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We describe two developments of tensor network influence functionals [in particular, influence functional
matrix product states (IF-MPS)] for quantum impurity dynamics within the fermionic setting of the Anderson
impurity model. The first provides the correct extension of the IF-MPS to continuous time by introducing
a related mathematical object, the boundary influence functional MPS. The second connects the dynamics
described by a compressed IF-MPS to that of a quantum embedding method with a time-dependent effective
bath undergoing nonunitary dynamics. Using these concepts, we implement higher-order time propagators for
the quench dynamics of the Anderson impurity model within the boundary IF-MPS formalism. The calculations
illustrate the ability of the current formulation to efficiently remove the time-step error in standard discrete-time
IF-MPS implementations as well as to interface with state-vector propagation techniques. They also show the
advantages of IF-MPS dynamics, with its associated highly compact effective bath dynamics, over state-vector
propagation with a static bath discretization.
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I. INTRODUCTION

Quantum impurity models, such as the Anderson impurity
model (AIM), consist of an interacting impurity coupled to a
(possibly noninteracting) bath. They provide simple settings
in which to study quantum many-body physics, including
the Kondo effect in magnetic impurities [1], and serve as a
starting point of computational embedding frameworks, such
as dynamical mean-field theory [2] or density matrix embed-
ding theory [3,4], to solve lattice problems. The challenge
of describing nonequilibrium dynamics in such models has
spurred the development of many computational techniques
[5–16].

One way to describe quantum impurity dynamics is to
use the equation of motion of the impurity reduced density
operator obtained by tracing out the bath. The influence of
the bath is clearly expressed in a path integral language via
the Feynman-Vernon influence functional (IF) [17], which
reweights the paths in the path integral. Although the influence
functional for a noninteracting bath with linear coupling can
be expressed in a compact mathematical form, its effect on the
impurity dynamics must still be numerically approximated in
practice [18–29].

Recently, tensor network methods have been explored
within the IF language to overcome some limitations of other
numerical IF techniques, and in particular, to capture longer-
time memory effects [30–42]. By treating the IF as a temporal
wavefunction expressed as a temporal matrix product state
(MPS), one can exploit low entanglement in time, leading
to a compact representation of certain temporal correlations.
Such tensor network-based IF methods have been successfully
demonstrated in several contexts, including the spin-boson

model [32–36], hard-core bosons [35], one-dimensional spin
chains [30,31,37], and more recently, in the context of the
AIM [38–43].

The current paper is concerned with two developments
of the tensor network IF approach. Although the ideas gen-
eralize to IFs of any linearly coupled noninteracting bath,
for concreteness we work specifically with the AIM, which
expands on the previous developments based on the standard
IF-MPS framework [38–41]. The first development removes
the time-step error in the standard IF treatment obtained from
a Trotterized representation of the path integral. Formulating
the problem in the continuous-time limit yields a continuous
MPS version of the IF-MPS. We show that the standard IF-
MPS in fact does not have a useful continuous-time limit,
and instead one must consider a closely related object, the
boundary IF-MPS, to define this limit. We provide an explicit
construction of the continuous-time boundary IF-MPS for the
AIM.

The second development is concerned with the relationship
between the (boundary) IF-MPS and discrete bath dynamics.
Standard state-vector methods for the dynamics of the AIM
use a discrete bath with a fixed set of bath energies and cou-
plings [5–9]. We show that impurity dynamics defined by an
IF-MPS of fixed bond dimension is equivalent to propagating
in a space of effective bath orbitals in Liouville space, where
the bath energies and couplings dynamically vary with time.
This naturally connects tensor network influence functionals
to dynamical quantum embedding theories, such as real-time
density matrix embedding, which also utilize a dynamical set
of bath energies and couplings [44]. An important difference,
however, is that the IF-MPS defines a nonunitary dynamics in
the bath.
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We implement the boundary IF-MPS propagation for
the AIM in both the discrete-time and continuous-time
formulations. Directly comparing to standard static bath dis-
cretizations, we show that the IF-MPS method converges
extremely rapidly with respect to the effective bath size,
and shows none of the discretization artifacts of standard
bath discretizations. Further, the combination of the above
two insights suggests that the boundary IF-MPS dynamics
in the continuum limit can be efficiently implemented using
standard state-vector time-propagation techniques. We use
this to implement a high-order Runge-Kutta time propagator
for boundary IF-MPS dynamics and demonstrate the high-
order error with time step. In contrast, we show that higher
than first-order Trotter methods in the standard discrete-time
IF-MPS still suffer from first-order time-step errors, due
to the IF-MPS bond truncation. By Trotterizing the correct
continuous-time dynamics, we derive a corrected version of
the Trotterized error with the correct time-order scaling, sig-
nificantly improving on the second-order Trotter formulation
currently used in tensor network IF approaches.

The paper is organized as follows. In Sec. II, we first
recapitulate the formulation of the IF-MPS for noninteract-
ing fermionic baths, describing in detail the formalism we
use here in terms of number-conserving Slater determinants.
Through this picture, we establish the connection between the
IF-MPS dynamics and Liouville state-vector propagation of
an impurity coupled to a set of effective bath orbitals, that
is, the dynamics of a quantum embedding of the impurity. In
Sec. III, we analyze the continuous-time limit of the IF-MPS
and show that the correct object to consider is the boundary
IF-MPS and we provide its continuous-time limit. Using the
state-vector formalism, we rewrite the continuous-time prop-
agation in terms of a differential equation of motion for the
Liouville state vector in the quantum embedding space. In
Sec. IV, we provide numerical results using the boundary
IF-MPS for the single impurity Anderson model and compare
the discretization errors associated with a static set of bath
orbitals with the dynamic set of bath orbitals defined by the
IF-MPS. We further analyze the time-step errors from both the
discrete-time and continuous-time formulations. In Sec. V, we
conclude with discussions of some implications of our results.

II. INFLUENCE FUNCTIONAL THEORY
IN DISCRETE TIME

A. Influence functional for single impurity Anderson model

We consider a single impurity Anderson model,

Ĥ = ĤS + ĤSB + ĤB,

ĤS = Un̂↑n̂↓ +
∑

σ

εσ n̂σ ,

ĤSB =
∑
i,σ

(tiĉ
†
i,σ d̂σ + H.c.),

ĤB =
∑
i,σ

Eiĉ
†
i,σ ĉi,σ , (1)

where d̂†
σ (ĉ†

i,σ ) creates a fermion of spin σ ∈ {↑,↓} in the
impurity (bath) orbitals and n̂σ = d̂†

σ d̂σ is the number density

operator of the impurity orbital of spin σ . ĤS and ĤB are an
impurity-only and bath-only Hamiltonian, respectively, and
ĤSB is an impurity-bath coupling Hamiltonian. Note that ĤSB

and ĤB are of noninteracting (quadratic) form. Hereafter, we
assume a discrete and finite set of bath orbitals and also
assume that the impurity is initially decoupled from the bath,
ρ̂(0) = ρ̂S (0) ⊗ ρ̂B. We further assume a Gaussian initial
bath, in particular, the thermal state ρ̂B ∝ e−βĤB with inverse
temperature β. This assumption is appropriate for the problem
of quench dynamics from decoupled finite-temperature baths
with ĤSB = 0 [45]. For quadratic operators, we omit the hats
when expressing their matrix elements in a single-particle
basis.

