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Curved graphene: A possible answer to the problem of graphene’s diverging magnetic susceptibility
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A study of curved graphene in the presence and absence of a real magnetic field is conducted to determine
the magnetization and magnetic susceptibility. Utilizing a Dirac model, the Landau-level energy corrections
are found. These results are compared with those obtained from a tight-binding model analysis, showing good
agreement with the Dirac model. The obtained spectra are then used to calculate the free energy, magnetization,
and magnetic susceptibility as functions of the external magnetic field and curvature. The resulting de Haas–van
Alphen effect exhibits distinctive signatures due to the curvature of graphene, including a resonance effect
when the pseudomagnetic and the real magnetic fields are equal. Considering that curvature induces effective
pseudomagnetic fields, a mechanical effect stemming from an electronic contribution is found, resulting in a
pseudo de Haas–van Alphen effect without needing an external magnetic field. This effect is associated with
oscillating (electronic) forces opposing deformations. These forces, divergent in flat graphene, suggest that
graphene (without a substrate) attains mechanical equilibrium through local corrugations. These mechanical de-
formations prevent the theoretically calculated pristine graphene’s diamagnetic divergence at low temperatures,
indicating that corrugations produce a finite, experimentally measurable magnetic susceptibility. The divergent
susceptibility becomes apparent only when such corrugations are removed using various strategies.
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I. INTRODUCTION

The de Haas–van Alphen effect (dHvA) is a fascinating
phenomenon that has attracted the attention of many physi-
cists over the years [1–20]. It refers to periodic oscillations
in magnetized metal when subjected to a magnetic field at
low temperatures [1,5,9,21–24]. These oscillations are caused
by quantization of the electron energy levels in the magnetic
field [8,9,25], and their frequency is proportional to the cross-
sectional area of the Fermi surface of the sample [26].

The de Haas–van Alphen effect was first discovered by
Wander Johannes de Haas and Pieter M. van Alphen in 1930
while studying bismuth magnetization in a high magnetic
field [1]. Later, it was realized that the effect is a general
phenomenon that occurs in any metal or semiconductor with a
Fermi surface [6,8,15,17]. In two-dimensional electron gases
(2DEGs), the dHvA effect is fascinating because the quanti-
zation of electron energy levels is more pronounced as a result
of the dimensionality reduction of the system [9,13,18,27].
This makes the effect a powerful tool for studying the
electronic properties of quasi- and two-dimensional materi-
als [6,10,11,14,21,28]. This effect has also been extensively
studied in 2DEGs formed at the interface between two semi-
conductors [4,5,29,30].

*Contact author: pcastrov@unach.mx

One of the most exciting aspects of the de Haas–van
Alphen effect in 2DEGs is the observation of sawtooth
oscillations [13,27], which are caused by the fractional filling
of the Landau levels (LLs) under a magnetic field. These
oscillations provide a powerful tool for studying the fractional
quantum Hall effect [31], which is a striking manifestation of
strong electron-electron interactions in 2DEGs.

A natural setting to study the dHvA effect is on two-
dimensional materials beyond the 2DEGs. In recent years,
there has been a growing interest in exploring this effect in
two-dimensional materials beyond 2DEGs. For example, this
effect has been experimentally observed in graphene [14,24].

Graphene is a two-dimensional material comprising a
single layer of carbon atoms arranged in a honeycomb lat-
tice with remarkable properties [32–34]. For example, when
graphene is deformed, the Dirac points are separated, and the
Fermi surface becomes a series of deformed circles [35–37].
These deformations in graphene produce a pseudomagnetic
field [37–49], which can lead to pseudo-Landau levels (P-
LL) [42,48–59]. They also induce corrections to the quantum
Hall effect (QHE) [50], pseudomagnetic QHE [60], anoma-
lous dHvA effect in strained graphene [2,12], Klein tunneling
on negatively curved graphene sheets [61], flat bands [62–69],
and many other geometrical effects on the electronic prop-
erties [37,40,41,70–72], which allow posing the concept of
curvatronics, that is, considering the curvature as a tunable
parameter to control the electronic properties of the mate-
rial [73]. Specifically, this enables curved graphene to have
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several potential applications. One possible application is in
the field of valleytronics, which aims to use the valley degree
freedom of electrons in graphene rather than their charge to
transmit and process information, and the curvature could be
used to polarize the valley of electrons, allowing the creation
of new types of valleytronic devices [2,70,74]. Understanding
the magnetic, electronic, and thermodynamic properties of
curved graphene is crucial for a comprehensive understanding
of this material’s behavior.

Because curvature induces effects similar to those found
for magnetic fields, we present a study of curved graphene
under magnetic fields in this work. In particular, we show
that curvature induces discrete spectra of the allowed en-
ergies (LLs) and a discontinuity in the magnetization with
periodicity 1/B leading to an effective dHvA effect. For
free-standing graphene, this allows us to propose a potential
curvature-induced mechanism to address the issue of the the-
oretically calculated divergence of magnetic susceptibility at
low temperatures. It is important to note that the suggested
mechanism is rooted in corrugations. This does not preclude
the experimental observation of such divergence, as curvature
can permanently be eliminated through strain or encapsulation
using other materials [75].

We have organized this paper as follows: In Sec. II, we
present the simplest model to describe curved graphene under
magnetic fields, both in its continuum model using the Dirac
equation formalism and in the tight-binding model. In Sec. III,
we calculate the LLs for two curvature regimes using the
continuum model and show their effects on the local density
of states (LDOS) obtained with the tight-binding model. In
Sec. IV, we briefly review the dHvA effect in flat graphene
with a constant charge-carrier density and near-zero temper-
ature. This review establishes the techniques to be used in
the following sections. In Sec. V, we study the dHvA effect
in strongly curved graphene and under a real magnetic field.
In Sec. VII, we briefly discuss the physical differences be-
tween magnetization and pseudomagnetization. In Sec. VI,
we present the mechanical effect produced by the electronic
contribution in graphene and how this gives rise to a pseudo
de Haas–van Alphen effect (pdHvA) due only to curvature.
Finally, in Sec. VIII, we present our conclusions and future
perspectives.

II. GRAPHENE ELECTRONIC MODELS

This section presents the details of the models we consider
and how they relate. This section is divided into two parts.
In the first, we provide the Dirac Hamiltonian for curved
graphene, and in the second, we study the same system from
the perspective of a tight-binding Hamiltonian. It is worth-
while to mention that such a system can also be studied by
using perturbation theory [48,53]. However, the curved-space
method offers several distinctive advantages. Specifically, this
approach allows for the natural handling of nonplanar ge-
ometries and local deformations, such as bumps, which are
common in corrugated graphene structures. In comparison
with perturbation theory, which is often used to address
slightly perturbed systems around a known base state, the
curved-space method provides a description where the effects
of curvature dominate the behavior of electrons in graphene.

While perturbation theory has proven effective in specific
contexts [48,53], the curved-space method has the potential
to offer a unique perspective, allowing us to analytically study
more complex phenomena such as dislocations [61]. Further-
more, it may facilitate establishing analogies with systems
from other fields of physics in a natural manner [45,76,77].

A. Dirac model for curved graphene
in an external magnetic field

This section introduces the simplest model to describe the
electronic degrees of freedom of a curved graphene sheet
under a uniform magnetic field. In Fig. 1, we present two
limiting examples of such deformations. To introduce a model
for describing such systems, we begin with the Dirac equa-
tion in the presence of electromagnetic fields for massless
Dirac fermions [39,50,78–88]

ih̄γ α
(
∇α − i

q

h̄
Aα

)
ψ = 0, (1)

where q is the particle’s charge, and the electromagnetic
vector potential, denoted as Aα , is defined on a (2 + 1)-
dimensional curved space-time M. The Dirac matrices γA

satisfy the Clifford algebra {γA, γ B} = 2ηABI2×2, with ηAB
the Minkowski metric tensor and γ α (x) = γAeαA(x). The set
{eαA(x)} consists of dreibeins associated with each coordinate
patch of M. Here, the capital and italic Latin indices A repre-
sent the Minkowski flat coordinates, while the Greek indices
α indicate the local curved coordinates.

The covariant derivative for the spinor representation of
the Lorentz group SO(2, 1) is given by ∇α = ∂α +�α , where
�α = 1

4ω
AB
α sAB serves as the spin connection. The com-

ponents ωα
AB form elements of the 1-form satisfying the

Maurer-Cartan equations [89]. Meanwhile, sAB = 1
2 [γA, γB]

represents the pseudo-spin operator. Thus, both ωAB
α and

eαA(x) carry the geometric essence of the Dirac equation. The
metric tensor of the space-time M can be expressed using
dreibeins, denoted by gαβ = eAα (x)eBβ (x)ηAB.

Here, we consider a stationary space-time with global
structure M = R ×
, whose spatial sector 
 is a two-
dimensional curved surface, i.e., with a metric given by ds2 =
−v2

F dt2 + gi jdxidx j , with gi j being the metric tensor of 

with i, j = 1, 2, and vF is the Fermi velocity. In addition,
we consider that the electromagnetic potential Aα has only
spatial components; that is, A0 = 0. In the following, we
proceed to separate the indices A and α into time and spatial
components {0, a} and {0, j}, respectively. Thus, the dreibeins
for this metric are e0

0 = 1, ei
0 = e0

a = 0, and ei
a �= 0 such that

gi j = ea
i eb

jδab. Also, it can be shown that ω0
jb = ωa

0b = ωa
j0 =

0 and ωa
jb �= 0, with spatial indices a, b, i, j, and k. This

implies that the covariant derivative is reduced to ∇0 = ∂0

and ∇ j = ∂ j + 1
4ω

ab
j sab. This implementation of index decom-

position on the Dirac Eq. (1) results in a Schrödinger-like
equation ih̄∂0ψ = Hψ , where H = −ih̄vFγ0γ

j (x)∇ j with
∇ j ≡ ∇ j − i q

h̄ A j . This decomposition has been studied in
previous works [39,50,81,90]. Additionally, the effective ten-
sorial and space-dependent Fermi velocity v

eff, j
a (x) = vF e j

a(x)
can be obtained using γ j (x) = γ ae j

a(x) [38,39]. We now have
all the components to write a field-theoretic Hamiltonian for

035421-2



CURVED GRAPHENE: A POSSIBLE ANSWER TO THE PROBLEM … PHYSICAL REVIEW B 110, 035421 (2024)

FIG. 1. Graphene sheet with dimensions Lx = Ly = 10 nm deformed in such a way as to generate a Gaussian bump whose profile is given
by Eq. (A11). As mentioned in Appendix A, the parameter that controls the type of regime established is the ratio between the height of
the bump z0 and the standard deviation � 2, that is, (z0/�

2)2 = R(r = 0 nm). (a) For this case, we set z0 = 1 nm and � = 1 nm such that
(z0/�

2)2 = 1 nm−2 establishes a strong-curvature regime. (b) We set z0 = 0.25 nm and � = 5 nm such that (z0/�
2)2 = 1 × 10−4 nm−2

establishes a weak-curvature regime. The color scale indicates the vertical position z of each site in relation to the maximum height z0.

the curved sheet of graphene as

Ĥ =
∑
ξ=±

∑
σ=↑,↓

∫
d2x

√
gψ†

σ,ξHξψσ,ξ , (2)

where σ and ξ label the spin and valley indexes. The operators
H+ and H− represents two Dirac operators corresponding to
each valley K and K ′, respectively. The difference between
these operators resides in the Dirac matrix representations
in each valley. We choose the particular representations of
the Dirac matrices γ 0

ξ = γ 0 = −iσ3, γ 1
ξ γ

0
ξ = σ 1, and γ 2

ξ γ
0
ξ =

ξσ 2 with σ3 and σ a, a = 1, 2, being the standard Pauli
matrices; this implies, in particular, that in the K ′ valley
pseudo-spin operator has opposite sign with respect to K
valley. For compact notation, we introduce the Dirac operators
in each valley explicitly using the valley index ξ :

Hξ = −ih̄vFγ0γ
j
ξ
(x)∇ξ

j , with ∇ξ
j ≡ ∇ξ

j − i
q

h̄
A j . (3)

In this representation, for flat graphene, it is easy to show that
H+ = −ih̄vFσa(∂a − i q

h̄ Aa), which is the low-energy limit of
the Wallace tight-binding model [33,34] in the presence of
electromagnetic fields once the movement of the Dirac cone
tip is taken into account [35–37,51]. This Hamiltonian Ĥ is
also similar to the cosmological model proposed by M. A. H.
Vozmediano et al. [91].

