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Nanoscale surface roughness effect on Derjaguin-Landau-Verwey-Overbeek forces
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In this work we investigated the effects of nanoscale roughness on Derjaguin-Landau-Verwey-Overbeek
(DLVO) forces using the proximity force approximation. To that end, the force between a gold-coated sphere and
a plate, both immersed in pure and salt-added [NaCl] = 0.01M ethanol, was measured as a function of surface
roughness with atomic force microscopy. The force data were compared with the predictions of DLVO theory
with and without incorporating the contribution of surface roughness. It was observed that the surface roughness
does not modify the qualitative behavior of the force-displacement curve but rather has a secondary influence
by altering the values of the free parameters of the DLVO theory, namely, the Debye length and the electrostatic
potential of the interacting bodies. In fact, it was found that the repulsive component of the force in pure ethanol
increased with increasing roughness. These observations coincide with a positive correlation of the absolute
value of the surface potentials with increasing surface roughness, suggesting that roughness effectively enhances
the electric field near the surfaces, resulting in stronger electrostatic forces. For the salt-added solution, the
contributions of the electrostatic forces are heavily suppressed, and the Casimir contribution plays the dominant
role. Finally, we have shown that failure to incorporate the complete optical properties of the interacting metal
bodies yields unphysical results for the free parameters of the electrostatic double-layer force.
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I. INTRODUCTION

Surface forces are crucial in many technologically essential
fields since they determine the behavior of systems such as,
for example, colloids, cells, dispersions, micro- and nanoflu-
ids, and coatings [1]. Furthermore, in order to advance the
development of micro- and nanoscale devices, it is essential
to have fundamental knowledge of the ability to control the
interfacial interactions at nanoscale separations in both air and
aqueous media [1]. The DLVO theory, which was formulated
by Derjaguin, Landau, Verwey, and Overbeek, has been the
dominant description for interparticle forces for more than
fifty years [2,3]. This formalism describes the forces between
smooth surfaces in liquid as the sum of the van der Waals
(vdW) and/or retarded van der Waals (Casimir) forces (as the
dispersion force) and the electric double-layer (EDL) force (as
the nondispersion force) [3,4].

The DLVO theory has been extensively investigated be-
tween different materials, e.g., mica sheets [5], silica, zinc
sulfide [6,7], polystyrene [8], and alumina [9]. These studies,
however, are especially challenging to perform due to the
difficulty in finding proper surfaces for directly measuring
the surface forces. For instance, for the data to be interpreted
in a meaningful manner [2], the surfaces must be incredibly
smooth and have the appropriate geometries for the chosen
measurement technique. Moreover, force measurements be-
tween metallic and ceramic surfaces under electrochemical
potential control [10–12] have revealed that the magnitude of

the forces at the molecular scale depends highly on the partic-
ular surface topography, and therefore they are affected by the
roughness of the interacting surfaces. Indeed, surface rough-
ness plays a pivotal role in these areas, which remarkably
affect the physical and mechanical properties of surfaces [1].
Surface roughness is able to alter charge distribution; hence,
the average plane of charges that generates the electrostatic
double-layer interaction is shifted backwards with respect to
the point of initial contact between the surface and an incom-
ing probe as a result of the surface corrugation [13,14].

Consequently, dealing with rough surfaces makes the situa-
tion significantly more complicated, requiring further research
and the development of more complex approaches. Therefore,
in this study, we comprehensively investigated the influence
of surface roughness on the DLVO theory using the prox-
imity force approximation (PFA) to calculate forces as it is
explained in Ref. [15]. To achieve this purpose, we com-
pared the experimental force vs separation distance curves
between a gold-coated sphere and plates of varying rough-
ness, both immersed in pure and salt-added [NaCl] = 0.01M
ethanol with the corresponding predictions of the DLVO
theory with and without the incorporation of surface rough-
ness, while maintaining a consistent ionic strength throughout
our experiments unless explicitly mentioned otherwise. In
what follows, we will refer to these two models, respec-
tively, as the standard DLVO (S; without roughness) and
the modified DLVO (R; with the incorporation of surface
roughness).
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II. EXPERIMENTAL DETAILS AND SURFACE
CHARACTERIZATION

In this study, we employed gold films grown by electron
beam evaporation onto silicon wafers, which before depo-
sition were rinsed as explained in Ref. [16]. Four different
gold-coated substrate batches were made with varying thick-
nesses in the range of 100, 400, 800, and 1200 nm Au. For
the first three substrates, we used an Au deposition rate of
0.1 nm/s, while for the rest of the substrates (thickest films)
the deposition rate was increased to 1 nm/s in order to ob-
tain rougher surfaces. Additionally, a borosilicate glass sphere
(with a radius R ∼ 10 µm) was glued on cantilevers with
spring constant k = 0.22 ± 0.02 N/m. The latter was obtained
by hydrodynamic calibration within the fluid environment as
it was explained in detail in our previous work [17]. Sub-
sequently, the cantilever-sphere system was coated with 100
nm gold coating as it was explained in Ref. [17]. Prior to
the deposition of Au from a 99.999% pure Au target at the
pressure of 10−6 bar, a 5-nm titanium (Ti) adhesion layer was
deposited to improve the adhesion between the Au films and
the silicon (Si) substrates in order to prevent delamination
of the films during force measurements in aqueous environ-
ment. The fluid cells were rinsed with ethanol and deionized
(DI) water and gently dried using N2, and the Au surfaces
were exposed to N2 airflow to avoid any possible contamina-
tion during force measurements.

