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Controllable trions in buckled two-dimensional materials
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We predict the formation of intravalley and intervalley controllable trions in buckled two-dimensional (2D)
materials such as silicene, germanene, and stanene monolayers in an external electric field. A study is performed
within the framework of a nonrelativistic potential model using the method of hyperspherical harmonics (HH).
We solve the three-body Schrödinger equation with the Rytova-Keldysh potential by expanding the wave
functions of a trion in terms of the HH. A resultant system of coupled differential equations is solved numerically.
Controllable ground-state energies of intravalley and intervalley trions by the external electric field are presented.
The dependencies of the binding energy (BE) of trions in silicene, germanene, and stanene as a function of the
electric field are qualitatively similar. BEs of trions formed by A and B excitons have a non-negligible difference
that increases slightly as the electric field increases. It is demonstrated that trion BEs can be controlled by the
external electric field, and the dielectric environment has a significant effect on the trion BE. The capability to
control the BE and compactness of trions in buckled 2D materials by an external electric field suggests a possible
trions crystallization in Xenes.
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I. INTRODUCTION

The prediction of trions [1] consisting of an exciton and an
electron or a hole, known as negatively or positively charged
excitons (X∓), gave rise to many theoretical and experimental
studies of trions in bulk materials, quantum-well systems, and
two-dimensional (2D) materials. Atomically thin transition-
metal dichalcogenides (TMDCs) are a class of 2D materials
with remarkable optical and electronic properties [2,3]. Since
2013, when trions were observed in two-dimensional MoS2

monolayers [4], trions have been the subject of intense
studies, both experimentally and theoretically, in monolayer
TMDCs. In the past decade, different experimental groups
have observed and reported the signature of a trion in TMDC
monolayers.

Theoretical studies of trions have integrated a wide va-
riety of techniques and carried them out to calculate the
binding energies (BEs) of excitonic complexes in monolayer
TMDCs (see the reviews [5–9]). The first calculations of the
BEs of trions in TMDC were performed using the varia-
tional method, and then different approaches were used in
calculations such as the stochastic variational method with
a correlated Gaussian basis, the diffusion quantum Monte
Carlo and path-integral Monte Carlo methods, a direct di-
agonalization of the three-particle Hamiltonian within the
Tamm-Dancoff approximation, the finite-element method, the
hyperspherical harmonic method, and three-body Faddeev
equations in configuration or momentum spaces, which we
are citing in chronological order [10–38]. Results for BEs
of trions in TMDC monolayers yielded impressively accurate
results consistent with experimental data.

Another category of 2D semiconductors are the buckled 2D
allotropes of silicon, germanium, and tin, known as silicene,

germanene, and stanene, and collectively referred to as Xenes
[39,40]. Experimental studies revealed one of the most crucial
differences between Xenes and graphene and TMDC, i.e., that
Xenes monolayer is not a perfectly flat sheet, but instead is
slightly buckled [39,41]. As a result, this unique structure
of Xenes makes them sensitive to the external electric field
applied perpendicular to the monolayer, allowing the band
gap to be opened and controlled. The tunable band gap of
Xenes gives researchers, among other things, extraordinary
in situ control over binding energies and optical properties of
excitons in these materials.

In contrast to TMDCs, there is no extensive research on ex-
citonic complexes in Xenes monolayers. The reason is that the
synthesis of Xenes monolayers has not been as successful and
extensive as, for example, TMDC monolayers because Xenes
monolayers are unstable in the air [42,43]. In contrast to
graphene, silicene and other Xenes monolayers do not occur
in nature. Nevertheless, silicene nanoribbons were experimen-
tally synthesized on a metal substrate [44,45]. This opened
the way for silicene, germanene, and stanene monolayers to
be transferred on metal such as Au [46–50] and substrates
such as MoS2, Ir, ZrB2 [49,51], and hexagonal boron nitride
(hBN) [52,53], and synthesized as freestanding monolayers
[54]. Working with a metallic substrate is easier. For example,
silicene grown on Ag (111) [43,55] and germanene synthe-
sized by dry deposition on the Au (111) surface [48] have
been thoroughly investigated. However, depositing Xene on
a metal leads to a significant alteration of properties of the
Xene monolayer. Depending on a substrate, the properties of
Xenes monolayers vary; see Refs. [39,52] for the list of Xenes
properties on different substrates. In contrast to deposition on
a metal, depositing Xenes on hBN is harder. However, Xene
deposited on hBN preserves its properties because Xene and
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hBN weakly interact [52]. Xenes monolayers deposited on
hBN present a particular interest for studying magnetoexci-
tons in monolayers and vdWHs [56].

Xenes optical and magneto-optical properties have been
addressed in Refs. [41,57–59] and [60,61], respectively. Dif-
ferent physical phenomena, such as the Hall effect [55], the
valley-locked spin-dependent Seebeck effect [62], the anoma-
lous quantum Hall effect [47], the quantum spin Hall effect
[63], and the Landau levels [55,60,64] are studied because
of their essential role in applications of Xenes monolayers in
nanodevices and quantum devices [63,65–68].

Because of the band inversion, these honeycomb materials
are also topological insulators [69–74]. The existence of an
excitonic insulator phase in silicene, germanene, and stanene
was first studied by Brunetti et al. [75,76] in the framework of
the effective-mass approximation. The influence of the screen-
ing, band dispersion, and external electric field on transitions
in Xenes between excitonic, topological, and trivial insulator
phases was investigated in [77].

