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Unitary control of partially coherent waves. I. Absorption
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The coherent control of wave absorption has important applications in areas such as energy harvesting,
imaging, and sensing. However, most practical scenarios involve the absorption of partially coherent rather than
fully coherent waves. Here we present a systematic theory of unitary control over the absorption of partially
coherent waves by linear systems. Given an absorbing system and incident partially coherent wave, we provide
analytical expressions for the range of attainable absorptivity under arbitrary unitary transformations of the
incident field. We also present an explicit algorithm to construct the unitary control scheme that achieves any
desired absorptivity within that attainable range. As applications of our theory, we derive the conditions required
for achieving two phenomena—partially coherent perfect absorption and partially coherent zero absorption.
Furthermore, we prove a theorem relating the coherence properties of the incident field, as quantified by
majorization, to the resulting absorption intervals. Our results provide both fundamental insights and practical
prescriptions for exploiting unitary control to shape the absorption of partially coherent waves. The theory applies
across the electromagnetic spectrum as well as to other classical wave systems such as acoustic waves.
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I. INTRODUCTION

Absorption is a fundamental wave phenomenon [1–7].
Controlling wave absorption has significant implications in
diverse applications, including renewable energy [8–18],
imaging [19], and sensing [20,21].

Approaches to controlling wave absorption can be classi-
fied into two categories: structural design and wave control.
In the structural design approach, desired absorption behav-
iors are achieved by designing the absorber’s structure. For
instance, recent progress in thermal photonics has enabled
novel photonic absorbers that differ drastically from tradi-
tional blackbody absorbers [22–29]. Photonic structures can
be designed with narrowband absorptivity in either the spec-
tral or angular domain [22] or with low absorptivity at solar
wavelengths and high emissivity in the midinfrared for day-
time radiative cooling [11,12].

In the wave control approach, desired absorption behaviors
are achieved by manipulating the external waves interacting
with the absorber. This approach is termed unitary control, as
it involves a unitary transformation of the external waves [30].
Unitary control is widely used in applications where the ab-
sorber structure is fixed. For example, Fresnel lenses are used
as concentrators to enhance solar cell absorption by reshaping
the external waves [31]. Unitary control has also been used
to achieve novel absorption phenomena like coherent perfect
absorption [32–41].

A systematic theory of unitary control has recently been
developed for coherent waves [30]. However, many practi-
cal applications, such as solar energy and radio astronomy,
involve the absorption of partially coherent waves [42,43], as
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many wave sources are inherently partially coherent. In order
to develop a theory of unitary control for manipulation of the
absorption of partially coherent wave, one needs to take into
account the interplay between the properties of the absorbers
and the coherence property of the incident waves. Such a
theory thus represents a step forward beyond the theory of
unitary control for coherent waves.

In this paper, we develop a systematic theory of unitary
control for partially coherent waves. Our theory addresses two
basic questions. (i) Given an absorbing object and an incident
partially coherent wave, what is the range of all attainable
absorptivity under unitary control? (ii) How can a given ab-
sorptivity be obtained via unitary control? The first question
addresses the capability and limitations of unitary control in
absorptivity, while the second focuses on implementation. In
this paper, we provide complete answers to both questions. As
physical applications of our theory, we determine the condi-
tions for two phenomena: partially coherent perfect absorption
and partially coherent zero absorption. We also examine how
the degree of coherence, measured by the majorization order,
affects the attainable absorptivity and prove that majorized
coherence implies nested absorption intervals.

This paper is the first in a series on the unitary control
of partially coherent waves. In this paper, we investigate the
unitary control of the absorption of partially coherent waves.
In the second paper [44], we further extend the unitary con-
trol method to manipulate the transmission and reflection of
partially coherent waves. We have adopted the same mathe-
matical notations and similar proof techniques throughout this
series of papers.

