗ pk∗ (E )

]

−
∑

m

⎧⎨
⎩

∑
s

⎡
⎣C(s)

km

∑
g

(
D(s)

E−Vg
pm(Vg)

)⎤
⎦ ∗ pk (E )

⎫⎬
⎭ +

∑
k∗m∗

⎧⎨
⎩

∑
s

⎡
⎣C(s)

k∗m∗
∑

g

(
D(s)

E−Vg
pm∗ (Vg)

)⎤
⎦ ∗ pk∗ (E )

⎫⎬
⎭, (5)

where pm(Vg) is the population probability matrix for all Er3+ ions in lattice Vg at energy level m; D(s)
E−E is the distance coefficient

matrix between Er3+ ions in lattice E, D(s)
E−E = [d (s)

ei,e j
]; and D(s)

E−Vg
is the distance coefficient matrix between Er3+ ions in lattice

E and Er3+ ions in lattice Vg, D(s)
E−Vg

= [d (s)
ei,vgj

].
When distance |Mg| between lattice E and translational lattice Vg is greater than the lattice critical distance lc (see Sec. C

in the Supplemental Material [40] for the determination of lc, lc = 50a, a is the lattice constant of β-NaYF4, a = 5.969 Å),
the elements d (s)

ei,vgj
in the matrix D(s)

E−Vg
can be considered equal to |Mg|−s. Meanwhile, the elements in the matrix pm(Vg) can

be replaced by the mean Pm(Vg) of all elements, Pm(Vg) = ∑n
i=1

pvgi
m /n. Since lattice Vg is the same as lattice E (regardless of

whether |Mg| is greater than lc), pm(Vg) = pm(E ). Equation (5) is further rewritten as

dpk (E )

dt

= −
∑
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∑
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⎠
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⎞
⎠

⎤
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(6)

where n is the number of Er3+ ions in lattice E.
Equation (6) represents the final form of PMI. The com-

plete and specific form of the equations in the β-NaYF4:Er3+
six-level system can be found in Sec. D in the Supplemental
Material [40].

B. Periodic lattice modeling and calculation methods

1. Evaluation criterion for randomness of lattice modeling

To theoretically eliminate the influence of randomness of
lattice modeling, the periodic translation of lattice E repre-
sents the microcrystalline particle U, which needs to meet
two conditions: (i) the physical fields (i.e., the potential fields
formed by the interaction between ions) where lattice E and
translational lattice Vg are located are the same. (ii) the spa-
tial distribution of Er3+ ions in lattice E is the same as that
in translational lattice Vg. Because the size of particle U is
much larger than that of lattice E, the position difference

between lattices E and Vg can be ignored, thus condition
(i) holds.

Under the condition that the size of the microcrystalline
particles and the doping concentration cEr of Er3+ ion are
known, the number nU,total of Y3+ and Er3+ ions in particle
U and the number nU of Er3+ ions in particle U are deter-
mined. After setting the scale of lattice geometric modeling,
the numbers nx, ny, and nz of unit cells contained in lattice E
in the x, y, and z directions are determined. As a result, the
number nE ,total of Y3+ and Er3+ ions in lattice E is determined
by nE ,total = 1.5nxnynz (one β-NaYF4 unit cell contains 1.5
Y3+ ions). Space � with the same shape and size as lattice E
is randomly selected in particle U. In the doping process, Er3+
ions randomly replace Y3+ ions. Consequently, the number X
of Er3+ ions in space � is a random variable following the
hypergeometric distribution X ∼ H (nU ,total, nU , nE ,total ). The
doping concentration Z (Z = X/nE ,total) of Er3+ ions in space
� is also a random variable.
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FIG. 2. Schematic diagram of the difference between the traditional microscopic rate equation model (TMI) and the periodic lattice
microscopic rate equation model (PMI) proposed in this paper (see Sec. III). TMI only considers the interactions between Er3+ ions in lattice
E, neglecting both the lattice edge and size effects. (a) In TMI, the interactions between the ion at the edge of lattice E (numbered 0) and ions
outside lattice E (numbered 5, 6, 7, and 8) are neglected. (b) In TMI, the number neff of ions (blue) interacting with the investigated ion (red) is
limited by the lattice modeling scale n, and neff = n − 1. By periodically translating the modeled lattice E, the PMI proposed in this paper (see
Sec. III) considers not only the interactions between Er3+ ions in lattice E but also the interactions between Er3+ ions in lattice E and Er3+ ions
in translational lattices Vg, correctly considering lattice edge and size effects. (c) In PMI, the interactions between the ion at the edge of lattice
E (numbered 0) and ions outside lattice E (numbered 5, 6, 7, and 8) are considered. (d) In PMI, the number neff of ions (blue) interacting with
the investigated ion (red) is not limited by the lattice modeling scale n, and neff = nU − 1 (nU is the number of Er3+ ions in the β-NaYF4:Er3+