We remark that the curved sheet of graphene is considered
here also under a real, external magnetic induction field B,
which is defined in the Euclidean space R3. The field B can
be expressed in terms of the U(1) gauge field A as usual
B = rotA, where rot is the rotational operator on vector fields
in R3. It is clear that the field B determines the vector field
Aj on the curved surface 
. For this purpose, it is imperative
to introduce a few extrinsic elements of the curved sheet of
graphene geometry. So, let us call X : D ⊂ R2 → 
 ⊂ R3

a parametrization of the surface, where D is a domain and
X(xi ) is a vector position in R3 on a certain point p of the
surface 
. Since the charge carriers move intrinsically on the
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surface, their electromagnetic moment q
h̄ A j must be tangent

to the surface, therefore the magnetic potential can be written
as Aj (xi ) = e j (xi ) · A(X(xi )), where A(X) is the U(1) gauge
field at the point p on the surface, and {e j (xi ) = ∂ jX(xi)} is a
set of tangent vectors at p.

We add that due to the introduction of a complex phase in
Eq. (1), the application of a real magnetic field in graphene
breaks the time-reversal symmetry. The pseudomagnetic field
that arises from the graphene’s curvature is different in the
sense that it does not break such symmetry [37]. This can
be seen from Eq. (2) as the graphene valleys K and K ′ are
related by time-reversal symmetry once the real magnetic field
is removed. This matter will be studied in more detail in the
context of the resulting spectrum.

B. Tight-binding model for a curved graphene
in a magnetic field

To better understand and compare some of the results from
the previously discussed effective model, we also explore a
numerical implementation of a tight-binding (TB) model for
curved graphene under a real, external magnetic field.

The TB Hamiltonian of the model is defined as follows:

H =
∑
〈nm〉

tnm(r)ĉ†
rn

ĉrm + H.c. (4)

Here, 〈nm〉 represents the sum over the neighbors with posi-
tions rn and rm that satisfy |rn − rm|2 − (rn − rm)2

z � a2
c with

ac = 1.42 Å the interatomic distance in flat graphene, ĉ†
rn

(ĉrn )
is the creation (annihilation) operator, and tmn(r) is the hop-
ping integral between the nth and mth sites, given by

tnm(r) = t0ei 2π
�0

∫ rm
rn

Anm·dl e−β(|rn−rm|2−ac )/ac , (5)

where t0 = −2.8 eV. Anm is the vectorial potential along the
path that joins sites n and m, �0 = h/e is the magnetic flux
quantum, and β = 3.37 is the Grüneisen parameter [37,74].
The Fermi velocity in flat graphene can be computed as
vF = 3t0ac

2h̄ ≈ 9.061 04 × 105 m/s. In the present study, the
eigenvalues and eigenfunctions resulting from the TB model
Hamiltonian, given by Eq. (4), were obtained using the
Pybinding package [92].

Note that, as a consequence of curvature, the pz orbitals
become misaligned [54]. To account for this effect, it is neces-
sary to introduce an additional correction term to the hopping
parameters [64], such that the new hopping parameters are
given by

t̃nm(r) = [1 + κ (1 − N̂n · N̂m)]tnm(r), (6)

where κ ≈ 0.4, N̂i is the unit normal vector to the curved
graphene, given by

N̂i = êz − ∇zi√
1 + |∇zi|2

, (7)

with zi representing the height of the ith site, ∇ = (∂x, ∂y)
is the two-dimensional gradient operator, and êz is the unit
vector perpendicular to the flat graphene. Here, the term
κ (1 − N̂i · N̂ j ) accounts for the change in relative orienta-
tion between the π orbitals [64]. The numerically obtained
maximum value of this term in the strongly curved systems

considered in this work is approximately

κ (1 − N̂i · N̂ j ) ≈ 3.9 × 10−3 � 1. (8)

In fact, Eq. (5) can be used for systems with curvature R �
1 nm−2 and involving more atoms to optimize numerical
calculations. From these previous considerations, we neglect
π orbital misalignment effects in what follows.

III. SPECTRA IN FLAT AND CURVED GRAPHENE
AND DENSITY OF STATES

This section is divided into two sections. In the first section,
we calculate the LLs for flat graphene under a real exter-
nal magnetic field, while in the second one, we obtain the
LLs for curved graphene under such an external magnetic
field.

A. Revisited: Landau levels in flat graphene
under a magnetic field

We first consider the Dirac equation for a (2 + 1)
Minkowskian space-time in a transverse induction magnetic
field, B = (0, 0,B), and A = (0,Bx, 0) its corresponding
vector potential in the Landau gauge. The one-particle Hamil-
tonian is then given by [3,7,22,74]

H = vF σ̂ · π̂, (9)

in which σ̂ = (ξσ1, σ2), where σ j is the jth Pauli matrix,
ξ = +1 (−1) for the K (K′) valley, and π̂ is the canonical
momentum with the Peierls substitution (π̂ = p̂ + eA). From
the Schrödinger-Dirac time-independent equation H� = ε�,
we obtain the known energy spectra [3,93,94]

εn = sgn(n)vF

√
2|n|h̄eB, n ∈ Z, (10)

which does not depend on the valley index, so there is a
valley degeneration. These energies (10) are related to the
emergence of LLs. In addition, in Fig. 2 is shown the local
density of states (LDOS) for a finite sample of graphene with
area 102 nm2, which was numerically calculated via diagonal-
ization of the Hamiltonian Eq. (4). In particular, in this figure,
we compare the smallest energy eigenvalues from Eq. (10)
with the results obtained from the numerical results of LDOS.

B. Landau levels in curved graphene under a real magnetic field

This section is devoted to adapting the methods used in
the previous section to find the spectrum of curved graphene
under a magnetic field. Here, we use a local frame defined by
the so-called Riemann normal coordinates (RNCs) y = x − x′,
where x′ is a fiducial point that can be chosen as the ori-
gin [95]. We carry out the transformation ψ̃σ,ξ = g

1
4ψσ,ξ in

the Hamiltonian (2) to capture the geometrical data coming
from the area element; thus, (2) can be cast in the form

Ĥ =
∑
ξ=±

∑
σ=↑,↓

∫
d2yψ̃†

σ,ξ H̃ξ ψ̃σ,ξ , (11)

where H̃ξ = g
1
4 Hξg− 1

4 .
Now, let be H̃F = H̃ξ /h̄vF . Further simplification can

be achieved by taking the square of H̃F , that is,
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FIG. 2. Numerical calculation of the local density of states
(LDOS) obtained from the tight-binding Hamiltonian Eq. (4) for
a flat graphene sheet with dimensions Lx = Ly = 70 nm without
a magnetic field (red lines) and with a magnetic field Bz = 30 T
(blue lines) perpendicular to the xy plane. The field strength has
been exaggerated for pedagogical reasons and to visualize the LLs
(green lines) obtained from the Dirac model (10). It should be noted
that, for E > 0.5 eV, the cases for flat graphene with and without
a magnetic field are very similar. This is due to the limitation of
the Dirac approximation, where 2h̄ωc ≈ 0.4 eV. In other words, as
the magnetic fields become stronger, the continuum model becomes
more effective at capturing information at higher energies compared
with the flat graphene without magnetic fields. Furthermore, the
oscillations observed in the case without a magnetic field are due
to the finite-size effects of the sample. As the LDOS is symmetric
with respect to the zero energy, the plot is exclusively presented for
E > 0.

H̃2
F = g

1
4 H2

F g− 1
4 , where now using the Clifford algebra im-

plies H2
F = −γ0 /Dξ γ0 /Dξ = − /D2

ξ , and using the Schrödinger-

Lichnerowicz formula for /D2
ξ (see Appendix B) we obtain

H̃2
F = −g

1
4 ∇ξ

i gi j∇ξ
j g

− 1
4 + 1

4
R − ξq

2h̄
σ3εi jF

i j, (12)

where R is the Ricci scalar curvature, εi j is the second-order
Levi-Civita tensor and Fab = ∇aAb − ∇bAa is the covariant
magnetic strength tensor. This tensor is related to the external
magnetic induction field B applied to the curved graphene
sheet. The expression of H̃2

F has the same structure obtained in
the context of quantum field theory in curved space [96]. The
first term of (12) can be simplified in such a manner that [39]

H̃2
F = −∇ξ

i gi j∇ξ
j − g− 1

4 ∂i[g
1
2 gi j∂ j (g

− 1
4 )] + 1

4
R

− qξ

2h̄
σ3εi jF

i j . (13)

This operator is the starting point to analyze the weak- and
strong-curvature approximations, depicted in Fig. 1. We con-
sider a slight curvature perturbation from the flat Hamiltonian
in the weak-curvature approximation. In contrast, for the
strong-curvature limit, the pseudomagnetic field associated
with the curvature will be comparable to the magnetic field’s
value.

Next, for the aforementioned approximations, we use the
fact that the metric tensor and spin connection (using RNCs)
can be written as a Taylor series with coefficients given

in terms of the covariant derivative of the Riemann ten-
sor [96,97]. The first terms of these series expansions are

gi j = δi j − 1

3
Ri

kl
jykyl + · · · ,

�
ξ
j = ξ

4
ykRk j

absab + · · · , (14)

where the dots indicate higher-order terms O(yn) with n � 3,
and the coefficients Ri jkl are the components of the Riemann
curvature tensor evaluated at the fiducial point x′. Here sab is
the pseudo-spin operator in the K valley.