Finally, all the force measurements were carried out us-
ing the Pico Force Multimode 8 atomic force microscope
(AFM). The force curves were acquired in an ethanol solution,
where in order to reduce the Debye length and minimize
the repulsive double-layer force we also added salt, [NaCl]
= 0.01M. Moreover, to minimize the impact of hydrodynamic
drag force, the approach and retraction speeds were set at the
minimum value of 50 nm/s. It must be noted that the hydrody-
namic drag force Fhydro = −6πηR2v/h contribution (ignoring
any slip effects) was subtracted from the total experimentally
measured force. Here, h is the sphere-plate separation dis-
tance, R is the sphere radius, η is the medium viscosity, and
v = 50 nm/s is the relative velocity between the sphere and
the plate surfaces [17,18].

Moreover, to measure accurately the probability density
function f (z) and the distance upon contact, d0, between the
sphere and the plate, we performed a high-resolution scan
in tapping mode as explained in Ref. [19] with the sharp
tip. Eight topography images with a scan area of 1×1 µm
and 512×512 pixels were acquired at various surface posi-
tions of each plate, and the cumulative distribution function
(CDF) of each image was computed (see the insets in Fig. 3,
top right corner). The topography profiles of the gold-coated
plate surfaces and spheres, which were used to investigate
the roughness effect, were recorded using the Bruker Mul-
timode 8 AFM operating in tapping mode. Furthermore, to
characterize the front side of the sphere, where the interaction
with the plate occurs, the inverse AFM in contact mode was
used [17]. Finally, prior to combining eight images of each
plate with the sphere image for the computation of the CDF
of each thickness, the topography images were flattened to
remove distortions due to the sample tilt and surface curvature
(for the spheres) by subtracting first- and second-order degree

polynomials from each scan line of the images before any
further processing.

III. THEORETICAL MODELS: DISJOINING PRESSURE

In the following, we analyze the DLVO theory by studying
the disjoining pressure, �, between two plates separated by a
distance h. The disjoining pressure is given by [20]

�(h) = �e(h) + �C (h), (1)

where �e(h) and �C (h) are the electrostatic and the Casimir
disjoining pressures, respectively. For gold plates in ethanol,
the Casimir contribution is always attractive, while the elec-
trostatic contribution can be either attractive or repulsive
depending on the sign of the potential at the surfaces.

A. Casimir disjoining pressure for smooth surfaces

The Casimir contribution is obtained by means of the Lif-
shitz theory, which accounts for both the vdW force at short
separations and the Casimir force at longer separations where
retardation is important. The Casimir disjoining pressure is
related to the Casimir energy Ec by differentiation (�C (h) =
−dEc/dh). In turn, the Casimir energy EC is given by

EC (h) = kBT
∞∑

n′=0

∫
d2k‖
(2π )2 ln(det(I − R1R1e−2k⊥h)), (2)

where the sum is carried over the Matsubara frequencies ξn =
2πkBT n, n ∈ {0, 1, . . .}. The apostrophe means that the term
n = 0 is multiplied by 1

2 , and k⊥ = (k2
‖ + εEt (iξn)ξ 2

n /c2)1/2

with εEt (iξn) denoting the permittivity of the dielectric
medium between the two plates (assumed to be pure ethanol).
c is the speed of light, I is the 2×2 identity matrix, and
R1 = R1(iξn, k‖) is the reflection matrix in the gap between
the gold-coated plates. Both the reflection matrix and the per-
mittivity must be evaluated at the imaginary angular frequency
ω = iξn (see Supplemental Material Sec. A for the numerical
implementation of Eq. (2) [21]).

Because the reflection matrix must be evaluated at imag-
inary frequencies iξn, the permittivity of both the ethanol
and gold must be analytically continued to the imaginary
axis. Thus, it becomes necessary to consider frequencies that
are beyond the available range of the experimental optical
data. To bridge this gap, several alternatives are possible. One
commonly used approach involves using the Drude model to
describe the dielectric function of the metallic plates at low
frequencies [22]. In the Drude model, the permittivity ε is
given by

εDrude(ω) = 1 − ω2
p

ω(ω + iωτ )
, (3)

where ωp and ωτ denote the plasma and relaxation fre-
quency, respectively. The procedure follows by fitting the
available optical data, obtained from ellipsometry measure-
ments of the films, to extract the essential parameters from the
Drude model, namely, (ωp, ωτ ). From the fitting we obtained
(7.79 eV, 53.6 meV), (5.96 eV, 50.1 meV), and (6.74 eV, 50
meV) for the 100-, 800-, and 1200-nm Au films, respectively,
as it is shown in Fig. 1. For the 400-nm Au film we used the
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FIG. 1. Imaginary part of the dielectric function from the raw
data of different thickness of gold surfaces.

