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Intrinsic topology of various nodal rings in planar honeycomb lattices

Wei Xu ,1 Yang Xue ,2,* Bao Zhao ,3 Zhijian Li,1 and Zhongqin Yang 1,4,†

1State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
2School of Science, East China University of Science and Technology, Shanghai 200237, China

3School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication
Science and Technology, Liaocheng University, Liaocheng 252059, China

4Shanghai Qi Zhi Institute, Shanghai 200030, China

(Received 5 May 2024; revised 28 June 2024; accepted 1 July 2024; published 15 July 2024)

A universal topology is predicted for nodal-ring bands formed in planar honeycomb lattices through tight-
binding models and topological quantum chemistry theories. In planar honeycomb lattices with s and p orbitals,
various nodal-ring bands can occur due to the in-plane mirror symmetry. The band gaps of the nodal rings, opened
by spin-orbit coupling, are all found being in quantum spin Hall insulating or topological crystalline insulating
states. Two types of the intrinsic topologic states are observed in thallene with first-principles calculations, which
has been fabricated in experiments. Our findings provide new routes to generate topologically nontrivial states
in honeycomb lattices.
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I. INTRODUCTION

Quantum spin Hall insulators (QSHIs) [1–4] and topo-
logical crystalline insulators (TCIs) [5–9] are two typical
topological electronic states that have served as concep-
tual landmarks for the studies of topological materials. Both
QSHIs and TCIs exhibit topology-protected edge states,
bringing about quantized electronic transport. They are ex-
pected to have significant potential for low power information
processing applications. The appearance of QSHIs and TCIs
requires disparate symmetries. The former demands time-
reversal symmetry while the latter calls for certain crystal
symmetry protection [5]. The QSHIs have been exper-
imentally validated in HgTe/CdTe [10] (also InAs/GaSb
[11]) quantum wells and WTe2 monolayers [12]. The TCIs
have been observed not only in three-dimensional materi-
als, such as SnTe [13] and Pb1−xSnxTe [14], but also in
two-dimensional (2D) SnTe monolayers [15], etc. Graphene,
with a planar honeycomb lattice, is the first QSHI discovered
theoretically [1,16,17]. Since the successful fabrication of
graphene, the honeycomb lattice has become a seminal lattice
and attracted widespread research interest. Other 2D group-
IV film materials such as silicene [18], germanene [19], and
stanene [20], all with a honeycomb lattice, were synthesized
experimentally and found hosting quantum spin Hall effects.
Besides, the group-V elements [21,22] can also form sta-
ble honeycomb structures. After hydrogen passivation, these
honeycomb arsenic [23], stibium [4], and bismuth [24] all
exhibit characteristics of QSHIs. Unique coherent many-body
excitons were observed in NiPS3 compounds with honeycomb
lattices formed by Ni atoms [25]. The exotic quantum states,
such as superconductivity [26], strong correlation effect [27],
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and quantum anomalous Hall effect [28] recently observed in
moiré graphene, have ulteriorly showcased the utmost signifi-
cance of the honeycomb lattice.

Group-III honeycomb monolayers such as borophene and
thallene were also reported in experiments. The borophene
was grown on an Al (111) surface through molecular beam
epitaxy method [29]. And the thallene was successfully fabri-
cated on a single-layer NiSi2 atop Si (111) substrate [30,31].
Unlike most monolayers composed of group-IV and group-V
elements, the honeycomb lattices formed by the group-III
elements (B and Tl) are completely flat rather than buckled
[30–32]. This planar geometric structure, with an in-plane
mirror symmetry (Mz ), can lead to a high probability for the
material possessing rare nodal-ring band structures [33,34],
providing an excellent material platform for studying the
unique electronic states of the nodal-ring bands. It has,
however, not been intensively explored, to the best of our
knowledge.

