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Antiferromagnetic superlattices (AFSL) are proposed based on the buckled hexagonal two-dimensional
materials, which can be realized by the proximity effect of the periodically deposited antiferromagnets. It is
found that the AF proximity effect can give rise to valley-polarized minibands and conductance, which are not
held under ferromagnetic proximity. The spin degeneracy and valley degeneracy are lifted simultaneously in
the presence of AF proximity and electric field. In consequence, both minibands and conductance could be
spin-valley polarized completely in AFSL. The symmetry of spin-valley polarization is analyzed by considering
the pseudospin rotation operations and spatial inversion operations. Furthermore, AFSL also induce a highly
anisotropic band structure due to the spin-orbit coupling (SOC). In particular, the group velocity parallel to
the periodic direction of AFSL is greatly renormalized, while the velocity perpendicular to the periodic direction
remains unaffected, contrary to that observed in graphene superlattices. With the increase of SOC, the anisotropy
becomes more prominent, leading to flattened band and electron supercollimation. The direction of anisotropy
can be regulated by adjusting the potential and SOC. These findings offer an alternative approach to engineering
anisotropic two-dimensional materials. As an application, the AFSL may well work as a symmetry-protected
spin-valley valve easily controlled by the gate voltages.
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I. INTRODUCTION

Recently, antiferromagnetic (AF) spintronics has attracted
tremendous attention due to its potential applications for
high-density and ultrafast information devices [1,2]. Exper-
imental results demonstrate that an AF memory can be
both written and read electrically [3,4]. Spin transport is
the crucial issue of spintronics. Many works on the trans-
port property are reported in various AF systems, such as
AF topological insulators [5,6], AF tunnel junctions [7–10],
antiferromagnet/superconductor junctions [11–13], and AF
hexagonal lattices [14–23]. The quantized Hall resistance
proved that quantum anomalous Hall effect could be observed
in the AF topological insulator MnBi2Te4 [5]. Núñez et al.
predicted theoretically that the giant magnetoresistance and
spin-transfer torque will occur in the AF tunnel junction,
which may work as an AF spin valve [7].

AF spintronics in two-dimensional (2D) materials is also
studied widely [14–23]. By introducing AF order to one half
of the silicene nanoribbon, the helical edge states are present
only on the other half of the nanoribbon, leading to a perfect
spin filter [15]. A tunnel-field-effect spin filter is proposed
based on interband tunneling in the AF stanene [18]. De-
pending on the configuration of the conducting layer and
substrates, three types of AF spin valves can be realized in
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2D hexagonal lattices [21]. Graphene and other hexagonal
2D materials have another degree of freedom, that is, valley,
and the two valleys are related by the time-reversal symme-
try. It is found that in silicene the valley could be used to
mediate a spin-diode effect through the ferromagnetic/AF
junction [23]. In the AF silicene/superconductor junction,
a spin-valley filter is realized between the crossed Andreev
reflection and elastic cotunneling by adjusting the electric
field [12]. Besides, the spin-valley filtering effect can also be
realized in strained graphene [24] and ferromagnetic silicene
[25] by considering spin-orbit coupling (SOC).

Superlattice (SL) is an effective strategy for engineering
the electronic structure in semiconductors and 2D materials.
The transport behavior and energy band tailored by SL are
helpful for optimizing the performance of devices. A number
of SL artificially designed by periodic potentials [26–30],
local strains [31,32], ferromagnetic fields [33–37], and circu-
larly polarized lights [37–39] are proposed in 2D materials. It
has been predicted that the magnetic-strained SL may break
the time-reversal symmetry in graphene, and so the energy
band and transport strongly depend on the valley degree of
freedom, which can be used to construct a valley filter device
[31]. The ferromagnetic SL can enhance the spin and valley
polarizations and realize an electric field-controlled switching
of the current in silicene [33]. In addition, owing to the chiral
nature of graphene, the propagation of charge carriers through
a SL potential is highly anisotropic, and the group veloci-
ties are reduced to zero in one direction but are unchanged
in another [26]. The specific anisotropy and chirality of the
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FIG. 1. The schematic diagram for AFSL model on the buckled
2D materials, which consists of periodically modulated antiferro-
magnet and gate voltages. AFSL have periodic variation along the
x direction. The length of one unit is d = d1 + d2 with barrier width
d1 and well width d2. The vertical distance between the sublattices A
and B is 2�.

graphene SL make it a natural candidate for electron super-
collimation [27]. Besides, extra zero-energy Dirac points are
generated in graphene SL [28,29], which can be further cloned
to higher energies [30]. The spin degenerate energy band and
Dirac points can be broken by a ferromagnetic SL [34]. In
experiment, it is observed that the graphene samples exhibit
high transport anisotropy between the current directions par-
allel and perpendicular to the SL vector, with extra Dirac
points emerging in the former configuration [40,41]. Even so,
there is still a lack of investigation on the antiferromagnetic
superlattices (AFSL) formed by the AF exchange fields, and
the AFSL-induced electronic properties are expected to be
studied.