plasma and relaxation frequencies as explained in Ref. [23].
Finally, to obtain the permittivity at the imaginary axis, Eq.
(3)—describing a meromorphic function—can be evaluated at
ω = iξ . Another approach involves setting ωτ = 0 in Eq. (3).
This produces the so-called plasma model. Similarly to the
Drude model, it can be analytically continued by simply eval-
uating the permittivity at ω = iξ . As a result we obtain

εplasma(iξ ) = 1 + ω2
p

ξ 2
. (4)

A more general approach relates the imaginary part of
the permittivity at real frequencies, ε′′(ω), to the permittivity
at imaginary frequencies, ε(iξ ), via a Kramers-Kronig-like
relationship:

ε(iξ ) = 1 + 2

π

∫ ∞

0

ω ε′′(ω)

ω2 + ξ 2
dω. (5)

Nevertheless, the experimental values of ε′′(ω) are re-
stricted to the range [ωmin:ωmax], which means that the permit-
tivity must be extrapolated for [0:ωmin] and [ωmax:∞). In the
high-frequency range, ε′′(ω) is typically extrapolated using
an inverse-third-power law (i.e., ε′′(ω) ≈ [ω3

maxε
′′(ωmax)]/ω3,

where the constant factors have been determined by continu-
ity). Thus, the contributions of high frequencies to the integral
in Eq. (5) can be expressed as follows:

	high(ξ ) = 2

π

∫ ∞

ωmax

ω ε′′(ω)

ω2 + ξ 2
dω

= 2 ω3
maxε

′′(ωmax)

πξ 2

[
1

ωmax
−

π
2 − arctan

(
ωmax

ξ

)
ξ

]
.

(6)

The contributions from the low frequencies to Eq. (5) can
be accounted for by using the Drude model. In other words,
the experimental data are fitted using Eq. (3) and those re-
sults are then extrapolated to perform the integration between
[0:ωmin], obtaining

	low(ξ ) = 2ω2
pωτ

π

∫ ωmin

0

dω

(ω2 + ξ 2)
(
ω2 + ω2

τ

) . (7)

FIG. 2. Dielectric function at imaginary frequencies ε(iξ ) of
ethanol as obtained by the three-oscillator model.

However, precision experiments performed in UHV and
air between gold films [24,25] have shown that using the
Drude model to extrapolate at low frequencies results in an
underestimation of the Casimir contribution. The accuracy of
the theoretical predictions can be improved by switching to
the plasma model, where in essence one should set ωτ = 0 in
Eq. (7). Combining the results of Eqs. (6) and (7) using the
plasma model in Eq. (5) we obtain

εopt (iξ ) = 1 + ω2
p

ξ 2
+ 2

π

∫ ωmax

ωmin

ω ε′′(ω)

ω2 + ξ 2
dω + 	high(ξ ), (8)

which we refer to as the optical model. We remark that for
similar values of ωp and for all values of ξ > 0, εopt (iξ ) >

εplasma(iξ ) > εDrude(iξ ). One consequence of this inequal-
ity is that the optical model predicts the strongest Casimir
force while the Drude model predicts the weakest [23,26].
The effect of these two descriptions on the estimation of the
double-layer force is discussed in detail in Sec. IV B.

Finally, the dielectric function of ethanol at imaginary fre-
quencies, εEt (iξ ), as it is shown in Fig. 2, can be effectively
formulated using the three-oscillator model as mentioned in
Eq. (1) of Ref. [16]. It should be noted that this approach does
not account for the influence of salt on the dielectric function.

B. Electrostatic disjoining pressure for smooth plates

The electrostatic contribution �e(h) is obtained by solving
the Poisson-Boltzmann equation. In the plane-plane geometry,
the equation takes the form

d2


dx2
= ρ(
 )

ε
, (9)

where 
(x) is the electrostatic potential at the distance x,
ρ(
) is the charge density which is assumed to be a function
of the potential only, and ε is the static permittivity of the
solution in between the two surfaces (for ethanol ε = 25.07ε0

was used) [27]. For two metallic surfaces, a constant potential
boundary condition is used. In other words, the electrostatic
potential must satisfy the boundary conditions 
(0) = 
1 and

(h) = 
2. For both pure ethanol and with an electrolyte
NaCl added in ethanol, the charge density is assumed to sat-
isfy the condition [28]

ρ(
) = −en0

(
e+ e


kBT − e− e

kBT

)
, (10)
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where e is the electron charge, n0 is the ion concentration,
kB is Boltzmann constant, and T is the absolute temperature
(assumed to be 300 K). Derjaguin et al. [20] related the elec-
trostatic potential 
 to the disjoining pressure �e via the first
integral of Eq. (9), yielding(

d


dx

)2

= 2

ε

[
en0kBT

(
e

e

kBT − 2 + e− e


kBT

)
− �e(h)

]
. (11)

