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Bound states in the continuum and long-lived electronic resonances in mesoscopic structures

Leonard Dobrzyński
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A. bound state eigenfunction is defined here to be strictly localized within a subspace of the structure under
study and has no decreasing behavior. Its eigenwavelength can be within state continua. Bound states in the
continuum (BICs) and long-lived resonances have become a unique way to produce the extreme localization
of electronic waves. We present a theoretical and numerical demonstration of semi-infinite bound states in the
continuum (SIBICs) and long-lived resonances in a ringlike electronic microresonator coupled to a finite stub
and to two electronic rib/ridge waveguides, together with their existence conditions. This structure is composed
of a closed loop of length L, a finite stub of length L1 and two semi-infinite leads. SIBICs localized in a semi-
infinite subspace domain induce transmission zeros. Others induce transmission ones in the middle of long-
lived resonances. The BICs correspond to localized resonances of infinite lifetime inside the structure, without
any leakage into the surrounding leads. When BICs exist within state continua, they induce Fano resonances
exhibiting sharp peaks in the transmission spectra and in the variation of the density of states for specific values
of the stub length L1. This enables one to regulate these resonances by means of this length. The obtained
results take due account of the state number conservation between the final system and the reference one. This
conservation rule enables one to find all the states of the final system and among them the bound in the continuum
ones. The analytical results are obtained by means of the Green’s function technique. The structures and the
long-lived resonances presented in this paper may have potential applications due to their high sensitivities to
weak perturbations, in particular in sensing, wave filtering, and microelectronic devices.

DOI: 10.1103/PhysRevB.110.035428

I. INTRODUCTION

Classical and quantum finite systems have discrete states.
A bound state eigenfunction is defined to be strictly localized
within a subspace of a system. Its eigenvalue can be within
state continua. Without dissipation, the states have an infinite
lifetime. A discrete state in interaction with a state continuum
induces at least one resonance. It may also remain bound
within a finite subspace, and become a bound state in the
continuum (BIC) [1]. When such a resonance has an infinite
lifetime, it is a discrete state. When its frequency passing
band is confined by one or two zeros of transmission, it is
a long-lived resonance [2–5].

Recently bound states in the continuum, also known as
trapped modes, have enabled researchers to create systems
with long-lived resonances in order to enhance photon-

matter interaction [6]. A BIC manifests itself as a resonance
with zero linewidth in lossless systems. It exists within the
state continua but remains perfectly confined in some parts
of the system (subsystem). BICs were first predicted by
Neumann and Wigner in 1929 [1]. Since then, BICs were
found in various fields of physics such as electronics [7,8],
photonics [9–12], acoustics [13,14], magnonics [15], and
plasmonics [16–18]. Interest in BICs also results from their
potential use in many applications such as lasers [19], fil-
ters [20,21], and sensors [22,23]. BICs can be classified
into several mechanisms related to their discovery origin
[6], e.g., symmetry-protected BICs [24–27], accidental BICs
[28–30], Fabry-Pérot BICs [31–33] and Friedrich-Wintgen
BICs [34–37] which have been subsequently investigated the-
oretically and experimentally in different physical systems

2469-9950/2024/110(3)/035428(13) 035428-1 ©2024 American Physical Society

https://orcid.org/0000-0002-4508-1305
https://ror.org/02q4res37
https://ror.org/02kzqn938
https://orcid.org/0000-0002-7252-9646
https://ror.org/03tn5ee41
https://ror.org/02q4res37
https://ror.org/02kzqn938
https://orcid.org/0000-0002-7599-1203
https://ror.org/02q4res37
https://ror.org/02kzqn938
https://orcid.org/0000-0002-8335-2882
https://ror.org/03tn5ee41
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.035428&domain=pdf&date_stamp=2024-07-26
https://doi.org/10.1103/PhysRevB.110.035428
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FIG. 1. The simple structure studied in this paper. The structure
made out of two guides of lengths L and L1. When closing the
L one at space point zero, one connects to it the zero end of the
guide of length L1 (a). Finally two semi-infinite leads are connected
to the space point zero (b). The space point zero is the point of
connection of the two semi-infinite leads with the two guides, L and
L1, constituting the structure. This is why we call it the interface
point. The interface space for this structure is the point zero. This
interface space is written shortly as M = {0}.

[38–42]. Let us also mention that very recently researchers
discovered another type of BICs called momentum-mismatch-
driven BICs [43]. BICs are not observable from the spectrum
due to their nonradiative property with vanishing spectral
linewidth. However, they can exist only under a specific
choice of the material or geometrical parameters of the sys-
tem. Thus, by slightly detuning the system from the BIC
conditions (e.g., changing the geometrical parameters), the
BIC induces a long-lived resonance with a finite width.

No state can interact with another one through an eigen-
function zero [44–46]. With the leads, some final states may
be, in the present paper, BICs, or semi-infinite bound states
in the continuum (SIBICs). BICs or SIBICs are bound re-
spectively in finite or infinite system subspaces. They are
induced by their eigenfunction zeros and the fact that they
cannot interact with any other state through these robust zeros
[44]. This paper reports SIBIC inducing transmission zeros
and after detuning the geometrical parameters of the struc-
ture long-lived resonances. It presents also SIBICs inducing
directly transmission ones and long-lived resonances. These
results are reported here for a one-dimensional (1D) electronic
structure composed of one closed loop attached to a stub and
two semi-infinite leads [see Fig. 1(b)].