microcrystalline particle, nU � n). In the subgraphs (a)–(d), the interaction between the blue and red ions is considered, while the interaction
between the gray and red ions is neglected. (e) The impact of neglecting lattice edge and size effects on the macroscopic energy-transfer rate.
W (6)

et,22,n−es and W (6)
et,22,es represent the macroscopic energy-transfer rates neglecting and considering the lattice edge and size effects, respectively.

Calculated under the conditions of 10% Er3+ ion doping concentration, excitation power density of 338.6 W/m2, and excitation time of 15 ms.
The numbers nx , ny, and nz of β-NaYF4 unit cells in lattice E in the x, y, and z directions are 12, 12, and 10, respectively. The laser excitation
occurs within the time interval of −15 ms � t � 0 ms (not shown in the figure).

We use the relative standard deviation rsd(Z) of Z as the cri-
terion factor to quantify the randomness of lattice geometric

FIG. 3. The modeling process of the periodic lattice microscopic
rate equation model. rei , re j and rvgi are coordinate vectors of ions ei,
e j and vgi, respectively. rei,vgj is the distance between ion ei and ion
vgj . Mg is the vector from lattice E to lattice Vg.

modeling. The criterion factor rsd(Z) can be expressed as

rsd(Z ) =
[

(nU ,total − nU )(nU ,total − nE ,total )
nE ,total nU (nU ,total −1)

]1/2

. (7)

As shown in Fig. 4(a), with the increase of the number nE ,total

of Y3+ and Er3+ ions in lattice E, the random fluctuation
magnitude of Z decreases, and rsd(Z) decreases.

What we need to pay attention to is the specific value of
the criterion factor, so that the influence of lattice modeling
randomness on microscopic model calculations can be ig-
nored. Therefore, under different rsd(Z) conditions of 18.07%,
5.72%, and 1.43%, the microscopic rate equations for multiple
energy levels are solved, as shown in Figs. 4(b)–4(d). Namely,
at each rsd(Z) (i.e., the same nE ,total), lattice geometric model-
ing is randomly performed three times, and based on three sets
of obtained spatial distributions of Er3+ ions, the microscopic
rate equations are solved, respectively. When rsd(Z) decreases
from 18.07% to 1.43%, the luminescence decay curves of
each energy level obtained from these three random lattice
modeling schemes tend to be the same, reducing the ran-
domness of lattice geometric modeling. It can be considered
that, when rsd(Z) < 1.5% [Fig. 4(d)], the luminescence decay
curves are very close to each other, indicating that the ran-
domness of lattice geometric modeling on microscopic model
calculations is very small and can be ignored. Therefore, this
ensures that the doping concentration Z of Er3+ ions in space
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FIG. 4. (a) The curve of the doping concentration Z of Er3+ ions
in space � vs the number nE ,total of Y3+ and Er3+ ions in lattice E.
The calculated luminescence decay curves of each energy level under
different rsd(Z): (b) rsd(Z) = 18.07%, (c) rsd(Z) = 5.72%, and (d)
rsd(Z) = 1.43%. The solid lines, squares, and crosses represent the
luminescence decay curves obtained by lattice geometric modeling
at the same scale and solving the microscopic rate equations for the
first, second, and third times, respectively. The laser excitation occurs
within the time interval of −15 ms � t � 0 ms (not shown in the
figure).