While the time evolution of the density operator can be
described by the von Neumann equation,

i
d

dt
ρ̂ = [Ĥ, ρ̂], (2)

we instead will adopt the super-fermion representation of Li-
ouville space [21,46–49]. This uses a super-Fock space with
twice the number of orbitals as the original Hilbert space, ob-
tained by applying a particle-hole transformation to the bra of
the density operator, and assuming the resulting operator acts
on a vacuum to produce a state. We denote states in the super-
Fock space using a double bra/ket notation. For example, the
initial density operator is written as |ρ(0)〉〉 = |ρS (0)〉〉 ⊗ |ρB〉〉.
The von Neumann equation now becomes a Hamiltonian time
evolution with the Liouville operator L̂,

i
d

dt
|ρ〉〉 = L̂|ρ〉〉. (3)

The Liouville operator for the Anderson impurity model takes
the form (using tildes on the operators from the particle-hole
transformed Fock space)

L̂ = L̂S + L̂SB + L̂B,

L̂S = Un̂↑n̂↓ − U (1 − ˆ̃n↑)(1 − ˆ̃n↓) +
∑

σ

εσ (n̂σ + ˆ̃nσ ),

L̂SB =
∑
i,σ

(tiĉ
†
i,σ d̂σ + ti ˆ̃c†

i,σ
ˆ̃dσ + H.c.),

L̂B =
∑
i,σ

Ei(ĉ
†
i,σ ĉi,σ + ˆ̃c†

i,σ
ˆ̃ci,σ ), (4)

where we have omitted all constant terms. We will collectively
refer to the tilde and nontilde creation operators as â†

i,σ ,

â†
i,σ =

{
ĉ†

i,σ 1 � i � Nb

ˆ̃c†
i−Nb,σ

Nb + 1 � i � 2Nb

, (5)

for Nb bath orbitals.
The initial bath state in the super-Fock space |ρB〉〉 is given

by a Slater determinant

|ρB〉〉 =
∏
i,σ

( f+(Ei,σ , β )ĉ†
i,σ + f−(Ei,σ , β ) ˆ̃c†

i,σ )|0〉〉 (6)

where |0〉〉 is a vacuum state in the super-Fock space,
f+(E , β ) = (1 + eβE )−1, and f−(E , β ) = 1 − f+(E , β ). We
are often interested in the reduced density operator of the
impurity, ρ̂S = TrB(ρ̂). In the super-Fock space, the trace over
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FIG. 1. A schematic diagram for the real-time evolution of the
Anderson impurity model in Liouville space after Nt = 5 time steps.
The initial density operator is given by ρ̂(0) = ρ̂S ⊗ ρ̂B, described
by a vectorized state in a Liouville space. The time evolution of
the density operator is described by time-evolution operators follow-
ing a second-order Trotter decomposition, alternating between Û S

(squares) and Û SB (rectangles). After the time evolution, the bath
degrees of freedom are traced out, which is equivalent to applying
the trace tensor TrB to the bath. The influence functional (IF) tensor
corresponds to the tensor after the contraction of the bath modes in
all Û SB, ρ̂B, and TrB tensors, grouped with the red-dashed lines.

the bath is equivalent to taking the overlap with a trace vector
that can be expressed as a Slater determinant,

|TrB〉〉 =
∏
i,σ

(ĉ†
i,σ + ˆ̃c†

i,σ )|0〉〉, (7)

and the amplitude of a configuration s in ρS can be expressed
as

〈〈s|ρS〉〉 = (〈〈s| ⊗ 〈〈TrB|)|ρ〉〉. (8)

The discretized time evolution of the density operator with
time step �t can be expressed via a second-order Trotter
decomposition

|ρS (tN )〉〉 = TrB[(e− i
2 L̂S�t e−iL̂SB�t e− i

2 L̂S�t )Nt |ρ(0)〉〉]
= TrB[Û SÛ SBÛ S · · · Û SBÛ S|ρ(0)〉〉] (9)

where tNt = Nt�t and Û S (Û SB) is the time-evolution operator
for L̂S (L̂SB and L̂B). The tensor network diagram for this time
evolution is shown in Fig. 1, where we see that the Û S tensor
is applied only within the impurity S, whereas the tensor for
Û SB is applied to both S and B.

The influence functional (IF) tensor is defined as the tensor
arising from the contraction of all the bath degrees of free-
dom in ÛSB, the initial bath density operator, and the trace
vector (Fig. 1). This IF tensor is indexed by the state of the
impurity orbitals before and after each ÛSB, for Nt time steps
(denoted si

m and s f
m, respectively, for the mth time step) and

so is indexed by the configuration of 2Nt impurity orbitals. In
addition, we mention that the IF tensors for different spins are

constructed separately thanks to the absence of spin-mixing
terms in L̂SB, and hence, the spin indices are omitted for
brevity.

Due to the one-dimensional structure of the temporal axis,
the IF can be rewritten in terms of Nt tensors that are directly
obtained from Û SB by inserting the bath configurations be-
tween each time step. Denoting the impurity configurations,
s = (si

1, s f
1 , . . . , si

Nt
, s f

Nt
), and the corresponding IF tensor ele-

ment as I (s), the matrix product state (MPS) representation of
the IF can be written as

I (s) = lT · A
si

Nt
,s f

Nt
Nt

· · · A
si

1,s
f
1

1 · r, (10)

where the matrix elements for Am are given by(
Asi

m,s f
m

m

)
bm,bm−1

= 〈〈
s f

m, bm

∣∣Û SB
∣∣si

m, bm−1
〉〉
, (11)

and bm is the bath configuration after m applications of Û SB,
rb0 = 〈〈b0|ρB(0)〉〉, and lbNt

= 〈〈TrB |bNt 〉〉.
In the above MPS representation, the bond dimension is

given by the dimension of the super-Fock bath space, which,
in many cases, is too large to deal with directly. Previous
studies [39,40] have made use of the fermionic Gaussian prop-
erties of the IF (arising from the linear coupling and quadratic
bath) to find a compressed form of the MPS representation
[50,51]. In this paper, we will use a slightly different lan-
guage to formulate the MPS compression in terms of finding
Schmidt vectors in the bath. This algorithm (described in
Sec. II E) is closely related to that in Ref. [50] and improves
on the computational scaling in Ref. [51].

B. From influence functionals to state-vector propagation

In this paper, we will often switch between two equivalent
pictures: dynamics encoded by a compressed IF-MPS, and
a state-vector propagation corresponding to a quantum em-
bedding. To understand this mapping, we first describe the
conventional MPS compression scheme (i.e., without using
any Gaussian properties of the bath) and explain how it can
be interpreted as a type of projected bath dynamics. [We
recall that the IF-MPS can, in general, be expressed through
Eqs. (10) and (11), for arbitrary system-bath quantum dynam-
ics, i.e., even for an interacting bath].

In conventional MPS compression, the MPS is first trans-
formed to a canonical form to enable an optimal truncation of
the bond dimension. The canonical form is defined using the
gauge degrees of freedom in the MPS [52],

Asi
m,s f

m
m → Lsi

m,s f
m

m = GmAsi
m,s f

m
m G−1

m−1, (12)∑
si

m,s f
m

Lsi
m,s f

m †
m Lsi

m,s f
m

m = I, (13)

where the matrices Lsi
m,s f

m
m satisfying Eq. (13), are called left-

normalized matrices. The gauge matrices Gm are inserted in
the bond space, or the Liouville bath space of the IF-MPS
(Fig. 2). The MPS that is composed of the left-normalized
matrices is called left-canonical. The left-canonical MPS is
then

I (s) = L
si

Nt
,s f

Nt
Nt

· · · L
si

2,s
f
2

2 B
si

1,s
f
1

1 , (14)
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FIG. 2. General matrix product state (MPS) compression scheme for an influence functional MPS (IF-MPS). The bond dimension of the
initial uncompressed MPS is given by the dimension of the bath Liouville space, indexed by bath configurations, bm (left). The MPS needs to
be converted into canonical form for an optimal truncation. The gauge matrices Gm are inserted in the bath Liouville space to convert the MPS
into the canonical form (middle). Gauge matrices transform the original matrix elements of the MPS into left-normalized matrices, denoted as
Lm = GmAmG−1

m−1. Afterward, projectors are inserted into the bath subspace that contains the bath states with the largest singular values (right).
The projected bath configurations are denoted as b̃m.

where B
si

1,s
f
1

1 = G1A
si

1,s
f
1

1 . After choosing this gauge, the MPS
is compressed by iteratively applying truncated singular value
decompositions (SVD) from right to left.