In this work, we propose the AFSL in a buckled 2D materi-
als. For the buckled 2D hexagonal materials, such as silicene
and germanene, the sublattices A and B are separated from
each other in the direction perpendicular to the sheet plane.
The buckled structure allows for the band gap to be tunable by
the perpendicular electric field [42,43]. The considered AFSL
consist of a series of AF exchange fields and perpendicular
electric fields, as shown in Fig. 1. Experimentally, a local
AF exchange field can be realized via the proximity effect
by depositing the antiferromagnet, such as MnPSe3, on the
2D material [17,44]. The local electric field can be modulated
by the top and bottom gate voltages applied on the buckled
lattices [42,43]. The main findings of this work are as follows:
(1) The AF exchange field alone could lead to valley-polarized
conductance and minibands, but they are spin-polarized in the
ferromagnetic SL [33–37]. (2) The spin-valley valve effect
for minibands and transport can be achieved in AFSL, which
shows certain symmetry with respect to AF exchange field
and electric field, providing specific signatures for AFSL. (3)
Importantly, the AFSL induce an anomalous anisotropic band
structure due to SOC. The energy band for AFSL possesses a
highly flattened energy dispersion in the direction parallel to
the SL period, contrary to results for SL potential in graphene
where the anisotropic band is flattened in the direction per-
pendicular to the SL period [26,40]. Because of SOC and AF
exchange field, the anisotropy and Dirac point are spin-valley
dependent.

The rest of this paper is organized as follows. In Sec. II
we present the theoretical formalism and dispersion relation
of the system. The numerical results on spin-valley-polarized
conductance, anisotropic energy band, and the corresponding

symmetry analysis are shown in Sec. III. A brief summary is
presented in Sec. IV.

II. THEORETICAL FORMULATION

In the presence of AF exchange field and perpendicular
electric field, the physics of a buckled 2D hexagonal material
could be well described by a nearest-neighbor tight-binding
model [15,45]. At low energy, the effective Hamiltonian
for electronic states near Dirac points can be written
as [15,17,45]:

Hηs = H0 + (λz + sλAF − ηsλSO)σz + U, (1)

and H0 = h̄vF (kxσx − ηkyσy) is the Hamiltonian for pristine
graphene. σ = (σx, σy, σz ) are the Pauli matrices in the sub-
lattice A and B spaces, vF the Fermi velocity, η = ±1 and
s = ±1 describe the valleys K/K ′ and the spin up/spin down
of the electrons, respectively. λSO is the strength of SOC, λAF

is the AF exchange field, U is a gate-controlled chemical
potential, and λz = �Ez is the staggered sublattice potential
induced by perpendicular electric field Ez with 2� the vertical
separation of A and B sublattices [15,42]. As shown in Fig. 1,
we set that the widths of the AF and normal regions in AFSL
are d1 and d2, respectively. There are no AF exchange field and
electric field (λAF = λz = U = 0) in the normal region. Note
that the direction of AFSL is assumed to be perpendicular to
the direction between the two valleys, so there is no intervalley
scattering.

The eigenvalue of Hamiltonian (1) is given by

Eηs = U ±
√

�2
ηs + (h̄vF kF )2, (2)

with the momentum kF and �ηs = λz + sλAF − ηsλSO, de-
scribing a spin- and valley-related band gap. Due to the con-
servation of transverse wave vector ky in the one-dimensional
AFSL, the two-component spinor envelope function with in-
cident energy E in the jth region of AFSL has the form

ψ j (x) = GjFj

(
a j

b j

)
eikyy, (3)

where Gj = ( 1 1
k−/ε j −k+/ε j

), Fj = (eiq j x 0
0 e−iq j x ), and k± =

h̄vF (q j ± iηky). In the AF region ε j = ε1 = E − U + �ηs and

q j = q1 =
√

[(E − U )2 − �2
ηs]/(h̄vF )2 − k2

y ; otherwise, ε j =
ε2 = E − ηsλSO and q j = q2 =

√
(E2 − λ2

SO)/(h̄vF )2 − k2
y .

q j and ky are components of kF in the x and y directions.
a j and b j are the transmission and reflection coefficients,
respectively.