The rest of this paper is organized as follows. In Sec. II,
we summarize useful mathematical notations. In Sec. III, we
develop a general theory of unitary control over partially co-
herent wave absorption. In Sec. IV, we discuss the physical
applications of our theory. We conclude in Sec. V.
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II. NOTATIONS

We first summarize the notations related to matrices.
We denote by Mn the set of n × n complex matrices
and U (n) the set of n × n unitary matrices. For M ∈
Mn, we denote by d(M ) = (d1(M ), . . . , dn(M ))T , λ(M ) =
(λ1(M ), . . . , λn(M ))T , and σ(M ) = (σ1(M ), . . . , σn(M ))T

the vectors of diagonal entries, eigenvalues, and singular val-
ues of M [45]. We also define the vector

1 − σ2(M ) ≡ (
1 − σ 2

1 (M ), . . . , 1 − σ 2
n (M )

)
. (1)

We adopt the following notations for vectors. For x =
(x1, . . . , xn) ∈ Rn, we define x↓ = (x↓

1 , . . . , x↓
n ) and x↑ =

(x↑
1 , . . . , x↑

n ), where x↓
1 � · · · � x↓

n and x↑
1 � · · · � x↑

n denote
the components reordered in nonincreasing and nondecreas-
ing orders, respectively. We denote the set of n-dimensional
probability vectors with components reordered nonincreas-
ingly as

�↓
n =

{
x ∈ Rn|xi � 0, xi � xi+1,

n∑
i=1

xi = 1

}
. (2)

III. THEORY

A. Partially coherent waves

Consider an n-dimensional Hilbert space of waves
equipped with a set of orthonormal bases. A coherent wave
is represented by a complex vector

a = (a1, . . . , an)T . (3)

A partially coherent wave comprises a statistical mixture of
coherent waves and is represented by a density matrix [46–51]
(also known as a coherence [52] or coherency [43,53,54]
matrix in optics),

ρ = 〈aa†〉, (4)

where 〈·〉 denotes the ensemble average. The density matrix ρ

is positive semidefinite. The trace of ρ corresponds to the total
power; without loss of generality, we assume it is normalized:

tr ρ = 1. (5)

The diagonal elements of ρ, denoted by

d(ρ) = (ρ1, . . . , ρn), (6)

represent the power distribution in each basis mode.
The coherence properties are encoded in the eigenvalues of

ρ, termed the coherence spectrum:

λ↓(ρ) = (λ↓
1 (ρ), . . . , λ↓

n (ρ)). (7)

λ↓(ρ) represents the probability distribution associated with
the statistical mixture. A coherent wave has

λ↓(ρ) = (1, 0, . . . , 0), (8)

while an incoherent wave has

λ↓(ρ) =
(

1

n
,

1

n
, . . . ,

1

n

)
. (9)

All waves, including coherent, incoherent, and partially co-
herent waves, have λ↓(ρ) belonging to �↓

n .

FIG. 1. (a) Schematic of partially coherent wave absorption. An
input wave characterized by a density matrix ρ is scattered by a pas-
sive linear time-invariant system with a scattering matrix S, resulting
in an output wave with an unnormalized density matrix � = SρS†.
The absorptivity α is defined as the ratio between the absorbed power
and the input power. (b) Schematic of unitary control of partially co-
herent wave absorption. A unitary converter U is applied to the input
wave before it interacts with the system, enabling the manipulation
of the absorptivity α.

B. Partially coherent wave absorption

We study the absorption of a partially coherent wave. As
shown in Fig. 1(a), we input a partially coherent input wave
with an n × n density matrix ρ into an n-port passive linear
time-invariant system characterized by a scattering matrix S ∈
Mn [55]. The output wave is represented by an (unnormalized)
density matrix

� = 〈bb†〉 = SρS†. (10)

The trace of � corresponds to the total output power. The
absorptivity α is defined as the ratio between the absorbed
power and the input power:

α := (tr ρ − tr �)/ tr ρ. (11)

Using Eqs. (5) and (10), we obtain

α = 1 − tr � = tr(ρA), (12)

with the absorptivity matrix

A := I − S†S. (13)

A is positive semidefinite with the absorption eigenvalues
[56]:

λ↓(A) = 1 − σ2↑(S). (14)

C. Unitary control of partially coherent wave absorption

Now we introduce the concept of unitary control. Unitary
control refers to unitarily transforming the input waves using
a unitary converter, such as spatial light modulators [57–59],
Mach-Zehnder interferometers [60–73], and multiplane light
conversion systems [74–79]. Under unitary control, the input
wave is modified via unitary similarity [80]:

ρ → ρ[U ] = UρU †. (15)

Unitary control preserves both the total power and the coher-
ence spectrum of the input wave:

tr ρ[U ] = 1, λ↓(ρ[U ]) = λ↓(ρ). (16)

035430-2



UNITARY CONTROL OF PARTIALLY COHERENT WAVES. … PHYSICAL REVIEW B 110, 035430 (2024)

Conversely, any pair of waves with the same total power and
coherence spectrum can be transformed into each other via
unitary control. This follows from the mathematical fact that
two Hermitian matrices are unitarily similar if and only if they
have the same eigenvalues (see Ref. [80], p. 134). Hence the
set

{ρ[U ]|U ∈ U (n)} (17)

represents all partially coherent waves with the same total
power and coherence spectrum as ρ. This set is entirely de-
termined by λ↓(ρ).