We can group together the effect of the gauging and com-
pression together with the system-bath evolution to define new
matrices of the IF-MPS, Ãm,

(
Ãsi

m,s f
m

m

)
b̃m,b̃m−1

= 〈〈
s f

m, b̃m

∣∣PmĜmÛ SBĜ−1
m−1Pm−1

∣∣si
m, b̃m−1

〉〉
,

(15)

where Pm denotes the projectors onto the bath states asso-
ciated with the largest singular values (or equivalently, the
largest eigenvalues of the bath density matrix) after the gauge
transformation (Fig. 2), and b̃m denotes the projected bath
configurations.

Ãm can be viewed as defining a (nonunitary) evolution
in the Liouville space of the system and the bath. Alter-
natively, the MPS gauging and compression procedure can
be seen as a pure projected bath dynamics in the Liouville
space Ĝ−1

m PmĜm, inserted between the system-bath evolution
Û SB. The coarse graining (i.e., projection) of the bath de-
grees of freedom is referred to as a quantum embedding, and
consequently, the truncated IF-MPS dynamics is a quantum
embedding scheme with a dynamically evolved bath, simi-
lar to (real-time) density matrix embedding theory (DMET)

[3,4,44,53], but with the important difference that the dynam-
ics of the projected bath is nonunitary, as Ĝm is nonunitary.

As the time step �t → 0, we are led to the continuous-time
limit of the IF-MPS. We consider the subtleties of continuous-
time construction in Sec. III A. However, the above shows
that we can also view time evolution as being performed
on an embedded state vector (“wavefunction”) in the pro-
jected Liouville space (embedding space) {|si

mb̃m〉〉}. We can
then formulate the continuous-time dynamics in terms of the
equations of motion for the embedded wavefunction and the
bath projectors (or equivalently, the bath density matrix).
The dynamics of such a bath density matrix has previously
been considered in the MPS language in Ref. [31] for a 1D
spin chain, which derived the dissipative contribution of the
system-bath coupling to the density matrix dynamics.

We will be interested in the above constructions for the
case of a fermionic Gaussian bath where we can replace the
discussion of many-body states and density matrices with
orbitals and one-particle reduced density matrices (1-RDM).
We now turn to the formulation of the IF-MPS operations in
terms of these quantities.

C. Schmidt decomposition of Slater determinants

In this section, we review the Schmidt decomposi-
tion of Slater determinants [4,54]. A Slater determinant is
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given by

|ψ〉 =
Nocc∏
p=1

ĉ†
p|0〉, ĉ†

p =
∑

i

Cipâ†
i , (16)

where ĉ†
p is a creation operator of the Nocc occupied orbitals,

â†
i is a creation operator of orthonormal orbitals in the basis of

n sites, and Cip is the orbital coefficient matrix. Given a bipar-
tite Hilbert space, H = HA ⊗ HB, where the first nA orbitals
belong to subsystem A and the other nB = n − nA orbitals be-
long to subsystem B, the Schmidt decomposition of the Slater
determinant can be obtained by diagonalizing the one-particle
reduced density matrices (1-RDM), �i j = 〈ψ |â†

j âi|ψ〉, of the
subsystems. Assuming nA < nB and Nocc > nA, the Schmidt
decomposition can be written as

|ψ〉 =
nA∏

k=1

(
√

νk ĉ†
A,k +

√
1 − νk ĉ†

B,k )
Nocc∏

l=nA+1

ĉ†
B,l |0〉, (17)

where νk (1 − νk) denote the eigenvalues of the 1-RDM of
A (B) with values between 0 and 1, ĉ†

A,k (ĉ†
B,k) create the

corresponding eigenmodes, and ĉ†
B,l create eigenmodes with

eigenvalue 1 of the 1-RDM of B.
Based on the above, the orbitals in B can be classified

into three different categories: (1) entangled orbitals, ĉ†
B,k ,

1 � k � nA, which are entangled with A, (2) core orbitals,
ĉ†

B,l , nA + 1 � l � Nocc, which are fully occupied in B and not
entangled with A, (3) virtual orbitals, which are unoccupied
and so do not appear in Eq. (17) and also are not entangled
with A.

Note that the Slater determinant with all νk = 1
2 corre-

sponds to a maximally entangled fermionic state |φ〉, where
the reduced density operator of subsystem A is proportional
to the identity. It is possible to write the 1-RDM of A from
|ψ〉 as that of a maximally entangled fermionic state |φ〉 after
a gauge transformation within the subsystem A, i.e., ĜA|φ〉,
where

ĜA = exp

(∑
k

log gkĉ†
A,k ĉA,k

)
, gk =

√
νk

1 − νk
, (18)

up to a normalization constant factor, assuming 0 < νk < 1
for all k. ĜA satisfies the following:

ĜAĉ†
A,kĜ−1

A = gkĉ†
A,k, ĜAĉA,kĜ−1

A = g−1
k ĉA,k . (19)

This gauge transformation is related to the gauge trans-
formation introduced in Sec. II B because the state |φ〉 is
“left-normalized” with respect to the subsystem A. We will
use this gauge transformation to convert Slater determinants
into left-normalized forms in the next section.

The Schmidt decomposition can be truncated by treating
the entangled orbitals with νk ≈ 1 (νk ≈ 0) as core (virtual)
orbitals, retaining the orbitals with larger

√
νk (1 − νk ). In

other words, a projection operator on the entangled orbital
space that keeps only νk close to 1

2 can be applied to trun-
cate the Schmidt decomposition. This truncation scheme is
sometimes called a “mode” truncation [50,55,56] and has
been utilized in the context of tensor network truncations of
fermionic Gaussian states.

After a truncation to nent entangled orbitals, the Slater
determinant can be written as

|ψ〉 =
nent∏
k=1

(
√

νk ĉ†
A,k +

√
1 − νk ĉ†

B,k )
nent+nA,c∏
l=nent+1

ĉ†
A,l

nent+nB,c∏
l=nent+1

ĉ†
B,l |0〉,

(20)
where nA,c (nB,c) is the number of core orbitals in A(B).

D. Influence functional tensors as Slater determinants

We now describe how the bipartitions of the exact influence
functional tensor can be expressed as Slater determinants,
which are obtained by propagating a finite number of steps
forward in time from |ρB(0)〉〉 or backward in time from
〈〈TrB|. Thanks to the noninteracting nature of the bath, both
the IF and its partitions correspond to fermionic Gaussian
states, specifically, Bardeen-Cooper-Schrieffer (BCS) states
[38–40]. Despite this fact, we will prefer to work with Slater
determinants and convert the BCS states to Slater determi-
nants through a particle-hole transformation. This is because
when building the matrix elements of the IF-MPS in Eq. (15),
the basis of Slater determinants will allow us to use number
symmetry, which significantly reduces the prefactors in the
numerical computations.

We define the right and left bipartitions of IF (right and
left IF for short)

∏
m Û SB

m · |ρB(0)〉〉 and 〈〈TrB| · ∏
m Û SB

m , re-
spectively, where the products follow the order in the MPS
representation and here, · indicates the partial contraction of
the intermediate bath configurations. We start with the first
right IF, Û SB · |ρB(0)〉〉 for simplicity. Its tensor elements are
determined from 〈〈s f

1 , b1|Û SB(|si
1〉〉 ⊗ |ρB(0)〉〉), and its exter-

nal degrees of freedom are si
1, s f

1 , and b1 [see Fig. 3(a)]. Its
occupation numbers satisfy the relationship

n
(
s f

1

) + n(b1) − n
(
si

1

) = n(ρB(0)), (21)

which is not consistent with a number-conserving state.
After applying the particle-hole transformation to the in-

put configuration, si
1 → s̄i

1, (for example, 00 → 11, 01 → 10,
10 → 01, and 11 → 00), we obtain

n
(
s f

1

) + n(b1) + n
(
s̄i

1

) = n(ρB(0)) + 2, (22)

where n(s̄i
1) = 2 − n(si

1). Therefore, after the transformation,
the right partition IF is a Slater determinant with n(ρB(0)) + 2
occupied orbitals.