These results are obtained by means of the interface re-
sponse theory [47] which enables one also to deduce the
state phase shifts, the variation of the density of states (VA-
DOS), the transmission rate, the transmission phase, and the
transmission phase time. These results take due account of
the state number conservation between the final system and
the reference one constituted by the independent closed loop,
stub, and semi-infinite leads. This conservation rule enables
one to find all the states of the final system and in particular
the bound ones [45].

The rest of the paper is organized as follows: In Sec. II
we present a detailed theoretical study of a one-dimensional
system. The aim of this section is to present the inverse surface
Green’s function elements of the elementary constituents of
the waveguide structure studied in this paper using interface
response theory. Section III gives the final state results ob-
tained for the structure presented in Fig. 1(a). Transmission,
reflection, BICs, SIBICs, and Fano resonance are presented in
Sec. IV. Section V gives the results obtained for the trans-
mission phase and the state phase shift. The summary and
prospective are presented in Sec. VI.

II. INTERFACE RESPONSE THEORY
OF CONTINUOUS MEDIA

A. Overview

In this paper, we study the propagation of electronic waves
in composite systems composed of one-dimensional continu-
ous finite guides grafted on different semi-infinite guides. This
paper is performed with the help of the interface response
theory [47] of continuous media which permits us to calcu-
late the Green’s function of any composite material. In what
follows, we present the basic concepts and the fundamental
equations of this theory.

Let us consider any composite material contained in its
space of definition D and formed out of N different homo-
geneous pieces situated in their domains Di. Each piece is
bounded by an interface Mi, adjacent in general to j (1 <

j < J) other pieces through subinterface domains Mi j . The
ensemble of all these interface spaces Mi will be called the
interface space M of the composite material.

The elements of the Green’s function g(DD) of any com-
posite material can be obtained from [47]

g(D, D) = G(D, D) − G(D, M )G−1(M, M )G(M, D)

+ G(D, M )G−1(M, M )g(M, M )G−1

× (M, M )G(M, D), (1)

where G(DD) is the Green’s function of a reference contin-
uous medium and g(MM ) denotes the interface elements of
the Green’s function of the composite system. The inverse
g−1(MM ) of g(MM ) is obtained for any points in the space
of the interfaces M = (�Mi ) as a superposition of the dif-
ferent g−1

i (Mi, Mi) [47] inverse of the gi(Mi, Mi ) for each
constituent i of the composite system. The latter quantities are
given by the equation

g−1
i (Mi, Mi ) = �i(Mi, Mi )G

−1
i (Mi, Mi ), (2)

where

�i(Mi, Mi ) = I (Mi, Mi ) + Ai(Mi, Mi ), (3)

where I is the unit matrix and

Ai(x, x′) = Vi(x
′′)Gi(x

′′, x′) |x′′=x, (4)

where x, x′′ ∈ Mi and x′ ∈ Di.
In Eq. (4), the cleavage operator Vi acts only in the surface

domain Mi of Di and cuts the finite or semi-infinite size block
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out of the infinite homogeneous guide [47]. Ai is called the
surface response operator of guide i.

The new interface states can be calculated from [47]

det[g−1(M, M )] = 0, (5)

showing that, if one is interested in calculating the interface
states of a composite, one only needs to know the inverse of
the Green’s function of each individual block in the space of
their respective surfaces and/or interfaces.

Moreover, if U (D) represents an eigenvector of the refer-
ence system, Eq. (1) enables one to calculate the eigenvectors
u(D) of the composite material [47]:

u(D) = U (D) − U (M )G−1(M, M )G(M, D)

+ U (M )G−1(M, M )g(M, M )G−1(M, M )G(M, D).
(6)

In Eq. (6), U (D), U (M ), and u(D) are row vectors. Equa-
tion (6) enables one also to calculate all the waves reflected
and transmitted by the interfaces as well as the reflection and
the transmission coefficients of the composite system. In this
case, U (D) must be replaced by an incident wave launched in
one homogeneous piece of the composite material.

B. Inverse surface Green’s function elements
of the elementary constituents

We report here the expression of the Green’s function of
a homogeneous isotropic infinite medium. For the sake of
simplicity, we restrict ourselves to homogeneous guides. We
give also the inverse of the surface Green’s function for the
semi-infinite guide with a free surface and for the finite guide
of length L.

1. Green’s function of an infinite guide

We describe the electronic propagation in the frame of
a free particle model in which E = (h̄2k2/2m) + V , where
m,V, and k refer respectively to the effective mass, a constant
potential, and a wave vector.

In this paper, we focus on homogeneous structures where
all media (the loop, the side resonator, and the semi-infinite
leads; see Fig. 1) are made of the same material, namely,
GaAs. The material parameters are then V = 0.0 meV and
m = 0.067 m0, where m0 is the free electron mass.