Under unitary control, the absorptivity becomes explicitly
U dependent:

α → α[U ] = tr(UρU †A). (18)

Unitary control of absorption for coherent waves has been
studied in Ref. [30]. Here, we extend this method to manip-
ulate the absorption of partially coherent waves.

D. Major questions

We ask two basic questions, given a medium and a par-
tially coherent incident wave, under unitary control: (1) What
absorptivity is attainable? (2) How does one obtain a given
absorptivity? Question (1) inquires about the capability and
limitations of unitary control. Question (2) seeks an imple-
mentation.

We now reformulate these key questions mathematically.
Question (1): given S and ρ, what is the set

{α} ≡ { α[U ] | U ∈ U (n) }? (19)

(If the density matrix ρ needs to be specified, we denote α[U ]
as α[U |ρ] and {α} as {α|ρ}.)

Question (2): given S, ρ, and α0 ∈ {α}, find a U0 ∈ U (n)
such that

α[U0] = α0. (20)

E. Main results

In this subsection, we provide complete answers to ques-
tions (1) and (2).

1. Answer to question (1)

We start with question (1). The answer is

{α} = [λ↓(ρ) · λ↑(A),λ↓(ρ) · λ↓(A)], (21)

where [, ] denotes the closed real interval and · denotes the
usual inner product.

Proof. α[U ] is a continuous map from U (n) to R. Since
U (n) is connected, the image of α[U ], i.e., {α}, is an interval.
First, we show that, for any α[U ] ∈ {α},

λ↓(ρ) · λ↑(A) � α[U ] � λ↓(ρ) · λ↓(A). (22)

We use the following theorem [81–84]: if M and N are n × n
Hermitian matrices, then

λ↓(M ) · λ↑(N ) � tr MN � λ↓(M ) · λ↓(N ). (23)

Applying Eq. (23) to Eq. (18), we obtain

λ↓(ρ) · λ↑(U †AU ) � α[U ] � λ↓(ρ) · λ↓(U †AU ). (24)
Note that λ(A) is invariant under unitary control:

λ(U †AU ) = λ(A). (25)

Substituting Eq. (25) into Eq. (24) yields Eq. (22).
Second, we show that the entire interval in Eq. (21) is

achievable by unitary control. It suffices to demonstrate that
both end points are achievable. Since ρ and A are Hermitian,
they are diagonalizable by unitary similarity [80]:

ρ = U1D↓
ρU †

1 , A = V1D↓
AV †

1 = V2D↑
AV †

2 , (26)

where U1, V1, V2 ∈ U (n), and

D↓
ρ = diag[λ↓(ρ)], (27)

D↓
A = diag[λ↓(A)], D↑

A = diag[λ↑(A)], (28)

where diag(v) represents a diagonal matrix with the elements
of vector v along its main diagonal. We define the unitary
matrices

Uu = V1U
†
1 , Ul = V2U

†
1 . (29)

We can then verify that

α[Uu] = tr(ρU †
u AUu) = tr(U1D↓

ρU †
1 U1V

†
1 V1D↓

AV †
1 V1U

†
1 )

= tr(D↓
ρD↓

A ) = λ↓(ρ) · λ↓(A), (30)

α[Ul ] = tr(ρU †
l AUl ) = tr(U1D↓

ρU †
1 U1V

†
2 V2D↑

AV †
2 V2U

†
1 )

= tr(D↓
ρD↑

A ) = λ↓(ρ) · λ↑(A). (31)

Hence both end points are achievable by unitary control. This
completes the proof of Eq. (21). �

Equation (21) is the first main result of our paper.
It completely characterizes the attainable absorptivity via
unitary control. It shows that {α} is completely deter-
mined by λ(ρ) and λ(A), which are invariant under unitary
control.