Formally, the particle-hole transformations can be ex-
pressed in terms of fermionic tensor network contractions by
inserting maximally entangled fermionic states,

|φ〉〉 =
∏

s

1√
2

(α̂†
s + d̂†

s )|0〉〉, (23)

where the index s denotes the input impurity orbitals from the
super-Fock Liouville space and α̂†

s indicates a creation oper-
ator of auxiliary fermionic orbitals. Note that the occupation
numbers of the auxiliary fermionic orbitals have particle-hole
transformed occupation numbers compared to the original
input impurity orbitals. The right IF state representation of
Û SB · |ρB(0)〉〉, which we will denote |�R〉〉 ≡ |�R,1〉〉, is then
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FIG. 3. (a) A right IF state after one time step |�R,1〉〉. It repre-
sents a partial contraction of the bath degrees of freedom between
the time-evolution operator Û SB, and the initial bath density operator
ρB(0). It can be expressed as a Slater determinant by introducing a
maximally entangled fermionic state φ, which has impurity and aux-
iliary fermionic orbitals denoted by S and A, respectively. Coupling
the maximally entangled state to the time-evolution operator on the
input impurity orbitals yields the Slater determinant state. (b) A right
IF state after the mth time step |�R,m〉〉, (m = 3 in the figure) can
also be represented as a Slater determinant by introducing maximally
entangled fermionic states at each time step. (c) A left IF state
|�L,m〉〉 (m = Nt − 3 in the figure) can be constructed by contracting
the time-evolution operator from the top downwards, and can also be
represented as a Slater determinant by inserting maximally entangled
fermionic states starting from the top.

written as follows [Fig. 3(a)]:

|�R,1〉〉 = (ÎA ⊗ Û SB)|φ〉〉 ⊗ |ρB(0)〉〉, (24)

where ÎA is the identity operator on the auxiliary fermionic
orbitals. Because the initial state |φ〉〉 ⊗ |ρB(0)〉〉 is given by
a Slater determinant and ÎA ⊗ Û SB is number conserving, we
see again that the right IF state is also a Slater determinant.
The right IF state for

∏
m Û SB

m · |ρB(0)〉〉 can be similarly
expressed by inserting maximally entangled fermionic states
at each time step and coupling one of the modes to Û SB, as
shown schematically in Fig. 3(b).

To construct the compression of the IF-MPS later, we re-
quire the bath 1-RDMs. Given the right IF state at the mth
time step |�R,m〉〉, we define the bath 1-RDM of the right IF

state [Fig. 4(a)] as

�R,m
i j = 〈〈�R,m|â†

j âi|�R,m〉〉
〈〈�R,m|�R,m〉〉 , (25)

where the indices i and j refer to the super-Fock bath orbitals.
The 1-RDM at the next time step can be computed from the
evolution of |φ〉〉 ⊗ |�R,m〉〉 under ÎA ⊗ Û SB. The bath 1-RDM
after the evolution can be written as

�R,m+1
i j = [U SB�R,mU SB†]i j + [U ASB�φU ASB†]i j, (26)

where �φ denotes the 1-RDM of |φ〉〉 and U ASB denotes a
single particle-basis representation of ÎA ⊗ Û SB. The diagram-
matic representation of the evolution of the bath 1-RDM is
drawn in Fig. 4(b).

We can construct the left IF state in an analogous way,
but where the state propagates in the inverse (negative) time
direction using Û SB† [Fig. 4(c)]. Denoting the left IF state and
its bath 1-RDM, |�L〉〉 and �L, respectively, the bath 1-RDMs
at successive time-steps (from top downwards) are related by

�L,m−1
i j = [U SB†�L,mU SB]i j + [U ASB†�φU ASB]i j . (27)

Note that the initial state is given by the trace vector
|�L,Nt 〉〉 = |TrB〉〉, which is also given by a Slater determinant
as in Eq. (7). With both the left and right IF state, the IF-MPS
can be written as 〈〈�L,m| · |�R,m〉〉 for any m.

E. Influence functional matrix product state compression

We now revisit the MPS compression of the IF-MPS,
described in Sec. II B, but now utilizing the noninteracting
nature of the bath, which allows all the steps to be expressed
at the level of orbitals and single-particle quantities.

In Sec II B, the optimal compression of the MPS required
the IF-MPS to be in a canonical form. This was achieved by
transforming matrices into left-normalized matrices by insert-
ing gauge matrices into the MPS. As discussed in Sec. II D the
partitions of the IF-MPS for a noninteracting bath are Slater
determinants, and the gauge transformation [Eq. (18)] to con-
vert Slater determinants to maximally entangled fermionic
pairs, which are left-normalized, was introduced in Sec. II C.

We therefore have all the ingredients to convert the IF-MPS
to canonical form. We start with the left IF state |�L〉〉 and
determine the gauge transformation Ĝ from the eigenvalues
and eigenvectors of the bath 1-RDM �L

i j . We denote the eigen-
values of �L

i j as νk , where k indexes the eigenvalues, and the
rotation matrix as RL

ik , whose columns are the eigenvectors of
�L in a single-particle basis. With this gauge transformation,
we can represent the IF-MPS as, 〈〈�L| · |�R〉〉 = 〈〈φ| · Ĝ ·
|�R〉〉. The gauge matrix in the single-particle basis, G, can
be written as

Gki = gkRL∗
ik , (28)

where gk = √
νk/(1 − νk ) [Eq. (18)]. Note that gk diverges

when νk → 1, so in practice, we regularize νk with a small
threshold ε so that νk = ε when νk < ε and νk = 1 − ε when
1 − νk < ε. A similar regularization scheme for the 1-RDM
has been used in multiconfiguration time-dependent Hartree
theory [57,58] and real-time density matrix embedding theory
[44,53].

045104-6



TENSOR NETWORK INFLUENCE FUNCTIONALS IN THE … PHYSICAL REVIEW B 110, 045104 (2024)

FIG. 4. (a) The bath 1-RDM of the right IF state �R is obtained by tracing out the impurity orbitals, i.e., by contracting the state with
its complex conjugate, within the impurity space. (b) The bath 1-RDM of the right IF state after the mth time step �R,m can be updated to
�B,m+1 by applying the time-evolution operator and tracing out the impurity orbitals. (c) A gauge transformation Ĝ is extracted from the bath
1-RDM of the left IF state �L by converting it to a maximally entangled fermionic state φ. The gauge-transformed right IF state is obtained
by applying the gauge transformation Ĝ to the bath, and its bath 1-RDM is transformed to �G. (d) The impurity-bath time-evolution operator
ÛSB is approximated by an effective time-evolution operator by projecting the bath to the effective bath orbitals after the gauge transformation,
Pm+1Ĝm+1Û SBĜ−1

m Pm. The filled and unfilled rectangles represent the core and virtual orbital spaces and these spaces are projected into fully
occupied and unoccupied states, respectively.

The gauge matrices need to be absorbed into the right IF
state to further canonicalize the IF-MPS. We call the state,
|�G〉〉 = Ĝ · |�R〉〉, a gauge-transformed right IF state and its
bath 1-RDM, �G. The gauge transformation is a nonunitary
transformation, so we always normalize the state when com-
puting �G,

�G
i j = 〈〈�G|â†

j âi|�G〉〉
〈〈�G|�G〉〉

= [G
√

�R(
√

�RG†G
√

�R + I − �R)−1
√

�RG†]i j (29)

where �R is the bath 1-RDM of the |�R〉〉. A de-
tailed derivation of this expression is included in the
Supplemental Material (SM) [59].

Subsequently, we decompose the gauge-transformed right
IF state into a right-normalized maximally entangled
fermionic state and another gauge transformation, and this
gauge transformation contains the singular values of the IF-
MPS at this bipartition. Taking the largest singular values in
the truncated SVD in the conventional MPS compression is
equivalent to taking the eigenvectors of �G with eigenvalues
closest to 1

2 [or large νG
k (1 − νG

k )] as done in the mode trun-
cation approach introduced in Sec. II C. We will call the bath
orbitals from the selected eigenvectors of �G the effective bath
orbitals.