Based on the continuity condition of wave functions
at the interface x = x j between the jth and ( j + 1)th re-
gions, ψ j |x j = ψ j+1|x j , one can get (a j+1

b j+1
) = Mj (

a j

b j
), and

Mj = F−1
j+1(x j )G−1

j+1GjFj (x j ). Thus, the total transfer matrix
for the system with N regions can be written as M =
MN−1 · · · Mj · · · M1. Then the transmission probability can be
obtained from

Tηs = 1 − |M21|2/|M22|2, (4)

and Mi j is the matrix element of M. Using Landauer-Büttiker
formula, the spin- and valley-dependent conductance at zero
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temperature is given by

Gηs(E ) = G0

∫ π/2

−π/2
Tηs(E , E sin θ ) cos θdθ, (5)

where θ is the incident angle with respect to the x direction,
G0 = 2e2ELy/(π h̄) is taken as the conductance unit and Ly is
the sample size along the y direction.

For the infinite AFSL, the dispersion relation can be also
calculated by the transfer matrix method [31]. According to
Bloch’s theorem, the spin- and valley-dependent dispersion
relation Eηs(kx ) is achieved by solving the transcendental
equation,

cos(kxd ) = cos(q1d1) cos(q2d2) − χ sin(q1d1) sin(q2d2),

(6)

χ = (ε1q2)2 + (ε2q1)2 + (ε1 − ε2)2k2
y

2ε1ε2q1q2
, (7)

with the Bloch wave number kx and the unit length of AFSL
d = d1 + d2. Equations (6) and (7) suggest that the dispersion
relation is invariant with respect to kx → −kx and ky → −ky.
The spin-valley-dependent electronic spectrum is expected
because of AF exchange field and electric field.

III. RESULTS AND DISCUSSIONS

We first present results for the AF exchange field-induced
valley-polarized conductance and minibands in Sec. III A.
Then the spin-valley valve effect and the symmetry relations
are studied in Sec. III B. Section III C gives the results for
anisotropic band structure and spin-valley-dependent Dirac
points. The incident energy is set as E = 5.0 meV for con-
venience in the following discussion. In Secs. III A and III B,
λSO = 4.0 meV which is the SOC strength of silicene [45].

A. Valley valve effect

First, we discuss the minibands and conductance of AFSL
in the absence of electric field with λz = 0. The eigenvalue is
simplified as Eη = U ±

√
(λAF − ηλSO)2 + (h̄vF kF )2, which

is dependent on valley index, but not on spin index, due to
SOC. Thus, from Fig. 2 we can see that the AF exchange field
gives rise to valley-polarized minibands and valley-polarized
conductance but without spin polarization, that is, GK =
GK↑ = GK↓, GK ′ = GK ′↑ = GK ′↓, but GK �= GK ′ , which can
be also understood by the isolated minibands in Fig. 7(b).
Note that the ferromagnetic field alone cannot induce the val-
ley polarization [33–37]. Figures 2(a)–2(c) indicate that with
the increase of potential U , the conductance GK gradually
moves to the right along the λAF axis, while GK ′ moves to
the left, and so the conductances from different valleys are
completely separated. The minibands change in the same way
as the conductances. Both minibands and conductances of
the two valleys are symmetric with respect to λAF = 0, i.e.,
GK (λAF) = GK ′ (−λAF). In addition, the conductance exhibits
a resonance behavior, resulting from the resonant transmission
probability Tη(λAF, θ ) [see the inset of Fig. 2(a)]. Tη(λAF, θ )
is symmetric about θ = 0. Obviously, the conductance peak
corresponds to the resonance region of Tη, which arises from

FIG. 2. [(a)–(c)] Conductance Gη (solid curves) and minibands
(dashed curves) versus AF exchange field λAF when λz = 0, n = 5,
d1 = 50 nm, and d2 = 100 nm. n is the period number of AFSL.
The inset of (a) is the contour plot of corresponding transmission
probability Tη(λAF, θ ). (d) Valley polarization Pv for the conductance
in (c).

the resonant modes in the quantum wells of AFSL. Fig-
ure 2(d) shows the valley polarization Pv for the conductance
in Fig. 2(c), which is defined as Pv = (GK − GK ′ )/(GK +
GK ′ ). One may find a perfect platform of Pv and it is anti-
symmetric with respect to λAF = 0. As the AF exchange field
λAF increases, Pv is 0, −1, 0, 1, and 0 in sequence, and the
window of perfect valley polarization can be turned on and
off. So AFSL can well act as a valley valve.