For the details on how to solve Eq. (11) to obtain �e(h)
see Supplemental Material Sec. B [21]. It is worth noting that
Eq. (11) is the complete nonlinear Poisson-Boltzmann equa-
tion; therefore, our calculations make no assumption about
the magnitude of the electrostatic potentials at the metallic
plates. Indeed, as will be shown later, the experimental values
of these potentials often violate the condition e
 	 kBT ,
which makes any linearized approach unsuitable. Finally, in
contrast with the Casimir term, the electrostatic contribution
has free parameters not measured in the experiment, namely,
the boundary potentials 
1 and 
2, and the ion concentration
n0. This last term can be related to the Debye length, λD, via
the following relationship: λ2

D = kBT ε/2e2n0. Therefore, we
will write �e(h; 
1, 
2, λD) for the electrostatic disjoining
pressure of smooth surfaces.

C. Proximity force approximation

With both the Casimir and electrostatic double-layer force
contributions known, it is possible to relate the plate-plate
disjoining pressure to the force between a sphere and a plate
using the PFA. With the additional assumption of R 
 h,

the sphere-plate force is given by

FS (h; 
1, 
2, λD) = 2πR
∫ ∞

h
�S(u; 
1, 
2, λD) du,

(12)

which yields

FS (h; 
1, 
2, λD) = 2πREc(h)

+ 2πR
∫ ∞

h
�e(u; 
1, 
2, λD)du

(13)

where �S=(h; 
1, 
2, λD)= �e(h; 
1, 
2, λD) + �C (h)
is the combined disjoining pressure, and Eq. (13) follows from
�C (h) = −dEc/dh. Here, the index S is added to indicate that
Eq. (12) is the standard prediction of the DLVO theory without
incorporating surface roughness effects.

D. Roughness incorporation

When two rough bodies are brought into gentle contact,
they are not in direct contact but are still separated by a certain
average distance [29]. The absolute distance upon contact,
d0 (the maximum peak within the effective area of interac-
tion), is a pivotal factor [15]. The distance at which contact
is established tends to be substantially greater than the RMS
roughness measurement since it is determined by the presence
of the most prominent surface asperities [30].Therefore, if the
contact area includes many asperities, the accurate contact
occurs only in one or a few highest asperities [15]. Thus, a
precise calculation is required to determine the highest peak

contribution to the force. To gain insight into the effects of
roughness on DLVO theory, it is essential to address how
the roughness modifies both the double-layer and the Casimir
force. To provide clarity we employed a straightforward ap-
proach as explained in detail in Ref. [15] to calculate the
roughness correction beyond perturbation theory. The method
is based on the experimental fact that the distance d0 is sig-
nificantly greater than the RMS roughness, as provided in
Ref. [30]. According to Ref. [15] the interaction between two
elastic rough surfaces (plates) can be viewed as the interaction
between a rough inflexible plate and a smooth elastic plate
[31,32].

Therefore, in this work we utilize Eq. (4) of Ref. [15] to
investigate the roughness influence on the DLVO force. As it
is stated in Refs. [15,22], if we know the probability density
function (PDF) f (z) and d0 (d0 is the distance upon contact
due to the highest asperities of both surfaces as shown in
Fig. 3) then the disjoining pressure between the rough and flat
surfaces is given by

�R(h; 
1, 
2, λD ) =
∫ d0

−d ′
0

f (z)�S(h − z; 
1, 
2, λD)dz

(14)
for h > d0. Equation (14) is the convolution of the plate-plate
disjoining pressure with the PDF of the combined height
distribution f (z). To obtain the force between a sphere and
a plate with roughness incorporation FR(h; 
1, 
2, λD), it is
enough to substitute �S by �R into Eq. (12). Thus, we obtain

FR(h; 
1, 
2, λD) = 2πR
∫ ∞

h

∫ d0

−d ′
0

f (z)�S

× (u − z; 
1, 
2, λD)dz du, (15)

FR(h; 
1, 
2, λD) =
∫ d0

−d ′
0

f (z)FS(h − z; 
1, 
2, λD)dz,

(16)

where Eq. (16) follows by changing the order of integration.
The function f (z) can be expressed as f (z) = dP(z)/dz with
P(z) denoting the CDF, which can be extracted from the com-
bined topography images by counting pixels with the height
below z [19]. The combined profile of the two rough surfaces,
as depicted in Fig. 15(b) in Ref. [15], measures the roughness
in this configuration. Moreover, the parameter d0 represents
the highest peak of the combined profile when the flat surface
interacts with the rough surface [30].