In this work, we study the topologic natures of the nodal
rings formed in planar honeycomb lattices with s and p
orbitals by using tight-binding (TB) models, topological quan-
tum chemistry (TQC) theories, and density functional theory
(DFT) calculations. Due to the flat lattice, diverse nodal rings
at different momenta are achieved. The band gaps of the nodal
rings, opened by spin-orbit coupling (SOC), are all found
being in topologically nontrivial TCI or QSHI states. The
predicted topological behaviors are observed in thallene and
indiumene (the indium monolayer). Our results provide an un-
derstanding for the topology of the nodal lines in honeycomb
lattices, promoting the potential applications of the lattices in
topological nanoelectronics.

II. COMPUTATIONAL METHODS

Our first-principles DFT calculations are carried out with
the generalized gradient approximation proposed by Perdew,
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FIG. 1. (a) The planar honeycomb lattice. The two red sites in the unit cell (dashed rhombus) are both at 2c Wyckoff positions.
(b) The � ring composed of the s−pz orbitals at energy zero, obtained with the TB parameters (in eV): Es = −3, Ex = 100, Ey = 100,
Ez = 3, Vssσ = −1.3, Vspσ = 1.81, Vppπ = −1.13, Vppσ = 2.11, and λ = 1. The parities of the energy levels near the energy zero at the TRIPs
are listed. The parities in parentheses are obtained by only changing the sign of Vssσ (Vssσ = 1.3 eV). (c) The K/K′ ring composed of the s−pz

orbitals at energy zero, obtained with the TB parameters of Es = −0.5 eV and Ez = 0.5 eV. The other TB parameters are the same as those
defined in (b). (d), (e) The difference between the energies of the two crossing bands in the � rings of (b) and K/K′ rings of (c) in the 2D BZ,
respectively, but with λ = 0. The middle hexagon depicts the first BZ. (f) Two � rings composed of px/py−pz orbitals at energy zero and −5
eV, obtained with the TB parameters (in eV): Es = 100, Ex = 8, Ey = 8, Ez = −3, Vssσ = 0, Vspσ = 0, Vppπ = −1.13, Vppσ = 8, λ = 0.6. The
parities at the TRIPs are also shown. Dashed curves give the bands without SOC (λ = 0.0).

Burke, and Ernzerhof (PBE) [35], which is implemented in
the Vienna ab initio simulation package (VASP) [36]. The
plane-wave cutoff energy is set to 500 eV and the vacuum
space is taken to be more than 15 Å to avoid the influence
between two adjacent slabs. The convergence criterions for
the forces and total energies are 0.01 eV/Å and 10−6 eV,
respectively. The 12 × 12 × 1 �−centered k-point grids are
employed to perform the integral in the first Brillouin zone.
The topological properties, including evolution of the Wannier
charge center (WCC), Z2, and edge states are investigated
by constructing the maximal localized Wannier functions [37]
using the WANNIER90 package [38] combined with the WAN-
NIERTOOLS code [39]. To verify the correctness of the PBE
calculations, hybrid-functional methods based on the Heyd-
Scuseria-Ernzerhof (HSE)06 [40] scheme is adopted for the
electronic structures of thallene.

III. RESULTS AND DISCUSSION

The band structures of a 2D planar honeycomb lattice,
obtained from a TB model, are first introduced. As illustrated
in Fig. 1(a), there are two sites per unit cell. At each site,
four types of orbitals of |s↑↓〉, |px↑↓〉, |py↑↓〉, and |pz↑↓〉
are considered, where the up and down arrows indicate the
spin indices. The Hamiltonian of the lattice could be written

as

H = H0 + Hsoc, (1)

where the two terms in H are given by

H0 = ∑

α,i,σ
c†
αiσ Eicαiσ + ∑

α,β,i, j,σ
c†
αiσ tαβi jcβ jσ , (2)

Hsoc = λ�L · �S. (3)

In Eq. (2), c†
αiσ (cαiσ ) represents a creation (annihilation)

operator for an electron with spin σ and orbital i on site
α. Ei is the on-site energy for orbital i. tαβi j is the nearest-
neighbor hopping integral which can be expressed through the
Slater-Koster (SK) integrals [41]. In Eq. (3), Hsoc represents
the on-site SOC term. The λ parameter is the atomic SOC
strength. The detailed derivations of H0 and Hsoc based on the
SK integrals are provided in part I (A) of the Supplemental
Material (SM) [42].