Hence, the procedure for IF-MPS compression at the or-
bital level is as follows: (1) Diagonalize the bath 1-RDM of
the gauge-transformed right IF state �G, and obtain its eigen-
values νG

k , and rotation matrix RG. (2) Take the eigenvectors
with the Neff largest νG

k (1 − νG
k ), where Neff is a number of the

effective bath orbitals we select, defining the truncated rota-
tion matrix Reff. (3) Construct the projection operator P from
Reff, i.e., the eigenvectors corresponding to the effective bath

orbitals. The configurations from the other bath orbitals in the
projected subspace are fixed to be either fully occupied (core
orbitals, νG

k ≈ 1) or unoccupied (virtual orbitals, νG
k ≈ 0).

For the Liouville time evolution of the Anderson impurity
model with the initial Gaussian thermal bath, it is possible
to prove that if νG

k is an eigenvalue of �G, so is 1 − νG
k (see

the SM [59]). In this case, we obtain the same number of
core and virtual orbitals and choose the effective bath orbitals
symmetrically by occupancy.

The tensor elements of the IF-MPS can then be computed
from Eq. (15), after applying the gauge transformation and the
projectors Pm for each mth time step,〈〈

s f
m, b̃m

∣∣PmĜmÛ SBĜ−1
m−1Pm−1

∣∣si
m, b̃m−1

〉〉
, (30)

with the configurations of the effective bath orbitals b̃m. This
tensor element defines an effective time-evolution operator
for the embedded wavefunction defined on the impurity and
effective bath orbitals. The diagrammatic representation for
the effective time-evolution operator is illustrated in Fig. 4(d).

The above tensor elements can be efficiently computed
from determinant formulas. Since the configurations in the
core and virtual orbitals are fixed, we can compute the deter-
minant of block matrices, keeping the core and virtual orbital
block matrices fixed. Therefore, the computational complex-
ity to compute determinants for all configurations is O(N3

b +
22Neff N3

eff ), where the first term corresponds to the computation
of the determinant and inverse of the core and virtual orbital
block matrices and the second term corresponds to the com-
putation of the determinant of the effective bath orbital block
matrices. The cost for computing the full set of MPS tensor
elements at time step Nt is O(N3

b Nt + 22Neff N3
effNt ), which is

linear in the number of time steps Nt .
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III. CONTINUOUS-TIME FORMULATION OF IF-MPS

A. Boundary influence functional tensor

Defining the continuous-time limit of the influence func-
tional tensor network is in principle one way to eliminate
the time-step error from the standard second-order Trotter
decomposition, and in numerical applications allows for the
introduction of a wide variety of higher-order differential
integrators. However, as shown in [37], the IF-MPS shows
a nonphysical entanglement entropy scaling in the limit of
�t → 0, as the entanglement entropy always scales to zero.
This suggests that the continuous-time limit requires a more
careful treatment.

In particular, the formalism of continuous matrix prod-
uct states (cMPS) [60,61] describes a quantum wavefunction
of continuous variables that (in general) supports a finite-
entanglement entropy as the discretization approaches the
continuum limit. In this section, we show that the usual
IF-MPS does not support a standard cMPS representation
in the continuous-time limit, and instead a closely related
object, the boundary influence functional MPS should be
used. The boundary influence functional MPS is implicitly
used in transverse contraction [30,62] (e.g., Ref. [31] states
that this becomes a continuous MPS in the continuum limit,
without providing an explicit construction) and has previously
been used in influence functional calculations with interacting
baths [35].

Consider the continuous-time limit �t → 0, where Û SB

can be expressed as

Û SB = Î − i(L̂SB + L̂B)�t, (31)

and the corresponding matrix elements of the IF-MPS Asi,s f

are,

A0,0 = I − iL̂B�t, A0,1 = A1,0 = −iL̂SB�t,

A1,1 = I − iL̂B�t . (32)

These do not have the same form as the tensor entries in a
cMPS [60,61], which take the following form:

A0 = I + εQ, A1 = √
εR, A2 = 1

2εR2, (33)

where Q and R are arbitrary matrices within the virtual bond
space of the MPS, ε is the infinitesimal interval corresponding
here to �t on the temporal axis, and the upper indices 0, 1, and
2 label the number of excitations in the physical bond.

There are two main differences between Eq. (32) and
Eq. (33). First, the IF has an additional “I” term in A1,1, that
is not in A2 in Eq. (33). Second, the A1 terms are proportional
to �t , not

√
�t . It is clear to see the effect of these two differ-

ences in the formulation of the differential equation of motion
for the 1-RDM �R. In the infinitesimal limit of Eq. (26), after
expanding U SB the first term becomes

[U SB�R,mU SB†]B = �R,m − i[LB, �R,m]�t . (34)

For the second term,

[U ASB�φU ASB†]B = − 1
2 LSBL†

SB�t2, (35)

FIG. 5. The time-evolution operator Û SB can be split into two
tensors, Ŵ S and Ŵ B, which can be expressed as Û SB = ∑

a Ŵ S
a ⊗

Ŵ B
a . In the single impurity case with two impurity orbitals in the

Liouville space, the index a has four components.

which vanishes at �t → 0. Therefore, the differential equa-
tion of motion for �R becomes

d�R

dt
= −i[LB, �R]. (36)

This corresponds to unitary dynamics in the super-Fock bath
orbital space, which preserves the spectrum of �R. The initial
�R is given by the pure state |ρB〉〉, so its single-particle spec-
trum consists of only 0 and 1. Thus, the entanglement entropy
of the IF is zero. Note that this result is the manifestation of the
fact that the term in Eq. (35) is proportional to (�t )2, instead
of (�t )1, which implies that the bath dynamics does not have
effective “dissipation” terms.

To obtain a more proper continuum limit, we split Û SB

into two parts. For clarity, we write Î in Eq. (31) as ÎS ⊗ ÎB.
Similarly, L̂B can also be written in product form, ÎS ⊗ L̂B, and
L̂SB is the only term that acts on both the impurity and bath.
We can split L̂SB using its singular value decomposition,

L̂SB =
∑
s,i

tsid̂
†
s âi + H.c. =

nS∑
a=1

ÔS
a ⊗ ÔB

a + H.c., (37)

t = USV = (US1/2)(S1/2V ) = t StB,

ÔS
a =

∑
s

t S
sad̂†

s , ÔB
a =

∑
i

tB
aiâi, (38)

where nS is the number of singular values. This leads us to
write Û SB as follows:

Û SB = ÎS ⊗ (ÎB − iL̂B�t )

+
nS∑

a=1

(
ÔS

a

√
�t

) ⊗ ( − iÔB
a

√
�t

) + H.c.

=
2nS∑
a=0

Ŵ S
a ⊗ Ŵ B

a (39)

Ŵ S
a =

⎧⎪⎨
⎪⎩

ÎS a = 0

ÔS
a

√
�t 1 � a � nS

ÔS†
a−nS

√
�t nS + 1 � a � 2nS

,

Ŵ B
a =

⎧⎪⎨
⎪⎩

ÎB − iL̂B�t a = 0

−iÔB
a

√
�t 1 � a � nS

−iÔB†
a−nS

√
�t nS + 1 � a � 2nS

. (40)

Therefore, instead of defining the elements of the MPS
using Û SB, we use Ŵ B

a . These are the tensor elements of the
boundary IF-MPS. Its diagrammatic representation is drawn
in Fig. 5. We can introduce a set of maximally entangled
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orbitals, f̂ †
a , on the auxiliary indices a thereby expressing Ŵ B

in a number-conserving format,

Ŵ B = ÎB − iL̂B�t − i
√

�t
∑

a

(
f̂ †
a ÔB

a + H.c.
)
. (41)

The matrix elements of the boundary IF-MPS are then given
by

W B,0 = IB − iLB�t,

W B,1 = −i
√

�t
∑

a

(
f †
a OB

a + H.c.
)
,

W B,2 = �t
∑

a

∣∣ÔB
a

∣∣2
, (42)

which satisfies the form of Eq. (33) [63]. Therefore the bound-
ary IF-MPS has a well-defined continuum limit. It is also
possible to construct Ŵ B from Û SB for general �t outside
the continuous-time limit, which is described in the SM [59].
Henceforth, we will implicitly assume that the IF-MPS refers
to the boundary IF-MPS except where the distinction is im-
portant.