To illustrate our results, we conduct a numerical experi-
ment. We generate a random 5 × 5 scattering matrix using
NUMPY’s random number generator [85]:

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.03 − 0.18i 0.02 − 0.15i −0.01 − 0.09i −0.04 − 0.12i 0.14 − 0.01i

0.32 + 0.02i 0.06 − 0.04i 0.15 − 0.02i −0.10 + 0.00i −0.40 − 0.01i

0.01 − 0.24i −0.29 + 0.03i 0.11 − 0.07i 0.14 − 0.24i −0.40 − 0.03i

−0.11 − 0.02i −0.07 − 0.02i −0.13 − 0.11i −0.37 − 0.34i −0.02 − 0.27i

−0.16 + 0.11i −0.08 + 0.34i 0.01 + 0.18i 0.31 + 0.01i −0.13 − 0.07i

⎞
⎟⎟⎟⎟⎟⎟⎠. (32)
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This matrix is nonunitary and has

σ↓(S) = (0.74, 0.71, 0.66, 0.09, 0.03), (33)

λ↑(A) = 1 − σ2↓(S) = (0.46, 0.50, 0.57, 0.99, 1.00). (34)

We consider four input density matrices ρ1, ρ2, ρ3, and ρ4,
with coherence spectra:

λ↓(ρ1) = (0.20, 0.20, 0.20, 0.20, 0.20), (35)

λ↓(ρ2) = (0.25, 0.25, 0.22, 0.18, 0.09), (36)

λ↓(ρ3) = (0.34, 0.26, 0.21, 0.11, 0.08), (37)

λ↓(ρ4) = (1.00, 0.00, 0.00, 0.00, 0.00). (38)

Note that ρ1 is completely incoherent, ρ2 and ρ3 are partially
coherent, and ρ4 is perfectly coherent. For each input, we
generate 1 000 000 random unitary matrices Ui from circular
unitary ensemble with Haar measure [86], which provides a
uniform probability distribution on U (n) [86]. Then we cal-
culate the absorptivity α[Ui|ρ j] = tr(Uiρ jU

†
i A) for each ρ j by

Eq. (18). Figure 2(a) shows that all the α[Ui|ρ j] are contained
within the corresponding intervals {α|ρ j} as determined by
Eq. (21). Moreover, the plot suggests that the entire interval
can be covered when all unitary matrices in U (n) are consid-
ered. We check that

{α|ρ1} =
{

1

5

5∑
i=1

λi(A)

}
= {0.704}, (39)

{α|ρ2} = [0.64, 0.76], (40)

{α|ρ3} = [0.59, 0.81], (41)

{α|ρ4} = [
1 − σ 2

1 (S), 1 − σ 2
n (S)

] = [0.46, 1.00]. (42)

Figures 2(b)–2(d) show the histograms of α[Ui] for ρ2, ρ3,
and ρ4, respectively. We observe that the probability distri-
bution of α[Ui] depends on λ(ρ). We also verify through
additional simulations that σ(S) affects the probability dis-
tribution of α[Ui] as well. The explicit dependence of the
probability distribution of α[Ui] on λ(ρ) and σ(S) is an in-
teresting open question.

2. Answer to question (2)

Now we turn to question (2). The problem corresponds
to the following physical scenario. Suppose we have a pho-
tonic structure characterized by a scattering matrix S and,
consequently, an absorptivity matrix A = I − S†S. Consider
an incident partially coherent wave characterized by a nor-
malized density matrix ρ. Given an absorptivity

λ↓(ρ) · λ↑(A) � α0 � λ↓(ρ) · λ↓(A), (43)

how do we construct one unitary control scheme described by
a unitary matrix U [α0] that achieves α0?

We solve this problem using the following algorithm.
Algorithm 1 (Constructing a U [α0]).
(1) Diagonalize ρ and A as in Eq. (26).
(2) Construct Uu and Ul according to Eq. (29).

FIG. 2. Attainable absorptivity under unitary control [Eq. (21)].
(a) Blue dots: α[Ui|ρ j] for 1 000 000 random unitary matrices Ui and
input density matrices ρ j with j = 1, 2, 3, 4. Red lines: calculated
interval end points by Eq. (21). (b)–(d) Histograms of α[Ui|ρ j] for
j = 2, 3, 4. α[Ui|ρ1] is constant for all Ui, as ρ1 corresponds to an
incoherent input wave.

