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Unitary control of partially coherent waves. II. Transmission or reflection
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Coherent control of wave transmission and reflection is crucial for applications in communication, imaging,
and sensing. However, many practical scenarios involve partially coherent waves rather than fully coherent ones.
We present a systematic theory for the unitary control of partially coherent wave transmission and reflection.
For a linear time-invariant system with an incident partially coherent wave, we derive analytical expressions
for the range of attainable total transmittance and reflectance under arbitrary unitary transformations. We also
introduce an explicit algorithm to construct a unitary control scheme that achieves any desired transmission or
reflection within the attainable range. As applications of our theory, we establish conditions for four phenomena:
partially coherent perfect transmission, partially coherent perfect reflection, partially coherent zero transmission,
and partially coherent zero reflection. We also prove a theorem that relates the degree of coherence of the
incident field, quantified by the majorization order, to the resulting transmission and reflection intervals.
Furthermore, we demonstrate that reciprocity (or energy conservation) imposes direct symmetry constraints
on bilateral transmission (or transmission and reflection) of partially coherent waves under unitary control.
Our results provide fundamental insights and practical guidelines for using unitary control to manipulate the
transmission and reflection of partially coherent waves. This theory applies to various wave systems, including
electromagnetic and acoustic waves.
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I. INTRODUCTION

Transmission and reflection are fundamental wave phe-
nomena [1–7]. Controlling these phenomena is crucial for
various applications, including communication [8–10], imag-
ing [11–23], and sensing [24–30]. Approaches to controlling
wave transmission and reflection can be classified into two
categories: structural design and wave manipulation. In the
structural design approach, desired transmission and re-
flection behaviors are achieved by directly designing the
transmitting or reflecting media. For instance, recent advances
in nanophotonics have enabled the creation of photonic struc-
tures with transmission and reflection properties that differ
significantly from traditional media [31–39]. Photonic struc-
tures can be designed with negative permittivity and perme-
ability to achieve perfect lensing [40–45] or with wave-vector-
dependent transmission and reflection to perform tasks such as
analog optical computing [16,17,19,20,22,46], compressing
free space [23,47–49], and generating light bullets [50].

In the wave manipulation approach, desired transmission
and reflection behaviors are achieved by manipulating the
external waves interacting with the media [26,51,52]. A sig-
nificant advancement in the wave manipulation approach has
been the development of wave front shaping techniques, par-
ticularly using spatial light modulators (SLMs) [53,54]. SLMs
can modulate the phase of reflected light, transforming a
coherent input field into a tailored wave front. This results
in the desired transmission or reflection patterns of waves
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interacting with a complex medium. This technique, known as
coherent control [26,51,52], has greatly enhanced our ability
to manipulate wave transmission and reflection, achieving
phenomena such as reflectionless scattering modes [55–57].

Initial work on coherent control via SLMs focused on
manipulating a single coherent incident wave. Recently,
motivated by various applications, this approach has been
extended to simultaneously control multiple coherent inci-
dent waves [58–60]. The feasibility of multimode control
is now emerging with programable unitary photonic devices
such as Mach-Zehnder interferometer meshes [8,61–73] and
multiplane light conversion systems [74–79]. These devices
can perform arbitrary unitary transformations and hold sig-
nificant potential for applications in quantum computing [64,
80–85], machine learning [86–93], and optical communica-
tions [66,69,94–97]. By converting between different sets of
orthogonal incident modes, these devices can achieve ad-
vanced multimode control of wave behaviors. This type of
control is termed unitary control [98], as it is mathematically
described by a unitary transformation of the input wave space.
It can have broad applications in scenarios where the transmit-
ting and reflecting media cannot be altered [24,51,99–108].

The concept of unitary control has been explored for co-
herent waves to manipulate multimode absorption [98] and
transmission [109]. However, many practical applications,
such as microscopy and astronomy, involve the transmis-
sion and reflection of partially coherent waves [110,111],
since many wave sources are inherently partially coherent.
To develop a theory of unitary control for manipulating the
transmission or reflection of partially coherent waves, one
needs to consider the interplay between the properties of the
structure and the coherence properties of the incident waves.
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Such a theory represents a significant advancement beyond
the theory of unitary control for coherent waves.