� is approximately constant, meeting the requirement of
condition (ii).

In summary, the evaluation criterion of rsd(Z) < 1.5% is a
sufficient criterion that meets the randomness requirement of
lattice modeling. When this criterion is satisfied, the influence
of lattice modeling randomness on equation model solving
can be ignored.

2. Method for multiple modeling of periodic small-scale lattices

Based on the evaluation criterion for randomness of lattice
modeling, we establish a multiple modeling method for peri-
odic small-scale lattices in this section. This method reduces
the computational complexity of the model while ensuring ac-
curacy. In the particle U, f spaces �i (i = 1, 2, …, f ) with the
same shape and size as lattice E are randomly selected. The
number Xi and the doping concentration Zi (Zi = Xi/nE ,total)
of Er3+ ions in �i are random variables. The relative stan-
dard deviation rsd(Z’) of the average doping concentration Z’
(Z ′ = ∑ f

i=1 Zi/ f ) of Er3+ ions in the spaces �i (i = 1, 2, …,
f ) can be expressed as

rsd(Z ′) =
[

(nU ,total − nU )(nU ,total − nE ,total )

f nE ,total nU (nU ,total −1)

]1/2

. (8)

It is obvious that increasing f can reduce nE ,total while
keeping rsd(Z’) constant. As shown in Fig. 5(a), when the
evaluation criterion of rsd(Z’) < 1.5% is met, the computa-
tional time and the memory usage significantly decrease with

FIG. 5. (a) When rsd(Z’) is constant and <1.5%, the variation of
computational time and memory usage with the number n of Er3+

ions in lattice E and the number f of modeling repetitions. (b) When
rsd(Z’) is constant and <1.5%, the calculated luminescence decay
curves under different n and f . The solid lines represent n = 4050
( f = 1), crosses n = 1080 ( f = 4), squares n = 470 ( f = 9), circles
n = 259 ( f = 15), and triangles n = 216 ( f = 19). The laser exci-
tation occurs within the time interval of −15 ms � t � 0 ms (not
shown in the figure). See Sec. E of Supplemental Material [40] for the
calculation settings of subgraphs (a) and (b) and the reason multiple
modeling of periodic small-scale lattices can reduce computational
time.

the decrease of n (n = nE ,total cEr, the known quantity cEr is
the doping concentration of Er3+ ion in the microcrystalline
particles) and the increase of f . For example, when the condi-
tion changes from n = 4050 ( f = 1) to n = 216 ( f = 19), the
computational time decreases by three orders of magnitude,
from 2620.3 min to 5.6 min.

Based on the above analysis, we put forward a method for
multiple modeling of periodic small-scale lattices instead of
single modeling of large-scale lattices. The implementation
steps of the method are as follows. Step 1: Lattice geometric
modeling is performed to obtain lattice E. Step 2: Using the
spatial distribution information of Er3+ ions in lattice E, the
microscopic rate equations for periodic lattices are solved,
and the average population probability Pk,i(E ) of Er3+ ions
in lattice E at energy level k is obtained (subscript i represents
the calculation result obtained from the ith repetition of Steps
1 and 2). Step 3: Repeat Steps 1 and 2 f times to obtain Pk,i(E )
(i = 1, 2, …, f ). The average value

∑ f
i=1 Pk,i(E )/ f is the

final solution of the microscopic rate equations for periodic
lattices.

When the evaluation criterion of rsd(Z’) < 1.5% is met
(i.e., satisfying the randomness requirement of lattice mod-
eling), we conduct these steps at different values of n and f ,
and the results are shown in Fig. 5(b). Under different combi-
nations of n and f , the calculation results are approximately
the same, indicating the rationality of using multiple modeling
of periodic small-scale lattices instead of single modeling of
large-scale lattices.