(3) Define a skew-Hermitian matrix

J = log(UuU
†
l ), (44)

and construct a continuous path between Ul and Uu in U (n):

U (τ ) := eJτUl , 0 � τ � 1. (45)

The function τ 	→ α[U (τ )] is continuous on the interval [0,1],
with α[U (0)] = λ↓(ρ) · λ↑(A) and α[U (1)] = λ↓(ρ) · λ↓(A).
By continuity, the values of α[U (τ )] for 0 � τ � 1 will cover
the whole interval of {α}.

(4) Use the bisection search to find 0 � τ0 � 1 such that

α[U (τ0)] = α0. (46)

Thus we obtain a U [α0] = U (τ0).
Algorithm 1 is our second main result. To illustrate its

usage, we provide a numerical example. (See Fig. 3.) We

FIG. 3. Constructing a unitary matrix for desired absorptivity
(Algorithm 1). Blue curve: α[U (τ )], τ is a parameter that varies from
0 to 1, corresponding to a continuous path between the unitary ma-
trices Ul and Uu. U (τ0 ) achieves a desired absorptivity α0 ∈ [αl , αu].
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consider the same S matrix in Eq. (32) and the input density matrix ρ3 as introduced in Eq. (37). Our task is to construct a U [α0]
with a randomly assigned goal

0.6355 = α0 ∈ {α|ρ3} = [0.59, 0.81]. (47)

We use Algorithm 1 and obtain

U [α0] =

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.26 + 0.31i −0.51 − 0.51i 0.08 − 0.28i −0.16 + 0.18i −0.15 + 0.40i

−0.25 − 0.26i −0.23 + 0.06i −0.59 + 0.37i 0.02 + 0.27i −0.48 − 0.09i

0.51 + 0.03i −0.33 − 0.17i 0.41 + 0.43i −0.18 + 0.35i −0.07 − 0.36i

−0.47 + 0.41i −0.04 + 0.45i 0.20 − 0.14i −0.39 + 0.02i −0.15 − 0.44i

−0.30 − 0.15i 0.28 − 0.07i 0.06 + 0.01i 0.08 + 0.72i 0.48 − 0.03i

⎞
⎟⎟⎟⎟⎟⎟⎠. (48)

IV. APPLICATIONS

Now we discuss the physical applications of our theory.

A. Partially coherent perfect absorption

First, we introduce the phenomenon of partially coherent
perfect absorption. Recall that coherent perfect absorption
refers to the effect that a coherent wave is perfectly absorbed
by a linear system via unitary control [30,32]. For a linear
system characterized by a scattering matrix S, coherent perfect
absorption occurs if and only if

nullity S � 1. (49)

Similarly, partially coherent perfect absorption refers to the
phenomenon where a partially coherent wave is perfectly ab-
sorbed by a linear system via unitary control. We apply our
theory to prove the following criterion: for a linear system
characterized by a scattering matrix S and a partially coherent
wave characterized by a density matrix ρ, partially coherent
perfect absorption occurs if and only if

nullity S � rank ρ. (50)

As a sanity check, for a perfectly coherent wave, rank ρ = 1,
and Eq. (50) reduces to Eq. (49).

Proof. Note that nullity S equals the number of zeros in
σ(S) and thus the number of ones in λ(A) [see Eq. (14)], while

rank ρ equals the number of nonzero elements in λ(ρ). Hence

λ↓(A) = (

nullity S︷ ︸︸ ︷
1, . . . , 1,

0�∗<1︷ ︸︸ ︷∗, . . . , ∗), (51)

λ↓(ρ) = (∗, . . . , ∗︸ ︷︷ ︸
0<∗�1

, 0, . . . , 0︸ ︷︷ ︸
1−rank ρ

). (52)

According to the normalization condition [Eq. (5)],∑
i

λ
↓
i (ρ) = tr ρ = 1. (53)

By Eq. (21), the maximal absorptivity achievable via unitary
control is

αmax = λ↓(ρ) · λ↓(A). (54)

Partially coherent perfect absorption occurs iff αmax = 1. Us-
ing Eqs. (51)–(53), we obtain that

αmax = 1 ⇐⇒ nullity S � rank ρ. (55)

This completes the proof of the criterion (50). �
If the criterion (50) is satisfied, we can unitarily transform

the input density matrix ρ such that its support [87] is a subset
of the null space of the S matrix, thus achieving partially
coherent perfect absorption. Uu as defined in Eq. (29) provides
one such unitary transformation.