The coupling between different orbitals can lead to the
emergence of diverse nodal-ring band structures. We now dis-
cuss the nodal rings composed of s and pz orbitals [Figs. 1(b)
and 1(c)]. In this case, two types of nodal rings centered at
� and K/K′ points can occur, called � rings [Fig. 1(b)] and
K/K′ rings [Fig. 1(c)], respectively. The difference between
the energies of the two crossing bands for the � rings and
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TABLE I. The various topological nodal rings formed by dif-
ferent combinations of s and p orbitals. The possible topological
states obtained for each case are given. The QSHI and TCI states
will exchange to each other by varying the band parities, except for
the states (marked in italic) of the K/K′ rings with s−px/py orbitals.

Orbital combination Band structure Topological states

s−px/py � ring QSHI, TCI
K/K′ ring QSHI, TCI

s−pz � ring QSHI, TCI
K/K′ ring TCI

px/py−pz � ring QSHI, TCI
K/K′ ring TCI

K/K′ rings (both without SOC) in the 2D Brillouin zone (BZ)
are displayed in Figs. 1(d) and 1(e), respectively. Regular
rings and rings with a C3 symmetry are clearly seen for the
� ring [Fig. 1(d)] and K/K′ ring [Fig. 1(e)], respectively.
The different shapes of the two types of rings are associated
with the little-group symmetries at the � and K/K′ points.
Due to the combination of the three symmetries in the planar
honeycomb lattice: Mz, space inversion symmetry (P), and
time-reversal symmetry (T ), band gaps can be opened for all
the nodal rings when the SOC is considered (the derivation
is given in SM part I (B) [42]). In Figs. 1(b) and 1(c), small
band gaps of 3 meV are opened at energy zeros, which can
be ascribed to zero SOC between s and pz orbitals and small
SOC interactions from the px/py and pz orbitals through the
hybridization effect. Note that despite the gaps opened, we
still call them � rings or K/K′ rings due to remaining of the
loop band characteristic.

Since the honeycomb lattice has the P symmetry, we can
calculate the topological invariant Z2 from parities of the
energy levels at the time-reversal invariant points (TRIPs) in
the BZ [43] to analyze the topological behavior of the nodal
rings under SOC. For the � ring displayed in Fig. 1(b), the
parities of the occupied states at the TRIPs yield Z2 = 1. The
evolution of the WCC is also calculated [Fig. S1(a)], which
as well as the Z2 = 1 indicates a QSHI achieved for the �

ring. To dig other possible topological states in this case, we
change the sign of Vssσ (from −1.3 eV to 1.3 eV), reflecting
the hopping interactions of the s orbitals from the neighbor
atoms. We find that the band structures do not change while
the parities of the energy levels coming from the s orbital all
become opposite, given in the brackets in Fig. 1(b). These
parities result in Z2 = 0. Hence, the quantum spin Hall state
disappears in the lattice.

In the honeycomb lattice, the entire 2D BZ is invariant
under Mz symmetry. For spinful system (with SOC), the Mz

symmetry has the eigenvalues of +i and −i. Thus, the states of
the lattice can be categorized into mirror-even and mirror-odd
subspaces. Consequently, the Mz-eigenvalue-resolved WCC
spectra can be calculated. As illustrated in Fig. S1(b), the
intersections between the WCC spectra with the different
mirror parities are robust and protected by the Mz symmetry
[5]. Moreover, the WCC spectrum associated with the +i
eigenvalue in Fig. S1(b) exhibits a winding number C+ = 2,
whereas that associated with the −i eigenvalue has a winding

number C− = −2. Therefore, a mirror Chern number CM =
(C+ − C−)/2 = 2 is obtained, leading to a TCI acquired for
this situation [Fig. 1(b)] with Vssσ = 1.3 eV. The topological
behavior of the band gap for the K/K′ ring [Fig. 1(c)] can be
analyzed similarly. The calculated topological invariant Z2 =
0 for the small band gap (opened by the SOC) in the K/K′
ring. This Z2 value does not change even if the sign of Vssσ

becomes opposite owing to the even occupied energy levels
at the TRIPs. The Mz-eigenvalue-resolved WCC spectra [Fig.
S1(c)] gives that the K/K′ ring is in a TCI phase with CM = 2.
Different from the case of the � ring, no QSHI phase can be
achieved in the K/K′ ring. The topological states acquired in
the nodal rings composed of s−pz orbitals are summarized in
Table I.