In this paper, we develop a systematic theory for the unitary
control of the transmission or reflection of partially coher-
ent waves. Our theory addresses two fundamental questions.
(i) Given an object and an incident partially coherent wave,
what is the range of all attainable total transmittance and
reflectance under unitary control? (ii) How can we achieve
a given total transmittance or reflectance via unitary control?
The first question addresses the capabilities and limitations
of unitary control over transmission and reflection, while the
second focuses on implementation. We provide comprehen-
sive answers to both questions. As applications of our theory,
we establish the conditions for four phenomena: partially
coherent perfect transmission, partially coherent perfect re-
flection, partially coherent zero transmission, and partially
coherent zero reflection. We also examine how the degree of
coherence, measured by the majorization order, affects the at-
tainable transmission and reflection and prove that majorized
coherence implies nested transmission and reflection inter-
vals. Furthermore, we investigate the symmetry constraints
on the unitary control of bilateral transmission and reflec-
tion for partially coherent waves. We show that reciprocity
enforces direct constraints on transmission, while energy con-
servation enforces direct constraints on both transmission and
reflection.

This paper is the second in a series on the unitary control
of partially coherent waves. In the first paper [112], we in-
vestigated the unitary control of the absorption of partially
coherent waves. In this work, we further extend the unitary
control method to manipulate the transmission and reflection
of partially coherent waves. We have adopted the same math-
ematical notations (see Ref. [112], Sec. II) and similar proof
techniques throughout this series of papers. Throughout this
paper, we will refer to Ref. [112] as Paper I.

The rest of this paper is organized as follows. In Sec. II,
we develop a general theory of unitary control over partially
coherent wave transmission and reflection. In Sec. III, we
discuss the physical applications of our theory. We conclude
in Sec. IV.

II. THEORY

A. Partially coherent waves

Let H be an n-dimensional Hilbert space of waves. A
partially coherent wave is represented by a density matrix
[113–118] ρ, also known as a coherency matrix [111,119–
121] in optics. ρ is positive semidefinite. The trace of ρ corre-
sponds to the total power, which we assume to be normalized:

tr ρ = 1. (1)

The coherence properties are encoded in the eigenvalues of ρ,
known as the coherence spectrum:

λ↓(ρ) = (λ↓
1 (ρ), . . . , λ↓

n (ρ)). (2)

B. Partially coherent wave transmission or reflection

We study the transmission and reflection of a partially
coherent wave in a linear time-invariant system with (l + m)

FIG. 1. (a) Schematic of a linear time-invariant system with
(l + m) ports, where l ports are on the left (reflection) side and m
ports are on the right (transmission) side. A partially coherent wave
characterized by a density matrix ρ is input into the n input ports
on the left side, resulting in transmitted and reflected waves with un-
normalized density matrices �t = tρt† and �r = rρr†, respectively.
Here, t and r are the transmission and reflection matrices. The total
transmittance T or reflectance R is defined as the ratio of the trans-
mitted or reflected power to the input power. (b) Schematic of the S
matrix, where r and t are block submatrices of the entire S matrix.
(c) Schematic of unitary control of partially coherent wave trans-
mission or reflection. A unitary converter U is applied to the input
wave before it interacts with the system, allowing for the manipul-
ation of the total transmittance T and the total reflectance R.

ports, with l ports on the left side and m ports on the right side,
as shown in Fig. 1(a). A partially coherent wave characterized
by a density matrix ρ is injected into n � l input ports on the
left side. The cases where n < l represent scenarios in which
incident waves are restricted to an accessible n-dimensional
subspace of the full l-dimensional space of waves on the left
side. The output consists of the transmitted wave on the right
side and the reflected wave on the left side, characterized by
the unnormalized density matrices:

�t = tρt†, �r = rρr†. (3)

Here, t is the n × l transmission matrix and r is the n × m
reflection matrix; both are block submatrices of the entire
(l + m) × (l + m) S matrix [Fig. 1(b)]. The traces of �t and
�r correspond to the total transmitted and reflected power,
respectively. The total transmittance T and reflectance R are
defined as the ratios of the transmitted and reflected power to
the input power, respectively. Using Eq. (1), we obtain

T := tr �t/ tr ρ = tr �t = tr(ρt†t ), (4)

R := tr �r/ tr ρ = tr �r = tr(ρr†r). (5)
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Here, t†t and r†r are both n × n positive semidefinite matri-
ces, known as the transmittance matrix and the reflectance
matrix, respectively. Their eigenvalues, λ(t†t ) and λ(r†r), are
known as the transmission eigenvalues and reflection eigen-
values [122,123], respectively.