We numerically demonstrate our results on partially coher-
ent perfect absorption. We consider a 5 × 5 lossy scattering
matrix:

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.16 + 0.01i 0.09 − 0.02i −0.04 − 0.08i −0.05 + 0.00i −0.07 + 0.13i

0.10 + 0.10i −0.08 − 0.17i −0.16 − 0.16i −0.20 + 0.00i 0.08 + 0.07i

0.11 + 0.09i −0.15 + 0.01i −0.10 + 0.23i 0.11 + 0.17i 0.21 − 0.05i

−0.01 + 0.27i 0.15 − 0.24i 0.11 − 0.26i −0.10 − 0.26i 0.05 + 0.12i

−0.03 + 0.14i 0.06 − 0.10i 0.02 − 0.08i −0.02 − 0.07i 0.04 + 0.08i

⎞
⎟⎟⎟⎟⎟⎟⎠, (56)

which has

σ↓(S) = (0.81, 0.38, 0.00, 0.00, 0.00), (57)

λ↑(A) = 1 − σ2↓(S) = (0.34, 0.85, 1.00, 1.00, 1.00). (58)

Thus

nullity S = 3. (59)

We consider five different incident waves characterized by
normalized density matrices ρ̃ j , 1 � j � 5, with coherence
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FIG. 4. Numerical demonstration of the conditions for (a) par-
tially coherent perfect absorption and (b) partially coherent zero
absorption. Blue dots: α[Ui|ρ̃ j] for 1 000 000 random Ui and j =
1, 2, 3, 4, 5. Red lines: calculated interval end points by Eq. (21).

spectra:

λ↓(ρ̃1) = (1.00, 0.00, 0.00, 0.00, 0.00), (60)

λ↓(ρ̃2) = (0.51, 0.49, 0.00, 0.00, 0.00), (61)

λ↓(ρ̃3) = (0.36, 0.33, 0.31, 0.00, 0.00), (62)

λ↓(ρ̃4) = (0.25, 0.25, 0.25, 0.25, 0.00), (63)

λ↓(ρ̃5) = (0.28, 0.23, 0.21, 0.16, 0.12). (64)

Thus their ranks are different:

rank ρ̃ j = j. (65)

For each input, we generate 1 000 000 random unitary matri-
ces Ui from the circular unitary ensemble. Then we calculate
the absorptivity α[Ui|ρ̃ j] for each ρ̃ j by Eq. (18) and plot
the results in Fig. 4(a). We see that partially coherent perfect
absorption is achievable when rank ρ̃ j = 1, 2, 3, but is not
when rank ρ̃ j = 4, 5. This checks the criterion (50).

B. Partially coherent zero absorption

Second, we introduce the phenomenon of partially coher-
ent zero absorption. Coherent zero absorption refers to the
effect that a coherent wave exhibits zero absorption by a linear
system via unitary control. For a linear system characterized

by a scattering matrix S and thus an absorptivity matrix A =
I − S†S, coherent zero absorption occurs if and only if

nullity A � 1. (66)

Similarly, partially coherent zero absorption refers to the
phenomenon where a partially coherent wave exhibits zero
absorption by a linear system via unitary control. We apply
our theory to prove the following criterion: for a linear system
characterized by a scattering matrix S and an absorptivity
matrix A = I − S†S and a partially coherent wave character-
ized by a density matrix ρ, partially coherent zero absorption
occurs if and only if

nullity A � rank ρ. (67)

As a sanity check, for a perfectly coherent wave, rank ρ = 1,
and Eq. (67) reduces to Eq. (66).