A summary of the available Xenes, including their intrinsic
properties and schemes for synthesis, along with an overview
of the technological and scientific framework where Xenes
may bring promising advances, is given in Ref. [78], which
was published exactly 10 years after the discovery of silicene.

Currently, there is a shortage of research on exciton com-
plexes in Xenes. In particular, there has not been a study of
the formation of three quasiparticle states—trions—in Xenes
monolayers. In this paper, we address this gap and focus on a
theoretical investigation of trions in Xenes within the method
of hyperspherical harmonics (HH).

The paper is organized as follows. In Sec. II, we present
the theoretical model and formalism to study Mott-Wannier
trions in Xenes within the framework of the method of hyper-
spherical harmonics. We consider a nonrelativistic potential
model for a system of three interacting electrons and holes,
and we employ the three-body Schrödinger equation in the
effective-mass approximation. In the framework of the HH
method, the Schrödinger equation with the Rytova-Keldysh
potential [79,80] is reduced to a system of coupled differential
equations for hyperradial functions. A numerical solution of
this system provides the BE and wave function for trions in
Xenes. In Sec. III, we discuss a classification of intravalley
and intervalley trions in Xenes monolayers (Sec. III A), and
we present results of calculations of controllable ground-state
energies of intravalley and intervalley trions by an external
electric field (Sec. III B). Here we analyze the dependencies of
the BEs and probability distributions of three bound particles
on the external electric field. Based on the capability to control
a BE and the compactness of trions in Xenes by the external
electric field, we discuss a proposal of a possible trions crys-
tallization in Xenes, and we estimate corresponding densities
of composite fermions gas. Conclusions follow in Sec. IV.

II. THEORETICAL MODEL

We start by providing the framework of the low-energy
model describing exciton states in Xenes monolayers and
heterostructures when the external electric field perpendicular
to a monolayer is present. Silicene, germanene, and stanene
monolayers are 2D buckled materials and have honeycomb-

structure-like graphene. However, in contrast to graphene, the
most stable form of Si, Ge, and Sn monolayers is the honey-
comb lattice with the offset of triangular sublattices A and B
with respect to the monolayer’s plane. The offset is denoted by
d0 and is known as the buckling constant or buckling factor.
As a result of the buckled structure of Xenes monolayers, they
are sensitive to the external electric field applied perpendicular
to a monolayer. This manifests as an on-site potential differ-
ence between sublattices when the electric field is applied.
When the external electric field is not applied, the band struc-
ture of Xenes monolayers in the vicinity of the K/K ′ points
resembles a graphene band structure. However, the intrinsic
gaps of Xenes are larger than the band gaps in graphene. The
application of the external electric field perpendicular to the
monolayer leads to a potential difference between sublattices
A and B that changes the band gap, resulting in changes in the
effective masses of the electrons and holes.

The single-particle Hamiltonian of electronic states in
monolayer Xenes in the electric field acting along the z-axis
in the vicinity of the K/K ′ points reads (h̄ = c = 1) [81]

Ĥ = vF (ξ px τ̂x + pyτ̂y) − ξ�gapσ̂zτ̂z + �zτ̂z. (1)

In Eq. (1), vF is the Fermi velocity, ξ, σ = ±1 are the valley
and spin indices, respectively, px and py are the components
of momentum in the xy-plane of the monolayer relative to
the K point, τ̂ and σ̂ are the pseudospin and real spin Pauli
matrices, respectively, 2�gap is the intrinsic band gap, and
�z = ed0E⊥ is the gap induced by the electric field, E⊥, acting
along the z-axis. The first term in Hamiltonian (1) is the same
as that of the low-energy Hamiltonian in graphene [82,83],
the second term is the spin-orbit coupling with an intrinsic
band gap of 2�gap, and the last term describes the sublattice
potential difference appearing when the external electric field
is applied [46,47,84,85].

From Eq. (1), the low-energy eigenvalues for charge carri-
ers near the K/K ′ points can be written as [81]

E (k) =
√

�2
ξσ + v2

F p2, (2)

where

�ξσ = |ξσ�gap − ed0E⊥| (3)

is the electric-field-dependent band gap at p = 0. When there
is no external electric field, the spin-up and spin-down bands
of the valence and conduction bands are degenerate. Applica-
tion of E⊥ lifts this degeneracy by splitting both the valence
and conduction bands. When ξ = −σ , the gap is large, since
conduction and valence bands are the furthest from the Fermi
energy level, and the electron and hole form A excitons. When
ξ = σ , the gap is small, since conduction and valence bands
are the closest, and the electron and hole form B excitons.
To open the band gap �ξσ , a critical value of the electric
field has to be achieved, Ec = �gap/(ed0), and then the lower
bands form a Dirac cone at the K/K ′ points. The critical
values of the electric field for Xenes monolayers are given
in Ref. [76]. Parabolic conduction and valence bands in the
vicinity of the K/K ′ points allow us to find the effective mass
of charge carriers as m = �ξσ /v2

F . In Xenes monolayers the
lowest conduction and the highest valence bands are sym-
metric, therefore the effective masses of an electron and hole
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are the same and can be written as a function of the external
electric field:

m = |ξσ�gap − ed0E⊥|
v2

F

. (4)

Analysis of Eq. (4) shows that the value of the electron or hole
effective mass depends on the band gap, Fermi velocity, and
buckling constant, and it is a function of E⊥.