Additionally, we approximate the magnetic potential Aj .
According to the previous section, the gauge field can be
written as Aj = e j · A. Now, for a uniform magnetic induction
field B let us choose the symmetric gauge. Thus, the U(1)
vector potential A is given by A = 1

2 X × B, where X are the
embedding functions of the curved surface 
. Although the
magnetic field B is uniform, the magnetic potential Aa may
have a nonlinear dependence on the local coordinates of the
surface. Expressing the embedding functions X(y) in terms of
the RNC, it is not difficult to show that X(y) ≈ ebyb + O(y2),
thus Aa = 1

2 (ea × eb) · B. After using the identity ea × eb =√
gεabN and

√
g = 1 at the fiducial point, we can find the

first approximation of the curved magnetic potential Aa =
1
2 BNεabyb + O(y2), where it can be shown that quadratic terms
involve tangent components of B and the extrinsic curvature
tensor. The extrinsic curvature corrections are beyond the
scope of the present analysis and will be analyzed elsewhere.
In the expression for Aa, BN = B · N is the external magnetic
field B along the normal direction N to the tangent plane at
the fiducial point x′ belonging to the surface patch.

1. The weak-curvature regime

Our starting point is to consider that, for a surface with
metric gi j , the Riemann curvature tensor can be written as
Rmkl j = R

2 (gmlgk j − gm jgkl ), thus the Riemann curvature ten-
sor and the spin connection can be written at the fiducial point
x′ as

Rmkl j = R

2
(δmlδk j − δm jδkl ) = R

2
εmkεl j,

� j = iξ
R

8
ylεl jσ3, where i = √−1, (15)

and we can rewrite the ∇ operator as

∇l = i

(
1

h̄
πl − i�l

)
, (16)

where πl is the canonical momentum with the Peierls substi-
tution using BN instead of B. Thus, from Eqs. (13)–(16), we
obtain that

H̃2
F = 1

h̄2 πl g
l jπ j − gl j�l� j − i

h̄
(πl g

l j� j +�l g
l jπ j )

+ 1

12
R − ξq

2h̄
σ3εi jF

i j . (17)

Considering only the first-order expansion in R, we ob-
tain a “Hamiltonian” H̃2

ξ = h̄2v2
F H̃2

F = Ĥ0 + ĤI such that
Ĥ0 = v2

F π2 is the square flat graphene Hamiltonian, which
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corresponds to the square of (9) and the perturbative term

ĤI ≈
(

v2
F

R

6
L2 + v2

F h̄2 R

12

)
1 + ξ

(
v2

F h̄
R

4
L + eh̄v2

F BN

)
σ3,

(18)

where L = εi jyi pj is an angular-momentum operator like in
two dimensions. It can be seen that the first term within the
second parentheses is a pseudo-Rashba effect, and the second
term is similar to a type of Zeeman effect. In the weak approx-
imation, we also have neglected terms such as RBN yiyi, and
RB2

N (yiyi )2 coming from the first and third term of Eq. (17).
Note that, for the valleys K (K′), the valley index must be

ξ = 1 (ξ = −1) in Eq. (18), which turns on a change in the
sign of the last two terms due to a change in the third term of
Eq. (17). Taken into account this observation, the eigenvalues
of H̃ξ are given by (see Appendix C 1)

En,m,τ,ξ ,± = ±h̄ωc

√
n + 1

2
+ η

1 + λm

2
+ λ

3

(
m2 + 1

2

)
,

(19)

where we defined the cyclotron frequency, ωc, using the
equation

h̄ωc ≡
√

2eh̄v2
F BN ,

the pseudomagnetic field,

Bs ≡ h̄|R|
4e

, (20)

and the ratio of the pseudo and real magnetic fields,

λ ≡ sgn(R)
Bs

BN
,

where n = 0, 1, 2, . . . is the radial quantum number. The
pseudo-spin coupling index η is defined by

η ≡ ξτ = ±1, (21)

which contains spatial and reciprocal information through the
valley index ξ and the pseudo-spin index τ = ±1, which
labels the eigenvalues of σ3.

The quantum number m gives the splitting of each LL ac-
cording to m = −mmax, . . . ,mmax. As follows from the work
by Ruiz et al. [39], mmax = �e(BN + Bs)S/2π h̄�. If l is the
angular-momentum quantum number, then m = l − n.

In Fig. 3(a), we show the pseudomagnetic field profile for
a Gaussian bump defined by the height function (A11) with
parameters z0 = 4 nm,� = 20 nm. We observe that the states
near the origin make the most significant contributions to the
energy change compared with flat graphene. Therefore, in
Fig. 3(b), we compare the LLs obtained from the TB model (4)
with those from the curved Dirac model [cf. Eq. (19)]. For
this case, we have considered the first |n| = 0, . . . , 7 levels,
and the degeneracy number is mmax = 11. This degeneration
is visible for energy E ≈ 0. It is important to note that the con-
tribution associated with the curvature is evident in the peaks
indicated by the arrows in Fig. 3(c). These peaks are observed
to be shifted compared with the peaks of flat graphene.

2. The strong-curvature regime

In the strong-curvature corrugation approach, a quadratic
shape of the local geometry is still maintained so that the
Hamiltonian operator (13), with an external magnetic field,
is reduced to

H̃2
F = δi j

(
πi

h̄
+ ξ

R

8
εil y

lσ3

)(
π j

h̄
+ ξ

R

8
ε jkykσ3

)

− R

6h̄2 εikεl j piykyl pj + R

12
+ ξ

e

h̄
BNσ3, (22)

where the second term can be simplified after using the com-
mutation relation [yl , pj] = ih̄δi j , that is,

εikεl j piykyl pj = −L2, (23)

with L = εi jyi pj a two-dimensional angular-momentum-like
operator. Clearly, H̃2

ξ can be written as

H̃2
ξ = v2

F

(
ĥ2
τR

0
0 ĥ2

−τR

)
, (24)

with

ĥ2
τR

= δi j�̂
(τR )
i �̂

(τR )
j + R

6

(
L̂2 + h̄2

2

)
+ τRsgn(R)eh̄BN,

(25)

where

�̂
(τR )
i = p̂i + e

2
B(τR )

T εliy
l . (26)

The total effective magnetic field is given by the sum of the ex-
ternal magnetic field BN and its pseudomagnetic counterpart
Bs,

B(τR )
T ≡ BN + τRBs, (27)

where we defined the factor τR ≡ η sgn(R) = ±1. Here re-
call η is the pseudo-spin coupling index [Eq. (21)], which is
the product of the pseudo-spin index τ and the valley index
ξ . Notice that such effective fields and the valley-dependent
Landau levels have been recently measured in graphene with
a nanoscale ripple under an external magnetic field [42].

Therefore, the eigenvalues of H̃ξ are given by (see Ap-
pendix C 2),

En,m,τ,ξ ,±

= ±h̄ωc,τR

[
nτR + 1

2
+ λτR

3

(
m2
τR

+ 1

2

)
+ η�τR

]1/2

,

(28)

where now we have two possible cyclotron frequencies de-
pending on the value of τR,

h̄ωc,τR ≡
√

2eh̄v2
F

∣∣B(τR )
T

∣∣, mτR = lτR − nτR . (29)

We also defined

λτR = sgn(R)
Bs∣∣B(τR )
T

∣∣ ,
�τR = BN

2
∣∣B(τR )

T

∣∣ , (30)

and mτR = −mmax,τR , . . . ,mmax,τR .
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(a) (b)

(c) (b)

FIG. 3. Collection of plots for the weak pseudomagnetic field case for a graphene sheet with dimensions Lx = Ly = 40 nm; numerical
comparison between the results obtained from the TB model and the Dirac model. (a) Pseudomagnetic field profile obtained from a Gaussian
deformation with parameters z0 = 4 nm and � = 20 nm. The most significant energy changes concerning flat graphene are produced by states
close to the origin where Bs ≈ 0.033 T. The color code of the curve indicates the field derivative, showing two separate regions as explained in
the text. (b) LDOS obtained from the LLs |n| = 0, . . . , 7 and mmax = 11 using the Dirac equation model in curved space with Bs,max ≈ 0.033 T
[see Eq. (19)], compared with the LDOS obtained from the TB model. Observe how the continuous model predicts almost all of the prominent
peaks for low energies. (c) LDOS obtained from the TB model for three representative cases, flat graphene under a very strong magnetic field
(BN = 30 T) (gray lines), weak-curvature regime under the same external magnetic field (red lines) and without the external magnetic field
(blue lines). The contribution associated with the curvature is visible in the peaks indicated by arrows, which are shifted with respect to the flat
graphene peaks. (d) Zoom near E = 0 showing the evolution of the LDOS as the inversion symmetry is broken by a gradual increase of the
external magnetic field. Notice how Landau levels with n = 0 arise as the temporal inversion is broken. In all cases, the plots are exclusively
presented for E > 0 as the LDOS is symmetric with respect to the zero energy.

As follows from the work of Ruiz et al. [39],

mmax,τR = e
∣∣B(τR )

T

∣∣S
2π h̄

. (31)

The definition of the pseudomagnetic field Bs is the same as
in Eq. (20). Note that as stated below Eq. (52), the occupation
number is inversely proportional to |B(τR )

T |S while mmax,τR is
proportional. Thus, by changing the curvature values R and/or
the area S, we have a different eigenvalue behavior.

Specifically, employing a Gaussian bump deformation
results in regions with curvatures of different signs. Con-
sequently, the eigenvalues of these distinct regions become
mixed. To effectively compare our Dirac model with the
TB model, it is advisable to focus on a section of the
material corresponding to a domain exhibiting the highest
curvature.

In Fig. 4, we consider a Gaussian deformation of the
graphene sheet with parameters z0 = 4 nm and � = 2 nm.

The condition for the biggest curvature is a region of radius
1 nm around the bump center. In Fig. 4(a), two spatial regions
are established for the pseudomagnetic field Bs as a function
of the radial distance r from the bump center. The region near
the origin exhibits Bs ≈ 330 T while the region near the edge
has Bs ≈ 60 T.

Once the biggest curvature region is identified, we proceed
to compare the pseudomagnetic model with the TB calcula-
tion. In Fig. 4(b), the red dots are the energies obtained by
using the TB model (4) in a graphene nanodisk of radius
1 nm. States with zero energy are attributed to edge states
due to the zigzag configuration of the boundary, as shown in
Fig. 4(c) and are not obtained from the Dirac model. States
obtained from the TB with energies E ≈ 0.1065 eV and E ≈
0.2760 eV correspond to the Dirac model LLs nτR=∓1 = 0
with Bs = 60.75 T (represented by horizontal black lines),
respectively [see Eq. (28)]. These states are localized near
the region edges, as shown in Figs. 4(d) and 4(e). Finally,
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(a)

(c) (d)

(e) (f)

(b)

FIG. 4. Collection of plots for the strong pseudomagnetic field case for a graphene sheet with dimensions Lx = Ly = 2 nm; numerical
comparison between the results obtained from the TB model and the Dirac model. (a) The pseudomagnetic field profile Bs is shown as
a function of radial distance r. (b) The red dots are the energy of the states for the graphene nanodisk deformed by a Gaussian bump with
parameters z0 = 4 nm and� = 2 nm obtained using the TB model under magnetic field BN = 30 T. Additionally, the horizontal lines represent
the eigenvalues obtained using the Dirac model Eq. (28). The dashed lines correspond to τ = −1 while the solid lines represent τ = 1.
Panels (c)–(f) show the graphene nanodisk corresponding to energy values of the LDOS E = 0 eV, E = 0.106537 eV, E = 0.27604 eV, and
E = 0.51985 eV, respectively.

states with E ≈ 0.5191 eV correspond to the LLs nτR=± = 0
with Bs = 329.10 T [gray lines, see Eq. (28)]. These states are
localized near the origin, as demonstrated in Fig. 4(f).