Proof. Note that nullity A equals the number of zeros in
σ(A), while rank ρ equals the number of nonzero elements in
λ(ρ). Hence

λ↑(A) = (

nullity A︷ ︸︸ ︷
0, . . . , 0,

0<∗�1︷ ︸︸ ︷∗, . . . , ∗), (68)

λ↓(ρ) = (∗, . . . , ∗︸ ︷︷ ︸
0<∗�1

, 0, . . . , 0︸ ︷︷ ︸
1−rank ρ

). (69)

By Eq. (21), the minimal absorptivity achievable via unitary
control is

αmin = λ↓(ρ) · λ↑(A). (70)

Partially coherent zero absorption occurs iff αmin = 0. Using
Eqs. (68) and (69), we obtain that

αmin = 0 ⇐⇒ nullity A � rank ρ. (71)

This completes the proof of the criterion (67). �
If the criterion (67) is satisfied, we can unitarily transform

the input density matrix ρ such that its support is a subset
of the null space of the A matrix, thus achieving partially
coherent zero absorption. Ul as defined in Eq. (29) provides
one such unitary transformation.

We numerically demonstrate our results on partially co-
herent zero absorption. We consider a 5 × 5 lossy scattering
matrix:

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.17 − 0.09i −0.44 − 0.34i −0.33 − 0.10i 0.16 − 0.46i 0.24 − 0.27i

0.06 − 0.05i 0.55 − 0.12i −0.07 + 0.68i 0.12 − 0.20i 0.12 + 0.07i

−0.11 + 0.25i 0.29 − 0.23i −0.36 − 0.12i −0.63 − 0.13i 0.21 + 0.05i

0.66 − 0.13i −0.06 + 0.33i 0.14 + 0.05i −0.17 − 0.01i 0.55 + 0.15i

−0.28 + 0.31i −0.01 + 0.22i 0.25 + 0.10i −0.17 − 0.27i 0.27 − 0.31i

⎞
⎟⎟⎟⎟⎟⎟⎠, (72)

which has

σ↓(S) = (1.00, 1.00, 1.00, 0.86, 0.52), (73)

λ↑(A) = 1 − σ2↓(S) = (0.00, 0.00, 0.00, 0.26, 0.73). (74)

Thus

nullity A = 3. (75)

We consider five different incident waves characterized by
normalized density matrices ρ̃ j , 1 � j � 5, with coherence
spectra as provided in Eqs. (60)–(64); thus rank ρ̃ j = j. For
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each input, we generate 1 000 000 random unitary matrices
Ui from circular unitary ensemble. Then we calculate the
absorptivity α[Ui|ρ̃ j] for each ρ̃ j by Eq. (18) and plot the
results in Fig. 4(b). We see that partially coherent zero ab-
sorption is achievable when rank ρ̃ j = 1, 2, 3, but is not when
rank ρ̃ j = 4, 5. This checks the criterion (67).

C. Majorized coherence implies nested absorption intervals

Third, we examine how the degree of coherence affects the
attainable absorption interval. Our main result Eq. (21) shows
that, for a given lossy system, the absorptivity interval {α} is
solely controlled by the coherence spectrum λ↓(ρ). A natural
question arises: how will the absorptivity interval vary when
the degree of coherence changes?

To address this question, we must first clarify how to
compare the coherence between waves. A natural measure is
provided by majorization [88–93]: for two vectors x and y in
Rn, we say that x is majorized by y, written as x ≺ y, if

k∑
i=1

x↓
i �

k∑
i=1

y↓
i , k = 1, 2, . . . , n − 1, (76)

n∑
i=1

xi =
n∑

i=1

yi. (77)

Intuitively, x ≺ y means that their components have the same
sum, but the components of x are no more spread out than
those of y. Consider two waves with density matrices ρ1 and
ρ2, respectively. We say that ρ1 is no more coherent than ρ2

if λ↓(ρ1) ≺ λ↓(ρ2). If neither λ↓(ρ1) ≺ λ↓(ρ2) nor λ↓(ρ2) ≺
λ↓(ρ1) holds, we say that ρ1 and ρ2 are incomparable and
write λ↓(ρ1) ‖ λ↓(ρ2). As a sanity check, for any ρ,(

1

n
,

1

n
, . . . ,

1

n

)
≺ λ↓(ρ) ≺ (1, 0, . . . , 0), (78)

i.e., any wave is no more coherent than a coherent wave and
no less coherent than an incoherent wave.