E. Maximum-likelihood models

To analyze the effects of roughness on the DLVO force,
we will compare the same series of force-displacement curves
using two models with and without roughness incorporation.
These are summarized as Yi = FS(R)(Xi; 
1, 
2, λD) + σZi.
Here Xi is the experimental distance indexed by i, Yi is the
experimental force at distance Xi, and FS(R)(X ) is the nu-
merical solution of the DLVO force where the index S (R)
indicates the model without (with) roughness. The experimen-
tal uncertainties are assumed to follow a Gaussian distribution
with standard deviation σ . Zi are independent and iden-
tically distributed random variables with Zi ∼ Norm(0, 1).
In the models described above, (
1, 
2, λD) represent the
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(a) (b)

(c) (d)

(e) (f)

(g)

(i)

(h)

FIG. 3. Topography AFM scans of the rough surfaces, (a) 100
nm, (c) 400 nm, (e) 600 nm, and (g) 1200 nm in thickness of the
Au films on Si with 1.2, 2.48, 3.9, and 4.91 nm RMS roughness,
respectively. These are one out of eight AFM images that have been
taken to consider the roughness incorporation. (i) 100-nm Au coated
on borosilicate sphere which has been obtained by inverse AFM
after removing the background curvature of the borosilicate sphere.
[(b), (d), (f), (h)] Logarithm of the density function f (z) = d p(z)/dz
of an area 1×1 µm2 from eight different AFM images at different
locations on the surface of the Au films (100, 400, 600, and 1200
nm thickness, respectively), which were also combined with the
AFM image of sphere. The corner top inset shows the cumulative
distribution of the combined images, which is less than 1. (i) Inverse
AFM topography of the 100-nm Au (with 6.3 nm RMS roughness)
film on the borosilicate sphere after removing the special background
curvature of the borosilicate sphere.

parameters of interest for the DLVO force, while σ is a
nuisance parameter. The parameters (
1, 
2, λD, σ ) were
determined from each experimental force-distance curve by
maximizing the log-likelihood of the model. The confidence
region for the fitting parameters was determined using the
asymptotic form of the Wilks test (see Supplemental Material
[21]). A converged partitioning method was used to numeri-
cally find the confidence region [33]. For the one-dimensional
plot of the parameters, the confidence region was fit inside
a three-dimensional (3D) box, and the extremes of the box
were plotted. Therefore, all the uncertainties are systemati-
cally overestimated.

IV. RESULTS AND DISCUSSION

In this section, we will discuss the results of the force
measurements. We subdivide them into two sections (1) mea-
surement in pure ethanol and (2) measurement with added
salt, [NaCl] = 0.01M in ethanol. In all the analyses, only the
force curves for surface separations between 50 and 300 nm
were used unless stated otherwise.

A. Pure ethanol

The force curves between a gold-coated sphere and plates
with varying combined roughness in the unsalted solution are
plotted in Figs. 4(a), 4(c), 4(e), and 4(g). These plots illustrate
how an increasing surface roughness leads to an increase
of the total force. The smoother sample [Fig. 4(a)], which
has a combined RMS roughness of 8 nm, displays a total
attractive force, while the rougher samples [Figs. 4(c), 4(e),
and 4(g)] show a total repulsive force. Because the Casimir
contribution is solely attractive for ethanol as the intervening
medium, the main contribution to the force for the rough sam-
ples must arise from the repulsive EDL force. Moreover, this
electrostatic contribution seems to diminish with diminishing
roughness until it becomes comparable to or even smaller
than the Casimir force for the smoothest sample. We must
remark that the Casimir attraction becomes stronger for the
rougher surfaces due to the contribution of the increasing high
roughness peaks [15]. Nevertheless, the repulsive electrostatic
force seems to be enhanced by surface roughness at a rate
faster than the Casimir contribution, thus accounting for the
increase in the total force with surface roughness.

Because the attractive Casimir contribution plays a sec-
ondary role in the unsalted solution, for the theoretical
analysis we will model the permittivity of gold using the
Drude model of Eq. (3). The results for the 68.27% confidence
regions for the fitted parameters of the smoothest sample using
both the standard and modified DLVO models are illustrated
in Fig. 5. The maximum-likelihood parameters of both mod-
els describe in a satisfactory manner the experimental data
(Fig. 4(a) and see Supplemental Material Sec. D for Tables 1,
2, and 3 [21]). What is more, the confidence regions of both
models present significant overlap (see Fig. 5). Therefore,
within our experimental sensitivity, the corrections due to
8-nm rms roughness to the DLVO model are statistically
insignificant. Finally, we remark that the confidence regions
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FIG. 4. Measured force vs separation distance for different sur-
face roughness (where the sum of the roughness of the plate and the
sphere ranges from 7.8 to 11.5 nm). Moreover, the plots represent
a comparison between the two models, one incorporating roughness
(modified) and the other without roughness (standard), within the
framework of the DLVO theory. The force measurements took place
in two different environments: pure ethanol, and added salt, [NaCl]
= 0.01M, in ethanol. The force in (a) and (b) corresponds to an
RMS value of 7.5, while the forces in (c) and (d), (e) and (f),
and (g) and (h) are associated with RMS values of 9.0, 10.3, and
11.5 nm, respectively. The entire experimental data set is shown in
green, while the outcomes for the modified and standard models are
represented in orange and blue, respectively.

are skewed with respect to the axes defined by 
1, 
2, λD.
This indicates that the effect of the parameters on the force is
coupled. For instance, Fig. 5(d) illustrates that by decreasing

2 while increasing 
1 an extremely similar force curve can
be produced. This degree of correlation justifies a posteriori
the need to perform a simultaneous three-dimensional param-
eter search.