Symmetry is important to the experimental design and
theoretical research. The above symmetry of minibands
and conductance can be analyzed by considering the pseu-
dospin rotation operators σx,y,z and the spatial inversion
operators Rx,y. In fact, the system AFSL always have a
spatial inversion symmetry related with the operator M1 =
σzRxRy. The Hamiltonian satisfies M1HηsM−1

1 = Hηs and
M1ψηs(kx, ky) = ψηs(−kx,−ky), giving rise to Tηs(ky) =
Tηs(−ky). Thus, the transmission probability Tηs is always
symmetric about ky = 0 [see the inset of Fig. 2(a)], inde-
pendent of λz, λAF, and U . When λz = 0 and λAF �= 0 for
Fig. 2, the Hamiltonian between the two spins is invariant
under transformation

M2Hηs(λAF)M−1
2 = Hηs̄(λAF) (8)

with M2 = σxRy or σyRx and s̄ = −s. Then the conductances
satisfy Gηs(λAF) = Gηs̄(λAF), i.e., GK↑ = GK↓ and GK ′↑ =
GK ′↓. For the two valleys, under the operator M3 = σx or
σyRxRy, the Hamiltonian has

M3Hηs(λAF)M−1
3 = Hη̄s(−λAF) (9)

with η̄ = −η. It can be concluded that the conductances be-
tween the two valleys are related by Gηs(λAF) = Gη̄s(−λAF),
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FIG. 3. Conductance Gηs (solid curves) and minibands (dashed
curves) versus AF exchange field λAF when λz = 5 meV. The values
of other parameters are the same as these in Fig. 2(c).

corresponding to GK (λAF) = GK ′ (−λAF) and Pv (λAF) = −Pv

(−λAF) in Fig. 2.

B. Spin-valley valve effect

The existence of electric field λz would break the
transformations in Eqs. (8) and (9), and lift the spin degen-
eracy, leading to the conductances Gηs(λAF) �= Gηs̄(λAF) and
Gηs(λAF) �= Gη̄s(−λAF). As a result, the positions of mini-
bands and conductance strongly depend on the spin and valley
indexes, which occur in different regions of λAF, as shown in
Fig. 3, consistent with the results in Fig. 7(c) in the following.
However, the system satisfies

M4Hηs(λAF)M−1
4 = Hη̄s̄(−λAF) (10)

with M4 = σzRx, and so Gηs(λAF) = Gη̄s̄(−λAF). This means
that the conductances GK↑ and GK ′↓ (or GK↓ and GK ′↑) are
symmetric with respect to λAF = 0 and so are the minibands
(see Fig. 3).

Figure 4 presents the spin-valley-polarized minibands and
conductance as a function of electric field λz. The four kinds
of conductances are the same and equal to G0 at λz = λAF = 0
[see Fig. 4(a)]. When λz �= 0 and λAF = 0 in Fig. 4(a), the sys-
tem has M4Hηs(λz )M−1

4 = Hη̄s̄(λz ) and Gηs(λz ) = Gη̄s̄(λz ).
In addition, the Hamiltonian also satisfies

M2Hηs(λz )M−1
2 = Hηs̄(−λz ), (11)

M3Hηs(λz )M−1
3 = Hη̄s(−λz ), (12)

leading to the relations of conductances Gηs(λz ) = Gηs̄(−λz )
and Gηs(λz ) = Gη̄s(−λz ), respectively. Thus, the conduc-
tances satisfy GK↑ = GK ′↓ and GK↓ = GK ′↑, which are
symmetric with respect to λz = 0, as observed in Fig. 4(a).
Obviously, there are no spin and valley polarizations in this
case.

With the appearance of AF exchange field in Figs. 4(b)–
4(d), the time-reversal symmetry for spin and valley is
destroyed. The AF exchange field λAF lifts the spin degen-
eracy and valley degeneracy simultaneously in the presence
of SOC and electric field. Particularly, the minibands and
conductances for up spin move to λz = −λAF, while the mini-
bands and conductances for down spin move to λz = λAF. As
the potential U increases in Figs. 4(b)–4(d), the minibands and
conductances for different spins and valleys are completely
separated. The minibands and conductances exhibit interest-
ing symmetry. The conductances for up spin GK↑ and GK ′↑
are symmetric with respect to λz = −λAF. For down spin,

FIG. 4. [(a)–(d)] Conductance Gηs (solid curves) and minibands
(dashed curves) versus electric field λz when n = 3, d1 = 80 nm,
and d2 = 100 nm. (e) Spin and valley polarizations Ps,v for the
conductance in (d).