A. Effective-mass approach for trions in buckled 2D materials

The promotion of an electron from the filled valence band
to the empty conduction band leaves an empty electron state
in the valence band. The description of such a many-body
system can be reduced to the two-particle problem of a
negatively charged conduction electron interacting with a pos-
itively charged valence hole that forms an exciton or other
excitonic complexes such as charged excitons or trions. The
trions are formed when an exciton binds another electron or
hole to form a negatively or positively charged three-particle
system: X − or X +, respectively. A description of the proper-
ties of trions requires a solution of a three-particle problem.
In buckled two-dimensional monolayers, the resulting trions
are considered as Wannier-Mott trions since the correlation
between an electron and a hole extends over many lattice
periods. The representation of the electron-hole pair bound in
a Wannier-Mott exciton shows the strong spatial correlation
of these two constituents. Therefore, we are assuming that the
interaction of the exciton with the third particle (electron or
hole) leads to a large-radius-type system.

We follow the approach in which one assumes that the
electron and hole bands are isotropic and parabolic, which
is a good approximation for the low-energy spectrum of 2D
materials. This form of the Hamiltonian implies that both the
electron and hole single-particle states form a single parabolic
band. The corresponding eigenproblem equation reduces to
the Schrödinger equation in the effective-mass approxima-
tion. This approach is commonly used in the literature to
describe excitons and trions in 2D materials. See, for example,
Refs. [2,3,6,8,10,38,86–88]. Below, we follow the effective-
mass approximation.

To obtain the eigenfunctions and eigenenergies of a 2D
trion in Xenes when the electric field is perpendicular to
the Xenes monolayer, we write the Schrödinger equation for
an interacting three-particle electron-hole system. Because
we are considering the varying electric field E⊥, which is
directed along the z-axis, the corresponding term in the 2D
Schrödinger equation vanishes. However, the effect of the
electric field action is present through the effective mass as
follows from Eq. (4). Thus, one can write the 2D Schrödinger
equation for the interacting three-particle electron-hole sys-
tem within the effective-mass approximation in the following
form:⎡⎣− h̄2

2

3∑
i=1

1

mi
∇2

i +
3∑

i< j

Vi j (
∣∣ri − r j

∣∣)
⎤⎦�(r1, r2, r3)

= E�(r1, r2, r3), (5)

where mi is the effective mass of the electron or hole defined
by Eq. (4), and ri is the ith particle position. We assume

only two types of charge carriers: an electron and hole with
the corresponding effective masses. In Eq. (5), Vi j (|ri − r j |)
is the interaction potential between qi and q j charges in a
2D material that was first derived in Ref. [79] and was in-
dependently obtained by Keldysh [80]. We refer to it as the
Rytova-Keldysh (RK) potential. The RK potential describes
the Coulomb interaction screened by the polarization of the
electron orbitals in the 2D lattice and has the following form:

Vi j (r) = πkqiq j

2κρ0

[
H0

(
r

ρ0

)
− Y0

(
r

ρ0

)]
, (6)

where r = |ri − r j | is the relative coordinate between two
charge carriers qi and q j . In Eq. (6), k = 9 × 109 N m2/C2, κ

is the dielectric constant of the environment that is defined as
κ = (ε1 + ε2)/2, where ε1 and ε2 are the dielectric constants
of two materials that surround the Xenes layer, ρ0 is the
screening length, which sets the boundary between two differ-
ent behaviors of the potential due to a nonlocal macroscopic
screening, and H0( r

ρ0
) and Y0( r

ρ0
) are the Struve function and

Bessel function of the second kind, respectively. The screen-
ing length ρ0 can be written as ρ0 = (2πχ2D)/(κ ) [10], where
χ2D is the 2D polarizability, which in turn is given by χ2D =
lε/4π [80], where ε is the bulk dielectric constant of the
Xene monolayer. For large distances r � ρ0 , the potential has
the three-dimensional bare Coulomb tail Vi j (r) = kqiq j

εr , while
at very small distances, smaller than the screening length
r � ρ0 , it becomes a logarithmic potential like a potential of
a point charge in two dimensions: Vi j (r) = kqiq j

ερ0
[ln( r

2ρ0
) + γ ],

where γ is the Euler constant. Therefore, the potential (6)
becomes the standard bare Coulomb potential at r � ρ0

and diverges logarithmically at r � ρ0 . A crossover between
these two regimes takes place around distance ρ0. Thus,
at small distances between charge carriers, the short-range
interaction strength decreases, while the long-range interac-
tion strength is unaffected and is the bare three-dimensional
Coulomb potential. It is worth noting that in Ref. [89], a very
good approximation to the RK potential that is simpler to use,
fairly precise in both limits, and remarkably accurate for all
distances was introduced.

To obtain a solution of the Schrödinger equation (5) for the
negatively and positively charged trions, we use the method
of hyperspherical harmonics (HH) [90]. The main idea of this
method is the expansion of the wave function of the trion in
terms of HH, which are the eigenfunctions of the angular part
of the Laplace operator in the four-dimensional (4D) space.
As the first step, let us separate the center-of-mass (c.m.) and
the relative motion of three particles and introduce sets of
mass-scaled Jacobi coordinates [90,91]. There are three equiv-
alent sets of Jacobi coordinates, and there is an orthogonal
transformation between these sets [92,93]. For three non-
identical particles that have different masses, the mass-scaled
Jacobi coordinates for the partition i read as follows [90–92]:

xi =
√

mjmk

(mj + mk )μ
(r j − rk ),

yi =
√

mi(mj + mk )

(mi + mj + mk )μ

(
mjr j + mkrk

mj + mk
− ri

)
,

i �= j �= k = 1, 2, 3, (7)
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FIG. 1. Schematics of partition trees of Jacobi coordinates when
two particles have the same masses. The electron and hole in one
electron-hole pair have the same masses. This corresponds to the
intravalley X − and X + trions.

where

μ =
√

mimjmk

mi + mj + mk
(8)

is the three-particle effective mass. In Eqs. (7), the subscripts
i, j, and k are a cyclic permutation of the particle numbers.
Trees of Jacobi coordinates for a three-particle system, when
two particles have the same masses, are shown in Fig. 1.