FIG. 5. (a) Three-dimensional confidence intervals for the
smoothest sample (7.5 nm RMS) in pure ethanol. The 68.27% con-
fidence region of the models with and without roughness present
significant overlap. [(b)–(d)] Two-dimensional projections of the
confidence interval. The oblong shape indicates that the parameters
of the model (Debye length and surface potential) have a certain
degree of correlation.

The samples with 9.0 and 10.3 nm RMS also present over-
lapping confidence regions. Only the sample with 11.5 nm rms
exhibits a significant correction due to roughness. Its three-
dimensional confidence region is illustrated in Fig. 6. It can
be immediately seen that the confidence regions present no
overlap in three dimensions. Moreover, the two-dimensional
projections show that the region assigned to the modified
DLVO model is smaller than for the standard DLVO model,
implying an overall better fit (see Supplemental Material Sec.
D for Tables 6 and 7 [21]). Unlike for the 8-nm sample, we
were unable to obtain an upper bound for 
2; this, we argue,

FIG. 6. (a) Three-dimensional confidence intervals for the most
rough sample (11.4 nm RMS) in pure ethanol. The 68.27% con-
fidence region of the models with and without roughness have no
overlap. [(b)–(d)] Two-dimensional projections of the confidence
interval. No upper boundary for the 
2 potential could be obtained.
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FIG. 7. Fit results of the standard and modified methods are de-
picted with confidence intervals. The maximum-likelihood estimates
of the standard and modified methods are represented by blue and
orange vertical lines, respectively. [(a) and (b)] Debye length vs
roughness in pure ethanol and [NaCl] = 0.01M in ethanol. The inset
represents our fitted results for RMS values of 9.0 and 10.3 nm to
illustrate the predictions of two distinct models. [(c) and (d)] The
surface potential 
1 between pure ethanol, and in [NaCl] = 0.01M
in ethanol. The results account for the Casimir force using the Drude
model only, which gives nonphysical results for the salted solution.
[(e) and (f)] The surface potential 
2 between pure ethanol and
[NaCl] = 0.01M in solution.

is a consequence of the exponential dependence of Eq. (10)
with the surface potentials (see Supplemental Material Sec.
C [21]. Therefore, ignoring the contributions of roughness
results in an artificial increase in the Debye length and the
surface potential 
1. This comes as no surprise, since the
contribution of the high roughness peaks augments the force
[15]. Therefore, to account for this increase—in the absence of
roughness—the potential 
1 and/or λD must rise since higher
values of those parameters result in a stronger force.

The relationship between the fitted Debye length and the
RMS roughness for the S and R models for pure ethanol is
illustrated in Fig. 7(a), where we have presented the minimum
and maximum values of the Debye length of the three-
dimensional confidence region. For most of the samples, the
incorporation of roughness into the DLVO theory had a small
effect on the fitted Debye length. Nevertheless, our data seem
to show a secondary trend: a positive correlation between the
Debye length and surface roughness. However, we must be
careful about establishing such a relationship, since the theo-
retical value for the Debye length λD of ethanol (pKa ∼ 15.4)
would be hundreds of nanometers, which is never observed.

The reason lies in the presence of impurities. Indeed, commer-
cial chemically pure ethanol has been reported in the scientific
literature to have a Debye length ranging from 20 to 100 nm
[25]. Our fit results, as illustrated in Fig. 7(a), are compati-
ble with these observations for λD. Although the equipment
utilized during force measurements was thoroughly rinsed
with ethanol and DI water three times and then dried be-
fore each measurement, our current experimental setup cannot
definitively assert the relation between the Debye length and
surface roughness. To that end, independent measurements of
the salt concentration (for instance, by measuring electrical
conductance) should be performed.

Figures 7(c) and 7(e) illustrate the relationship between
the fitted values for the surface potentials 
1 and 
2, and
the corresponding RMS roughness of the samples. Notably,
for the vast majority of samples, the absolute values of the
potentials violate the equality e|
| 	 kBT (≈25 meV at room
temperature). This justifies the need to incorporate the full
nonlinear form of Eq. (10). Our trade-off, as it was men-
tioned before, was the inability to fully bind the values of
the potentials to 68.27% confidence using our fitting proce-
dure. This issue arises from the nature of Eq. (10) because
the dependence of the potentials is exponential. As a result,
small increments of their values have little effect on the force-
displacement curve for the separation distances studied in this
work (see Supplemental Material Sec. C [21]). Therefore, for
those occasions, only one bound could be obtained. These,
however, give enough information to discern important trends.
The smallest surface potential, 
1, follows a straightforward
monotonic increase with increasing roughness. The case for
the maximum-likelihood values of 
2 becomes more com-
plex; however, the lower bound still exhibits an increasing
trend with roughness. It is unlikely that the true value of the
surface potentials lies well above 500 mV, and thus the large
values of the maximum likelihood might be a mathematical
artifact due to our inability to obtain an upper bound. More
likely, the true values of the higher potential 
2 may lie closer
to the lower bound.