The time independent Schrödinger equation for standing
electronic waves is [48](

d2

dx2
− k2

)
ψ (x) = 0, (7)

where x is the space position along the structure and
k = 1

h̄

√
2mE . The response function G(x, x′) of this infinite

guide is defined by(
d2

dx2
− k2

)
G(x, x′) = δ(x − x′), (8)

where δ stands for the Dirac delta distribution, also known as
the unit impulse. The corresponding response function is

G(x, x′) = eik|x−x′ |

2ik
(9)

where i = √−1.

2. Semi-infinite guide

One considers a semi-infinite guide with a “free surface”
located at the position x = 0 in the direction Ox of the
Cartesian coordinates. The end of a semi-infinite guide is
treated as a perturbation of the infinite guide. Within this
approach, one defines first the surface cleavage operator which
is the perturbation

Vs(x) = δ(x)
d

dx
(10)

where δ(x) is the Dirac function indicating that this perturba-
tion acts only at the point x, where the infinite guide is cleaved
into two semi-infinite ones. This cleavage operator creates two
semi-infinite guides with free ends.

Then one can define the surface response operator

As(x, x′) = Vs(x
′′)G(x′′ − x′), (11)

for x′′ = x. In this expression, x takes only the semi-infinite
guide zero end value.

Then one obtains

As(x, x′) = − 1
2 . (12)

The response function for each semi-infinite guide can then
be found, using the corresponding truncated part of G. For the
semi-infinite guide such that x � 0, one finds

gs(x, x′) = 1

2ik
{exp(ik | x − x′ |) + exp[ik(x − x′)]}. (13)

The inverse of the surface Green’s function of a semi-
infinite guide at the surface point x = x′ = 0 is given by

g−1
s (M, M ) = g−1

s (0, 0) = ik. (14)

3. Finite guide

One considers a finite guide of length L bounded by two
free surfaces located at x = 0 and L in the direction Ox of the
Cartesian coordinates system. In this case [49]

g−1
L (M, M ) = k

S

(−C 1
1 −C

)
=

(
g−1

L (0, 0) g−1
L (0, L)

g−1
L (L, 0) g−1

L (L, L)

)

(15)

where C = C(L) = cos(kL) and S = S(L) = sin(kL). One
can see that in the interface domain M corresponding to
interfaces x = 0 and L, the surface Green’s function is a
2 × 2 square matrix. In order to study elementary excita-
tion, we calculate the surface Green’s function for different
composite systems composed of finite segments grafted on a
one-dimensional wave guide.

The matrix inverse of [g(M, M )]−1, namely,

g(M, M ) = 1

kS

(
C 1
1 C

)
, (16)

is the interface response matrix. The elements of this ma-
trix give the interface response functions g(0, 0) = g(L, L) =
C/(kS), g(0, L) = g(L, 0) = 1/(kS).
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4. One loop

A monomode guide of length L is an important elementary
brick out of which almost any linear material, device, and
system may be built out. It is also a good example for learning
the general method enabling one to construct new systems out
of finite guides. When closing the finite guide by superposing
its ends zero and L [see Fig. 1(a)], the inverse of the interface
response function on the connection point [using Eq. (16)] is
given by

g−1(0, 0) = −2k
C

S
+ 2k

1

S
= 2k

S(L/2)

C(L/2)
. (17)

III. ONE LOOP L AND ONE STUB L1 STATES

Consider now a reference system made out of two guides of
lengths L and L1. When closing the L one at space point zero,
one connects to it the zero end of the guide L1 [see Fig. 1(a)].
One obtains for this system, without the semi-infinite leads,
instead of Eq. (17)

[g(0, 0)]−1 = k

(
2S(L/2)

C(L/2)
+ S(L1)

C(L1)

)

= k

(
2S(L/2)C(L1) + C(L/2)S(L1)

C(L/2)C(L1)

)
. (18)

For each finite guide of length L, the discrete states are
given by the poles of the Green’s function, namely kS(L) = 0
[see Eq. (16)], therefore the initial states of the system com-
posed of the two independent guides (the loop of length L
and the stub of length L1) are given by [kS(L)][kS(L1)] =
0. We have also for each finite guide [using Eq. (15)] that
the determinant of the surface Green’s function is given
by | g−1

L (M, M ) |= −k2. For the stub of length L1 [using
similar procedure for the calculation of the element g(0, 0)
of Eq. (16)] we get | g−1

L (0, 0) |= kS(L1)/C(L1). Therefore,
for the reference system presented in Fig. 1(a) g−1

R (0, 0) =
(−k2)[kS(L1)/C(L1)] = −k3S(L1)/C(L1).

So the final states of the structure presented in Fig. 1(a)
are given by the state number conservation and the state phase
shift [45] to be

[kS(L)][kS(L1)] | [g(0, 0)]−1 |
[

1

−k3S(L1)/C(L1)

]
= 0,

(19)
that is,

S(L/2)[2S(L/2)C(L1) + C(L/2)S(L1)] = 0. (20)

When L/2 and L1 are commensurate, it is possible to factor-
ize the last term in the above equation with the help of the
Chebyshev polynomials. If L1 = 0 we get the two degenerate
closed loop states, namely S2(L/2) = 0. Let us stress that
these discrete states are two times degenerate. Their respective
standing wave eigenfunctions are cos(kx) and sin(kx), where
x is an arbitrary space point of the reference guide of length
L. For x = 0, the first eigenfunction has the value 1 and the
second one has the value zero. One independent infinite lead
has also these standing state eigenvalues and these eigenfunc-
tions, but within other bounds. So in one independent infinite
lead the sin(kx) state is a hidden state in the continuum of the
states of its twin cos(kx) one [44]. It is also the eigenfunction
of a hidden discrete state within the loop.