The transformation (7) allows the separation of c.m. and
relative motions of three particles with Hamiltonian (5), and
the Schrödinger equation for the relative motion of the three-
body system reads[

− h̄2

2μ

(∇2
xi

+ ∇2
yi

) + V (x1) + V (x2) + V (x3)

]
�(xi, yi )

= E�(xi, yi ). (9)

In Eq. (9), V (xi ) is the interaction potential between two
particles at the relative distance x1, x2, and x3, respectively,
where xi is the modulus of the Jacobi vector xi (7), and (9) is
written for any of the set i = 1, 2, 3 of the Jacobi coordinates
(7). The orthogonal transformation between three equivalent
sets of the Jacobi coordinates simplifies calculations of matrix
elements involving V (xi ) potentials.

This method is presented in detail in Ref. [38] and is briefly
outlined here. We introduce in the 4D space the hyperradius
ρ =

√
x2

i + y2
i and a set of three angles �i ≡ (αi, ϕxi , ϕyi ),

where ϕxi and ϕyi are the polar angles for the Jacobi vec-
tors xi and y j, respectively, and αi is an angle defined as
xi = ρ cos αi, yi = ρ sin αi. Next, we rewrite the Schrödinger
equation (9) for the trion using hyperspherical coordinates
in the 4D configuration space [38]. This transformation al-
lows us to reduce the solution of the problem for the three
particles in the 2D configuration space to the motion of one
particle in the 4D configuration space. Then we introduce
the hyperspherical harmonics �Kλ(�) in the 4D configuration
space, which are the eigenfunctions of the angular part of the
generalized Laplace operator K̂2(�i ) in the 4D configuration
space K̂2(�i )�Kλ(�) = K (K + 2)�Kλ(�) [90], where K is
a grand angular momentum. Here we are using the short-
hand notation λ ≡ {lx, ly, L, M}, where L is the total orbital
angular momentum of the trion, M is its projection, and the
grand angular momentum K = 2n + lx + ly, where lx and ly
are the angular momentum corresponding to x and y Jacobi
coordinates, respectively, and n � 0 is an integer number.

The functions �Kλ(�) present a complete set of orthonor-
mal basis, and one can expand the wave function of the trion

FIG. 2. Schematic representation of the X − trion in the external
electric field perpendicular to the Xene layer in (a) freestanding,
(b) supported, and (c) encapsulated Xenes monolayer. xi and yi are
Jacobi coordinates for the partition i.

�(ρ,�i ) in terms of the HH �Kλ(�) as

�(ρ,�i ) = ρ−3/2
∑

Kλ

uKλ(ρ)�Kλ(�i ). (10)

In Eq. (10), uKλ(ρ) are the hyperradial functions, and by
substituting (10) into the Schrödinger equation written in the
hyperspherical coordinates [38], one can separate the radial
and angular variables and get a set of coupled differential
equations for the hyperradial functions uKλ(ρ):[

d2

dρ2
− (K + 1)2 − 1/4

ρ2
+ κ2

]
uKλ(ρ)

= 2μ

h̄2

∑
K ′λ′

WKλK ′λ′ (ρ)uK ′λ′ (ρ). (11)

In Eq. (11), κ2 = 2mB/h̄2, where B is the trion BE. The
coupling effective potential energy WKλK ′λ′ (ρ) is

WKλK ′λ′ (ρ) =
∫

�∗
Kλ(�i )

3∑
i< j

Vi j (|ri − r j |)�K ′λ′ (�i)d�i.

(12)

The coupling effective interaction (12) is defined via the
RK potential (6). Substituting Eq. (6) into Eq. (12), one ob-
tains the matrix elements of the effective potential energies.
The method of calculations of the effective potential energies
is given in [38]. Calculations of matrix elements WKλK ′λ′ (ρ)
of the two-body Vi j (|ri − r j |) interactions in the hyperspheri-
cal harmonics expansion method for a three-body system are
greatly simplified by using the HH basis states appropriate for
the partition corresponding to the interacting pair. Using the
matrix elements WKλK ′λ′ (ρ) in Eq. (11), one can solve the sys-
tem of coupled differential equations numerically. Results of
numerical solutions of (12) for trions in Xenes are presented
in the next section.