With that in mind, we put forward an explanation for the
observed enhancement of the electrostatic double-layer force
with surface roughness. We conjecture that, for a fixed value
of the surface potential, the presence of rough asperities ef-
fectively produces a local increase of the electric field near
the surface, thus resulting in stronger electrostatic interactions
and a stronger repulsive force. Because standard DLVO theory
assumes that the double-layer force arises from flat surfaces,
the only way for the model to account for stronger electric
fields is if the absolute value of the surface potentials in-
creases. This is consistent with the trend observed in Figs. 7(c)
and 7(e). The situation is no different for the modified DLVO
theory since the PFA only accounts for the geometric varia-
tions in separation created by roughness—which are present
in all rough samples—but does not include any changes to the
electric field generated by the asperities.

Overall, incorporating roughness in DLVO using the PFA
has little effect on the majority of samples, as can be seen
by the overlapping confidence regions. The geometric effect
of roughness only comes into play when the forces are con-
siderably strong [Fig. 4(g)], due to a combination of strong
potential and/or large values of the Debye length. Therefore,
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roughness seems to play a secondary role by changing the
free parameters of the model, (
1, 
2, λD), likely due to the
enhancement of the electric field near the surface.

B. [NaCl] = 0.01M in ethanol

The force-displacement curves for the salted solution of
[NaCl] = 0.01M in ethanol are illustrated in Figs. 4(b), 4(d),
4(f), and 4(h). In this situation, the charge concentration
is increased, leading to a smaller Debye length and as a
result a significant reduction in the electrostatic double-layer
force. Therefore, the Casimir force plays the dominant role,
resulting in a total attractive force. We observed that the ex-
perimental force was significantly stronger than the Casimir
force predicted by Lifshitz theory using the Drude model.
This discrepancy can be modeled as a remnant attractive elec-
trostatic force, which means that the surface potentials now
have opposite signs. We remark that Eq. (10) fixes the zero
of the potential as the voltage at which the solution has no
charge density. The presence of salts is likely to change this
zero of the potential as compared with the pure ethanol case,
accounting for the switch in signs.

The fitted results with their confidence intervals are il-
lustrated in Figs. 7(b), 7(d), and 7(f). For all samples, the
confidence intervals overlap, suggesting no significant geo-
metrical effects due to roughness. This is expected since the
double-layer force is considerably smaller, and we only ob-
served significant geometrical effects for the strongest force in
the previous section. Furthermore, in this scenario, the highest
Debye length is observed on the smoothest surface, and subse-
quently, the Debye length experiences a gradual decrease with
an increase in roughness as shown in Fig. 6(b). However, the
fitted values of the Debye length are unphysical, especially for
the smoothest samples, which yield a value higher than that in
pure ethanol. Indeed, at a concentration of [NaCl] = 0.01M,
the theoretical value of the Debye length is ∼3 nm. This unex-
pected trend suggests that the estimation of the Casimir force
using the Drude model is inadequate for this scenario. Indeed,
as was mentioned in Sec. III A, the Drude model underesti-
mates the Casimir contribution, thus resulting in a fictitious
increase of the electrostatic double-layer force. Therefore, to
improve the accuracy of the fits when the Casimir contribution
is dominant, we switched to the optical model, which accounts
for the optical properties of the gold film.

C. [NaCl] = 0.01M in ethanol with the optical model

The results after implementing the optical model are illus-
trated in Figs. 8(a), 8(c), 8(g), and 8(e). The fitted parameters
and their confidence interval for the Debye length are illus-
trated in Fig. 8(d); as expected, there is a notable reduction
in the Debye length value. Moreover, in contrast to the pure
ethanol case, the Debye length seems to diminish with in-
creasing roughness. This is consistent with the possibility that
surface roughness augments the accumulation of charges near
the surfaces, resulting in a smaller Debye length. Neverthe-
less, as mentioned previously, within our current experimental
setup we cannot rule out the contribution of impurities in the
observed trend.

FIG. 8. Fit results of the standard and modied methods are de-
picted with confidence intervals in [NaCl]= 0.01M in ethanol using
the optical model. [(a), (c), (e), (g)] The measured force roughness
and the corresponding t curves obtained by the optical model. The
inset of (c) indicates the t for small separation distances (30–70 nm).
(b) The residual of the smoothest surface (RMS 7.8 nm). [(d), (f),
(h)] The Debye length and surface potential (
1 and 
2) vs surface
roughness. The insets labeled A and B illustrate t results at small and
large separation distances, respectively. The maximum-likelihood
estimates of the standard and modied methods are represented by
blue and orange dashes.

Quite surprisingly, by employing the optical model, we
did not observe any remnant electrostatic contribution for
the smoothest film. Indeed, the residue between the experi-
mental force and the predictions of the Casimir force using
the optical model is shown in Fig. 8(b). As can be seen,
the remaining signal is within the noise level of our experi-
ment. Thus, for the smoothest film, the electrical double-layer
force lacks sufficient strength to be observed experimen-
tally. This has important implications for Casimir-related
experiments in liquids which may benefit by suppressing
nongenuine contributions to the Casimir force—like the
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electrostatic double-layer force—by improving the smooth-
ness of the surfaces.