Now we can state the following theorem. If ρ1 is no more
coherent than ρ2, then for any lossy system, the absorption
interval of ρ1 is always contained in that of ρ2:

λ↓(ρ1) ≺ λ↓(ρ2) ⇒ {α}1 ⊆ {α}2. (79)

Using Eq. (21), we can express the right hand side of Eq. (79)
more explicitly:

λ↓(ρ2) · λ↑(A) � λ↓(ρ1) · λ↑(A) � λ↓(ρ1)

· λ↓(A) � λ↓(ρ2) · λ↓(A). (80)

Proof. We use the following theorem. Let D =
{(x1, . . . , xn) ∈ Rn : x1 � · · · � xn}. The inequality

x · u � y · u (81)

holds for all u ∈ D if and only if x ≺ y on D. (See Ref. [88],
p. 160, Proposition B.7.)

First, since λ↓(ρ1), λ↓(ρ2), and λ↓(A) are all in D, the
theorem above implies that

λ↓(ρ1) · λ↓(A) � λ↓(ρ2) · λ↓(A), (82)

which proves the last inequality in (80). Second, since
−λ↑(A) ∈ D, the theorem above implies that

−λ↓(ρ1) · λ↑(A) � −λ↓(ρ2) · λ↑(A), (83)

which is equivalent to the first inequality in (80). The middle
inequality in (80) always holds. This completes the proof. �

Theorem (79) is our main result of this subsection. It can be
summarized as follows: majorized coherence implies nested
absorption intervals. Now we examine its implications.

First, we apply Theorem (79) to (78) and deduce that, for
any density matrix ρ and any absorptivity matrix A,

λmin(A) � λ↓(ρ) · λ↑(A) � 1

n

∑
i

λi(A) � λ↓(ρ)

· λ↓(A) � λmax(A). (84)

In particular, the mean of λi(A) is always contained in the
absorption interval and thus attainable via unitary control.

Second, from the contrapositive of Theorem (79), we de-
duce that if for some lossy system, neither {α}1 ⊆ {α}2 nor
{α}2 ⊆ {α}1 holds (denoted as {α}1 ‖ {α}2), then ρ1 and ρ2

are incomparable:

{α}1 ‖ {α}2 ⇒ λ↓(ρ1) ‖ λ↓(ρ2). (85)

We illustrate these results with previous numerical examples.
In Fig. 2(a), we observe that

{α|ρ1} ⊆ {α|ρ2} ⊆ {α|ρ3} ⊆ {α|ρ4}, (86)

because λ↓(ρi ) as given in Eqs. (35)–(38) satisfy

λ↓(ρ1) ≺ λ↓(ρ2) ≺ λ↓(ρ3) ≺ λ↓(ρ4). (87)

In Figs. 4(a) and 4(b), we observe that

{α|ρ̃1} ⊆ {α|ρ̃2} ⊆ {α|ρ̃3} ⊆ {α|ρ̃4}, (88)

because λ↓(ρ̃i ) as given in Eqs. (60)–(64) satisfy

λ↓(ρ̃1) ≺ λ↓(ρ̃2) ≺ λ↓(ρ̃3) ≺ λ↓(ρ̃4). (89)

We also observe that

{α|ρ̃4} ‖ {α|ρ̃5}, (90)

which can occur because

λ↓(ρ̃4) ‖ λ↓(ρ̃5). (91)

V. CONCLUSION

In conclusion, we have developed a systematic theory for
unitary control of partially coherent wave absorption by linear
systems. Our key results include (1) an analytical expression
[Eq. (21)] for the range of attainable absorptivity under arbi-
trary unitary control of the incident field and (2) an explicit
algorithm (Algorithm 1) to construct a unitary control scheme
that achieves any desired absorptivity within the attainable
range.

Through this theory, we obtain both fundamental insights
and practical prescriptions. Fundamentally, we establish two
absorption phenomena, partially coherent perfect absorption
and partially coherent zero absorption, and derive precise
criteria [Eqs. (50) and (67)] for their occurrence. We also
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prove a fundamental theorem [Eq. (79)] relating the majoriza-
tion order of the incident coherence spectra to the nesting
order of the resulting absorption intervals. Practically, our
algorithm provides step-by-step instructions to realize unitary
control and obtain any physically allowed absorption outcome
for a given incident partially coherent field and absorbing
system.

The theory established in this work deepens the under-
standing of partially coherent absorption control and provides
a powerful, flexible framework to engineer the absorption
of partially coherent waves across a diverse range of wave

systems. We anticipate that our results will find applications
in areas such as energy harvesting, thermal emission control,
imaging, and sensing, where partially coherent radiative trans-
fer plays a central role.
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