It is worth noting that, as the lattice modeling scale n
decreases, the spatial distribution of Er3+ ions in the mod-
eled microcrystalline particle U (U is composed of lattice
E and translational lattices Vg) becomes more regular, and
the dynamics of more Er3+ ions are artificially synchronized,
which does not occur in reality. Therefore, to avoid artifacts
in computations, n cannot be arbitrarily small. In Fig. S4 in
the Supplemental Material [40], we determine that the lower
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FIG. 6. Energy-level diagram of β-NaYF4:Er3+ six-level system
under 1510 nm laser excitation. The spectral term symbols and the
index numbers of energy levels in the rate equations are shown on
the right side of the figure. The red arrow represents the stimulated
absorption process. The purple straight-line and polyline arrows
represent the radiative relaxation processes and the multiphonon
relaxation processes, respectively. The energy transfer processes in-
clude energy migration (EM; green arrow) between sensitizers (S),
energy transfer (ET; blue arrows) from a sensitizer to an activator
(A), and cross-relaxation (CR; orange arrows) from an activator to a
sensitizer.

limit of n is 100. That is, when n � 100, multiple modeling
of small-scale lattices of size n can replace single modeling of
large-scale lattices.

3. Steps to determine the scale of lattice geometric modeling

To reduce the computational time while ensuring model
accuracy, we adopt the following steps to determine the scale
of lattice geometric modeling (see Sec. E in the Supplemental
Material [40] for the scale we adopted):

Step 1: Given the size of the microcrystalline particles and
the doping concentration cEr of Er3+ ion, the number
nU,total of Y3+ and Er3+ ions in particle U and the number
nU of Er3+ ions in particle U are determined.

Step 2: Based on the computational capability of the com-
puter, we choose the value of the number n of Er3+ ions
in lattice E (n is no less than 100 and is generally taken
as 150–500). According to the formula nE ,total = n/cEr,
the number nE ,total of Y3+ and Er3+ ions in lattice E is
determined.

Step 3: According to Eq. (8), we calculate the minimum
value of the number f of modeling repetitions that meet
the evaluation criterion of rsd(Z’) < 1.5%.

Step 4: By using the formula nE ,total = 1.5nxnynz (one β-
NaYF4 unit cell contains 1.5 Y3+ ions), the numbers nx,
ny, and nz of β-NaYF4 unit cells in lattice E in the x, y,
and z directions are determined.

IV. DETERMINATION OF ENERGY TRANSFER
MICROPARAMETERS

As illustrated in Fig. 6, considering the stimulated ab-
sorption process, radiative relaxation processes, multiphonon
relaxation processes, and energy transfer processes of Er3+
ions in the β-NaYF4:Er3+ UCL system, we get the specific

form of PMI in this system (see Sec. D in the Supplemental
Material [40]). Taking the β-NaYF4:Er3+ six-level system as
an example, we introduce how to determine the microscopic
intrinsic parameters of energy transfer through the inverse
problem analysis of PMI.

The forward problem of the microscopic model is solved
to obtain the population probability of Er3+ ions at vari-
ous energy levels (see Sec. F in the Supplemental Material
[40]). Then by using the spatial statistical average of popula-
tion probability, the macroscopic luminescence phenomenon
of the upconversion system can be predicted and character-
ized. From the perspective of the forward problem of the
model, the macroscopic luminescence characteristics of the
β-NaYF4:Er3+ six-level upconversion system depend on the
following 35 intrinsic parameters: 1 stimulated absorption
rate wa,12, 11 radiative relaxation rates wr,kk∗ , 4 multiphonon
relaxation rates wnr,kk∗ , and 19 energy transfer micropa-
rameters C(s)

km. In our previous work [41,42], the absorption
cross-section and intrinsic relaxation rates of Er3+ ions have
been obtained, such as wa,12, wr,kk∗ , and wnr,kk∗ . The energy
transfer microparameters cannot be determined through the
inverse problem analysis of the macroscopic rate equation
model. Moreover, due to the limitations of TMI in terms of
accuracy and computational time, it has become very dif-
ficult to accurately determine the inter-ion energy transfer
microparameters.