III. TRIONS IN XENES

We apply the present theoretical approach for calculations
of the trion BEs in the following Xenes monolayers: silicene
(Si), germanene (Ge), and stanene (Sn). A schematic represen-
tation of a trion in freestanding, supported, and encapsulated
Xenes monolayers in the external electric field Ez = E⊥ per-
pendicular to the Xene layer is given in Fig. 2. The formation
of the trion wave function (10) is the most general, not re-
stricted to any particular mass ratio of electrons and holes,
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FIG. 3. Schematic representation of the low-energy band struc-
ture for 2D Xenes material and formation of the intravalley X − and
X + trions and intervalley X − trions. Panels (a),(b) and (c),(d) rep-
resent the intravalley X − and X +, respectively. Panels (e), (f), (g),
and (h) correspond to the intervalley X − trions with the decreas-
ing masses from the biggest [spin-valley configuration (e)] to the
smallest [spin-valley configuration (h)]. Intervalley X + trions have
the same masses as X −.

and describes the three-particle relative motion. The splitting
of the conduction and valence bands in Xenes due to spin-orbit
coupling at nonzero electric fields leads to the formation of A
and B excitons in the larger or smaller band gaps, with cor-
responding larger or smaller masses of the electron and hole.
Two of the three particles constituting a positive or a negative
trion in the Xene monolayer have the same masses due to
the equity of the mass of the electron and hole that form an
exciton. However, they are not identical because they have dif-
ferent charges. An intervalley trion may have the same masses
of three particles, but they are not identical due to the different
spin and/or valley indices. Below we consider trions formed
by a singlet bright A or B exciton and an electron (X −) or hole
(X +). The trion can be in either a single or a triplet state.

A. Intravalley and intervalley trions

In a 2D monolayer of Xenes, intravalley and intervalley
trions can be formed. Let us first consider intravalley trions.
An interaction of a bright A or B exciton with another charged
carrier in the same valley, which can either be an electron or
a hole, forms an X − or X + intravalley trion. The schematics
in Fig. 3 show the possible formations of X − [Figs. 3(a) and
3(b)] and X + [Figs. 3(c) and 3(d)]. As follows from Eq. (4),
the electron and hole effective masses in the A exciton are
the same. The B excitons are composed of an electron and
hole that also have equal masses but smaller masses than
those of the electron and hole in A excitons. We denoted these
masses as mA and mB, respectively. The intravalley X − and X +
trions have the same two particles masses. As follows from
Eq. (8), the effective masses of the X − and X + trions formed
by an A or B exciton are μA =

√
mBm2

A
mB+2mA

and μB =
√

mAm2
B

mA+2mB
,

respectively [38]. Because mA > mB, it follows that μA > μB.
Therefore, the effective mass of the X − and X + trions formed
by the A exciton is larger than the mass of the X − and X +
trions formed by the B exciton. Due to the proportionality of
the BE of trions to the three-particle effective mass μ [38],
a BE of X − and X + trions formed by the A exciton is larger
than the BE of trions formed by the B exciton. In the ground
state, both intravalley trions formed by charge carriers from
the same valley are spin-singlet trions.

Intervalley X − trions result from the attraction between K
valley bright A excitons with an electron from the K ′ valley
or bright B excitons from the K valley with an electron from
the K ′ valley. The effective masses of the X − intervalley trions
formed by bright A excitons are always larger than the effec-
tive masses of trions formed by B excitons. The corresponding
spin-valley configurations are presented in Figs. 3(e)–3(h). We
should mention that the intervalley X + trions have the same
masses as the X − trions formed by the K valley bright A
and B excitons due to the interaction with a hole from the K ′
valley. While intravalley trions are composed of two particle
with the same masses, intervalley trions can be a system of
three particles with the same masses [Figs. 3(e) and 3(h)] or
a three-particle system with two particles that have the same
masses [Figs. 3(f) and 3(g)].

B. Results of calculations

The intravalley X − and X + trions in Xenes monolayers
have two particles (the electron and hole) that have the same
masses, and the third particle (the electron or hole) has a
different mass, as seen in Figs. 3(a)–3(d). Therefore, we have
to deal with three nonidentical particles because two particles
with the same masses have different charges. For intervalley
trions we have two cases: X − and X + trions formed by the
electron and hole with the same masses, and the third particle
has a different mass [spin-valley configurations in Figs. 3(f)
and 3(g)] or all three particles have the same masses [spin-
valley configurations in Figs. 3(e) and 3(h)]. In the latter case,
while three particles have the same masses, two belong to
different valleys.

In calculations of the BEs of trions in Xenes monolayers,
we use the RK potential. We solve the system of coupled dif-
ferential equations (11) for the hyperradial functions uL

Kλ(ρ)
numerically. By solving the system of equations (11), one
finds the binding energy as well as the corresponding hyper-
radial functions. The latter allows one to construct the wave
function (10). Numerical solution of the coupled differen-
tial equations requires the control of the convergence of the
BEs for trions with respect to the grand angular momentum
K for each value of the external electric field. The relative
convergence of the BE is checked as �B/B = [B(K + 2) −
B(K )]/B(K ), where B(K ) is the BE for the given K . The
analysis of the results for the BEs at different values of the
electric field shows that reasonable convergence is reached
for Kmax = 14, so we limit our considerations to this value.
The convergence of the BE depends on the trion total mass,
i.e., the applied external electric field. In Fig. 4 we show
the convergence of BEs obtained with RK potential as a
function of K for the intervalley X − for configurations (e)
and (h), which correspond to the maximum and minimum
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FIG. 4. Convergence for the binding energy for the intervalley
X − for configurations (e) and (h) with the maximum and minimum
trion mass, respectively. Inset: The ratio of the Rytova-Keldysh to
Coulomb potentials for electron-hole interaction in Si monolayer as
a function of the electron-hole separation.

trion mass, respectively. The results for the convergence for
other configurations are between these two limited cases.
Although the results converged quite well for the RK po-
tential, calculations with the Coulomb potential require
consideration of a more grand angular momentum K for each
value of the external electric field because the Coulomb po-
tential is much stronger than the RK potential. The inset in
Fig. 4 demonstrates this fact.