Equations (18) and (20) enable us to find the eigenvector
values u for particular states of the final system from

[g(0, 0)]−1u = 0. (21)

For the states defined by S(L/2) = 0, i.e., kL/2π = n,
where n = 0, 1, 2, . . . we get u = 0 when S(L1) �= 0 and u =
1 when S(L1) = 0, i.e., kL/2π = (n/2)(L/L1). This last pos-
sibility happens only when L and L1 are commensurate. For
the [2S(L/2)C(L1) + C(L/2)S(L1)] = 0 states, we get u =
1. For the states defined by C(L/2) = 0, i.e., kL/2π = n +
(1/2), where n = 0, 1, 2, . . . we get u = 0. For the states de-
fined by C(L1) = 0, i.e., kL/2π = [(2n + 1)/4](L/L1), where
n = 0, 1, 2, . . . we get u = 0.

According to the above results and to the BIC and SIBIC
theorems given in our previous work [50], once the two leads
are connected [Fig. 1(b)], the above eigenvector zeros are the
signatures of BIC or SIBIC and transmission zeros. Note also
that the eigenvector ones are for this system, the signatures of
transmission ones, falling in between the transmissions zeros
and being then the tops of long-lived resonances.

IV. TRANSMISSION AND REFLECTION

The structure presented in Fig. 1(b) is composed of a loop
of length L and a stub of length L1, inserted between two
semi-infinite leads. The inverse of the Green’s function of the
whole system is given by a linear superposition of the Green’s
functions of its constituents given above [Eqs. (14) and (18)]
in the interface space M = {0}, namely [51],

[g(0, 0)]−1 = k

(
2S(L/2)C(L1) + C(L/2)S(L1)

C(L/2)C(L1)
+ 2i

)
.

(22)
Let us consider an incident wave U (x) = e−ikx launched in

the left semi-infinite lead [Fig. 1(b)]. From Eq. (22), one can
obtain the transmission coefficient in the right semi-infinite
lead, namely, t = −2ikg(0, 0), or equivalently

t = −2iC(L/2)C(L1)

2S(L/2)C(L1) + S(L1)C(L/2) + 2iC(L/2)C(L1)
. (23)

The transmittance T (=| t |2) is

T = 4C2(L/2)C2(L1)

[2S(L/2)C(L1) + S(L1)C(L/2)]2 + 4C2(L/2)C2(L1)
.

(24)

In the same way, the reflection coefficient in the left
semi-infinite lead is given by r = −1 + 2ikg(0, 0) and the
reflectance R(=| r |2) is

R = [2S(L/2)C(L1) + S(L1)C(L/2)]2

[2S(L/2)C(L1) + S(L1)C(L/2)]2 + 4C2(L/2)C2(L1)
.

(25)

From Eqs. (24) and (25), one can easily check (in the absence
of loss) the conservation law R + T = 1.

A. Bound states in the continuum

The loop and stub structure (Fig. 1) can exhibit BICs and
Fano resonances. BICs are described as resonances with zero
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widths in the transmission and density of states spectra. These
states can occur only under specific geometrical lengths L
and L1. When departing slightly from the BIC conditions,
they transform to specific Fano or electromagnetic induced
transparency (EIT) resonances that are characterized by a zero
Fano parameter.

It is well known that the eigenmodes of the structure pre-
sented in Fig. 1(b) are given by the poles of the transmission
coefficient t [Eq. (23)] or equivalently by the poles of the
Green’s function [Eq. (22)], namely,

2S(L/2)C(L1) + S(L1)C(L/2) + 2iC(L/2)C(L1) = 0. (26)

The above equation is a complex quantity. Its real part gives
the position of the resonances in transmission and density of
states, whereas its imaginary part is related to the width of the
resonance and also here to the transmission active states. In
general, it is not easy to simultaneously cancel the real and
imaginary parts of this equation at the same frequency. This
will correspond to a bound state falling in the continuum of
states. In order to avoid the divergence of t , then its numer-
ator should also vanish in such a way that t becomes finite.
These two conditions can be fulfilled only if C(L/2) = 0 and
C(L1) = 0. A simple algebra leads to the following condition:

(L/2)

L1
= p

q
, (27)

where p and q are odd numbers. This leads to the conclusion
that L and L1 should be commensurate with each other.

Let us define a unit length L0 such that the loop length L
and the stub length L1 are multiples of L0 (i.e., L/2 = pL0 and
L1 = qL0). Therefore Eq. (26) can be written as

2S(pL0)C(qL0) + S(qL0)C(pL0) + 2iC(pL0)C(qL0) = 0
(28)

or equivalently

2S(pL0)Tq(C0) + S(qL0)Tp(C0) + 2iTp(C0)Tq(C0) = 0.