C. Unitary control of partially coherent wave
transmission or reflection

We briefly review the concept of unitary control. Unitary
control involves transforming input waves through a uni-
tary converter, such as spatial light modulators [51,53,54],
Mach-Zehnder interferometers [8,61–73], and multiplane
light conversion systems [74–79]. Under unitary control,
the input wave undergoes modification through unitary
similarity [124]:

ρ → ρ[U ] = UρU †. (6)

As illustrated in Fig. 1(c), we apply unitary control to the
input wave within the n input ports. With unitary control, both
transmittance and reflectance explicitly depend on U :

T → T [U ] = tr(UρU †t†t ), (7)

R → R[U ] = tr(UρU †r†r). (8)

D. Major questions

We pose two fundamental questions, given a partially co-
herent incident wave and a system as shown in Fig. 1(c), under
unitary control (1) What total transmittance or reflectance is
attainable? (2) How can we achieve a given total transmittance
or reflectance?

We now reformulate these key questions mathematically.
For question (1), given ρ and t , what is the set

{T } ≡ { T [U ] | U ∈ U (n) }? (9)

Or, given ρ and r, what is the set

{R} ≡ { R[U ] | U ∈ U (n) }? (10)

(If ρ needs to be specified, we denote T [U ], R[U ], {T }, and
{R} as T [U |ρ], R[U |ρ], {T |ρ}, and {R|ρ}, respectively.)

For question (2), given ρ, t , and T0 ∈ {T }, find a U1 ∈ U (n)
such that

T [U1] = T0. (11)

Or, given ρ, r, and R0 ∈ {R}, find a U2 ∈ U (n) such that

R[U2] = R0. (12)

E. Main results

In this subsection, we provide comprehensive answers to
questions (1) and (2).

FIG. 2. Attainable total transmittance and reflectance under uni-
tary control. (a) Schematic of a five-port system. A partially coherent
wave characterized by a density matrix ρ is input into two of the three
ports on the left side. (b) Blue dots: T [Ui|ρ j] for 300 000 random
unitary matrices Ui and input density matrices ρ j with j = 1, 2, 3, 4.
Red lines: calculated interval end points by Eq. (13). (c) Blue dots:
R[Ui|ρ j] for 300 000 random unitary matrices Ui and input density
matrices ρ j with j = 1, 2, 3, 4. Red lines: calculated interval end
points by Eq. (14).

1. Answer to question (1)

Let us start with question (1). The answer is

{T } = [λ↓(ρ) · λ↑(t†t ),λ↓(ρ) · λ↓(t†t )], (13)

{R} = [λ↓(ρ) · λ↑(r†r),λ↓(ρ) · λ↓(r†r)]. (14)

Here, [, ] denotes the closed real interval and · denotes the
usual inner product.

Proof. The proof is similar to the corresponding proof of
Eq. (21) in Paper I. �

Equations (13) and (14) are the first main results of our pa-
per. They fully characterize the attainable total transmittance
or reflectance via unitary control. These equations show that
{T } or {R} is fully determined by λ(ρ) and λ(t†t ) or λ(r†r),
which are invariant under unitary control.

To illustrate our results, we conduct a numerical experi-
ment. As shown in Fig. 2(a), we consider a five-port system
with three ports on the left side and two ports on the right
side. We input a wave characterized by a random density
matrix ρ into two input ports on the left side. The system is
characterized by a 5 × 5 scattering matrix randomly generated
using NUMPY [125]:

S =

⎛
⎜⎜⎜⎜⎝

0.32 + 0.35i −0.19 + 0.07i −0.01 − 0.31i −0.10 + 0.07i 0.05 − 0.16i
−0.07 − 0.16i 0.00 − 0.44i 0.14 + 0.02i −0.23 − 0.19i −0.22 − 0.42i
0.13 + 0.03i −0.12 + 0.23i 0.03 + 0.54i −0.14 + 0.08i 0.18 − 0.21i

−0.04 + 0.36i 0.20 + 0.03i −0.10 − 0.03i 0.02 − 0.08i −0.32 − 0.27i
0.27 − 0.03i −0.20 − 0.18i 0.15 − 0.17i 0.09 − 0.22i 0.09 − 0.16i

⎞
⎟⎟⎟⎟⎠. (15)
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The r and t matrices are the top left and bottom left block
matrices of S as indicated by the lines in Eq. (15), respectively,
with

λ↓(t†t ) = (0.30, 0.02), λ↓(r†r) = (0.44, 0.13). (16)

We consider four input density matrices ρ1, ρ2, ρ3, and ρ4,
with coherence spectra:

λ↓(ρ1) = (0.50, 0.50), λ↓(ρ2) = (0.60, 0.40), (17)

λ↓(ρ3) = (0.80, 0.20), λ↓(ρ4) = (1.00, 0.00). (18)

Note that ρ1 is completely incoherent, ρ2 and ρ3 are par-
tially coherent, and ρ4 is perfectly coherent. For each input,
we generate 300 000 random unitary matrices Ui from the
circular unitary ensemble with Haar measure [126], which
provides a uniform probability distribution on U (n) [126].
We calculate the transmittance T [Ui|ρ j] = tr(Uiρ jU

†
i t†t ) and

the reflectance R[Ui|ρ j] = tr(Uiρ jU
†
i r†r) for each ρ j using

Eqs. (7) and (8). Figures 2(b) and 2(c) show the scatter plot of
T [Ui|ρ j] and R[Ui|ρ j], respectively. We verify that the numer-
ical results agree with the theoretical intervals as determined
by Eqs. (13) and (14):

{T |ρ1} = {0.16}, {R|ρ1} = {0.28}, (19)

{T |ρ2} = [0.13, 0.19], {R|ρ2} = [0.25, 0.31], (20)

{T |ρ3} = [0.07, 0.25], {R|ρ3} = [0.19, 0.38], (21)

{T |ρ4} = [0.02, 0.30], {R|ρ4} = [0.13, 0.44]. (22)

2. Answer to question (2)

Now we turn to question (2). This problem corresponds to
the following physical scenario: suppose we have a system
with a transmission matrix t and a reflection matrix r. Con-
sider an incident partially coherent wave characterized by a
normalized density matrix ρ. Given a total transmittance:

λ↓(ρ) · λ↑(t†t ) � T0 � λ↓(ρ) · λ↓(t†t ), (23)

how can we construct a unitary control scheme described by a
unitary matrix U [T0] that achieves T0? Similarly, given a total
reflectance

λ↓(ρ) · λ↑(r†r) � R0 � λ↓(ρ) · λ↓(r†r), (24)

how can we construct a unitary control scheme described by a
unitary matrix U [R0] that achieves R0?

We solve this problem using Algorithm 1 in Paper I, mod-
ified for U [T0] or U [R0] by replacing the absorptivity matrix
A with the t†t or r†r matrices, respectively. We illustrate this
algorithm with a numerical example. (See Fig. 3.) We consider
the same S matrix in Eq. (15) and the input density matrix
ρ3 as introduced in Eq. (18). First, we construct a U [T0] to
achieve the desired transmittance:

0.20 = T0 ∈ {T |ρ3} = [0.07, 0.25]. (25)

We use Algorithm 1 modified for U [T0] and obtain

U [T0] =
(

0.49 + 0.70i −0.15 + 0.49i
−0.07 + 0.51i 0.74 − 0.43i

)
. (26)

FIG. 3. Constructing a unitary matrix for desired transmittance
or reflectance (Algorithm 1). (a) Blue curve: T [U (τ )], where τ is a
parameter that varies from 0 to 1, corresponding to a continuous path
between the unitary matrices Ul and Uu. U (τT ) achieves a desired
transmittance T0 ∈ [Tl , Tu]. (b) Corresponding results for construct-
ing U (τR ) that achieves a desired reflectance R0 ∈ [Rl , Ru].

Second, we construct a U [R0] to achieve the desired re-
flectance:

0.25 = R0 ∈ {R|ρ3} = [0.19, 0.38]. (27)

We use Algorithm 1 modified for U [R0] and obtain

U [R0] =
(

0.59 + 0.03i −0.68 − 0.44i
−0.80 + 0.15i −0.56 − 0.19i

)
. (28)

III. APPLICATIONS

Now, we discuss the physical applications of our theory.

A. Partially coherent perfect transmission or reflection

First, we examine the conditions for the phenomena of
partially coherent perfect transmission or reflection. Coherent
perfect transmission or reflection [127,128] refers to the effect
where a coherent wave is perfectly transmitted or reflected by
a linear system through unitary control. For a linear system
with a transmission matrix t and a reflection matrix r, coherent
perfect transmission occurs if and only if

nullity(I − t†t ) � 1, (29)

while coherent perfect reflection occurs if and only if

nullity(I − r†r) � 1. (30)