Figure 1(f) demonstrates the TB bands with two � rings
composed of px/py−pz orbitals, which are located at energy
zero and −5 eV. The calculated corresponding WCC spectra
are displayed in Figs. S2(a) and 2(b), respectively. Explicitly,
the SOC-induced band gap for the � ring at energy zero is in a
QSHI phase while the one for the � ring at −5 eV is in a TCI
phase. If we increase Ez from −10 eV [Fig. 1(f)] to −2 eV,
K/K′ rings occur at 4.3 eV [Fig. S2(c)]. Similar to the cases
for the K/K′ rings with s−pz orbitals [Fig. 1(c)], the band
gap for the K/K′ rings in Fig. S2(c) falls within a TCI phase
[Fig. S2(d)]. The analysis of the cases for the nodal rings with
s−px/py orbitals is similar. These TB results are also listed
in Table I, showing that the SOC-induced band gaps in the
nodal rings composed of s and p orbitals are all topologically
nontrivial.

The general topological nature of the nodal rings composed
of s and p orbitals in the lattice can be disclosed by using TQC
theories. The planar honeycomb lattice has a space group
of No.191. The two sites in the unit cell are located at 2c
maximal Wyckoff positions [Fig. 1(a)]. The site-symmetry
group of the position is D3h (6̄m2), which has six different
irreducible representations (irreps) A

′
1, A

′
2, E ′, A

′′
1, A

′′
2, and E ′′

(Table S1). When s or p orbitals are placed at one of the 2c
sites, they must be arranged according to the basis of the irreps
of D3h. Thus, the s and p orbitals on the 2c site can be divided
into three groups (s, px/py, pz). Each group belongs to the dif-
ferent irreps of D3h, inducing three distinct elementary band
representations (EBRs) [44,45]. To understand the topological
behaviors of the � and K rings, Table S2 presents the irreps of
the little groups at these two high-symmetry points for various
EBRs. For a nodal ring, generally formed by two crossing
bands, SOC induces a splitting of the degenerate points. If
the occupied part in the two segments of the energy bands
(separated by the SOC) cannot individually form an EBR, the
band gap in the nodal ring is topologically nontrivial [44,45].

Due to the 2c site being the maximal Wyckoff position, the
s and p orbitals on this site will induce the EBRs that cannot be
further separated into new EBRs [44–47]. As shown in Table
S2, different groups of the orbitals (s, px/py, or pz) have dis-
tinct EBRs. Consequently, a nodal ring comprising only single
component (s, px/py, or pz) cannot be split into new EBRs.
The band gap opened by SOC in these single-component
nodal rings must be in a topologically nontrivial state. For
nodal rings composed of s−pz or px/py−pz bands, since
there are no interactions between s−pz (and also px/py−pz),
the EBRs of pz bands are independent of those of s (or
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FIG. 2. The DFT results for thallene. (a) The orbital-resolved
band structure without SOC. (b) The band structure with SOC.
(c) Edge states of thallene along the [100] direction. (d) Evolution
of the WCCs along the ky.

px/py) bands. Therefore, a nodal ring consisting of s−pz or
px/py−pz bands will encompass two different EBRs. These
EBRs will undergo splitting into non-EBRs when SOC opens
a band gap for the nodal ring. These topologically nontrivial
cases can be actually confirmed by the results in Figs. 1(b),
1(c), 1(f), and S2(c), discussed above through the TB model.