GK↓ and GK ′↓ are symmetric about λz = λAF. For K (or K ′)
valley, GK↑ and GK↓ (or GK ′↑ and GK ′↓) are symmetric about
λz = 0. That is because Eq. (11) and Gηs(λz ) = Gηs̄(−λz ) are
still valid when λAF �= 0. In the presence of AF exchange field
λAF, the transformation (12) for the two valleys would become

M3Hηs(λz − sλAF)M−1
3 = Hη̄s(−λz − sλAF) (13)

and one may get Gηs(λz − sλAF) = Gη̄s(−λz − sλAF). This
suggests that the conductances between the two valleys are
symmetric about λz = −sλAF depending on the spin index.
The spin-valley-polarized minibands also have the above sym-
metric relationships [see Figs. 4(b)–4(d)]. In consequence,
the perfect spin-valley polarization is achieved, as shown in
Fig. 4(e). Here the spin and valley polarizations are defined as

Ps = (GK↑ + GK ′↑ − GK↓ − GK ′↓)/Gtotal, (14)

Pv = (GK↑ + GK↓ − GK ′↑ − GK ′↓)/Gtotal, (15)

with Gtotal = (GK↑ + GK ′↑ + GK↓ + GK ′↓). Because of the
operators M2 and M3, the spin and valley polarizations obey
Ps(λz ) = −Ps(−λz ) and Pv (λz ) = Pv (−λz ), respectively. Ps is
antisymmetric about λz = 0, while Pv is symmetric about
λz = 0. Furthermore, the symmetric relationships described
by Eqs. (8)–(13) are independent of the potential U . There-
fore, an electrically controllable spin-valley valve is realized
in AFSL. The window for a specific spin-valley-polarized
state can be effectively switched from on to off and vice versa
by adjusting the gate voltages [see Figs. 4(d) and 4(e)].

Figures 5(a) and 5(b) show the spin and valley polariza-
tions Ps,v in the (λAF, λz ) plane, respectively. It can be seen
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FIG. 5. (a) Spin polarization Ps and valley polarization Pv in
(λAF, λz ) plane at U = 8 meV. The values of other parameters are
the same as these in Fig. 4.

that both Ps and Pv have almost ideal platforms in specified
areas. Each platform is supported by a certain spin-valley-
polarized state. There is no conductance in the green area,
corresponding to the band gap. Ps and Pv are antisymmetric
with respect to λAF = 0, consistent with the discussion in
Fig. 3. Dramatically, the symmetry with respect to electric
field λz is different from the symmetry with respect to AF ex-
change field λAF, as discussed in Figs. 2–5 and Eqs. (8)–(13).
By adjusting λAF and λz, both Ps and Pv can be independently
switched between −1, 0, and 1. The results indicate that the
system has effective spin-valley valve effect in a wide range
of parameter values.

At the end of this subsection, we discuss the effects of
structural parameters d1, d2, and n in Figs. 6(a)–6(c), respec-
tively. With the increase of barrier width d1 in Fig. 6(a), the
conductance is gradually weakened, its region is narrowed,
but the resonance becomes remarkable. On the contrary, as
the well width d2 increases in Fig. 6(b), the conductance is

FIG. 6. Conductance Gηs versus electric field λz. The parameters
are set as n = 3, λAF = 30 meV, U = 8 meV, d1 = 80 nm, and d2 =
100 nm, unless otherwise noted in the figure.

FIG. 7. Conduction band versus kx at (a) λz = 0, λAF = 0; (b)
λz = 0, λAF = 3 meV; (c) λz = 5 meV, λAF = 3 meV; (d) λz =
25 meV, λAF = 3 meV. The inset of (d) is the band gap versus λz

at λAF = 3 meV. Other parameters are λSO = 4 meV, U = 0, and
ky = 0.

enhanced and its region is widened. As the period number n
increases, more conductance peaks appear and the spin-valley
polarization becomes more significant, as shown in Fig. 6(c).
The results of Fig. 6 manifest that the structural parameters
d1, d2, and n may affect the details of conductance but do not
break the symmetry relationship and the spin-valley valve can
well work still.

C. Anisotropic band structure

Next, we study the anisotropy and spin-valley dependence
of energy band for AFSL by solving Eqs. (6) and (7) numer-
ically. The barrier and well widths are set as d1 = d2 = 100
nm for convenience in this subsection.

Figure 7 presents the conduction band as a function of kx

when U = 0 and ky = 0. The conduction band and valence
band are symmetric about the Fermi level at U = 0. As ex-
pected, at λz = λAF = 0 in Fig. 7(a), the bands for the four
kinds of electronic states are completely degenerate with a
band gap of 2λSO. The appearance of λAF would make the
minibands of K valley shift down, but the minibands of K ′
valley shift up [see Fig. 7(b)] because of the local band gap
�η = λAF − ηλSO in AF region. This enables the observation
of perfectly valley-polarized transport in AFSL system, as
discussed in Sec. III A. Note that such a phenomenon does
not exist in ferromagnetic SL, which would cause the mini-
bands with different spins to move in the opposite direction
of energy [34]. Due to SOC, the combined effect of λAF