Unlike the real magnetic field, the pseudomagnetic field
has an opposite sign at each Dirac valley due to the time-
reversal symmetry. Consequently, in the presence of both
uniform real and pseudofields, it is expected that the LLs
will lose their valley degeneracy [43,44]. This is supported by
Eq. (28), where the pseudospin coupling index is given by η,
showing that for BN �= 0, different sequences of energies are
obtained. In the case of BN = 0, Eq. (28) indicates the restora-
tion of valley degeneracy, as expected. Interestingly, for the

case of flat graphene under a real magnetic field BN �= 0, the
field shifts the LL sequences on each valley in a different fash-
ion for each sublattice, i.e., zero-energy solutions on different
valleys have different pseudospin polarizations. However, the
shift of the squared energy is precisely given by the difference
between LL squared energies, resulting only in a relabeling
of the whole sequence, which turns out to be independent of
the valley. Another way to understand this fact is to observe
that in flat graphene under a real magnetic field, there is a
Zeeman effect produced by the electron orbital motion [94].
This results in the widely known and experimentally observed
zero mode LLs.
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Before leaving this section, we emphasize that the exis-
tence of LLs induces changes in electronic properties and
transport, leading to an electronic confinement effect, as has
been observed in previous works [69–71].

IV. THE DE HAAS–VAN ALPHEN EFFECT ON
FLAT GRAPHENE

Here, we review how the dHvA effect is obtained in flat
graphene at the low-temperature limit T → 0 K. In the first
section, we establish the techniques needed, especially to
compare them later with the curved situation. In the second
section, we calculate the free energy, magnetization, and mag-
netic susceptibility of the flat graphene.

A. The Helmholtz free energy for a relativistic gas

To establish the dHvA effect in flat and curved situations,
we compute the magnetization M. This is done by first obtain-
ing the Helmholtz free energy per unit area, F , which is given
by

F (μ, ρ) = �(μ,T ) + μρ, (32)

where μ refers to the chemical potential, ρ is the electron
concentration in the graphene sheet, and �(μ,T ) is the ther-
modynamic potential. We should be careful at this point
because the expression for �(μ,T ) needs to include consid-
erations of the relativistic invariance of the Dirac equation.
Indeed the adequate expression must read [22,94,98]

�(μ,T ) = −kBT
∫ ∞

−∞
dεD(ε) ln

[
2 cosh

(
ε − μ

2kBT

)]
, (33)

where D(ε) is the total density of states (DOS) of graphene at
finite temperature T , with kB being the Boltzmann constant.
It encompasses information related to impurity scattering,
electron-electron interactions, and electron-phonon interac-
tions. Due to these interactions, the LLs undergo broadening,
and the δ function must be substituted with a Lorentzian
function to account for the broadening induced by such
interactions. Then, the magnetization per unit area can be
calculated by using one of the following expressions, [99,100]

M = −
(
∂F
∂B

)
ρ,T

, M = −
(
∂�

∂B

)
μ,T

. (34)

In the first case, when ρ is constant, μ oscillates as a function
of B; while in the other case [22], ∂�(μ,T )/∂μ = −ρ.

Here, we discuss only the dHvA effect in the fixed electron-
density case ρ. Thus, we consider a system of N electrons
within a sample area S moving in the magnetic induction field
B. Let the system remain at T = 0 K, and accordingly, the full
occupation of LLs obeys [3,5,13]

g(B)
n f∑

n=0

fn = g(B)(n f + 1) = ρ, (35)

where n f is the highest occupied LL, fn = {1 + exp[β(εn −
μ)]}−1 is the Fermi-Dirac distribution, g(B) = gsgvB/�0 is
the degeneracy of the LLs, gs(gv ) = 2 is the spin (valley)

degeneracy. We use this relation to obtain

g(B) = 2eB

h̄π
. (36)

In the following, we provide an approximation to the ther-
modynamic potential �(μ,T ) in the limit when T → 0 K.
Let us consider the integration domain in Eq. (33) as the union
of the intervals I− = (−∞, μ) and I+ = (μ,∞). For the sake
of simplicity, μ > 0; thus, in the zero-temperature limit, one
has 2 cosh( ε−μ2kBT ) � μ−ε

2kBT in I− whereas 2 cosh( ε−μ2kBT ) � ε−μ
2kBT

in I+. Therefore, one has the following expression for the
thermodynamical potential:

�(μ,T = 0 K) = 1

2

∫ μ

−∞
dεD0(ε)(ε − μ)

− 1

2

∫ ∞

μ

dεD0(ε)(ε − μ), (37)

where D0(ε) is the DOS in the absence of scattering. We
perform a further separation of the integration domain as
(−∞, 0) ∪ (0, μ) in the first integral of last Eq. (37), and we
add and subtract the integral 1

2

∫ μ
0 dεD0(ε)(ε − μ). Thus

�(μ,T = 0 K) = 1

2

∫ 0

−∞
dεD0(ε)(ε − μ)

− 1

2

∫ ∞

0
dεD0(ε)(ε − μ)

+
∫ μ

0
dD0(ε)(ε − μ). (38)

Now we take advantage of the evenness of the DOS,
D0(−ε) = D0(ε) to make a change of variable ε → −ε. Thus
the first integral turns out as − 1

2

∫∞
0 dεD0(ε)(ε + μ), imply-

ing the cancellation of the μ term from the first and second
integrals. This procedure can also be implemented for the
μ < 0 case. The result is given by

�(μ,T = 0 K) = −
∫ ∞

0
dεD0(ε)ε

+
∫ |μ|

0+
dεD0(ε)(ε − |μ|). (39)

This result is consistent with the treatment performed in other
works [7,22]. As the DOS is given by

D0(ε) = g(B)
∑
n∈Z

δ(ε − εn), (40)

the thermodynamical potential can be written as

�(μ,T = 0 K) = −
∞∑

n=0

g(B)εn +
n f∑

n=0

g(B)(εn − |μ|). (41)

This equality follows because, for a given B at zero tempera-
ture, the chemical potential is a constant equal to the highest
LL energy εn f . Now, from Eqs. (10), (32), (35), and (39), we
obtain that F is simply the total energy of the system per unit
area up to the highest LL

F =
n f∑

n=−∞
g(B)εn. (42)
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B. Revisiting the de Haas–van Alphen effect
on flat graphene at T = 0 K

According to the preceding section for a given B, the chem-
ical potential is equal to the highest LL energy εn f , thus for
the flat graphene one has μ = εn f = (2eh̄v2

F Bn f )1/2, and the
Helmholtz free energy per unit area F , due to a magnetic field,
is, from Eqs. (35) and (36),

F =
� h̄πρ

2eB −1�∑
n=−∞

(
2eB

h̄π

)(
sgn(n)

√
2eh̄v2

F B|n|), (43)

with �·� denotes the floor function.
We define B0 ≡ h̄πρ/2e, h̄ωc0 ≡ (2eh̄v2

F B0)1/2, h̄ωc ≡
(2eh̄v2

F B)1/2, and � = B/B0, where B0 is the value of B above
which n f = 0, i.e., only the valence levels are occupied, and
ωc (ωc0) is the frequency of the cyclotron associated with the
induction magnetic field B (B0). From Eq. (43) we obtain a
simplified free energy,

F = ρ h̄ωc0�
3/2

� 1
�

−1�∑
n=−∞

sgn(n)
√

|n|. (44)

The previous series can be expressed using the Riemann
zeta function, ζR, and the Hurwitz zeta function, ζH . Hence,
according to the procedure detailed in Appendix D,

F
h̄ωc0ρ

= F0(�, 0, 1), (45)

where the function F0(λ,�, f ) is given by Eq. (D3) of Ap-
pendix D. In Fig. 5(a), we present a plot of F calculated
from Eq. (45). We obtain the magnetization per unit area
using the above Eq. (45), M ≡ −(∂F/∂B)|ρ,T , thus following
discussion in Appendix D we obtain for the magnetization

B0

h̄ωc0ρ
M = M0(�, 0, 1), (46)

where the function M0(λ,�, f ) is given in Appendix D given
by Eq. (D5). Figure 5(b) presents a plot of Eq. (46) showing
the typical oscillations of the magnetization M as a function
of 1/B. Increased temperature, impurity scattering, electron-
electron interactions, and electron-phonon interactions cause
the Landau Levels (LLs) to broaden. Consequently, the mag-
netization oscillation becomes less sharp [7,22].

Let us now symbolize B = μpH and B0 = μpH0, μp as
being the magnetic permeability of free space, H stands for
the magnetic-field intensity. Thus, we obtain that the magnetic
susceptibility per unit area, χ ≡ (∂M/∂H ), is

B2
0

h̄ωc0ρμp
χ = S0(�, 0, 1), (47)

where the function S0(λ,�, f ) is given in Appendix D by
Eq. (D6). As seen in Fig. 5(c), the dependence ≈√

B of the
magnetization implies that the susceptibility χ ∝ B−1/2 di-
verges at zero field, a result similar to that obtained by Sergei
G. Sharapov and his collaborators two decades ago [22].
Experimentally, measuring such a striking result proves chal-
lenging due to the weak signal in monolayers and the effect of
temperature and disorder [75]. The experimental magnetiza-
tion was found to be aligned with the predicted dependence

(a)

(b)

(c)

FIG. 5. Dimensionless plots of (a) the Helmholtz free energy, ob-
tained using Eq. (45), (b) the magnetization, obtained from Eq. (46),
and (c) the magnetic susceptibility, obtained from Eq. (47), as a func-
tion of the dimensionless parameter �−1 = B0/B. These plots reveal
the periodicity in 1/B, as established by Onsager [26], demonstrat-
ing the dHvA effect. Additionally, they illustrate the susceptibility’s
divergence as �−1 → ∞, corresponding to B → 0 [22].

for the Dirac spectrum, but the doping level remained
elusive [101]. In another study, isolating the residual contri-
bution of paramagnetic spins proved unattainable [24,102].
More recently, Vallejo Bustamante et al. managed to cap-
ture signatures of such susceptibility divergence by placing
two giant magnetoresistance detectors below a sample of
graphene sandwiched by layers of hexagonal boron ni-
tride [75]. Note the strong diamagnetic character of graphene
in Fig. 5(c) at low temperatures, as confirmed in an experiment
with graphene nanocrystals obtained by sonic exfoliation
[101].