For nodal rings composed of s and px/py, the situation
becomes somewhat complex due to the hopping between s
and px/py orbitals in the lattice. As shown in Table S3, three
different EBR decompositions, induced from the Wyckoff
positions of 1a, 2c, and 3 f , are obtained. Due to the absence
of identical 1D irreps at the � point (or K/K′ point) for
any different EBRs contained within a decomposition, the
SOC-induced band gap leads to the emergence of non-EBRs.
Hence, in a planar honeycomb lattice with s and p orbitals,
the band gaps opened by SOC in the nodal-ring bands at � or
K/K′ points are all topologically nontrivial.

Topological properties of thallene and indiumene. Thallene,
already synthesized in experiments [30,31], owns a planar
honeycomb lattice. Based on the DFT and TB model calcu-
lations, we find thallene is a TCI with CM = 2, instead of
an ordinary insulator [48]. The fully optimized lattice pa-
rameters for thallene are a = b = 5.26 Å [Fig. S3(a)]. The
bands around the Fermi level (EF) of thallene [Fig. 2(a)] are
predominantly contributed by the p orbitals. The pz bands
form a doubly degenerate point, namely the Dirac point, at
the K point (about 1.7 eV), akin to the Dirac point found in the
2D seminal material of graphene [49]. Interestingly, the px/py

bands are degenerate at the � point with the energy close to
that of the Dirac point at the K point. This band characteristic
of two doubly degenerate points in thallene without SOC is
very similar to that of the plumbene [50]. The two doubly
degenerate points in plumbene both occur at the EF due to

one more valence electron in a Pb atom than in a Tl atom. The
px/py bands intersect with the pz (also some s) bands near
the K/K′ and � points, resulting in two nodal rings: the �

ring (∼0 eV) and the K/K′ ring (∼2.5 eV). Upon inclusion of
SOC, not only does the degeneracy at high-symmetry points
split, but also the accidental degeneracy of nodal rings lifts.
The latter trend is accordant to the conclusion made above
from the symmetry analysis. Thus, a global band gap (about
144 meV) is opened around EF in the material, as depicted
in Fig. 2(b). Since the PBE functional often underestimates
band gaps, we check the bands by using the HSE06 func-
tional which yields an enlarged energy gap of about 212 meV
[Figs. S3(b) and S3(c)]. The band dispersion of HSE06 is very
similar to that of PBE.

Our analysis has demonstrated that the SOC-induced band
gap in a � ring composed of px/py−pz band must be a
QSHI or a TCI [Fig. 1(f) and Table I]. Hence, thallene shall
be a QSHI with Z2 = 1 or a TCI with CM = 2. The parity
calculations [Fig. 2(b)] give Z2 = 0 for thallene, inferring the
monolayer being a TCI. To illustrate its topological properties,
we calculate edge states of the semi-infinite thallene. Two
pairs of edge states emerge within the bulk gap [Fig. 2(c)],
signifying the nontrivially topologic nature of the global band
gap in thallene. The edge states are also confirmed in a
thallene nanoribbon [Fig. S3(d)]. The WCC spectra with the
eigenvalues of +i and −i intersect in Fig. 2(d), also proving
thallene being a TCI with CM = 2. This result is different from
the conclusion of an ordinary insulator in Ref. [48], made
based on Z2 = 0.

FIG. 3. The TB results for thallene. (a) The band structure with
the TB parameters (in eV): Es = −7, Ex = 3, Ey = 3, Ez = 2, Vssσ =
−1.3, Vspσ = 1.82, Vppπ = −1.13, Vppσ = 2.11, and λ = 0. A � ring
and a K/K′ ring are discovered at EF and 3.3 eV, respectively.
(b) The band structure with SOC (λ = 0.6 eV). The other parameters
are the same as in (a). The parities at � and M points are also
shown. (c) The band structure for a thallene nanoribbon. (d) The
Mz-eigenvalue-resolved WCCs along the ky for the band gap of the
� ring.
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FIG. 4. (a) The orbital-resolved DFT band structure of indi-
umene without SOC. (b) Evolution of the WCCs for the indiumene
without strain. (c) The DFT band structures of indiumene with vari-
ous compressive strain strengths. From left to right, the compressive
strain strengths are 0%, 3%, and 5%, respectively. (d) The TB bands.
From left to right, the Vssσ values are −1.45, −1.57, and −1.65 eV,
respectively. (e) The �E as function of strain, where �E is defined
in Fig. 4(a). The negative value of �E indicates band-inversion
appearance.