Similarly, partially coherent perfect transmission or reflection
refers to the phenomenon where a partially coherent wave is
perfectly transmitted or reflected by a linear system through
unitary control. We apply our theory to prove the follow-
ing criterion: for a linear system with a transmission matrix
t and a reflection matrix r, and a partially coherent wave
characterized by a density matrix ρ, partially coherent perfect
transmission occurs if and only if

nullity(I − t†t ) � rank ρ, (31)

while partially coherent perfect reflection occurs if and only if

nullity(I − r†r) � rank ρ. (32)

As a sanity check, for a perfectly coherent wave, rank ρ = 1,
the criterion (31) reduces to (29) and (32) reduces to (30).
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Proof. The proof is similar to that of the criterion (49) in
Paper I. �

If the criterion (31) is satisfied, we can unitarily transform
the input density matrix ρ such that its support [129] is a
subset of the null space of (I − t†t ), thus achieving partially

coherent perfect transmission. We can use Algorithm 1 to ob-
tain such a unitary transformation. A similar analysis applies
to the criterion (32) for partially coherent perfect reflection.

We numerically demonstrate our results on partially coher-
ent perfect transmission using a 5 × 5 transmission matrix:

t =

⎛
⎜⎜⎜⎜⎝

0.67 − 0.08i −0.24 + 0.07i 0.11 + 0.03i 0.15 + 0.05i 0.32 + 0.35i
−0.06 − 0.04i 0.18 − 0.34i 0.20 − 0.38i 0.05 − 0.35i −0.35 − 0.04i
0.05 + 0.05i 0.23 + 0.04i −0.37 − 0.28i 0.47 + 0.63i −0.06 − 0.09i

−0.40 + 0.22i 0.30 + 0.33i 0.03 − 0.21i 0.11 − 0.22i 0.48 + 0.38i
0.00 − 0.01i 0.25 − 0.36i 0.10 + 0.46i −0.13 + 0.14i 0.30 + 0.19i

⎞
⎟⎟⎟⎟⎠, (33)

which has

λ↓(t†t ) = (1.00, 1.00, 1.00, 0.49, 0.25). (34)

Thus

nullity(I − t†t ) = 3. (35)

We consider five different incident waves characterized by
normalized density matrices ρ̃ j , 1 � j � 5, with coherence
spectra:

λ↓(ρ̃1) = (1.00, 0.00, 0.00, 0.00, 0.00), (36)

λ↓(ρ̃2) = (0.53, 0.47, 0.00, 0.00, 0.00), (37)

λ↓(ρ̃3) = (0.42, 0.33, 0.25, 0.00, 0.00), (38)

λ↓(ρ̃4) = (0.25, 0.25, 0.25, 0.25, 0.00), (39)

λ↓(ρ̃5) = (0.29, 0.23, 0.20, 0.15, 0.13). (40)

Thus their ranks are different:

rank ρ̃ j = j. (41)

For each input, we generate 10 000 000 random unitary matri-
ces Ui from the circular unitary ensemble. Then, we calculate
the transmittance T [Ui|ρ̃ j] = tr(Uiρ̃ jU

†
i t†t ) for each ρ̃ j using

Eq. (7). The results are plotted in Fig. 4(a). We see that
partially coherent perfect transmission is achievable when

FIG. 4. Numerical demonstration of the conditions for (a) par-
tially coherent perfect transmission and (b) partially coherent zero
transmission. Blue dots represent T [Ui|ρ̃ j] for 10 000 000 ran-
dom unitary matrices Ui and input density matrices ρ̃ j with j =
1, 2, 3, 4, 5. Red lines indicate the calculated interval end points by
Eq. (13).

rank ρ̃ j = 1, 2, 3, but not when rank ρ̃ j = 4, 5. This verifies
the criterion (31).

B. Partially coherent zero transmission or reflection

Second, we examine the conditions for the phenomena of
partially coherent zero transmission or reflection. Coherent
zero transmission or reflection refers to the effect where a
coherent wave exhibits zero transmission or reflection by a
linear system through unitary control. For a linear system with
a transmission matrix t and a reflection matrix r, coherent zero
transmission occurs if and only if

nullity t†t � 1, (42)

while coherent zero reflection occurs if and only if

nullity r†r � 1. (43)

Similarly, partially coherent zero transmission or reflection
refers to the phenomenon where a partially coherent wave
exhibits zero transmission or reflection by a linear system
through unitary control. We apply our theory to prove the
following criterion: for a linear system with a transmission
matrix t and a reflection matrix r, and a partially coherent
wave characterized by a density matrix ρ, partially coherent
zero transmission occurs if and only if

nullity t†t � rank ρ, (44)

while partially coherent zero reflection occurs if and only if

nullity r†r � rank ρ. (45)

As a sanity check, for a perfectly coherent wave, rank ρ = 1,
the criterion (44) reduces to (42) and (45) reduces to (43).