In the case of the 9-nm RMS surfaces, we encountered
the necessity of conducting fitting within two distinct ranges.
Since the Debye length did not demonstrate the expected
reduction within the range 50–300 nm, we considered
possible causes. We believed that the noise contribution in the
distance range between 50 and 300 nm might be stronger than
the contribution of the remnant electrical double-layer force.
This issue can be solved by performing the fit over shorter
separation distances (30–70 nm), where the signal-to-noise
ratio is the largest. The results of this second fit are shown
in the inset of Fig. 8(c). As can be seen, the fit at shorter
distances predicts a smaller (and more reasonable) value of
the Debye length as compared with the fit at large separation
distances. Their respective fitted values are illustrated in
Fig. 8(d) with labels A and B for the short- and long-distance
range, respectively.

Regarding the surface potential, both the optical model
and the Drude model provide comparable descriptions of the
behavior of the surface potential. As shown in Figs. 7(c) and
7(e) and Figs. 8(f) and 8(h), the surface potentials 
1 and

2 exhibit a steady upward trend as the surface roughness
increases, displaying negative and positive values of the sur-
face potentials, respectively. This observation is consistent
with the explanation put forward in the previous section; in
essence, the surface asperities locally enhance the electric
field, resulting in an effective increase in the absolute value
of the potentials with roughness.

Comprehensive information on the Debye length, and sur-
face potentials with lower and upper boundary in the pure
ethanol and in the salted solution, can be obtained by the
fit results provided (see Supplemental Material Sec. D for
Tables 1–5 [21]). Additionally, in order to elucidate the devi-
ation between the experimental results and the S and R model
predictions for both the Drude and plasma models, σ and R2

values have been included (see Supplemental Material Sec. D
for Tables 5 and 6 [21]).

V. CONCLUSIONS

In summary, we have investigated the pivotal influence of
nanoscale roughness on the DLVO theory between surfaces
upon contact in a pure ethanol environment, and with salt
[NaCl] = 0.01M added in ethanol solution. The fitting pa-
rameters of the standard DLVO (S) and roughness DLVO (R)
models yield similar results for most values of the combined
RMS roughness of the interacting surfaces as is evidenced in
the overlapping 68.27% confidence regions. The latter demon-
strates that surface roughness does not modify the qualitative
behavior of the force-displacement curve. The roughness,
however, is significantly correlated with the parameters of
the model. Indeed, we observed that the Debye length fol-
lows a monotonic increase with increasing roughness in the
pure ethanol ambient, whereas after salt is introduced, the
Debye length decreases with increasing surface roughness.
This trend, however, cannot be definitively established with

our current experimental setup, due to our inability to ac-
count for the effects of contaminants in the trend. For future
experiments, independent measurements of the Debye length
should be performed, for instance, by measuring the electric
conductivity with a three-terminal method.

In both models (standard DLVO and roughness DLVO
models), whether in pure ethanol or [NaCl] = 0.01M in
ethanol, the absolute value of the surface potentials 
1 and

2 tends to increase with increasing roughness. We propose a
microscopic explanation for this observation in terms of local
electric field enhancement due to the roughness asperities. The
DLVO theory with the PFA can only incorporate the geomet-
ric effects of roughness but does not account for modifications
of the electric field near the surface. This offers an interesting
problem for theoretical investigation. Indeed, a model that
incorporates roughness at the level of the Poisson equation
might yield more adequate results. Moreover, the fitted values
of the surface potentials, most of them above 25 mV, illustrate
the need to incorporate the full nonlinear form of the Poisson-
Boltzmann equation. Undeniably, this came with the inability
to fully bind the value of the surface potentials. Therefore,
future efforts could also focus on improving the numerical
techniques presented in this work to obtain a complete bound
for the confidence interval.

Finally, we have shown how failing to account for the
optical properties of the films yields unphysical values for the
Debye length in [NaCl] = 0.01M in ethanol. This illustrates
the importance of fully characterizing the films for experi-
ments aiming to study dispersion forces. What is more, we
showed that using smooth films can meaningfully suppress
the electrostatic contribution in the salted solution, which is
of great relevance for Casimir-related experiments. It is worth
mentioning that our calculations using the Lifshitz theory
completely ignored the contributions of the salt to the Casimir
force. Recent theoretical investigations have revealed that in
salted solutions, an additional longitudinal electromagnetic
mode is present due to movable ions [34]. While this mode
modifies the Casimir force, we estimated its contribution to be
smaller than 1 pN for our experimental setup, which is within
the noise level and it can be safely discarded. The effect of
the ions on the dielectric permittivity of ethanol raises another
important point, to our knowledge, no universally accepted
approach has been developed so far, thus presenting an in-
teresting topic for future studies. This creates a compelling
avenue for future research endeavors in the field of electro-
chemistry and materials science.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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