We considered the formation of trions in the singlet and
triplet ground states, and we computed the corresponding
BEs. The input parameters for calculations of BEs of trions
in the freestanding, supported on SiO2, and encapsulated by
hBN Xene monolayers are presented in Table I. The formation
of Wannier-Mott excitons due to the electron-hole interac-
tion via the RK potential in semiconducting phases in Xenes
monolayers occurs when the external electric field exceeds
some critical value that is unique to each material [75]. A
value of the critical electric field is slightly different for A
excitons and for B excitons. Following ab initio calculations
[46], which determined that the crystal structure of silicene
becomes unstable around 2.6 V/Å, we consider in our calcula-
tions electric fields up to 2.7 V/Å, and we study the formation
of trions in Xenes at the range of the external electric field
from the critical value up to 2.7 V/Å. Results of calculations

of dependencies of trion BEs on the external electric field are
presented in Fig. 5.

The results of our calculations for the BEs of intravalley
trions in a singlet state in a freestanding Xenes monolayer are
presented in Fig. 5(a). The BE increases for all materials as E⊥
increases. In addition, in FS Si, Ge, and Sn, we observe a non-
negligible difference in the BE of trions formed by A and B ex-
citons. These differences increase slightly as the electric field
increases. The trion BEs for FS Ge and FS Sn are qualitatively
similar to FS Si, but they are smaller than for freestanding
silicene. The curves for FS Ge and Sn qualitatively resemble
that of FS silicene, but at 2.7 V/Å FS germanene reaches a
maximum trions BE of 24.8 (24.3) meV, and the maximum
BE for FS stanene is roughly 21.1 (20.5) meV, significantly
smaller than that for FS silicene, −30.1 (29.8) meV. In paren-
theses, the BEs of trions formed by B excitons are given. The
percentage differences between the trion BE of FS Si and FS
Ge and that of FS Si and FS Sn at the largest electric field
considered are 82% (81%) and 70% (69%), respectively.

In Fig. 5(b), the dependencies of the binding energies for
intervalley singlet state trions in spin-valley configurations
shown in Figs. 5(e) and 3(h) as functions of external electric
field are displayed. The corresponding BEs are about 2–4%
larger and qualitatively resemble that of the intravalley tri-
ons: (i) the increase of the BE as the external electric field
increases; (ii) BEs for FS silicene, germanene, and stanene
are qualitatively similar; (iii) a non-negligible difference in
the BE of trions formed by A and B excitons.

The intravalley X − and X + trions must exist in the spin-
singlet state, whereas the intervalley trions can exist in either
the singlet or triplet states. In Fig. 5(b) the dependencies of
the binding energies for intervalley L = 1 and S = 3/2 state
trions as functions of the applied external electric field are
shown. The BEs of triplet state trions in the FS silicene and
germanene monolayers are about three times smaller than that
for singlet state trions. Our calculations show unbound triplet
state trions in the FS stanene. The decrease of the trion binding
energy in the triplet state is due to centrifugal repulsion.

In Fig. 5(d), the intravalley trion BEs in a Xenes monolayer
supported on SiO2 and encapsulated by hBN are presented.
In our calculations, the role of the substrate and the encap-
sulation by hBN is considered through the potential (6) with
κ = (ε1 + ε2)/2, where ε1 and ε2 are the dielectric constants
of two materials that surround the Xene layer. The compari-
son of the BEs shows that the FS monolayers exhibit by far
the largest BEs due to the much weaker dielectric screening
induced by the environment compared to Xenes supported
on SiO2 or encapsulated by hBN. Hence, the trion BE is

TABLE I. Input parameters for calculations of BEs of trions in the freestanding (FS) and encapsulating Xene monolayers. The notations
are the following: 2�gap is the total gap between conduction and valence bands; d0 is the buckling parameter; vF is the Fermi velocity; l is the
monolayer thickness; ε is the dielectric constant of the Xenes monolayer; ρ0 is the screening distance; Ec is a critical electric field.

2D material κ 2�gap (meV) d0 (Å) vF × 105 (m/s) l (nm) ε ρ0 (nm) Ec (V/Å)

FS Si 1 1.9 [94] 0.46 [95] 6.5 [94] 0.4 [43] 11.9 2.38 0.55
FS Ge 1 33 [94] 0.676 [95] 6.2 [94] 0.45 16 4.23 0.3
FS Sn 1 101 [94] 0.85 [94] 5.5 [94] 0.5 24 5.99 0.2
Si (hBN, type I) 4.89 27 [52] 0.46 [52] 4.33 [52] 0.333 [52] 11.9 0.41 None
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FIG. 5. Dependencies of the BE of intravalley and intervalley trions in silicene, germanene, and stanene on the applied electric field.
Curves 1, 3, and 5 correspond to the trions formed by A excitons coupling an electron (X −) or hole (X +), while curves 2, 4, and 6 correspond
to the trions formed by B excitons coupling an electron (X −) or hole (X +). (a) Freestanding intravalley singlet state trions. (b) Freestanding
intervalley singlet state trions. (c) Freestanding intervalley triplet state trions. (d) Intravalley singlet state trions in Xenes monolayer supported
on an SiO2 substrate (curve I, III, and V) and encapsulated by hBN (curves II, IV, and VI). The plots for FS Xenes are truncated for the external
electric field E⊥ less than a critical field.

the largest for the freestanding Xenes and gets progressively
smaller for Xene supported on SiO2, and it is the smallest
for encapsulated by hBN. Thus, the trion BE is extremely
sensitive to the dielectric environment.