Proof. The proof is similar to that of the criterion (66) in
Paper I. �

If the criterion (44) is satisfied, we can unitarily transform
the input density matrix ρ into the null space of the t†t ma-
trix, thus achieving partially coherent zero transmission. We
can use Algorithm 1 to obtain such a unitary transformation.
A similar analysis applies to the criterion (45) for partially
coherent zero reflection.
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We numerically demonstrate our results on partially coherent zero transmission. We consider a 5 × 5 transmission matrix:

t =

⎛
⎜⎜⎜⎜⎝

0.03 − 0.16i 0.05 + 0.02i −0.21 + 0.08i −0.03 + 0.01i 0.34 − 0.12i
−0.24 + 0.01i −0.16 − 0.15i −0.01 + 0.03i −0.07 − 0.16i −0.02 + 0.14i
0.06 − 0.07i 0.06 − 0.10i 0.04 − 0.19i 0.12 − 0.09i −0.21 + 0.30i

−0.11 + 0.24i −0.15 + 0.12i 0.10 + 0.15i −0.16 + 0.08i 0.03 − 0.20i
−0.08 + 0.15i −0.10 − 0.05i 0.18 − 0.08i −0.00 − 0.06i −0.30 + 0.18i

⎞
⎟⎟⎟⎟⎠, (46)

which has

λ↓(t†t ) = (0.64, 0.36, 0.00, 0.00, 0.00). (47)

Thus

nullity t†t = 3. (48)

We consider five different incident waves characterized by
normalized density matrices ρ̃ j , 1 � j � 5, with coherence
spectra as provided in Eqs. (36)–(40); thus rank ρ̃ j = j. For
each input, we generate 10 000 000 random unitary matrices
Ui from the circular unitary ensemble. Then, we calculate
the transmittance T [Ui|ρ̃ j] = tr(Uiρ̃ jU

†
i t†t ) for each ρ̃ j us-

ing Eq. (7). The results are plotted in Fig. 4(b). We see
that partially coherent zero transmission is achievable when
rank ρ̃ j = 1, 2, 3, but not when rank ρ̃ j = 4, 5. This verifies
the criterion (44).

C. Majorized coherence implies nested transmission
or reflection intervals

Third, we examine how the degree of coherence affects
the attainable transmittance or reflectance intervals. Our main
results, Eqs. (13) and (14), show that, for a given system, the
transmittance interval {T } and the reflectance interval {R} are
controlled by the coherence spectrum λ↓(ρ). A natural ques-
tion arises: how will the transmittance or reflectance intervals
vary when the degree of coherence changes?

We compare the coherence between waves using the ma-
jorization order [130–135]. Consider two waves with density
matrices ρ1 and ρ2, respectively. We say that ρ1 is no more co-
herent than ρ2 if λ↓(ρ1) ≺ λ↓(ρ2). If neither λ↓(ρ1) ≺ λ↓(ρ2)
nor λ↓(ρ2) ≺ λ↓(ρ1) holds, we say that ρ1 and ρ2 are incom-
parable and denote this as λ↓(ρ1) ‖ λ↓(ρ2). For any ρ:(

1

n
,

1

n
, . . . ,

1

n

)
≺ λ↓(ρ) ≺ (1, 0, . . . , 0). (49)

Now, we state the following theorem. If ρ1 is no more
coherent than ρ2, then for any system, the transmittance or
reflectance interval of ρ1 is always contained in that of ρ2:

λ↓(ρ1) ≺ λ↓(ρ2) ⇒ {T }1 ⊆ {T }2, (50)

λ↓(ρ1) ≺ λ↓(ρ2) ⇒ {R}1 ⊆ {R}2. (51)

Using Eqs. (13) and (14), we can express the right-hand sides
of Eqs. (50) and (51) more explicitly as

λ↓(ρ2) · λ↑(t†t ) � λ↓(ρ1) · λ↑(t†t ) � λ↓(ρ1) · λ↓(t†t )

� λ↓(ρ2) · λ↓(t†t ), (52)

λ↓(ρ2) · λ↑(r†r) � λ↓(ρ1) · λ↑(r†r) � λ↓(ρ1) · λ↓(r†r)

� λ↓(ρ2) · λ↓(r†r). (53)

Proof. The proof is similar to that of (79) in Paper I. �
The statements (50) and (51) are our main results of this

subsection. They can be summarized as follows: majorized
coherence implies nested transmittance and reflectance inter-
vals. Now, we examine their implications.