and λz also eliminates spin degeneracy, and so the minibands
of different spin-valley electrons appear in different energy
ranges, as shown in Fig. 7(c). For the proper energy, only one
miniband for a given spin-valley state could be observed, and
this leads to the spin-valley valve effect in Sec. III B. When
λz + sλAF = 2ηsλSO, such as λz = 5 meV and λAF = 3 meV,
the band gap of the K ↑ (η = s = 1) electron is closed and
the Dirac point is formed at E = kx = ky = 0, while other
spin-valley electrons still have a band gap. It also opens up
the finite-energy crossed points near K ′ ↑ valley [see the
ellipse in Fig. 7(c)]. At the same time, the first conduction
band of K ′ ↑ becomes almost flattened. Remarkably, with the
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FIG. 8. Energy band versus ky at (a) U = 24.5 meV and (b)
U = 47 meV. The inset of (a) is the band gaps at original Dirac point
versus U . Other parameters are kx = 0, λz = 2 meV, λAF = 3 meV,
and λSO = 4 meV.

further increase of λAF or λz, all the electrons can get flattened
minibands at different positions in the low energy range [see
Fig. 7(d)], which means that the corresponding group velocity
along the x direction tends to zero. The flattened minibands
arise from the bound states formed inside the potential wells
of AFSL. The bound states decay exponentially in the AF
barriers. The negligible coupling between the bound states in
the adjacent SL periods thus manifests as flattened minibands
in the band structure [46]. The inset of Fig. 7(d) exhibits the
band gap as a function of λz. One may find that by adjusting
λz the band gap of a particular spin-valley electron can be
closed. As λz increases, each band gap first linearly increases
and then gradually tends to saturation, which corresponds to
the flattened miniband.

It has demonstrated that the extra zero-energy Dirac points
would appear in graphene SL [28,29]. Moreover, the AF
exchange field and electric field can destroy the spin and
valley degeneracies. Therefore, it is necessary to study the
dependence of extra Dirac points on spin and valley degrees
of freedom in AFSL. Figure 8 presents the energy band as a
function of ky when (a) U = 24.5 meV and (b) U = 47 meV.
U = 24.5 meV is the critical value of K ′ ↓ electron that gen-
erates a new Dirac point. From Fig. 8(a) we can see that the
K ′ ↓ electron has one Dirac point at ky = 0, both the K ↑
and K ↓ electrons have two Dirac points at ky �= 0, but the
K ′ ↑ electron has no Dirac point. These Dirac points occur in
different positions and strongly depend on the spin and valley
indexes. Note that the Dirac cone for the K ′ ↓ electron tends
to flattened in the ky direction, suggesting that the velocity
along the y direction is normalized to zero. In the condition of
d1 = d2 and kx = 0, we may obtain the spin-valley-dependent
location (E0, ky0) of Dirac point by solving Eqs. (6) and (7),
that is,

E0 = U

2
+ λ2

SO − (λz + sλAF − ηsλSO)2

2U
, (16)

ky0 = ±
√

E2
0 − λ2

SO

(h̄vF )2
− (2mπ )2

d2
, (17)

FIG. 9. [(a)–(f)] Contour plots of the first conduction miniband
for the K ↑ electron at (a) U = 0, λSO = 0; (b) U = 0, λSO = 10
meV; (c) U = 0, λSO = 25 meV; (d) U = 47 meV, λSO = 4 meV.
[(e) and (f)] The 3D plots of the first conduction and valence mini-
bands for (c) and (d), respectively. The values of λz and λAF satisfy
λz + λAF = 2λSO. The energy unit is meV in (a)–(d).

with the positive integer m. The location (E0, ky0) is effectively
controlled by the AF exchange field λAF and the electric field
λz. The inset of Fig. 8(a) shows the variation of band gap at
ky = 0 as a function of U . When a certain gap is closed, a new
Dirac point will be created at ky = 0, such as K ′ ↓ electron
at U = 24.5 meV [see the green curve in Fig. 8(a)]. As U
increases, the new Dirac point splits into a pair and they move
in opposite directions away from the point ky = 0 but always
keeping kx = 0. The Dirac points located at (E0, ky0) are
symmetrically distributed with respect to ky = 0, which can be
understood by the operator M1. Obviously, the critical value
of the new Dirac point is different for different spin-valley
electrons. With the further increase of U , the gap will reopen
and close again, suggesting that more extra Dirac points will
appear [see Fig. 8(b)].