We calculated a probability distribution for three particles
that form a trion in the Xene. In Fig. 6, interparticle radial
probability distributions for intravalley and intervalley trions
in the silicene monolayer are shown. The difference in the
probability distribution is related to the difference of the ef-
fective masses μ of intravalley and intervalley trions. The
probability distribution for the intravalley trion is computed
for the spin-valley configuration shown in Fig. 3(a), and that
for the intervalley trions is calculated for the spin-valley con-
figuration in Fig. 3(e) with the highest mass. The analysis
of the dependence of the probability distributions of three
particles on the hyperradius ρ and the external electric field
leads to the following conclusion: the increase of the external

electric field brings an increase of the trion BE and makes tri-
ons more compact since the greater binding energy increases
the probability of trion formation.

The capability to control the BE and compactness of trions
in Xenes by an external electric field suggests the possibility
of trion crystallization. It is well known that the dilute system
of electrons can form a 2D Wigner crystal [96]. Based on the
existence of trions in Xenes, we propose that trions form a 2D
Wigner crystal (WC) at low densities, similar to the 2D WC
formed by a dilute system of electrons.

Wigner crystallization, which was predicted 80 years ago
[97], is an exotic phenomenon that represents one of the most
intriguing quantum phase transitions. The first realizations
of WCs [98–100] used strong magnetic fields and quasi-
2D quantum-well systems. Recently, different experimental
groups observed signatures of a Wigner crystallization formed
in MoSe2 monolayers encapsulated by hBN [101–103] and
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FIG. 6. Dependence of the probability distribution of three particles in freestanding silicene on hyperradius ρ and applied electric field for
(a) intravalley and (b) intervalley X − trion.

TMDC heterostructures [104–106]. An experimental study of
electron crystallization in one-dimensional nanotubes [107]
succeeded in imaging an electronic WC. In the past three
decades, many theoretical studies were focused on 2D and 1D
electron gases [108–120]. The WC formed by trions in cou-
pled quantum wells was discussed and predicted in [121,122],
while Refs. [123,124] investigated WCs at zero magnetic field
and magnetic-field-induced Wigner crystallization of trions in
TMDC heterostructures.

The dilute system of trions, when the average distance
between them is much larger than the radius of each trion,
can be treated as a dilute system of fermions with effec-
tive pair electrostatic repulsion resulting from charge-carrier
interactions via the RK potential (6). It is well-established
that the triangular crystal has a considerably lower energy
than competing lattices in the density range of interest. Thus,
to minimize the potential energy, the trions experiencing ef-
fective electrostatic repulsion undergo a phase transition and
crystallize by forming a Wigner lattice. In other words, this is
an example in which the WC phase occurs in a nonelectronic
system at low density.

The exact interaction potential between two trions includes
nine terms: five repulsive and four attractive interactions be-
tween electrons and holes. In a dilute system of trions, we can
approximate the interaction between two neighboring trions
separated by a distance R as three interactions: a repulsive
charge-charge (electron-electron for X − or hole-hole for X +),
an attractive interaction of a charge carrier (electron for X −

or hole for X +) from one trion with the exciton from the
neighboring trion, and a repulsive interaction of two excitons
from two neighboring trions. In other words, we treat each
trion as a cluster of an exciton and a charge carrier. Therefore,
the effective trion-trion interaction in the diluted system of
trions can be treated as the charge-charge, charge-dipole, and
dipole-dipole interactions in the 2D configuration space.

In 2D monolayers, the electrostatic charge-charge interac-
tion is described by the RK potential (6). At large distances
R between trions, the electron-electron (hole-hole) potential
has a three-dimensional bare Coulomb tail 1/R. The explicit
analytical expressions for the charge-dipole and dipole-dipole
interactions in 2D configuration space derived based on the
potential (6) read [125]

Vcd(R) = πke

2κρ0

[
H−1

(
R

ρ0

)
− Y−1

(
R

ρ0

)]
R · d
ρ0R

, (13)

Vdd(R) = − πk

2κρ0

{[
H−1

(
R

ρ0

)
− Y−1

(
R

ρ0

)]
d1 · d2

ρ0R

+
[

H−2

(
R

ρ0

)
− Y−2

(
R

ρ0

)]
R · d1R · d2

ρ2
0 R2

}
, (14)

where d is a dipole momentum, R is a radius vector between
a charge carrier and a dipole or between two dipoles, and
H−n( R

ρ0
) and Y−n( R

ρ0
) are the Struve function and Bessel func-

tion of the second kind, respectively. Following [125], one
can write the asymptotic form of (13) and (14): Vcd(R) −−−→

R→∞
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FIG. 7. The charge-charge, charge-dipole, and dipole-dipole interactions between constituent particles of two neighboring trions when the
trion is considered as a charge-exciton system and the resultant repulsive trion-trion interaction.

− ke
κ

R·d
R3 and Vdd(R) −−−→

R→∞
k
κ

1
R3 [d1 · d2 − 3 (R·d1 )(R·d2 )

R2 ]. Thus,

the attractive interactions between a charge carrier from one
trion with the dipole in the neighboring trion and the repulsive
dipole-dipole interaction between two neighboring trions are
proportional to −1/R2 and 1/R3, respectively. Considering the
trions as a charge-exciton system, in Fig. 7 we present 2D
and 3D plots for the charge-charge, charge-dipole, and dipole-
dipole interactions. In calculations we use the average value
of the exciton dipole moment, and we assumed that exciton
dipole moments in the neighboring trion are parallel. Even
this simplified model shows that at R > rs, the trion-trion
interaction is repulsive and has a long-range Coulomb tail. In
this approximation, one can replace the electrostatic repulsion
between neighboring trions induced by their charge-carrier
interactions by the electrostatic repulsion between the c.m.
of two neighboring trions. Therefore, we can treat the dilute
system of the charged spin-1/2 fermions interacting with the
pair electrostatic repulsion formed by the trions in the same
way as the dilute system of electrons.