First, we apply Eqs. (50) and (51) to Eq. (49) and deduce
that for any density matrix ρ and any transmission matrix t
and reflection matrix r

λmin(t†t ) � λ↓(ρ) · λ↑(t†t ) � 1

n

∑
i

λi(t
†t )

� λ↓(ρ) · λ↓(t†t ) � λmax(t†t ), (54)

λmin(r†r) � λ↓(ρ) · λ↑(r†r) � 1

n

∑
i

λi(r
†r)

� λ↓(ρ) · λ↓(r†r) � λmax(r†r). (55)

In particular, the means of λi(t†t ) and λi(r†r) are always
contained in the transmittance and reflectance intervals, re-
spectively. Hence they are attainable via unitary control.

Second, from the contrapositive of Eq. (50), we deduce
that if, for some system, neither {T }1 ⊆ {T }2 nor {T }2 ⊆ {T }1

holds (denoted as {T }1 ‖ {T }2), then ρ1 and ρ2 are incompa-
rable:

{T }1 ‖ {T }2 ⇒ λ↓(ρ1) ‖ λ↓(ρ2). (56)

Similarly, from the contrapositive of Eq. (51), we deduce that

{R}1 ‖ {R}2 ⇒ λ↓(ρ1) ‖ λ↓(ρ2). (57)

We illustrate these results with previous numerical exam-
ples. In Figs. 2(b) and 2(c), we observe that

{T |ρ1} ⊆ {T |ρ2} ⊆ {T |ρ3} ⊆ {T |ρ4}, (58)

{R|ρ1} ⊆ {R|ρ2} ⊆ {R|ρ3} ⊆ {R|ρ4}, (59)

because λ↓(ρi ), as given in Eqs. (17) and (18), satisfy:

λ↓(ρ1) ≺ λ↓(ρ2) ≺ λ↓(ρ3) ≺ λ↓(ρ4). (60)

In Figs. 4(a) and 4(b), we observe that

{T |ρ̃1} ⊆ {T |ρ̃2} ⊆ {T |ρ̃3} ⊆ {T |ρ̃4}, (61)

{R|ρ̃1} ⊆ {R|ρ̃2} ⊆ {R|ρ̃3} ⊆ {R|ρ̃4}, (62)

because λ↓(ρ̃i ), as given in Eqs. (36)–(40), satisfy

λ↓(ρ̃1) ≺ λ↓(ρ̃2) ≺ λ↓(ρ̃3) ≺ λ↓(ρ̃4). (63)

We also observe that

{T |ρ̃4} ‖ {T |ρ̃5}, (64)

{R|ρ̃4} ‖ {R|ρ̃5}, (65)
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FIG. 5. Schematic of unitary control of bilateral transmission
or reflection for partially coherent waves in a linear time-invariant
system with 2n ports, with n ports on either the left or the right
side. (a) Unitary control applied to an input wave characterized by
a density matrix ρ incident from the left side. The set of attainable
total transmittance and reflectance are {T }l and {R}l , respectively.
(b) Unitary control applied to the same input wave incident from the
right side. The set of attainable total transmittance and reflectance
are {T }r and {R}r , respectively.

which can occur because

λ↓(ρ̃4) ‖ λ↓(ρ̃5). (66)

D. Symmetry constraints on bilateral transmission
and reflection

Fourth, we discuss the constraints imposed by symme-
try on the bilateral unitary control of partially coherent
transmission and reflection. While symmetry constraints on
transmission and reflection eigenvalues are well established
[136], their implications for attainable transmission and re-
flection intervals of partially coherent waves have not been
explored.

For concreteness, we consider a 2n-port linear time-
invariant system with n ports on either the left or right side,
as shown in Fig. 5. The system is characterized by a 2n × 2n
scattering matrix:

S =
(

r t ′
t r′

)
, (67)

where r, t , r′, and t ′ are n × n matrices. We input a partially
coherent wave characterized by an n × n density matrix ρ

from either side and apply unitary control. We denote the
set of attainable total transmittance and reflectance as {T }l

and {R}l ({T }r and {R}r) when the wave is incident from
the left (right) side. We study the relationship between these
sets imposed by certain symmetries of the system. Here, we
examine two important internal symmetries: reciprocity and
energy conservation.