However, PMI established in this paper not only improves
the model accuracy but also significantly reduces the compu-
tational complexity, making the inverse problem calculation
of large-scale ion groups at multiple energy levels feasible.
Therefore, the inverse problem of PMI can be solved to obtain
C(s)

km (see Sec. G in the Supplemental Material [40]). For the
β-NaYF4:Er3+ six-level system, there are 19 unknown energy
transfer microparameters C(s)

km in the equation. To overcome
the ill-posedness of inverse problem solving, it is necessary
to utilize multiple sets of mutually independent experimental
data under different doping concentrations and energy levels.
We prepared β-NaYF4:Er3+ microcrystalline particle samples
(#B-0, #B-1, and #B-2) with Er3+ ion doping concentrations
of 1%, 2%, and 10% by high-temperature solid-state method
(see Sec. H in the Supplemental Material [40]). The lumines-
cence decay curves of five energy levels (4I13/2, 4I11/2, 4I9/2,
4F9/2, and 4S3/2) for three samples were measured (Fig. 7)
using a 1510 nm laser with a repetition rate of 10 Hz and a
duty cycle of 15% as the excitation source.

A global fitting procedure (particle swarm optimization)
is used to solve the inverse problem of the microscopic
rate equation model using all experimental data simultane-
ously (15 luminescence decay curves at three different doping
concentrations and five energy levels). To simultaneously
fit multiple energy transfer microparameters and ensure the
search efficiency of the particle swarm optimization, we set
the population size to 350. The algorithm requires ∼300 it-
erations, i.e., 105 000 forward problem calculations, to obtain
the optimal fitting results. Under the setting conditions of our
lattice geometric modeling (see Sec. E in the Supplemental
Material [40]), it takes ∼5 min to solve the forward problem of
PMI. Therefore, if parallel computation is performed using a
100-core CPU, solving the inverse problem of this model will
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FIG. 7. The measured and fitted luminescence decay curves for
each energy level. (a) and (b) Sample #B-0, excitation power density
of 768.0 W/m2; (c) and (d) sample #B-1, excitation power density of
567.4 W/m2; and (e) and (f) sample #B-2, excitation power density
of 338.6 W/m2. The solid and dashed lines represent the measured
and fitted results, respectively. The laser excitation occurs within the
time interval of −15 ms � t � 0 ms (not shown in the figure).

take ∼3.64 d. However, if we use the same CPU to calculate
TMI, solving the forward problem of this traditional model
once will take at least 1000 min, while solving the inverse
problem of this model will require at least 729 d. Therefore, it
is obvious that our model demonstrates significant advantages,

greatly reducing computational time and making it possible
to determine the energy transfer microparameters through the
inverse problem analysis.

The experimental data and the fitting results of the lumi-
nescence decay curves are shown in Fig. 7, which is in good
agreement. For samples #B-0, #B-1, and #B-2, the reduced
residual sum of squares for energy levels 4I13/2, 4I11/2, 4I9/2,
4F9/2, and 4S3/2 reach the order of 10−4 to 10−5. Based on the
fitting results, we experimentally obtain the energy transfer
microparameters C(s)

km and provide the calculation uncertainty
of the results ranging from 2.0% to 21.2%, as shown in Table I
(see Sec. I in the Supplemental Material [40] for analysis
of calculation uncertainties). This is a comprehensive report
on the measurement data of intrinsic parameters of inter-ion
energy transfer for multilevel nonlinear UCL systems.