V. DE HAAS–VAN ALPHEN EFFECT PRODUCED BY A
REAL MAGNETIC FIELD IN CURVED GRAPHENE

In this section, we discuss the dHvA effect in strongly
curved graphene with a fixed electron density ρ. To do so,
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FIG. 6. Plot of the gap-like term �η(R) [see Eq. (49)]. The blue
and red solid (dashed) lines correspond to R > 0, η = 1 (R > 0, η =
−1) and R < 0, η = 1 (R < 0, η = −1), respectively. Asymptoti-
cally, when Bs/BN → ∞ then �η(R) tends to �R. Meanwhile, in
the limit Bs/BN → 0 then �η(R) → 1

2 (1 + η) analogous to a pseudo
Zeeman term in flat graphene.

as mentioned earlier in Sec. IV A, it is necessary to first
compute the Helmholtz free energy by summing the energy
for each filled level. For this purpose, it is possible to employ
a generalization of the Euler-Maclaurin formula to perform
the double sums. However, it is advisable to make certain
considerations that allow us to simplify the calculation. In
particular, motivated by experimental findings in freestand-
ing graphene, which reports values for the pseudomagnetic
field ranging from a few to tens of Tesla [103–105], we
consider the case of strongly curved graphene under a real
magnetic field and the limit |B(τR )

T |S < 2π h̄/e. Therefore,
mmax = �eB(τR )

T S/2π h̄�= 0 (see the corresponding effects on
the LDOS in Fig. 4 when Bs � BN ). Note that in recent exper-
iments employing trilayer graphene encapsulated with hBN it
has been possible to obtain pseudomagnetic fields on the order
of milliteslas [55], i.e., within the weak-curvature regime.
However, this type of system extends beyond the scope of
what we have assumed in this work and will be explored in
future studies due to its relevance.

Thus, in the strongly curved graphene limit and from
Eq. (28), the eigenvalues can be rewritten only in terms of the
principal quantum number, n, the pseudo-spin coupling index
η and the curvature R, as

En,η,±(R) = ±h̄ωc,τR

√
n +�η(R), n � nη0, (48)

where the cyclotron frequency is obtained from h̄ωc,τR =
(2eh̄v2

F |B(τR )
T |)1/2, and the gap-like term, �η(R), is given by

�η(R) ≡ 1

2
+ sgn(R)

6

(
Bs + 3sgn(R)ηBN

|BN + sgn(R)ηBs|
)
. (49)

From the energy eigenvalues (48), the lowest value of n is
nη0 ≡ �−�η(R)�, such that the LLs corresponding to n < nη0
are not longer eigenstates as the pseudomagnetic field breaks
the inversion symmetry and opens a gap. In other words,
the primary effect of the curvature is to shift the Landau
Level (LL) sequence and induce a gap at the zero level
when �η(R) � 0. In Fig. 6, we present the size of this gap

term as a function of Bs/BN for different signs of the curva-
ture and pseudo-spin coupling index η. Asymptotically, when
Bs/BN → ∞, �η(R) tends to �R, with

�R ≡ 1
2 + 1

6 sgn(R), (50)

recovering the previous result [39]. Meanwhile, in the limit
Bs/BN → 0, then �η(R) → 1

2 (1 + η), analogous to a pseudo-
Zeeman term, recovering the result for the flat graphene. It is
noteworthy that �η(R) is not well defined when Bs/BN = 1
and τR = −1 because there is a resonance effect between
the pseudo and external magnetic fields. Also, �η(R > 0)
changes sign when Bs/BN < 3/2.

To calculate the free energy, we consider a system
containing N electrons within a sample of area S in the low-
temperature approximation, T ≈ 0 K. This approximation is
valid because, from Eq. (29), the characteristic temperature TR

associated with the cyclotron frequency is

TR = h̄ωc,τR/kB ≈ 103 K, (51)

for a field of B(τR )
T ≈ 3 × 102 T [39,49]. Beyond this tempera-

ture, the approximation T → 0 K is no longer applicable. The
full occupation of LLs obeys

ρ =
∑
η=±1

nη, f∑
n=nη0

gη(BN ,Bs) fn

=
∑
η=±1

gη(BN ,Bs)
(
nη, f + 1 − nη0

)
, (52)

where fn is the Fermi-Dirac distribution, which in the low-
temperature regime is fn ≈ 1, nη, f is the highest LL occupied
per pseudo-spin coupling index, and the degeneracy of the
LLs is given by [39]

gη(BN ,Bs) = 2gs

∣∣B(τR )
T

∣∣/�0 = 2e|BN + sgn(R)ηBs|
h̄π

, (53)

where gs is the spin degeneracy and �0 is the magnetic flux
quantum.

The Helmholtz free energy per unit area, F , opposite to the
flat case, can be expressed as the sum of two parts,

F = Fe + W, (54)

where Fe is the electronic free-energy part obtained using
the electronic spectra (48), whereas W is the elastic energy
stored due to the geometrical deformation. On the one hand,
W per unit area is the mechanical work associated with the
deformation part, and it can be expressed as [106,107]

W = σi jei j, (55)

i.e., it is the contraction between the deformation tensor,
ei j and the stress tensor, σi j . On the other hand, the elec-
tronic part can be expressed as the sum of the correspondent
electronic energy per pseudo-spin coupling index, Fη

e . Thus,
from Eqs. (48) and (52), the electronic free energy is
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Fe ≡ ∑
η=±1 Fη

e ; that is,

Fe =
∑
η=±1

∞∑
n=nη0

gη(BN ,Bs)En,η,−(R)

+
∑
η=±1

nη, f∑
n=nη0

gη(BN ,Bs)En,η,+(R) (56)

=
∑
η=±1

h̄ωc,τR gη(BN ,Bs)
nη, f−nη0∑
n=−∞

sgn(n)
√

|n|+ nη0 +�η(R),

(57)

with the highest LL occupied nη, f calculated using Eq. (52)
and the highest LL condition Ex,+,+(R) = Ey,−,+(R) using
Eq. (48), where x ≡ n+, f and y ≡ n−, f . Indeed, after a
straightforward calculation using this procedure, the highest
LLs are obtained by

nη, f =
⌊

1

�̃η

− fη(R)

⌋
, (58)

where �̃η ≡ |BN + sgn(R)ηBs|/B̃0, being B̃0 ≡ h̄πρ/4e, and

fη(R) ≡ 1

2
+ B> + ηBN

2[B> + sgn(R)ηB<]

−
∑

q=±1 nq
0[B> + q sgn(R)B<]

2[B> + sgn(R)ηB<]
, (59)

where B< (B>) is the smaller (larger) of Bs and BN . Thus, we
rewrite the electronic free energy in a very similar form to the
flat case as

Fe = ρ

2
h̄ω̃c0

∑
η=±1

�̃
3/2
η

nη, f −nη0∑
n=−∞

sgn(n)
√

|n| +�η(R) + nη0,

(60)

where h̄ω̃c0 ≡ (2eh̄v2
F B̃0)1/2. Hence, after using the procedure

detailed in Appendix D, the electronic free energy is

Fe

h̄ω̃c0ρ
= 1

2

∑
η=±1

F0(�̃η,�η(R), fη(R)), (61)

where the function F0(λ,�, f ) is given in Appendix D.
In Fig. 7(a), we present the behavior of the free energy (61)

as a function of the inverse real magnetic induction field with
respect to the pseudomagnetic field. First, in Fig. 7(a), we
observe oscillations that can be traced back to the interference
between valleys. Second, there are critical values of Bs/BN at
which the free energy has crossovers between negative- and
positive-curvature cases. However, for Bs ∼ BN , the R > 0
case always has lower free energy, while for Bs � BN , the
reverse case is seen, i.e., the case R < 0 has lower free energy.
Thus, Eq. (61) is consistent with known examples of graphitic
surfaces with positive curvature as fullerenes [108,109] or
those with negative curvature like Schwarzites, proposed
many years ago by Mackay and Terrones [108,110–112] and
other authors [113,114].

(a)

(b)

(c)

FIG. 7. Electronic part of the Helmholtz free energy [Eq. (61)],
magnetization [Eq. (67)], and magnetic susceptibility [Eq. (69)] as
a function of Bs/BN for two different curvatures, R > 0 (blue lines)
and R < 0 (red lines). Taking into account ρ ≈ 2 × 1018 m−2 [14],
Bs ≈ 300 T [49], and from Eq. B̃0 = h̄πρ/4e ≈ 1033.47 T, the mag-
netic susceptibility reaches a nearly constant value in weak magnetic
fields BN � Bs due to the inclusion of the pseudomagnetic field.
This prevents the theoretical issue of the diamagnetic divergence
in flat graphene at low temperatures. On the other hand, for strong
magnetic fields such that Bs/BN → 1, a resonance effect appears as
the cyclotron frequency becomes ωτR = 0 in one valley and ωτR =
2|BN |1/2 in the other. This effect changes the magnetization from
being negative to positive. However, the magnetic susceptibility is
negative.

To obtain the magnetization and magnetic susceptibility,
we use the equations

M = −
(
∂F
∂BN

)
μ,T,ei j

= −
(
∂Fe

∂BN

)
μ,ei j

, χ =
(
∂M

∂H

)
μ,ei j

,

(62)

in particular, maintaining the deformation tensor ei j con-
stant. The resulting magnetization per unit area, M, depends
whether Bs is bigger or smaller than BN ; i.e.,
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(a) in the case Bs > BN ,

B̃0

h̄ω̃c0ρ
M = sgn(R)

2

∑
η=±1

η

[
M0(�̃η,�η(R), fη(R))

+ sgn(R)Bs

B̃0
M1(�̃η,�η(R), fη(R))

]
, (63)

(b) in the case BN > Bs,

B̃0

h̄ω̃c0ρ
M = 1

2

∑
η=±1

[
M0(�̃η,�η(R), fη(R))

+ sgn(R)Bs

B̃0
M1(�̃η,�η(R), fη(R))

]
, (64)

where the functions M0(λ,�, n, f ) and M1(λ,�, n) are
given in Appendix D. In Fig. 7(b), we present the behavior
of the magnetization as a function of the inverse magnetic
induction field.

In Fig. 7(c), we present the magnetic susceptibility, given
by

B̃0
2

h̄ω̃c0ρμp
χ = 1

2

∑
η=±1

[
S0(�̃η,�η(R), fη(R))

+ S1

(
sgn(R)Bs

B̃0
, �̃η,�η(R), fη(R)

)]
, (65)

where the functions S0(λ,�, f ) and S1(b1, λ,�, f ) are
given in Appendix D.

As observed in Figs. 7(b) and 7(c), the dependence of the
magnetization on ∼√

Bs + sgn(R)ηBN implies that the sus-
ceptibility χ ∼ [Bs + sgn(R)ηBN ]−1/2 avoids the divergence
problem that exists for a strictly flat sheet of graphene at
zero value external magnetic field. It is noteworthy that dia-
magnetism in graphene decreases as the curvature increases.
Therefore, corrugations appear to be essential for under-
standing experimentally measurable thermodynamic proper-
ties. In the literature, there are currently limited available
results.