As previously shown for the system of 2D electron gas
[126], the qualitative criterion of the stability of the WC is
the condition when the average potential energy exceeds the
average kinetic energy: 〈U 〉 > 〈K〉, where 〈U 〉 and 〈K〉 are
the average value of the potential and kinetic energies, re-
spectively. A dilute ensemble of repulsively interacting trions
forms a Wigner lattice when the average trion-trion interaction
energy exceeds the average kinetic energy of the c.m. of
trions. This condition allows us to determine the density at
which the ensemble of repulsively interacting trions under-
goes a Wigner crystallization.

Let us show that at zero temperature, a trion WC exists
at higher densities than an electron (or hole) WC. Neglecting
the rotational energy contribution, it is straightforward to get
a qualitative picture of the trion Wigner crystallization by
performing an analysis similar to that reported for the 2D
electron gas. Previous studies found crystallization of elec-
trons to occur at rs = 37 a.u. [96], rs = 34 a.u. [109], and
rs = 31 a.u. [114]. The latter value for rs was obtained in
the framework of quantum Monte Carlo methods to calculate
the zero-temperature phase diagram of the two-dimensional
homogeneous electron gas. Estimating U and K for the trion
system analogously to the electron system [96], we conclude
that the 2D trion WC is stable when the dimensionless den-
sity parameter rs � 37 at T = 0. The Wigner-Seitz radius
is defined as rs = a/a0, where a = (πρ)−1/2 is the average
distance between the c.m. of trions, ρ is the 2D density of tri-
ons, and a0 = 4πε0 h̄2/[M(E⊥)e2] is the effective Bohr radius,
where M(E⊥) is the mass of the trion that can be controlled
by the external electric field. The last condition enables us
to determine the density at which the trion gas becomes a
WC. Moreover, by varying the external electric field, one
can obtain a desirable density of a trion gas. For example,
at E⊥ = 2.5 V/Å the mass of each charge carrier is about
0.5m and 0.8m, where m is the mass of a free electron, in
Si and Ge, respectively. For trions in silicene and germanene,
this condition corresponds to ρ � 1.9 × 1013 cm−2 and ρ �
4.8 × 1013 cm−2, respectively. For the electron Wigner crys-
tal, we substitute a0 = 4π h̄2ε0/mA(E⊥)(e2), which results in
ρ � 2.1 × 1012 cm−2 and ρ � 5.4 × 1012 cm−2 for Si and
Ge, respectively. Therefore, the trion Wigner crystal can be

035425-9



KEZERASHVILI, TSIKLAURI, AND SPIRIDONOVA PHYSICAL REVIEW B 110, 035425 (2024)

formed at sufficiently higher densities than an electron (or
hole) WC, because the mass of a trion is greater than the effec-
tive mass of the electron or hole in the same Xene monolayer.

Above, we considered the trion gas at zero temperature and
assumed that a 2D Wigner crystal in the ground state will
have no defects. At finite temperatures, the defects will always
destroy the long-range translational order in the 2D Wigner
crystals. Let us mention that in practice it is challenging to
experimentally realize a WC because quantum-mechanical
fluctuations overpower the electrostatic repulsion and can
quickly cause disorder.

IV. CONCLUSION

In summary, we predict the existence of electrically con-
trolled trions in Xenes monolayers. We have applied the
hyperspherical harmonics method to the calculation of BEs
for the trion, and we predict the formation of trions in free-
standing, supported, and encapsulated Xenes in an external
electric field perpendicular to monolayers. The results of BE
calculation for trions formed by A and B excitons show a non-
negligible difference in trion energies that increases slightly
as the electric field increases. The BEs of the intravalley and
intervalley trions in the singlet state can be tuned in the range
of 24–31 meV for silicene, 21–26 meV for germanene, and

14–20 meV for stanene by varying the external electric field
from the critical value that is specific for each material up
to 2.7 V/Å. Let us note that the trion binding energies in
Xenes are the same order as in TMDC monolayers [38]. The
dependence of the BE for silicene, germanene, and stanene
as a function of the electric field is qualitatively similar. Our
findings pave the way toward manipulating the trion BE by an
external electric field.

The maximum BEs of intervalley triplet state trions are
about 7.4 and 8.5 meV in silicene and germanene, respec-
tively. In stanene, the triplet state trions are unbound. To
understand the importance of the screened electron-hole in-
teraction in the formation of trions in Xenes, we computed
the BEs for Xenes supported on SiO2 and encapsulated by
hBN. It is demonstrated that the dielectric environment has a
significant effect on the trion BE by decreasing it.

The results of calculations of the probability distribution
show an increase in the compactness of trions with an increase
of the electric field, since the greater binding energy increases
the trion formation probability. We discussed and estimated
the density of trion gas as composite fermions for the possi-
bility of obtaining the Wigner crystallization of Xenes trions.
The ensemble of repulsively interacting trions can form the
Wigner lattice in an external electric field when their average
interaction energy exceeds the average c.m. kinetic energy.
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