In addition, we used Kushida’s [43] method to calculate the
theoretical values of the energy transfer microparameters. Due
to the limitations of the theoretical approach, there exists a sig-
nificant deviation between the theoretical values and our mea-
sured values. This is also the reason we cannot directly use the
theoretical values of energy transfer microparameters in appli-
cations. Therefore, this is the significance of this paper, which
lies in the use of PMI to achieve a highly precise determina-
tion of the microscopic intrinsic parameters of energy transfer.

V. CONCLUSIONS

In summary, we developed PMI for upconversion dy-
namics and determination of the microparameters of energy

TABLE I. Theoretical values, measured values, and calculation uncertainties of inter-ion energy transfer microparameters. Theoretical
values are calculated by Kushida’s [43] method considering the transition selection rules [44].

Parameter
C (s)

km

Theoretical value based on Kushida’s
[43] method (cms s−1)

Measured value using
our model (cms s−1)

Calculation
uncertainty

C (6)
21 17.6 × 10−40 0.010 × 10−40 15.1%

C (6)
22 9.47 × 10−40 2.403 × 10−40 4.0%

C (6)
23 21.9 × 10−40 13.530 × 10−40 8.8%

C (6)
24 5.35 × 10−40 14.030 × 10−40 5.8%

C (6)
32 0.765 × 10−40 34.273 × 10−40 2.0%

C (6)
33 0.423 × 10−40 4.519 × 10−40 13.0%

C (6)
61 11.7 × 10−40 38.127 × 10−40 2.9%

C (6)
62 6.29 × 10−40 27.650 × 10−40 2.6%

C (6)
63 14.5 × 10−40 31.924 × 10−40 9.0%

C (8)
21 3.95 × 10−54 0.010 × 10−54 20.1%

C (8)
22 1.1 × 10−54 8.262 × 10−54 15.1%

C (8)
23 2.45 × 10−54 16.395 × 10−54 12.4%

C (8)
24 0.599 × 10−54 18.088 × 10−54 2.2%

C (8)
32 0.41 × 10−54 21.392 × 10−54 7.7%

C (8)
33 0.227 × 10−54 0 —

C (8)
61 1.31 × 10−54 4.695 × 10−54 4.6%

C (8)
62 0.0231 × 10−54 10.486 × 10−54 8.8%

C (10)
21 4.13 × 10−69 0.010 × 10−69 4.4%

C (10)
22 0.0726 × 10−69 5.076 × 10−69 21.2%
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transfer between ions, achieving the correlation between
micro-ion interactions and macroluminescence. TMI neglects
the lattice edge and size effects, leading to an underestima-
tion of ∼12% in the macroscopic energy-transfer rate. We
proposed a processing method for ionic interactions in
periodic lattices, greatly improving the accuracy of the mi-
croscopic model. Furthermore, we proposed an evaluation
criterion of rsd(Z’) < 1.5% for randomness of lattice mod-
eling. By quantitatively assessing the randomness of lattice
geometric modeling, we established a multiple modeling
method for periodic small-scale lattices, replacing single mod-
eling of large-scale lattices. This eliminates the influence of
randomness of lattice geometric modeling on microscopic
model calculations, significantly reducing the computational
complexity of the model (computational time is reduced
by three orders of magnitude) while ensuring accuracy. To
solve the inverse problem of PMI, we measured 15 lumines-
cence decay curves at three different doping concentrations
and five energy levels. By incorporating the particle swarm

optimization, we obtained 19 energy transfer microparameters
between Er3+ ions in the β-NaYF4:Er3+ six-level system and
provided the calculation uncertainty of the results ranging
from 2.0% to 21.2%. This paper is of great significance for re-
vealing the mechanisms of UCL, providing important theoret-
ical models and measurement data for regulating and optimiz-
ing the luminescence performance of the upconversion sys-
tem. By utilizing our model and the energy transfer micropa-
rameters, a precise targeted design of the upconversion system
can be achieved, meeting the requirements of high quantum
yield, long persistence, and deep tissue penetration, especially
in the field of bio-imaging and photodynamic therapy.
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