(29)
Here, Tp and Tq are the Chebyshev polynomials of the first
kind, and C0 = C(L0) = cos(kL0). Since p and q are odd
numbers, one can factorize C(L0) out of each term of the
above equation, i.e., Eq. (29) can be written as

C0[2S(pL0)T ′
q (C0)+S(qL0)T ′

p(C0) + 2iC0T ′
p(C0)T ′

q (C0)] = 0,

(30)

where Tp(C0) = C0 T ′
p(C0) and Tq(C0) = C0 T ′

q (C0). Therefore
the BICs are given by C0 = cos(kL0) = 0, i.e.,

kL

2π
= (2n + 1)

2
p, (31)

where n = 0, 1, 2, . . . . Therefore for each pair of (n, p) we
will have a BIC (see Fig. 2).

B. Semi-infinite bound states in the continuum

Another effect is that each of the loop L and the stub
L1 may create one SIBIC when a lead is attached to the
port zero. Equation (22) [or equivalently Eq. (23)] enables
one to conclude that for C(L1) = 0 and for C(L/2) = 0 the
eigenfunctions vanish on the port zero, which in turn induce
transmission zeros. The one corresponding to C(L/2) = 0 is

FIG. 2. For the structure presented in Fig. 1(b) the above plots
shows the variation of transmittance (a) and reflectance (b) (with
color scale) vs the reduced wave vector kL/2π and the stub length
L1. The loop length is considered to be L = 40 nm. For each pair
of (n, p) we get a value for kL/2π [Eq. (31)] where BICs ex-
ist for several values of the stub length L1 [vertical blue lines in
(a) or vertical red lines in (b)]. For example, if p = 1, then the
BICs will appear [using Eq. (31)] at kL/2π = 1/2, 3/2, 5/2, . . . .
If in addition q = 1, i.e., L1 = L/2 = 20 nm [see Eq. (27)], the
BICs appear at (kL/2π, L1) = (1/2, 20), (3/2, 20), (5/2, 20), . . . .
The black circles represent, for example, the BIC appearing at
(kL/2π, L1) = (5/2, 12).

a SIBIC localized in one semi-infinite lead and in the loop
L. Similarly, the one corresponding to C(L1) = 0 is a SIBIC
localized in one semi-infinite lead and in the stub L1. When
this happens for different eigenwave vectors, this system has
two SIBICs. When this happens for the same wave vector,
L1 should be commensurable with L/2. In such case these
SIBIC states may induce BICs (see for example Fig. 2 for
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FIG. 3. Illustrative example for the existence of the BICs due
to the intersection of the curves given by cos(kL1) = 0 and
cos(kL/2) = 0. The parameters used for this plot are L = 40 nm,
L1 = L/6. The BICs appear [using Eqs. (27) and (31) for p = 3,
q = 1] at (kL/2π, L1) = (3/2, 40/6), (9/2, 40/6), . . . (see Fig. 2).

the case where L1 = L/2). These SIBICs and BICs induce
transmission zeros (important for the long-lived resonance
creations).

Let us stress that for the eigenstates given by the zeros of
the real part of the denominator of Eq. (23), we get t = 1.
So there are transmission ones between the transmission ze-
ros provided by the C(L1) = 0 and the C(L/2) = 0 SIBICs.
Therefore this system shows long-lived resonances for any
incommensurate or commensurate values of L1 and L.

Figures 2(a) and 2(b) give, respectively, the variation of
the transmittance and reflectance (with color scale) versus the
reduced wave vector kL/2π and the stub length L1. One can
observe that for each pair (n, p), BICs occur for kL/2π =
(2n + 1)p/2. These BICs appear as the intersection of the
curves given by cos(kL1) = 0 and cos(kL/2) = 0 (see Fig. 3).
One can also notice that at these points the transmission
(reflection) is completely zero (one). In fact, the BICs have
robust zeros at port zero. In order to make these BICs pop
out as a sharp long-lived resonance when plotting the trans-
mission curve we have to break the symmetry of the structure
shown in Fig. 1(b) by increasing/decreasing the stub length
L1. Figure 2(a) shows how the width of these resonances
can be tuned using the stub length L1. The color code given
on the right enables one to understand how this resonance
increase/decreases in function kL/2π .

In order to give a better understanding about the behavior
of the SIBICs, BICs, and the associated Fano resonances in
the transmission coefficient, we will focus, in what follows,
on the BIC associated to the pair (n = 0, p = 5) and q = 3,
i.e., at (kL/2π, L1) = (5/2, 12) [see Fig. 2(a)]. In Fig. 4 we
plot a zoom of the variation of transmittance [Fig. 4(a)] and
reflectance [Fig. 4(b)] (with color scale) versus kL/2π and
the stub length L1. The black circles represent the BIC po-
sition. One can notice the narrowing of the resonance, then
its transformation into a BIC at (kL/2π, L1) = (5/2, 12 nm).
A transparency window between two zeros (induced by the

FIG. 4. For the structure presented in Fig. 1(b) the plots show a
zoom of the variation of transmittance (a) and reflectance (b) (with
color scale) vs the reduced wave vector kL/2π and the stub length
L1. The loop length is considered to be L = 40 nm. In this plot we
are focusing on the BIC associated to the pair (n = 0, p = 5) and
q = 3, i.e., at (kL/2π, L1) = (5/2, 12). The black circles represent
the BIC position. One can notice the narrowing of the resonance,
then its transformation into a BIC at (kL/2π, L1) = (5/2, 12). A
transparency window between two zeros (induced by the SIBICs)
appears when we deviate slightly from the BIC condition, giving rise
to electronic induced transparency resonance.