Figures 9–11 discuss an anomalous anisotropy of band
structure caused by SOC and AF exchange field in AFSL,
which is different from the anisotropic behavior in graphene
SL [26,40]. Results in Fig. 7 have proved that the Dirac point
is formed when λz + sλAF = 2ηsλSO and U = 0. In the fol-
lowing, let us take the K ↑ electron as an example and discuss
the anisotropy of Dirac point when λz + λAF = 2λSO. Fig-
ures 9(a)–9(c) show the contour plots of the first conduction

FIG. 10. Contour plots of the first conduction miniband for the
K ↑ electron when λz + λAF = (a) 0, (b) 6 meV, and (c) 20 meV. The
energy unit is meV. Other parameters are U = 0 and λSO = 25 meV.
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(deg) (deg)

FIG. 11. Anisotropic velocity vk versus the angle θk at (a) U = 0
and (b) λSO = 4 meV for K ↑ electron. The inset of (a) is velocity
component vx versus λSO at U = 0. The inset of (b) is velocity
component vy versus U at λSO = 4 meV. The values of λz and λAF

satisfy λz + λAF = 2λSO.

miniband at U = 0 for different values of λSO. For silicene,
germanene, and stanene, the SOC strength λSO is about 4, 43,
and 100 meV, respectively [45,47], and it can be regulated via
chemical functionalization [47]. When λSO = 0, the system
is simplified to pristine graphene and the band is expected
to be isotropic in the Brillouin zone, as shown in Fig. 9(a).
The group velocity of states near the Dirac point is parallel to
wave vector k and has a constant value vF . However, as SOC
λSO appears, the band becomes anisotropic [see Fig. 9(b)].
Comparing Figs. 9(a) and 9(b), the change of isopotential
contours indicates that the group velocity is anisotropically
renormalized and it strongly depends on the direction of k. In
particular, the velocity perpendicular to the periodic direction
of AFSL vy is not renormalized at all, that is, vy = vF , but
the velocity parallel to the periodic direction vx is decreased.
Importantly, such an anisotropy is contrary to that in graphene
SL, where vy is reduced, whereas vx keeps constant [26,40].
The anisotropy would become more significant with the in-
crease of λSO. Taking λSO = 25 meV for instance in Fig. 9(c),
there is hardly any dispersion along the kx direction, while the
dispersion along the ky direction is always the same as that at
λSO = 0. The components vx,y of velocity can be defined as

vx/vF = ∂Eηs/∂kx, vy/vF = ∂Eηs/∂ky. (18)

The velocities are vx ≈ 0.013vF and vy ≈ vF at λSO =
25 meV. The velocity along the x direction vx almost van-
ishes. Figure 9(e) gives the 3D plot of the first conduction
and valence minibands for Fig. 9(c). We can clearly see an
interesting Dirac line along the kx direction instead of a Dirac
point. The band possesses a highly flattened energy dispersion
in the kx direction.

The appearance of potential U will change the anisotropy
property. Figures 9(d) and 9(f) display the contour plot and 3D
plot of the miniband when U = 47 meV and λSO = 4 meV. In
this situation, even though λSO is finite, the energy dispersion
disappears along ky direction but it has no change along kx

direction, in agreement with the ones in graphene SL [26,40].
As a result, the anisotropic velocities at Dirac point become
vx ≈ vF and vy ≈ 0.017vF . Distinctly, there are two different
anisotropic behaviors in Figs. 9(c), 9(e), and Figs. 9(d) and

9(f). By adjusting U and λSO, we can achieve an electron
supercollimation along the x or y directions.

In order to discuss the reason of the former anisotropy at
the Dirac point, Fig. 10 shows the contour plots of the first
conduction miniband before the formation of Dirac point at
λSO = 25 meV for different values of λz + λAF. We can see
that when λz + λAF = 0 in Fig. 10(a), the band is clearly
isotropic. The group velocity at the bottom of the conduction
band is almost zero due to the bound states inside the potential
wells of AFSL. However, with the appearance of λz + λAF,
the band becomes anisotropic and moves downward along
the energy. The contours in the ky direction become more
and more dense as λz + λAF increases [see Figs. 10(b), 10(c),
and 9(c) with λz + λAF = 6, 20, and 50 meV, respectively].
The profile of energy dispersion Eηs(ky) along ky direction
gradually changes from a parabolic shape to a linear shape,
which means that the velocity vy gradually increases to vF .
Conversely, the contours in the kx direction become thinner
and the band Eηs(kx ) becomes flattened, meaning that vx be-
comes smaller and tends to zero. Therefore, the anisotropic
band with renormalized velocity vx is formed due to the bound
states induced by SOC, λAF, and λz, whereas the anisotropic
band with renormalized velocity vy results from the chiral
nature of the states [26,40].