B. Gauge dynamics in the continuous-time IF-MPS

The boundary IF-MPS matrix elements define a new ef-
fective time-evolution operator in the Liouville space of the
system and bath with a well-defined continuous-time limit
with nonvanishing entanglement entropy. This makes it pos-
sible to express and compress the MPS in the continuous-time
limit.

As described in Sec. II D, in the case of a noninteracting
bath, the object that defines the conversion to canonical form
and the compression is the 1-RDM of the right/left IF state,
�R and �L. Using Ŵ B, we can construct the corresponding
iterative procedure to update the 1-RDM of the right/left IF
state. In the continuous-time limit, �t → 0, this leads to an
equation of motion for the 1-RDM of the right/left IF state.

The equation of motion for the 1-RDM of the right IF state
�R is given by

d�R

dt
= tB†tB − i[LB, �R] − {tB†tB, �R}, (43)

where {A, B} = AB + BA is an anticommutator. A detailed
derivation of this equation of motion is in the SM [59]. It
clearly shows that tB acts as a dissipation term. Similarly, the
equation of motion for the 1-RDM of the left IF state �L is
given by

d�L

dt
= tB†tB + i[LB, �L] − {tB†tB, �L}. (44)

From �L, we can find the gauge transformation Ĝ. This
is then absorbed into the right IF state to canonicalize the
IF-MPS. For �G, the 1-RDM of the gauge-transformed right
IF state, we first define the gauge-transformed time-evolution
operator

Ŵ G = ĜŴ BĜ−1 + dĜ

dt
Ĝ−1�t

= ÎB − iL̂GB�t − i
√

�t
∑

a

(
f̂ †
a F̂ 1

a + F̂ 2†
a f̂a

)
,

L̂GB = ĜL̂BĜ−1 + i
dĜ

dt
Ĝ−1,

F̂ 1
a = ĜÔB

a Ĝ−1 =
∑

i

κ1
aiâi, κ1 = tBG−1,

F̂ 2†
a = ĜÔB†

a Ĝ−1 =
∑

i

κ2
iaâ†

i , κ2 = GtB†. (45)

Note that in the definition of L̂GB, we have taken �t → 0, and
there is a term that takes into account the time dependence
of the gauge transformation. The time derivative of the gauge
transformation can be written as[

dĜ

dt
Ĝ−1

]
kl

= ġkg−1
k δkl −

∑
i

gkRL∗
ik ṘL

il g
−1
l ,

ġkg−1
k = 1

2νk (1 − νk )
ν̇k,

ν̇k = −[RL†�̇LRL]kk = −
∑

a

|
∑

i

tB
aiR

L
ik|2(1−2νk ),

[RL†ṘL]kl = − [RL†�̇LRL]kl

νl − νk
(k �= l )

= 1 − νk − νl

νk − νl
[RL†tB†tBRL]kl + i[RL†LBRL]kl ,

(46)

where we set the ṘL terms to be zero when k = l and
|νk − νl | < ε. Note that RL is only defined up to degenerate
eigenvectors of �L; therefore, to fix this redundancy, we prop-
agate RL with the regularized ṘL from a reference time, which
we set to be the final time of the �L propagation.

With this gauge-transformed time evolution operator, the
equation of motion for �G can be written as follows:

d�G

dt
= κ2κ2† − i(LGB�G − �GL†

GB) − {κ2κ2†, �G}

+ �G[κ2κ2† − κ1†κ1 + i(LGB − L†
GB)]�G. (47)

After obtaining �G in this continuous-time picture, the effec-
tive bath orbitals and their rotation matrix Reff (see Sec. II D)
can be defined from the eigenvectors of �G. Reff is then used
to construct the time-dependent projection operator P , which
defines the compression of the IF-MPS in the continuous-time
setting.

C. Embedding Liouville operator
for the embedded wavefunction

Once we solve the equation of motion for �G(t ), its trun-
cated spectrum defines a set of effective bath orbitals at all
(continuous) times t . By projecting the original Liouville dy-
namics into the time-dependent embedding space (of system
and bath orbitals) and retaining terms first order in �t , we can
extract the generator for the embedded wavefunction, which
we call here the embedding Liouville operator L̂emb. This
yields a continuous-time state-vector propagation governed by
the boundary IF-MPS.

First, by expanding Eq. (30), we have PL̂GP where P
is the projection operator into the effective bath orbitals and
L̂G = ĜL̂SBĜ−1 + L̂GB. In addition, there is also a term for the
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time dependence of the effective bath orbitals in the projec-
tion operator. Using the rotation matrix of the effective bath
orbitals Reff, the additional Liouville operator from this time
dependence can be written as

X̂ = −i
∑
m,n

[Reff†Ṙeff]mnâ†
mân, (48)

where m and n index the effective bath orbital basis. Finally,
the impurity-only Liouville operator can be simply added. The
embedding Liouville operator becomes

L̂emb = L̂S + PL̂GP + X̂ = L̂S + L̂emb
SB . (49)

We can now write down the equation of motion for the em-
bedded wavefunction |�emb〉〉 with which we can carry out
state-vector propagation,

i
d

dt
|�emb〉〉 = L̂emb|�emb〉〉. (50)

Note that the embedding Liouville operator L̂emb is time de-
pendent.

D. Connections to embedding theories

We conclude this section by explicitly connecting to the
formalism of real-time density matrix embedding theory
(real-time DMET) [44,53] and the closely related time-
dependent complete-active-space self-consistent-field method
(TD-CASSCF) [64,65]. In particular, we focus on real-time
DMET since the wavefunction ansatz in real-time DMET has
the same form as the embedded wavefunction here [44],

|�(t )〉 =
∑
s,b

ψs,b(t )|s〉 ⊗ |b〉 =
∑
s,b

ψs,b(t )|s, b〉, (51)

where s and b are configurations in impurity and bath, re-
spectively, and ψs,b(t ) are the corresponding time-dependent
amplitudes. The selection of a finite number of effective bath
orbitals limits possible bath configurations, and the effective
bath orbitals are allowed to be time dependent.

In the IF-MPS, the effective bath orbitals were determined
by the bath 1-RDM. In contrast, in real-time DMET, the
effective bath orbitals are determined by the time-dependent
variational principle (TDVP), assuming the embedding wave-
function ansatz (51). The equation of motion from TDVP is

iψ̇s,b = 〈s, b|(Ĥ + X̂ )|�〉, (52)

|ḃ〉 = iX̂ |b〉, (53)

where X̂ is a quadratic Hermitian operator that describes
the time dependence of the effective bath orbitals, which
has the same form as Eq. (48), but here, its elements are
determined from the TDVP equations. The equation of mo-
tion in Eq. (52) defines the embedding Hamiltonian Ĥ + X̂ ,
which corresponds to the embedding Liouville operator L̂emb

in Eq. (49). Aside from the different generators of the bath
dynamics, a qualitative difference between real-time DMET
and the embedding scheme that derives from the IF-MPS in
this paper is the nonunitary nature of the gauge transformation
Ĝ. In the real-time DMET, the X̂ operator implements unitary
dynamics of the effective bath orbitals.