SIBICs) appears when we deviate slightly from the BIC
condition, giving rise to electronic induced transparency
resonance.

In addition we plotted in Figs. 5(a), 5(c), and 5(e) the trans-
mittance in function kL/2π for three values of L1, namely
L1 = 12.25, 12, and 11.75 nm respectively. The peak between
the transmission zeros given by the two SIBICs C(L1) = 0
and C(L/2) = 0 [denoted by dark red arrows in Figs. 5(b)

035428-6



BOUND STATES IN THE CONTINUUM … PHYSICAL REVIEW B 110, 035428 (2024)

FIG. 5. For the structure presented in Fig. 1(b) the plots in (a), (c), and (e) show the variation of transmittance vs the reduced wave vector
kL/2π for three values of the stub length L1, namely L1 = 12.25, 12, and 11.75 nm respectively. The length of the loop L is considered to
be 40 nm. In this figure we are focusing on the BIC associated to the pair (n = 0, p = 5) and q = 3, i.e., at (kL/2π, L1) = (2.5, 12 nm). The
peak between the transmission zeros given by the two SIBICs [provided by C(L1) = 0 and C(L/2) = 0 and denoted by dark red arrows in
(b) and (f)] gives rise to a well defined (EIT) resonance. This resonance becomes narrow as L1 decreases (increases) down (up) to 12 nm. At
L1 = 12 nm the width of this resonance disappears, giving rise to the BIC at kL/2π = 2.5 [denoted by dark red arrows in (c) and (d)].

and 5(f)] gives rise to a well defined EIT resonance. This
resonance becomes narrow as L1 decreases (increases) down
(up) to 12 nm. At L1 = 12 nm the width of this resonance
disappears, giving rise to a BIC at kL/2π = 5/2 [denoted by
dark red arrows in Figs. 5(c) and 5(d)]. The BIC transforms
to a quasi-BIC as we shift out from the BIC position. In
general, the quasi-BIC manifests itself as a Fano resonance in
the transmission and a narrow resonance in the VADOS (see
below).

Figure 6 represents a zoomed view for the transmit-
tance (black line) and reflectance (red line) versus the
reduced wave vector kL/2π for the resonance given in
Fig. 5(a) [or Fig. 5(b)]. The parameters are L = 40 nm and
L1 = 12.25 nm. One can notice that the loop and the stub
interfere destructively (constructively), giving rise to a zero
reflection (total transmission). This result is in accordance
with the conservation law R + T = 1 and the discussion

given above where the total transmission occurs between two
transmission zeros induced by the two SIBICs provided by
C(L1) = 0 and C(L/2) = 0. This result can be qualified as
EIT resonance.

Figure 7 shows the variation of the transmittance (black
line) and reflectance (red line) versus the stub length L1 at
kL/2π = 3 and L = 40 nm. One can see that with increasing
the value of the stub length L1 the transmittance (reflectance)
varies periodically between zero and one. There is also some
values of L1 where the transmittance and reflectance are equal.
These results show that the peaks in the transmittance (re-
flectance) can be controlled by detuning the length of the stub.

C. Fano resonance

The resonance in Fig. 5(a) shows the same characteristics
as a Fano resonance but with two zeros (due to the two
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FIG. 6. A zoomed view of the transmittance (black line) and re-
flectance (red line) vs kL/2π for the resonance given in Fig. 5(a) [or
Fig. 5(b)]. The parameters are L = 40 nm and L1 = 12.25 nm. No-
tice that the loop and the stub interfere destructively (constructively),
giving rise to a zero reflection (total transmission). This result is in
accordance with the conservation law R + T = 1. Note also that the
total transmission occurs between two transmission zeros induced by
the two SIBICs provided by C(L1) = 0 and C(L/2) = 0. This result
can be qualified as EIT resonance.

SIBICs) of transmission around the resonance instead of 1,
as is usually the case. Indeed, one can obtain an approximate
analytical expression for the transmission coefficient
[Eq. (23)] in the vicinity of the resonance. A Taylor expansion
around kL/2π = 2.5 (i.e., kL/2π = 2.5 + ε/2π with
ε/2π � 1) enables us to write the transmission coefficient
[Eq. (23)] as

t = iε(� + εa/5)

−b(ε + 2�/b) + iε(� + εa/5)
, (32)

FIG. 7. Variation of the transmittance (black line) and reflectance
(red line) vs the stub length L1 at kL/2π = 3 and L = 40 nm.