Interestingly, Fig. 7 shows a resonance effect for very
strong magnetic fields such that Bs/BN → 1. To under-
stand this, we observe that the susceptibility χ ∼ [Bs +
sgn(R)ηBN ]−1/2 displays a singularity if sgn(R)η = −1.
Therein, the magnetization changes from negative to posi-
tive values. The explanation of such phenomena is that the
cyclotron frequency ωτR ∼ |BN + τRBs|1/2 becomes zero for
one valley, implying the LLs collapse to zero modes. In the
other valley, ωτR ∼ |2BN |1/2, implying that only one valley
contributes to the free energy.

VI. EMERGENCE OF A PSEUDO DE HAAS–VAN ALPHEN
EFFECT PRODUCED BY CURVATURE WITHOUT REAL

MAGNETIC FIELDS

In this section, we demonstrate how a pseudo dHvA ef-
fect arises as a result of the mechanical properties of curved
graphene. For this purpose, note that the treatment performed
in Sec. V can be applied with the pseudomagnetic field and de-
fine the quantities Ms ≡ −(∂F/∂Bs)μ and χs ≡ (∂Ms/∂Hs)μ

as the pseudomagnetization and pseudomagnetic susceptibil-
ity per unit area [2,12], respectively. Here, Bs = μpHs, where
Hs is a pseudomagnetic-field intensity.

In the case of curved graphene under a magnetic field BN ,
the pseudomagnetization per unit area, Ms is given by the sum
of an electronic pseudomagnetization part, Mse, and a pseu-
domagnetization part of the deformation, Msd . The resulting
pseudomagnetization per unit area, M, depends on whether Bs

is bigger or smaller than BN , i.e.,
(a) in the case Bs > BN ,

B̃0

h̄ω̃c0ρ
Mse = 1

2

∑
η=±1

[
M0(�̃η,�η(R), fη(R))

− ηBN

B̃0
M1(�̃η,�η(R), fη(R))

]
(66)

(b) in the case BN > Bs,

B̃0

h̄ω̃c0ρ
Mse =

∑
η=±1

sgn(R)η

2

[
M0(�̃η,�η(R), fη(R))

− ηBN

B̃0
M1(�̃η,�η(R), fη(R))

]
(67)

[see Eq. (D5)]. The deformation pseudomagnetization part
Msd is not null since the stress tensor and deformation tensor
depend on the pseudomagnetic field, thus it is expressed as

Msd =
(
∂W
∂Bs

)
= σi j

(
∂ei j

∂Bs

)
+ ei j

(
∂σi j

∂Bs

)
. (68)

Similarly, the pseudosusceptibility χs will be the sum of a
part due to electronics, χse, and a part due to the deformation,
χsd ,

B̃0
2

h̄ω̃c0ρμp
χse = 1

2

∑
η=±1

[
S0(�̃η,�η(R), fη(R))

+ S1

(
−ηBN

B̃0
, �̃η,�η(R), fη(R)

)]
(69)

[see Eq. (D6)], and χsd is given by

χsd = 2

(
∂σi j

∂Bs

)(
∂ei j

∂Bs

)
+ σi j

(
∂2ei j

∂B2
s

)
+ ei j

(
∂2σi j

∂B2
s

)

= 2Fi

(
∂Bs

∂y j

)−1(
∂ei j

∂Bs

)
+ σi j

(
∂2ei j

∂B2
s

)
+ ei j

(
∂2σi j

∂B2
s

)
,

(70)

where Fj is the force density acting on the material in the
direction j. In the previous expression, we used the fact
that [106,107]

Fi = ∂σi j/∂y j . (71)

As seen in Fig. 8, we recover the divergence case when
BN = 0 and Bs = 0 (flat situation). However, note that the
pseudomagnetization Mse and pseudosusceptibility χse are re-
lated to mechanical observables and arise from the electronic

035421-13



ABDIEL DE JESÚS ESPINOSA-CHAMPO et al. PHYSICAL REVIEW B 110, 035421 (2024)

(a)

(b)

(c)

FIG. 8. Electronic part of (a) the Helmholtz free energy
[Eq. (61)], (b) the pseudomagnetization [Eq. (67)], and (c) the pseu-
domagnetic susceptibility [Eq. (69)] without a magnetic field, i.e.,
BN = 0 T, as a function of �̃−1 = B̃0/Bs, for two different curvatures
R > 0 (blue lines) and R < 0 (red lines). As mentioned in Sec. VI,
the pseudomagnetization is associated with a mechanical stress ten-
sor, and the pseudosusceptibility with internal reaction forces that
oppose deformation, thus the discontinuities of these forces with a
period of 1/Bs give rise to a pseudo de Haas–van Alphen effect.

part, and as shown in Eq. (68), the pseudomagnetization of
the deformation part is related to the stress tensor. From
Eq. (69), the pseudosusceptibility is described by oscillating
internal forces acting directly on the graphene sheet, result-
ing in a mechanically induced pseudo de Haas–van Alphen
effect (pseudo dHvA). Therefore, electronic forces act on the
graphene sheet opposing flatness when BN = 0 and Bs → 0.
This means that spontaneous corrugations will appear to re-
duce the free energy. This is related to discussions in previous
works on how graphene (without substrate) achieves mechan-
ical equilibrium by corrugation [115–117].

As a further result, in the strong-curvature regime,
the electronic forces opposing deformation are smaller in
negative-curvature surfaces. This result is consistent with the
numerical prediction by Terrones et al. concerning the stabil-
ity of negative curved graphitic structures [111].

VII. PHYSICAL DIFFERENCES BETWEEN
MAGNETIZATION AND PSEUDOMAGNETIZATION

In this section, we briefly discuss the physical difference
between real magnetization and pseudomagnetization. To be-
gin with, it is noteworthy to mention that magnetization
represents the ratio of a change of free energy to a change
in a real magnetic field, whereas pseudomagnetization gives
the ratio of the change of free energy to a change in a pseudo-
magnetic field. In other words, pseudomagnetization is related
to how the free energy is modified when the curvature of
the graphene sheet is changed. Indeed, from the quantitative
viewpoint, let us consider the case Bs > BN . In this case, the
magnetization per unit area can be obtained from Eq. (63),
which can be rewritten exactly as

M = sgn(R)[μ̃+(BN ,Bs) − μ̃−(BN ,Bs)], (72)

where we have defined μ̃η(BN ,Bs) as a magnetic-like moment
given by

μ̃η(BN ,Bs) = μ̃
(0)
η

(BN ,Bs) + sgn(R)Bs

B̃0
μ̃

(1)
η

(BN ,Bs), (73)

where

μ̃
(0)
η

(BN ,Bs) = h̄ω̃c0ρ

2B̃0
M0(�̃η,�η(R), fη(R)), (74)

μ̃
(1)
η

(BN ,Bs) = h̄ω̃c0ρ

2B̃0
M1(�̃η,�η(R), fη(R)). (75)

Therefore, the magnetization M is given by an imbalance
between the charge carriers with different η. In contrast, using
Eq. (66), the pseudomagnetization per area unit can be written
exactly as

Mse = ν̃+(BN ,Bs) + ν̃−(BN ,Bs), (76)

where ν̃η(BN ,Bs) as another magnetic-like moment given by

ν̃η(BN ,Bs) = μ̃
(0)
η

(BN ,Bs) − η
BN

B̃0
μ̃

(1)
η

(BN ,Bs). (77)

Therefore, the pseudomagnetization Mse is given by the sum
of the magnetic like-moments ν̃η(BN ,Bs) of charge carriers
with different η.

Next, we look at the difference between M and Mse in the
approximation Bs � BN . At first order in BN/Bs, the argu-
ments of M0 and M1 are

�̃η ≈ Bs

B̃0

(
1 + sgn(R)η

BN

Bs

)
, (78)

�η(R) ≈ �R + 1

3
η

BN

Bs
, (79)

fη(R) ≈ 1 + 1

2
[1 − sgn(R)]η

BN

Bs
, (80)

implying that in the limit when BN → 0 the time-reversal
symmetry is restored, and the LLs are degenerate in
pseudospin coupling index η, since η appears as a coef-
ficient in the term BN/Bs. In addition, in this limit one
has μ̃(k)

+ (BN ,Bs) = μ̃
(k)
− (BN ,Bs), for k = 0, 1, μ̃+(BN ,Bs) =

μ̃−(BN ,Bs), and ν̃+(BN ,Bs) = ν̃−(BN ,Bs), then the real mag-
netization M is zero, as expected, whereas the pseudomagne-
tization is different than zero. Indeed, M0

se ≡ limBN →0 Mse =
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2 limBN →0 μ̃
(0)
+ (BN ,Bs), that is

M0
se = h̄ω̃c0ρ

2B̃0
M0

(
Bs

B̃0
,�R, 1

)
. (81)

From this equation, we observe that the pseudomagnetization
emerges as a consequence of the corrugation of the sheet of
graphene; in particular, it represents the variation of mechan-
ical energy used by redistributing the charge carriers with
pseudospin η = ±1. Note that the behavior of the pseudomag-
netization versus B̃0/Bs, (81), is shown in Fig. 8(b).

Furthermore, if one still considers a nonzero small value of
the real magnetic field BN , one can easily show that

Mse ≈ M0
se +

[(
∂M

∂Bs

)∣∣∣∣
BN =0

]
BN , (82)

where the second term indicates that real magnetic fields
contribute to the resulting pseudomagnetization, affecting the
form in which the graphene can be deformed due to the charge
redistribution by the magnetization.

VIII. CONCLUDING REMARKS

In this paper, we have investigated the magnetization and
magnetic susceptibility of strongly curved graphene with
and without magnetic fields, employing a continuous ef-
fective Dirac equation and a complementary tight-binding
study. The results reveal that the magnetization and mag-
netic susceptibility exhibit discontinuities, following a period
of 1/B, indicative of the de Haas–van Alphen effect, with
a dependence on the sign of the curvature. A nondivergent
diamagnetic behavior is observable for low-intensity magnetic
fields for both positive and negative-curvature cases (R < 0
and R > 0).

Furthermore, a mechanical effect is also introduced due
to the electronic contribution of graphene that gives rise to a
pseudo dHvA effect; this effect is related to oscillating (elec-
tronic) forces that oppose the deformations. These forces are
divergent in flat graphene, indicating that graphene (without
substrate) achieves mechanical equilibrium by corrugations
as suggested in other works [115–117]. This implies that in
free-standing graphene, the local susceptibility does not di-
verge. Nevertheless, when strain is applied, or encapsulation is
employed, traces of such a divergent susceptibility become ex-
perimentally observable as corrugations are eliminated [75].
In the strong-curvature regime, the electronic forces opposing
deformation are smaller for negatively curved surfaces.