We may study the variation of two kinds of anisotropic
velocities with the angle. The velocity vk (θk ) can be obtained
from vx and vy, namely

vk (θk ) = vx cos θk + vy sin θk, (19)

where θk is the angle of wave vector k from the periodic direc-
tion x. Figures 11(a) and 11(b) exhibit the angle dependence
of the velocity vk (θk ) caused by the SOC and the chirality,
respectively. For the SOC-induced anisotropy in Fig. 11(a),
the velocity vk reaches its maximum value equal to vF at θk =
90◦ and 270◦, i.e., vy, and it has minimum value at θk = 0◦
and 180◦, i.e., vx. As λSO increases, vx decreases gradually,
while vy remains constant regardless of the SOC strength. The
inset of Fig. 11(a) shows that vx decreases monotonically with
λSO. When λSO > 25 meV, one may get vx ≈ 0 and vy ≈ vF ,
realizing a good supercollimation effect in the y direction. On
the contrary, for the chirality-induced anisotropy in Fig. 11(b),
vy is decreased but vx keeps unchanged as U increases. The
inset of Fig. 11(b) indicates that vy oscillates damply with U .
At the critical value for the generation of new Dirac point, we
have vy = 0 and create a supercollimation in the x direction.

It should be noted that when SOC and potential U exist
simultaneously in Figs. 9(d), 9(f), and 11(b), the chiral na-
ture of the states plays a leading role in the formation of
anisotropic band. The direction of the renormalized group
velocity can be regulated depending on SOC and U . In ad-
dition, as discussed in Figs. 9–11, when λz + λAF = 2λSO,
the K ↑ electron realizes the anisotropy and the supercolli-
mation, whereas other spin-valley electrons do not have these
properties. When λz + sλAF = 2ηsλSO, a certain spin-valley
electron can achieve the anisotropy. Therefore, the anisotropy
is spin-valley dependent due to SOC and AF exchange fields.

Finally, we discuss the feasibility of the AFSL with
graphene or other 2D hexagonal lattice as a platform in exper-
iment. The proposed model should be general and applicable
to systems in which antiferromagnetism is either intrinsic to
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the materials [48,49] or induced by proximity [17,44,50–52].
Density functional theory predicts that AF hexagonal lattice
can be naturally realized by depositing the hexagonal lattice
on monolayer MnPX3 (X = S, Se) [17,44]. Because bulk
MnPX3 is a layered compound, and only the top monolayer is
important for proximity effects, the AF order with strength on
meV scale can be experimentally induced using a MnPX3 film
[17]. Alternatively, the AF order can be also realized by sand-
wiching the buckled hexagonal lattice between two different
ferromagnets [50], such as EuS [51]. It has been experimen-
tally demonstrated that the ultra-thin Fe/graphene/Co films
grown on Ir(111) exhibit a robust perpendicular AF exchange
field which is stable above room temperature [52]. The AF
exchange field can be controlled by adjusting the magne-
tization direction, geometric configuration, and the distance
between the AF substrates [17,44,51,52]. Furthermore, the
high-quality superlattice structures based on 2D materials
have been experimentally realized within the existing tech-
nology [40,41,53].

In addition, due to the imperfection of experiment, the
strengths of AF exchange fields on the two sublattices may
be unequal, which are set as λAF1 and λAF2. Then the system’s
Hamiltonian can be rewritten as

Hηs = H0 + (λz − ηsλSO)σz + sλAF1σ+ + sλAF2σ− + U,

(20)

where σ± = (σz ± σ0)/2 and σ0 is unit matrix. The
eigenvalue becomes Eηs = Ueff ±

√
�′2

ηs + (h̄vF kF )2 with
Ueff = U + s(λAF1 − λAF2)/2 and �′

ηs = λz − ηsλSO +
s(λAF1 + λAF2)/2. When λAF1 �= λAF2, the electrons
will experience a spin-dependent effective potential
Ueff and so the spin-dependent conductances will be
decreased or increased. The condition of Dirac point

will become λz + s(λAF1 + λAF2)/2 = 2ηsλSO instead of
λz + sλAF = 2ηsλSO. However, the anisotropic behavior and
spin-valley valve always exist. Therefore, the theoretical
results should be available in experiment.

IV. CONCLUSION

In summary, we proposed a symmetry-protected spin-
valley valve effect and found an anomalous anisotropy in
AFSL. The property of perfect spin-valley-polarized mini-
bands and conductance is discussed based on the system’s
symmetry. The obtained spin-valley polarization and symme-
try relations should be beneficial to the experimental design
of AF device.

Furthermore, the SOC gives rise to an anisotropic Dirac
cone in infinite AFSL, where the group velocity along the x di-
rection is greatly renormalized and monotonically suppressed
as a function of SOC, opposite to the anisotropy caused by
the chirality in graphene SL. Remarkably, the strength and the
direction of anisotropy in energy dispersions can be controlled
by changing SOC and the potential. The anisotropy, supercol-
limation, and extra Dirac points strongly depend on the spin
and valley indexes due to SOC. These results demonstrate that
AFSL can be used as an alternative approach to engineer the
anisotropic 2D materials.
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