FIG. 8. (a) The solid line presents a zoom plot for the resonance
given in Fig. 5(a). The dashed line presents the approximate ex-
pression Eq. (33) for � = 0.031 25 π . (b) The same as in (a) but
for the resonance given in Fig. 5(e) with � = −0.031 25 π . The
approximate results are in a very good agreement with the exact
ones (solid lines) and clearly show that the resonance is of Fano
type with q′ � 64.5 and −64.5 for (a) and (b) respectively and
width 2� � 0.0015. Notice that the resonance shifts slightly from
kL/2π = 2.5.

where a = �/π + 3/2, b = 2�/5π + 11/10, and � is the
detuning of L1/L from 3/10 (=12/40) [i.e., � = 5π (L1/L −
3/10)].

From Eq. (32), one can show that the transmittance T can
be written following the Fano line shape [2] in the form

T = B2 (ε − εR + q′�)2

(ε − εR)2 + �2
, (33)

where B = 2�a/5b2. � = �2/b3 and εR = −2�/b character-
ize the width and the position of the resonance, respectively,
whereas q′ = 5b2/2�a is the Fano parameter. The re-
sults of the approximate expression Eq. (33) are sketched
(dashed lines) in Figs. 8(a) and 8(b) for � = 0.031 25π

and −0.031 25π respectively. These results are in a very
good accordance with the exact ones (solid lines) and clearly
show that the resonance is of Fano type with q′ � 64.5 and
−64.5 for Figs. 8(a) and 8(b) respectively and width 2� �
0.0015. One can notice that the resonance shifts slightly from
kL/2π = 2.5. Also, q′ increases when � decreases and tends
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FIG. 9. Variation of the logarithm of the quality factor Q of the
peaks reported in Fig. 8 as a function of the stub length L1. One can
notice that the quality factor of the peak depends on the value of L1

and as predicted diverges when L1 = 12 nm.

to infinity when � vanishes. In this case, the resonance falls
at εR = 0.0 and its width 2� reduces to zero as expected.

In Fig. 9, we have displayed the variation of the logarithm
of the quality factor Q of the peaks reported in Fig. 8 as a
function of the stub length L1. The quality factor Q is defined
as the ratio between the central frequency and the full width at
half maximum (Q = 2.5/2�). One can notice that the quality
factor of the peak depends on the value of L1 and as predicted
diverges when L1 = 12 nm. This result enables us to increase
the quality factor of the peaks to infinite values by detuning
the length of the stub L1. This property is a feature of Fano
and induced transparency resonances that does not exist in
standard waveguide structures with defect [1]. It should be
pointed out that the validity of our results is subject to the
requirement that the cross section of the guides is negligible
compared to their length and to the propagation wavelength.

V. TRANSMISSION PHASE AND STATE PHASE SHIFT

The transmission phase is obtained from Eq. (23) to be

φ = tan−1

(
2S(L/2)C(L1) + C(L/2)S(L1)

2C(L/2)C(L1)

)
. (34)

Another interesting quantity is the first derivative of φ with
respect to the energy, which is related to the delay time taken
by the electrons to traverse the structure. This quantity, called
phase time, is defined by [52]

τφ = h̄
dφ

dE
. (35)

Moreover, another interesting entity that can be extracted from
the Green’s function is the bulk state phase shift η. This bulk
state phase shift between the final system (the loop and stub
with the leads) and the reference system (the isolated loop, the
stub, and the two semi-infinite leads) is given by [47]

η = −arg[det{g−1(M, M )}]. (36)

FIG. 10. (a) Bulk state phase shift vs kL/2π for the structure pre-
sented in Fig. 1(b) with L = 40 nm and L1 = 12.25 nm. The Pi drop
(at kL/2π � 2.472) is due to the loss of one bulk state induced by
2S(L/2)C(L1) + C(L/2)S(L1) = 0. This Pi drop is associated with
a maximum in the transmittance curve in dashed line, superposed
here for agreement check. (b) VADOS vs kL/2π . The dashed curve
recalls the transmittance curve.

From Eq. (22) one can deduce that

η = − tan−1

(
2C(L/2)C(L1)

2S(L/2)C(L1) + C(L/2)S(L1)

)
. (37)

In order to provide an analytical comparison of the density
of states with the phases involved in the system, we consider
the VADOS �n(E ) between the final system depicted in
Fig. 1(b) and the reference system composed of the loop, the
stub, and the two semi-infinite leads. This quantity is given
by [47]

�n(E ) = − h̄

π

dη

dE
. (38)

Note that the Pi drops in φ and η are due to the zero values
of the denominators appearing in their respective analytical
expressions. As these denominators are not the same, the η

and φ Pi-drop positions are not the same.
In Fig. 10(a) we plot the bulk state phase shift versus the

reduced wave vector kL/2π for the structure presented in
Fig. 1(b) with L = 40 nm and L1 = 12.25 nm. The Pi drop
(at kL/2π � 2.47) is due to the loss of one bulk state in-
duced by [2S(L/2)C(L1) + C(L/2)S(L1)] = 0. This Pi drop
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LEONARD DOBRZYŃSKI et al. PHYSICAL REVIEW B 110, 035428 (2024)