It is worth noting that our model captures the essential
physics for low-energy states in relation to a tight-binding
model. This is why, in very recent works [118], efforts have
been made to construct low-energy operators containing pow-
ers of the Dirac operator based on TB models. This approach
aims to incorporate accurate information about high-energy
states and, as established in our previous works [37,51] to
account for the shift of Dirac cones resulting from strain and
the effect of opposite curvatures. Regarding this last point, if
we assume the validity of our model as a first approximation,
interference and resonance-type effects should be observed.
This is because the sign of curvature appears coupled in the
same way as valley indices.

Finally, we conclude by suggesting that the proposed de
Haas–van Alphen effect can be measured in experiments
by combining an external magnetic field with induced cur-
vature in a controlled manner. Several strategies exist to
do this [37,51]. One possibility is to use graphene with a
nanoscale ripple under an external magnetic field, similar to
the device that experimentally measures the valley-dependent
Landau levels [42]. Perhaps the most similar experiment to
produce the pseudomagnetic field proposed here is the appli-
cation of a local indentation by an atomic force microscope.
Applying a controlled force at the tip of the microscope allows
us to obtain a field akin to the one seen in Fig. 1. Another
option is to use nanopillars on a suitable dielectric substrate.
Therefore, we predict that the applied force needed to keep
a specific curvature fixed will show oscillations if the mag-
netic field changes. All these results and proposals underscore
the burgeoning field of curvatronics as an area of abundant
opportunities.
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APPENDIX A: GEOMETRIC PROPERTIES OF A CURVED
SURFACE WITH POLAR SYMMETRY

This Appendix considers a surface with a smooth de-
formation that preserves polar symmetry embedded in a
three-dimensional space described in cylindrical coordinates.
The surface is defined by a function z(r). The differential line
element for this surface is

dl2 = dr2 + r2dθ2 + dz2 = [1 + α f (r)]dr2 + r2dθ2,

(A1)

where

dz2 =
(
∂z(r)

∂r

)2

dr2 ≡ α f (r)dr2. (A2)

Therefore, the spatial part of the metric tensor is

gi j =
(

1 + α f (r) 0
0 r2

)
, (A3)

the symbol �k
i j gives the affine connection for the above met-

ric, where the nonzero and nonequivalent terms are

�r
rr = α∂r f (r)

2[1 + α f (r)]
, �r

θθ = − r

1 + α f (r)
, �θ

rθ = 1

r
.

(A4)
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On the other hand, since dreibeins satisfy gαβ = eAα eBβ ηAB,
we make the following choice of eAα :

e1
r = [1 + α f (r)]1/2 cos (θ ), e1

θ = −r sin (θ ),

e2
r = [1 + α f (r)]1/2 sin (θ ), e2

θ = r cos (θ ). (A5)

Due to this, the nonzero spin connection coefficients ωAB
μ ,

given by ωAB
μ = eAν (∂ν + �ν

μλ)eBλ, are

ω12
θ = 1 − [1 + α f (r)]−1/2, (A6)

and the spin connection is

�r = 0, �θ = 1 − [1 + α f (r)]−1/2

2
γ 1γ 2. (A7)

Finally, from the definition of the covariant Riemann tensor,

Rμ
ανβ = ∂ν�

μ
αβ − ∂β�

μ
αν + �σ

αβ�
μ
σν − �σ

αν�
μ
σβ, (A8)

we obtain the Ricci’s curvature tensor Rσμ = Rλ
σμλ,

Rrr = α∂r f (r)

2r[1 + α f (r)]
, Rθθ = αr∂r f (r)

2[1 + α f (r)]2
. (A9)

Therefore, the scalar curvature R = gσμRσμ is

R = α∂r f (r)

r[1 + α f (r)]2
. (A10)

In the case of a specific example given by a Gaussian
deformation defined by the function

z(r) = z0e−r2/(2� 2 ), (A11)

where z0 is the maximum height of the bump and � is the
standard deviation around the origin of coordinates. Thus, we
obtain that α f (r) and the scalar curvature R are

α f (r) = (z0/�
2)2r2 exp(−r2/� 2),

R = 2(z0/�
2)2[1 − (r2/� 2)]

[1 + (z0/� 2)2r2 exp(−r2/� 2)]2
e−r2/� 2

, (A12)

in this case α ≡ (z0/�
2)2 controls the type of regime we

are in, so α � 1 and α � 1 indicate the weak- and strong-
curvature regimes, respectively.

APPENDIX B: THE SCHRÖDINGER-LICHNEROWICZ
FORMULA

This section will prove the Schrödinger-Lichnerowicz for-
mula. The starting point is the Euclidean Dirac operator
/Dξ = γ j

ξ
(x)∇ξ

j where ∇ξ
j := (∇ξ

j − iqA j/h̄) and ∇ξ
j is the

covariant derivative acting on spinors. Now, let us square the
operator /Dξ ,

/D2
ξ = [

1
2

{
γ i
ξ
, γ j

ξ

}+ 1
2

[
γ i
ξ
, γ j

ξ

]]∇ξ
i ∇ξ

j . (B1)

Now, we use the Clifford algebra {γ i
ξ
, γ j

ξ
} = 2gi j and the

antisymmetric property of the commutator of γ ′s to obtain

/D2
ξ = gi j∇ξ

i ∇ξ
j + 1

2γ
iγ j
[∇ξ

i ,∇ξ
j

]
. (B2)

Next, we apply this operator on a spinor ψ and use the explicit
expression of the covariant derivative ∇ξ

j := (∇ξ
j − iqA j/h̄)

just in the second term. Then, one has the second term

1

2
γ i
ξ
γ j
ξ

[∇ξ
i ,∇ξ

j

] = 1

2
γ i
ξ
γ j
ξ

{[∇ξ
i ,∇ξ

j

]− i
q

h̄

[∇ξ
i ,Aj

]
− i

q

h̄

[
Ai,∇ξ

j

]− q2

h̄2 [Ai,Aj]

}
. (B3)

The last term is zero since the gauge field Ai is
Abelian. The terms in the middle can be simplified as
[∇ξ

i ,Aj]ψ = (∂iA j )ψ . Thus, the last equation can be written
as

1

2
γ i
ξ
γ j
ξ

[∇ξ
i ,∇ξ

j

] = 1

2
γ i
ξ
γ j
ξ

{[∇ξ
i ,∇ξ

j

]− i
q

h̄
(∂iA j − ∂ jAi )

}
.

(B4)

Let us consider γ i
ξ

= ei
aγ

a
ξ , Aa = ei

aAi, and ∇ξ
a = ei

a∂i the
covariant derivative acting on vector fields. Therefore, this last
expression is

1

2
γ i
ξ
γ j
ξ

[∇ξ
i ,∇ξ

j

] = 1

2
γ i
ξ
γ j
ξ

[∇ξ
i ,∇ξ

j

]− iq

2h̄
γ a
ξ γ

b
ξ Fab, (B5)

where Fab = ∇ξ
a Ab − ∇ξ

b Aa is the covariant magnetic strength
tensor. The last term in the equation involves the Dirac ma-
trices γ ′s (without the underline). Now, we use the following
identities: [∇ξ

i ,∇ξ
j

]
ψ = 1

4 Ri jklγ
k
ξ
γ l
ξ
ψ, (B6)

γ i
ξ
γ j
ξ
γ k
ξ
γ l
ξ
Ri jkl = −2R, (B7)

where Ri jkl is the Riemann tensor and R is the Ricci scalar
curvature. The above identities can be proven using the SO(2)
algebra

1
4 [φab, φcd ] = δacφdb−gadφcb − δbcφda + δbdφca, (B8)

where φab is a second-order tensor in SO(2). Also, it is impor-
tant to use the following expression of the Riemann tensor in
terms of the 2-form ωa

j b
,

Ri j
ab = ∂iω

ab
j − ∂ jω

ab
i + ωi

a
eω j

eb − ω j
a

eωi
eb. (B9)

Using these identities, it is not difficult to prove that

/D2
ξ = gi j∇ξ

i ∇ξ
j − 1

4
R − iq

4h̄

[
γ a
ξ , γ

b
ξ

]
Fab. (B10)

Using the explicit representation of the γ ′s matrices γ 1
ξ γ

0
ξ =

σ 1 and γ 2
ξ γ

0
ξ = ξσ 2, we can show that [γ a, γ b] = 2iξεabσ3.

Thus, the Schrödinger-Lichnerowicz formula is given by

/D2
ξ = gi j∇ξ

i ∇ξ
j − 1

4
R + ξ

q

2h̄
σ3εi jF

i j . (B11)

APPENDIX C: COMMUTATION RELATIONS

In this section, we use commutation relations to determine
the eigenvalues in two scenarios: (a) weak curvature and (b)
strong curvature.

1. Weak-curvature regime

For this, we introduce the operators υ̂i and πi, given by

υ̂i = yi + 1

eBN
εi jπ

j, πi = pi + e

2
BNεi jy

j, (C1)
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that satisfy the following commutation relations:

[πi, π j] = ih̄eBNεi j,

[υ̂i, π j] = 0,

[υ̂i, υ̂ j] = − ih̄

eBN
εi j . (C2)

From (C1) and the definition of angular-momentum operator
L̂, we obtain that

−L̂ = δi j

(
1

2eBN
πiπ j − eBN

2
υ̂iυ̂ j

)
, (C3)

due to the algebraic structure, L̂ satisfies that

[L̂, δi jπiπ j] = 0. (C4)

Therefore, it is possible to simultaneously diagonalize L̂ and
π2; for this purpose, we introduce creation operators â†, b̂†

and annihilation operators â, b̂

â =
√

1

2h̄eBN
(π1 + iπ2),

â† =
√

1

2h̄eBN
(π1 − iπ2),

b̂ =
√

eBN

2h̄
(υ̂1 − iυ̂2),

b̂† =
√

eBN

2h̄
(υ̂1 + iυ̂2), (C5)

that satisfies the following relations:

[â, â†] = 1,

[b̂, b̂†] = 1,

[â, b̂] = 0,

[â†, b̂†] = 0,

[b̂†, â] = 0,

[â†, b̂] = 0. (C6)

Then, from Eqs. (C1) and (C4), we rewrite the operators πi

and υ̂i, given by

π1 =
√

h̄eBN

2
(â + â†),

π2 = i

√
h̄eBN

2
(â† − â),

υ̂1 =
√

h̄

2eBN
(b + b†),

υ̂2 = i

√
h̄

2eBN
(b − b†), (C7)

so that the angular-momentum operator and the Hamilto-
nian (18) are expressed as

−L̂ = h̄(a†a − b†b),

H̃2
ξ =

(
2h̄v2

F eBN (â†â + 1/2) 0
0 2h̄v2

F eBN (â†â + 1/2)

)

+ ξ

[
eh̄BNv2

F + h̄2v2
F

R

4
(b̂†b̂ − â†â)

]
σ3

+ h̄2v2
F

R

6

[
(b̂†b̂ − â†â)2 + 1

2

]
1. (C8)

The resulting quantum states are quantum harmonic-
oscillator states like |n, l〉 with radial quantum number n and
angular momenta l that satisfies

â |n, l〉 = √
n |n − 1, l〉 ,

â† |n, l〉 = √
n + 1 |n + 1, l〉 ,

b̂ |n, l〉 =
√

l |n, l − 1〉 ,
b̂† |n, l〉 = √

l + 1 |n, l + 1〉 . (C9)

Therefore, the square root of the eigenvalues of Hamilto-
nian (C8) are

En,m,τ,ξ ,± = ±h̄ωc

√
n + 1

2
+ ξτ

1 + λm

2
+ λ

3

(
m2 + 1

2

)
,

(C10)

where h̄ωc = (2eh̄v2
F BN )1/2, m = l − n, τ = ±1 is the eigen-

value of σ3 and represents a pseudo-spin index, λ =
sgn(R)Bs/BN with Bs = h̄|R|/4e is the pseudomagnetic field,
n ∈ N and m = −mmax, . . . ,mmax. As detailed elsewhere [39],
mmax = e(BN + Bs)S/2π h̄.