If the system is reciprocal,

S = ST . (68)

It follows that

λ↓(t†t ) = λ↓(t ′†t ′) (69)

and consequently

{T }l = {T }r . (70)

Proof. From Eq. (68), we obtain

t ′ = tT . (71)

Thus

λ↓(t ′†t ′) = λ↓(t∗tT ) = λ↓(tt†) = λ↓(t†t ). (72)

The second equality is because, for any square matrix,
λ(M ) = λ(MT ) (see Ref. [137], p. 102, Theorem 3.14). The
last equality is because, for any square matrices M and N
of the same size, λ↓(MN ) = λ↓(NM ) (see Ref. [137], p. 77,
Theorem 2.8). It follows that

{T }l = [λ↓(ρ) · λ↑(t†t ),λ↓(ρ) · λ↓(t†t )] (73)

= [λ↓(ρ) · λ↑(t ′†t ′),λ↓(ρ) · λ↓(t ′†t ′)] = {T }r . (74)

This completes the proof for the reciprocal case. �
If the system is energy conserving,

S†S = SS† = I. (75)

It follows that

λ↓(t†t ) = λ↓(t ′†t ′), (76)

λ↓(r†r) = λ↓(r′†r′), (77)

λ↓(t†t )+λ↑(r†r) = 1. (78)

Consequently,

{T }l = {T }r, {R}l = {R}r . (79)

Moreover, {T }l and {R}l are mirror symmetric with respect to
1
2 .

Proof. From S†S = I , we obtain

r†r + t†t = I, (80)

r′†r′ + t ′†t ′ = I. (81)

From SS† = I , we obtain

rr† + t ′t ′† = I, (82)

r′r′† + tt† = I. (83)

Combining Eqs. (80) and (82), we have

λ↓(t†t ) = λ↓(I − r†r) = 1 − λ↑(r†r) = 1 − λ↑(rr†) (84)

= λ↓(I − rr†) = λ↓(t ′t ′†) = λ↓(t ′†t ′). (85)

Similarly, combining Eqs. (80) and (83), we have

λ↓(r†r) = λ↓(I − t†t ) = 1 − λ↑(t†t ) = 1 − λ↑(tt†) (86)

= λ↓(I − tt†) = λ↓(r′r′†) = λ↓(r′†r′). (87)

Moreover, from Eq. (84), we have

λ↓(t†t ) + λ↑(r†r) = 1. (88)

035431-7



CHENG GUO AND SHANHUI FAN PHYSICAL REVIEW B 110, 035431 (2024)

It follows that

{T }l = {T }r = [λ↓(ρ) · λ↑(t†t ),λ↓(ρ) · λ↓(t†t )], (89)

{R}l = {R}r = [λ↓(ρ) · λ↑(r†r),λ↓(ρ) · λ↓(r†r)] (90)

= [1 − λ↓(ρ) · λ↓(t†t ), 1 − λ↓(ρ) · λ↑(t†t )],

(91)

where we have used Eq. (1) to obtain

λ↓(ρ) · 1 = tr ρ = 1. (92)

Hence {T }l and {R}l are mirror symmetric with respect to 1
2 .

This completes the proof for the energy-conserving case. �

IV. CONCLUSION

In conclusion, we have developed a comprehensive theory
for the unitary control of partially coherent wave transmis-
sion and reflection by linear systems. Our key contributions
include (1) analytical expressions [Eqs. (13) and (14)] that de-
fine the ranges of attainable total transmittance and reflectance
under arbitrary unitary transformations of the incident field
and (2) an explicit algorithm to construct a unitary control
scheme that achieves any desired transmittance or reflectance
within the attainable range.

Through this theory, we establish the conditions for four
phenomena: partially coherent perfect transmission, partially
coherent perfect reflection, partially coherent zero transmis-
sion, and partially coherent zero reflection. We derive precise
criteria [Eqs. (31), (32), (45), and (44)] for their occurrence.
Additionally, we prove a fundamental theorem [Eqs. (50) and
(51)] that relates the majorization order of the incident coher-
ence spectra to the nesting order of the resulting transmission
or reflection intervals. Furthermore, we reveal the symmetry
constraints imposed by reciprocity and energy conservation
on the unitary control of bilateral transmission and reflection
of partially coherent waves.

The theory established in this work enhances the un-
derstanding of partially coherent transmission and reflection
control across a diverse range of wave systems. We anticipate
that our results will find applications in areas such as imaging,
sensing, display, and communication, where partially coherent
transmission and reflection play a central role.
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