IV. RESULTS

We now describe simulations that implement the above
boundary IF-MPS formulation, including its continuous-time
formulation, in the single impurity Anderson model. To gen-
erate reference results, we used state-vector propagation with
a large bath discretization of the AIM. Specifically, we used
Nb = 40 discrete bath orbitals (Nb refers to orbitals of each
spin, i.e., 40 spin ↑ and 40 spin ↓ orbitals) to approximate the
bath spectral density, J (ω) = ∑

i |ti|2δ(ω − Ei ), using a linear
scheme [7,66], as follows

J (ω) = γ

π

√
1 − ω2

W 2
,

|ti|2 =
∫

Ii

dω J (ω),

Ei = 1

|ti|2
∫

Ii

dω ωJ (ω), (54)

where W = 10γ , ω ∈ [−W,W ], and Ii = [−W + 2W
Nb

(i − 1),

−W + 2W
Nb

i], and the impurity Hamiltonian parameters were
chosen as U = −2εσ = 2.5πγ . The initial bath state was
taken to be the (decoupled) thermal state with two different
temperature regimes: (1) An intermediate-temperature regime
with γ β = 2 where the temperature is comparable to the other
energy scales, and (2) a low-temperature regime with γ β =
50, which is a lower temperature than the Kondo temper-
ature, estimated to be TK ∼ 0.07γ [9] (�βK = γ /TK ∼ 14).
The impurity was quenched from an initial unoccupied state,
ρ̂S (0) = |0〉〈0|. Benchmark results were then computed using
the time-dependent density matrix renormalization group (td-
DMRG) with bond dimensions up to 300 using the Block2
[67,68] package. We carried out a thermofield transformation
on the bath orbitals to reduce the bond dimension of the MPS,
as described in [9]. We then propagated the MPS using the
two-site time-dependent variational principle. With the largest
bond dimension 300 and a time-step size of γ�t = 0.01, all
the local observables presented here are converged with re-
spect to bond dimension and time step to within an estimated
absolute error of 10−5.

The boundary IF-MPS calculations were carried out both
in the standard discrete-time formulation as well as the
continuous-time formulation of Secs. III B and III C. In the
discrete-time case, we used the IF-MPS Slater determinant
compression scheme applied to the boundary IF. The IF-
MPS was constructed using both a second-order Trotter
decomposition [Trotter2, Eq. (9)] and a fourth-order Trotter
decomposition (Trotter4) of the dynamics. The fourth-order
Trotter decomposition is based on the Forest-Ruth formula
[69,70],

e−iL̂�t ≈ e−iL̂Sθ�t/2e−iL̂SBθ�t e−iL̂S (1−θ )�t/2

e−iL̂SB (1−2θ )�t e−iL̂S (1−θ )�t/2e−iL̂SBθ�t e−iL̂Sθ�t/2, (55)

with the constant θ = 1/(2 − 21/3) and a Trotter error of order
O(�t5). Discrete-time boundary IF-MPS calculations were
then performed for different numbers of effective bath orbitals
Neff of each spin, which formally corresponds to a boundary
IF-MPS with a maximal bond dimension of 4Neff . Note, how-
ever, that the system-bath coupling in the Anderson model
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does not couple up and down spins. Consequently, the IF-MPS
factorizes into a spin-up and spin-down IF (each of maximal
bond dimension 2Neff ) and we use this factorization for a
more efficient implementation of the discrete-time boundary
IF-MPS. The maximum bond dimension of 2Neff can be fur-
ther reduced by only choosing the available configurations
from the number-conserving U (1) symmetry of the embedded
wavefunction.

For the continuous-time implementation, we wrote the ef-
fective L̂emb as a second-quantized fermionic operator, which
could then be used in state-vector propagation using a higher-
order integrator such as fourth-order Runge-Kutta. Note that
to apply fourth-order Runge-Kutta to the state-vector at time
t , with time step �t , requires L̂emb(t ) at the intermediate time
t + �t/2. To obtain this, we propagated the bath 1-RDM
equations of motion [Eqs. (43) and (44)] with a finer time
step �tfine, also with the fourth-order Runge-Kutta integrator.
Since the cost to propagate the bath 1-RDM is much lower
than that for the many-body wavefunction, we used �tfine

much smaller than �t to minimize the time-step error from
the bath 1-RDM propagation. We fixed γ�tfine = 0.01/26 ≈
0.00016 in this paper. We then used the quantum chemistry
full configuration interaction (exact diagonalization) imple-
mentation in PySCF [71,72] to carry out the propagation of
the state vector.

One assumption for higher-order numerical propagators to
be accurate is that the time-dependent embedding Liouville
operator L̂emb is well behaved, i.e., it does not change too
sharply. However, in the initial and final periods of the time
propagation, we observe that the spectrum of the Liouville
operator diverges. This is because �L consists of nearly core
and virtual orbitals at either temporal boundary and large
values of gk and g−1

k in the gauge transformation are applied
to the effective bath orbital spaces.

This issue can easily be circumvented by initially propagat-
ing the wavefunction without the gauge transformation for a
short time. In this short time period, the effective bath orbitals
are taken from �R and �L. After the completion of this short
time period, the gauge transformation is applied to the wave-
function, and subsequently, the wavefunction is propagated
with the gauge-transformed equation of motion. We found that
the spectrum of the Liouville operator showed instabilities up
to an initial γ�ti = 0.06 and after a final γ�t f = 0.1 (see the
SM [59]). We therefore used propagation without gauges in
these short periods, and between these boundary times, the
wavefunction was propagated with the gauge transformation.

A. Effective bath orbitals versus bath discretization

As described in the analysis in Sec. II D, the IF-MPS time
propagation can be viewed as propagating a wavefunction in
the Liouville space of the impurity and a set of effective bath
orbitals. We now compare this time-dependent discretization
of the (Liouville) bath with a more standard time-independent
discretization.

In Fig. 6, we show the time dependence of the double
occupancy of the impurity 〈n↑n↓〉 in the quench dynamics.
We show (second-order Trotter discrete-time) IF-MPS dy-
namics generated using effective bath orbital numbers Neff =
4, 6, 8, 10 with time step γ�t = 0.01 with two different tem-

peratures, γ β = 2 [Fig. 6(a)] and γ β = 50 [Fig. 6(c)]. We
also show results from a time-independent bath discretiza-
tion scheme based on a Lanczos iteration with thermofield
transformation [9,73,74]. The thermofield transformation
transforms the initial thermal state with Nb bath orbitals to
a Fermi sea with Nb filled orbitals and Nb empty orbitals and
the Lanczos tridiagonalization algorithm over the filled and
empty orbital space gives a truncated bath basis. We denote
the number of Lanczos vectors in the truncated thermofield
bath as N th

b . We show dynamics using truncated thermofield
bath discretizations with N th

b = 4, 6, 8, 10 in Figs. 6(b) and
6(d). The thermofield bath dynamics was propagated using the
quantum chemistry full configuration interaction method and
fourth-order Runge-Kutta with time step �t = 0.005.

As expected, the time-independent bath discretization
yields substantial finite-size errors due to the limited number
of Lanczos vectors supported by the bath, while the effective
bath orbitals encode much more faithful dynamics. In the
intermediate-temperature regime (γ β = 2), the dynamics is
fully converged to the eye at Neff = 8, while the N th

b = 10
dynamics fails for γ t > 2. In the low-temperature regime
(γ β = 50), the IF-MPS dynamics with Neff = 10 faithfully re-
produces the reference result within an accuracy of 10−3. This
illustrates the compactness of the IF-MPS time-dependent
bath description, which resembles the behavior seen in real-
time quantum embedding studies [44] even though the bath
dynamics in the current formulation is nonunitary.

B. Converging to the continuous-time limit

We now analyze the time-step error incurred by varying
the time step, γ�t ∈ {0.02/2n|n = 0, 1, 2, · · · , 6}, at three
different propagated times γ t = 2, 3, and 5. For this analysis,
the inverse temperature is fixed as γ β = 2 and the number
of effective bath orbitals is fixed as Neff = 8, which is well
converged to the reference data as shown in the previous
section. We examine the convergence by fitting to the function
f (�t ) = A�tm + C. The exponent m is extracted from the
difference, f (2�t ) − f (�t ) = A(2m − 1)�tm ∝ �tm, with-
out the knowledge of the constant term C.