2. Strong-curvature regime

In a similar form as in Sec. C 1, we introduce the operator
ϒ̂

(τR )
i and �(τR )

i , given by

ϒ̂
(τR )
i = yi + 1

eB(τR )
T

εi j�
j
(τR ), �

(τR )
i = pi + e

2
B(τR )

T εi jy
j,

(C11)

where we defined the factor τR ≡ τξsgn(R) = ±1 and B(τR )
T =

BN + τRBs. These operators satisfy the following commuta-
tion relations: [

�
(τR )
i ,�

(τR )
j

] = ih̄eB(τR )
T εi j,[

ϒ̂
(τR )
i ,�

(τR )
j

] = 0,

[
ϒ̂

(τR )
i , ϒ̂

(τR )
j

] = − ih̄

eB(τR )
T

εi j . (C12)

From (C11) and the definition of the angular-momentum op-
erator L̂, we obtain that

−τRL̂ = δi j

(
1

2e
∣∣B(τR )

T

∣∣�(τR )
i �

(τR )
j − e

∣∣B(τR )
T

∣∣
2

ϒ̂
(τR )
i ϒ̂

(τR )
j

)
,

(C13)
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due to the algebraic structure, L̂ satisfies[
L̂, δi j�

(τR )
i �

(τR )
j

] = 0. (C14)

Therefore, it is possible to simultaneously diagonalize L̂ and
�2; for this purpose, we introduce creation operators â†

τR
, b̂†

τR

and annihilation operators âτR , b̂τR

âτR =
√

1

2h̄e
∣∣B(τR )

T

∣∣ (�(τR )
1 + iτR�

(τR )
2

)
,

â†
τR

=
√

1

2h̄e
∣∣B(τR )

T

∣∣ (�(τR )
1 − iτR�

(τR )
2

)
,

b̂τR =
√

e
∣∣B(τR )

T

∣∣
2h̄

(
ϒ̂

(τR )
1 − iτRϒ̂

(τR )
2

)
,

b̂†
τR

=
√

e
∣∣B(τR )

T

∣∣
2h̄

(
ϒ̂1 + iτRϒ̂

(τR )
2

)
, (C15)

which satisfy the following relations:

[âτR , â†
τR

] = 1,

[b̂τR , b̂†
τR

] = 1,

[âτR , b̂τR ] = 0,

[â†
τR
, b̂†

τR
] = 0,

[b̂†
τR
, âτR ] = 0,

[â†
τR
, b̂τR ] = 0. (C16)

Then, from Eqs. (C11) and (C14), we rewrite the operators
�

(τR )
i and ϒ̂ (τR )

i , given by

�
(τR )
1 =

√
h̄e
∣∣B(τR )

T

∣∣
2

(
âτR + â†

τR

)
,

�
(τR )
2 = iτR

√
h̄e
∣∣B(τR )

T

∣∣
2

(
â†
τR

− âτR

)
,

ϒ̂
(τR )
1 =

√
h̄

2e
∣∣B(τR )

T

∣∣ (bτR + b†
τR

)
,

ϒ̂
(τR )
2 = iτR

√
h̄

2e
∣∣B(τR )

T

∣∣ (bτR − b†
τR

)
, (C17)

so that the angular-momentum operator and the Hamilto-
nian (24) are expressed as

−τRL̂ = h̄
(
a†
τR

aτR − b†
τR

bτR

)
,

H̃2
ξ = 2h̄ev2

F

{
sgn(R)

Bs

3

(
L̂2 + 1

2

)
1 + 1

2

(
ξBN 0

0 −ξBN

)

+
(∣∣B(ξR )

T

∣∣(n̂ξR + 1
2

)
0

0
∣∣B(−ξR )

T

∣∣(n̂−ξR + 1
2

))},
(C18)

with n̂ξR = â†
ξR

âξR , and we have introduced the term ξR defined
by ξR ≡ sgn(R)ξ . The resulting quantum states are quantum

harmonic-oscillator states like |n, l〉 that satisfy

âτR |n, l〉 = √
n |n − 1, l〉 ,

â†
τR

|n, l〉 = √
n + 1 |n + 1, l〉 ,

b̂τR |n, l〉 =
√

l |n, l − 1〉 ,
b̂†
τR

|n, l〉 = √
l + 1 |n, l + 1〉 . (C19)

Therefore, the square root of the eigenvalues of Hamilto-
nian (C18) are

En,m,τ,ξ ,± = ±h̄ωc,τR

√
nτR + 1

2
+ λτR

3

(
m2
τR

+ 1

2

)
+ ξτ�τR ,

(C20)

where h̄ωc,τR = (2eh̄v2
F |B(τR )

T |)1/2, mτR = lτR − nτR , τ = ±1
is the eigenvalue of σ3 and represents a pseudo-spin in-
dex, λτR = sgn(R)Bs/|B(τR )

T |, �τR = BN/2|B(τR )
T | with Bs =

h̄|R|/4e being the pseudomagnetic field, n ∈ N, and mτ =
−mmax,τ , . . . ,mmax,τ . As follows from Ref. [39], mmax,τ =
e|B(τR )

T |S/2π h̄.
We should note that the treatment for the case BN = 0 has

been done previously [39], such that the eigenvalues have a
degeneration in the sublattice pseudo-spin and valley index, τ
and ξ , i.e.,

En,m,τ,ξ ,± = ±h̄ωc

√
n + 1

2
+ sgn(R)

3

(
m2 + 1

2

)
, (C21)

where h̄ωc = (2eh̄v2
F Bs)1/2.

APPENDIX D: GENERAL FUNCTIONS FOR FREE
ENERGY, MAGNETIZATION, AND MAGNETIC

SUSCEPTIBILITY

Let us start with the generic adimensional free energy:

F0(λ,�, f ) = λ3/2
� 1
λ
− f�∑

n=−∞
sgn(n)

√
|n| +�. (D1)

This series can be written in terms of the Riemann zeta func-
tion ζR(p), and Hurwitz zeta function, ζH (p, q), defined as

ζR(p) ≡
∞∑

n=1

1

np
, ζH (p, q) ≡

∞∑
n=0

1

(n + q)p . (D2)

Using the sum property of the Hurwitz function, one can
simplify the free energy (D1),

F0(λ,�, f ) = −λ3/2ζH

(
−1

2
,

⌊
1

λ
− f

⌋
+ 1 +�

)
.

(D3)

To calculate the magnetization, we need to differentiate the
previous equation with respect to Bs or BN . By using the
following identities [7]:

∂ζH (p, q)/∂q = −pζH (p + 1, q),

∂�x�/∂x =
∑
n∈Z

δ(x − n), (D4)
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FIG. 9. Electronic contribution in the (a) Helmholtz free energy [Eq. (61)], (b) magnetization [Eq. (67)], and (c) magnetic susceptibility
[Eq. (69)] as a function of Bs/BN for two different curvatures R > 0 (blue lines) and R < 0 (red lines) separated into their respective two
different pseudo-spin coupling index contributions, η = 1 (solid lines) and η = −1 (dashed lines), respectively. The interference effect seen
in Fig. 7 is due to the different pseudo-spin coupling contributions presented here. Taken into account is that ρ ≈ 2 × 1018 m−2 [14], Bs ≈
300 T [49], the total field used for making these plots is B̃0 = h̄πρ/4e ≈ 1033.47 T.

and because � depends on BN and Bs, we can separate the adimensional magnetization per unit area into three additive terms.
The first two terms are

M0(λ,�, f ) =
{

3λ1/2

2
ζH

(
−1

2
,

⌊
1

λ
− f

⌋
+ 1 +�

)
− 1

2
λ−1/2ζH

(
1

2
,

⌊
1

λ
− f

⌋
+ 1 +�

)∑
n∈Z

δ

(
n − 1

λ
+ f

)}
,

M1(λ,�, f ) = λ−1/2ζH

(
1

2
,

⌊
1

λ
− f

⌋
+ 1 +�

)
. (D5)

The third term is proportional to the derivative ∂ f /∂B where B = Bs or B = BN depending on the required case. However, this
term is multiplied by a sum of Dirac δ functions. It only produces a marginal contribution at each magnetization jump produced
when an LL is filled. Therefore, we will not consider this correction here, although we numerically confirm that it is marginal
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to the result. Finally, the magnetic susceptibility, obtained by differentiating the previous two magnetizations with respect to the
fields, is

S0(λ,�, f ) =
{

3

4
λ−1/2ζH

(
−1

2
,

⌊
1

λ
− f

⌋
+ 1 +�

)
− 1

2
λ−3/2ζH

(
1

2
,

⌊
1

λ
− f

⌋
+ 1 +�

)∑
n∈Z

δ

(
n − 1

λ
+ f

)

− 1

4
λ−5/2ζH

(
3

2
,

⌊
1

λ
− f

⌋
+ 1 +�

) ∑
n,m∈Z

δ

(
m − 1

λ
+ f

)
δ

(
n − 1

λ
+ f

)

− 1

2
λ−5/2ζH

(
1

2
,

⌊
1

λ
− f

⌋
+ 1 +�

)∑
m∈Z

δ′(x)

∣∣∣∣∣
x=m− 1

λ
+ f

⎫⎬
⎭, n � 1, (D6)

S1(b1, λ,�, f ) = b1

12

{
2λ−3/2ζH

(
1

2
,

⌊
1

λ
− f

⌋
+ 1 +�

)
− b1

3
λ−5/2ζH

(
3

2
,

⌊
1

λ
− f

⌋
+ 1 +�

)

+ 2λ−5/2ζH

(
3

2
,

⌊
1

λ
− f

⌋
+ 1 +�

)∑
n∈Z

δ

(
n − 1

λ
+ f

)}
. (D7)

In the previous equations, we again neglected terms proportional to ∂ f /∂B. Notice that all the previous equations are
mathematically valid whenever ⌊

1

λ
− f

⌋
+�+ 1 � 0.

In our problem, such a condition is always satisfied because the Fermi level is always bigger than zero.
In Fig. 9, we show the thermodynamical properties oscillating behavior for different curvatures and for the possible values of

pseudo-spin-coupling index η = ±1. If we compare with the total part seen in Fig. 7, we can understand how the interference
effect appears due to the different contributions.
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