We now comprehend the band structure of thallene from
the TB model. The obtained TB results [Figs. 3(a) and 3(b)]
for thallene can describe well the band characteristic given
by the DFT calculations [Figs. 2(a) and 2(b)]. As depicted in
Fig. 3(c), the � ring at the EF and the K/K′ ring at 3.3 eV
both possess two pairs of topology-protected edge states. The
Mz-eigenvalue-resolved WCCs for the � ring from the TB
model [Fig. 3(d)] is also in good agreement with that from the
DFT calculations [Fig. 2(d)]. Both the WCC evolutions for
the K/K′ rings obtained from DFT [Fig. 2(a)] and TB model
[Fig. 3(a)] for thallene are also calculated and given in Figs.
S4(a) and S4(b), which imply a TCI phase obtained for the
SOC-induced band gaps in the K/K′ rings. This tendency is in
line with the conclusion in the last row in Table I. Flat group-V
(Sb or Bi) monolayers haven been reported to being TCIs
with CM = 2 [51], which actually belong to the last case in
Table I.

The indium monolayer, called indiumene, with a flat hon-
eycomb lattice exhibits a similar band structure [Fig. 4(a)]
to that of thallene [Fig. 2(a)]. However, owing to its smaller
atomic number and the shorter In-In bond lengths [Fig. S3(a)],
not only is the energy level of the s orbital elevated [52], but
the Vssσ strength becomes larger. The latter factor also leads
to the s-orbital band around the � point moving up in energy

and crossing the EF. Thus, the indiumene is a metal even
if the SOC is considered (Fig. S5(a)). Although the s band
intersects with the pz band around the � point, it does not
break the � ring composed of px/py−pz orbitals. Hence, the
band gap around the EF still possesses a CM of 2, as depicted
in Fig. 4(b).

Strain is an effective approach for tuning electronic and
topological properties of real materials. For indiumene, strain
can significantly affect the bands around the EF. As demon-
strated in Fig. 4(c), the s band in indiumene moves up in
energy as the increase of the compressive strain strength. The
s and px/py bands flip at −3% strain, accompanied by the
�E [defined in Fig. 4(a)] becoming negative. The going up
of the s band in Fig. 4(c) can be rationalized well by the
increase of the absolute value of the Vssσ [Fig. 4(d)] due to the
shorter In-In bond in the process. Thus, a topological phase
transition happens in the indiumene with −3% strain. The
phase diagram as a function of the strain is given in Fig. 4(e).
Since the s band disrupts the original structure of the px/py

bands in the monolayer with a compressive strain strength
larger than 3%, the CM becomes 1 in these cases, as indicated
in Fig. S5(c) which also gives Z2 = 1. To confirm the results
of Z2 = 1, we break the Mz symmetry of the monolayer with
�E<0 (under such as −5% strain) by moving one atom in
the unit cell along the z direction. The WCC evolution in
Fig. S5(d) also clearly gives Z2 = 1. Hence, an interesting
composite topological state of a TCI (CM = 1) and a QSHI
(Z2 = 1) is achieved for the indiumene with a compressive
strain strength larger than 3%.

IV. CONCLUSIONS

From TB models and topological quantum chemistry the-
ories, we find an intrinsic topological behavior for the nodal
rings formed in flat honeycomb lattices with s and p orbitals.
The SOC-induced band gaps in the nodal rings centered at
� or K/K′ points are all topologically nontrivial, being in
QSHI or TCI phases. Our density functional theory calcula-
tions show that thallene is a TCI with CM = 2, rather than an
ordinary insulator, in line with the predictions achieved from
the TQC theories. We also find that the indiumene can possess
an exotic composite topologic state of a TCI (CM = 1) and
QSHI (Z2 = 1). The forming mechanism is analyzed. Our
findings provide an understanding of the topological nature
for the nodal-ring structure in the mature 2D honeycomb
lattice materials, reinforcing the theoretical foundations for
promising applications.
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