In Fig. 7, the differences in 〈n↑n↓〉 between two dif-
ferent time steps, �t and 2�t , |〈n↑n↓〉|2�t − 〈n↑n↓〉|�t |,
where 〈•〉|�t means that the numerical simulation was per-
formed with a time step �t , are illustrated as a function of
different time steps �t . We compare four different bound-
ary IF-MPS schemes to analyze the time-step errors: (1)
discrete-time boundary IF-MPS with the second-order Trotter
decomposition [Trotter2, Eq. (9)], (2) discrete-time boundary
IF-MPS with the fourth-order Trotter decomposition [Trot-
ter4, Eq. (55)], (3) continuous-time IF-MPS propagated by the
fourth-order Runge-Kutta (RK4) method, and (4) continuous-
time IF-MPS with the second-order Trotter decomposition
(cont-Trotter2), which will be defined further below. The ex-
ponent m is extracted by fitting the differences at the four
smallest time steps, and the fitted function is plotted as dashed
lines.

For all three different propagated times, the exponent for
the RK4 method has fourth-order time-step errors, which
agrees with the theoretical scaling. However, the exponent
extracted from both the second-order and fourth-order Trotter
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FIG. 6. The time dependence of the double occupancy of the impurity 〈n↑n↓〉 in the quench dynamics of the symmetric Anderson model
with U = 2.5πγ and εσ = −1.25πγ . The impurity is quenched from an initial unoccupied state and a thermal bath with two different
temperatures, γβ = 2 (a), (b) and γβ = 50 (c), (d). Reference results from time-dependent DMRG are shown (tdDMRG, black dotted). [(a),
(c)] Results from the discrete-time boundary IF-MPS using different numbers of effective bath orbitals, Neff = 4 (cyan), 6 (green), 8 (blue),
and 10 (red) with a time step of γ�t = 0.01. [(b), (d)] Results from the time-independent Lanczos-based bath discretization with thermofield
transformation using a series of static bath discretizations, N th

b = 4 (cyan), 6 (green), 8 (blue), and 10 (red), where N th
b is the number of Lanczos

vectors in the thermofield transformed bath. The finite size bath errors are clearly larger than in (a) and (c).

decomposition in the discrete-time formulation shows that
the error is first-order in time step, despite the theoretical
error scaling of each Trotter decomposition without tensor
network compression. We further note that the extrapolations
to the continuous-time limit (�t = 0) from Trotter2 and RK4
agree with each other up to 10−6, whereas the extrapolated
results from the Trotter4 data do not (see the SM [59]. This is
because the continuous-time limit of Trotter2 (for finite-bond
dimension) is the same as that of RK4, but that of Trotter4 is
not because it involves time evolution in both the forward and
backward time directions.

The above discrepancies in the time-step error scaling of
the Trotter schemes imply that there is an additional first-order
time-step error associated with the discrete-time tensor net-

work compression. We can show that the first-order time-step
error arises from the projection of the reference (i.e., Nb = 40)
bath orbital space into the embedding space. For simplicity,
we demonstrate this using a time-independent projection op-
erator P without the gauge transformation and L̂S = 0,

Pe−iL̂�tP . (56)

Expanding up to �t2, we obtain

P − iPL̂P�t − 1
2PL̂2P (�t )2 + O((�t )3). (57)

Now consider decreasing the time step �t to �t/2. Then the
time-evolution operator for �t can be written as

Pe−iL̂�t/2Pe−iL̂�t/2P, (58)
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FIG. 7. The difference in double occupancy 〈n↑n↓〉 between two different time steps, �t and 2�t using discrete-time IF-MPS with the
second- and fourth-order Trotter decomposition (labeled as Trotter2 and Trotter4 with red triangles and green squares, respectively) and
continuous-time IF-MPS with the fourth-order Runge Kutta method and the second-order Trotter decomposition (labeled as RK4 and cont-
Trotter2 with blue circles and cyan diamonds, respectively) at propagated times, γ t = 2, 3, and 5, the inverse temperature, γβ = 2, with the
number of effective bath orbitals, Neff = 8. The results are fitted by the function, log |〈n↑n↓〉|2�t − 〈n↑n↓〉|�t | = m log �t + b, and the fits are
displayed with dashed lines.

and by expanding it up to �t2, we find

P − iPL̂P�t − 1
4 (PL̂2P + PL̂PL̂P )(�t )2 + O((�t )3).

(59)
The two expressions agree to first-order in the time step, but
not to second-order in the time step, due to the difference
between PL̂2P and (PL̂P )2. Thus, after summing over t/�t
time steps, the total propagation has first-order time-step error
O(�t ). The IF-MPS compression involves time-dependent
projection operators P (t ) together with gauge transformations
Ĝ(t ). However, by assuming the smoothness of P (t ) and Ĝ(t )
in time, it is easy to show that the discrete-time IF-MPS also
has this first-order time-step error.

Based on the above analysis, we can consider a modified
Trotter decomposition method that is obtained from the con-
tinuous boundary IF-MPS. We denote this as the cont-Trotter
method to distinguish it from the previous Trotter methods. To
obtain the cont-Trotter decomposition, we make the replace-
ment,

Pe−iL̂�tP → T e−i
∫
P L̂Pdt = T e−i

∫
L̂emb

SB dt , (60)

where the integration is over the time-step interval �t and T
refers to a fermionic time-ordering operator. This can also
be interpreted as a generalized time-dependent Trotter de-
composition [75] of the embedding Liouville operator. The
time-ordered operator can be expressed using the following
differential equation,

Û (x) = T e−i
∫ ti+x

ti
L̂emb

SB dt
,

d

dx
Û (x) = −iL̂emb

SB (ti + x) Û (x), (61)

and the desired operator is Û (�t ). Since L̂emb
SB is a noninter-

acting operator, solving this differential equation of motion
for Û (x) is efficient [noting that the time-evolution operator
at x = 0 is given by the identity operator Û (0) = Î]. We solve
the differential equation using fourth-order Runge Kutta with
time step 2�tfine, which allows us to include all the time in-

formation of L̂emb
SB obtained from the bath 1-RDM propagation

with a �tfine time step.
In Fig. 7, time-step errors from the second-order cont-

Trotter decomposition of the continuous-time IF-MPS clearly
show that this gives second-order time-step errors. Indeed, the
time-step propagation error with this technique is better even
than that of fourth-order Runge-Kutta except for very small
time steps.

V. CONCLUSIONS

In this paper, by analyzing the tensor network influence
functional (IF-MPS) for the Anderson impurity model, we
derived the correct continuous-time limit via the boundary IF-
MPS. We further established a correspondence to discretized
bath dynamics and quantum embedding. These formal re-
sults clarify the connection between the IF-MPS and other
longstanding numerical techniques. They also provide the
foundation to develop improved numerical implementations,
for example, through the higher-order propagators identified
in this paper.

The numerical results we obtained on the quench dynamics
of the Anderson model demonstrate the advantages of the
current formulation. For example, compared to discrete-time
IF-MPS, by using the equations of motion we derive, we can
obtain high-order convergence of the time-step error. This is
in contrast to increasing the order of the Trotterization in the
standard discrete time approach, which does not in fact im-
prove the time-step convergence, due to the errors associated
with compression.

Our results also support the advantages of IF-MPS dy-
namics in a more general sense: through defining, implicitly,
a time-dependent bath representation, we find we achieve a
much more compact description of the influence of the bath
than prior static bath discretizations.

The connections between IF-MPS and standard state-
vector propagation further open up the application of a wide
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variety of wavefunction-based simulation tools within the
boundary IF-MPS framework. We plan to explore the poten-
tial of these developments in a variety of physical applications
in future work including its applications to the nonequilibrium
Kondo problems or nonequilibrium dynamical mean-field
theory.
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