FIG. 11. (a) Transmission phase vs kL/2π for the structure pre-
sented in Fig. 1(b) with L = 40 nm and L1 = 12.25 nm. The Pi drops
at kL/2π � 2.45 and 2.5 are induced by C(L1) = 0 and C(L/2) =
0 SIBICs. The transmission phase exhibits a phase jump at the
transmission zeros. This provides one single positive peak and two
negative delta ones at kL/2π � 2.45 and 2.5 (not shown), in the
phase time. (b) The phase time (in units of 2mL2/h̄) vs the reduced
wave vector kL/2π . The phase time and the VADOS are exactly
the same, when one neglects the derivatives of the Pi drops. This
happens only when one has two leads. The dashed curve recalls the
transmittance one, for agreement checks.

is associated with a maximum in the transmittance curve
[Eq. (24)] in dashed line, superposed here for agreement
check. Figure 10(b) shows the VADOS versus kL/2π . The
dashed curve recalls the transmittance curve. Let us men-
tion that if we introduced the dissipation in the system
by adding a small imaginary part to the energy E , i.e.,
E becomes E ± i(0.0001), a negative delta peak will show
up in the VADOS plot due to the loss of the bulk state
at kL/2π � 2.47.

Figure 11(a) shows the transmission phase versus the
reduced wave vector kL/2π for the structure presented in
Fig. 1(b) with L = 40 nm and L1 = 12.25 nm. The Pi drops
at kL/2π � 2.45 and 2.5 are induced by C(L1) = 0 and
C(L/2) = 0 SIBICs. The transmission phase exhibits, a phase
jump at the transmission zeros. This provides one single posi-
tive peak and two negative delta ones at kL/2π � 2.45 and 2.5
(not shown in the plot), in the phase time. Figure 11(b) shows
the phase time (in units of 2mL2/h̄) versus kL/2π . The phase

time and the VADOS are exactly the same, when one neglects
the derivatives of the Pi drops. This happens only when one
has two leads.

VI. SUMMARY AND PROSPECTIVE

In summary, we have given an analytical evidence about
the existence of SIBICs, BICs, and Fano resonances in a
1D monomode electronic structure made of a closed loop of
length L, a finite stub of length L1, and two semi-infinite leads.
A theoretical investigation of the electronic transmittance
(reflectance) through this structure using a Green’s function
method is presented. Numerical results on sharp peaks in
detuned waveguides were also reported. These peaks appear
as Fano resonances of strong amplitude in the transmittance.
The phase time calculations are, in general, different from the
variation of the density of states, except for particular cases
where the numerator of the transmission coefficient does not
vanish or vanishes but without changing sign. In this case, the
phase time and the VADOS are equivalent. The quasi-BICs
give rise to well defined peaks in the phase time. In addition
the structure proposed in this paper exhibits the possibility to
tune the quality factors of the induced resonances close to
infinity by detuning the length of the stub L1. This property
is a feature of Fano and EIT resonances and does not exist in
standard waveguide structures with defect [1].

The above structure presents a simple example of novel
SIBICs. It may be tuned to show very sharp long-lived res-
onances and antiresonances. The number of the SIBICs and
long-lived resonances may be increased by adding more leads
and stubs to this structure. This effect may be used for the con-
struction of sharp filters. This paper is also a simple example
of how to find all the states, including the SIBIC ones, for any
final system. This is achieved with the eigenfunction zeros,
the state phase, and the state number conservation between a
final system and its reference one. This method is completely
general and is expected to be used in future investigations
of BIC and SIBIC and their induced long-lived resonances.
In addition, the advantage of the simple waveguide electron
model presented in this paper consists in finding simple ana-
lytical expressions that enable us to discuss the existence of
SIBICs, BICs, and Fano resonances as well as the effect of
the different stub lengths in tailoring these resonances without
incorporating a defect (a dot) in the closed loop, as it is usually
the case in such mesoscopic systems [53]. Such a model can
also give a qualitative good description of the experimental
Fano line shapes in one-dimensional narrow wires at low tem-
perature [54,55]. Let us finally mention that Fano resonances
have been studied in single and double asymmetric rings with
and without scatters on both arms or in presence of stubs
around the loop [41,56–59].

A structure of the considered type (a ringlike electronic
microresonator coupled to a finite stub and to two electronic
rib/ridge waveguides) can be simulated using commercially
available software. Such simulations have to reproduce the
above transmission, transmission phase, and phase time re-
sults. However, to our knowledge, they are not able to find all
the SIBICs, their localization, and their robust zeros.

Indeed the majority of current investigations are done
with topological simulation approaches focusing on small
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deformations and one BIC. Although introducing the state
phase within the numerical routines is not trivial, this is
expected to complete and improve simulation results. The
knowledge of all system BICs and SIBICs, rather than only
one, enables one to choose the better one for a given appli-
cation. This may help also to use several degenerate strictly
bound states for novel devices. Let us finally mention that
our theoretical predictions on the generality of the approach
must be accompanied by a warning about its limitations.
We have dealt with an infinitesimally thin (1D) electronic
waveguide without taking into account the cross section of
the wires. This leads us to infer that the experimental obser-
vation on the moderately thick wires may find a few percent
of disagreement with our results, as long as the thickness

is small compared to the length of the wires and to the
wavelength.
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