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Transient effects in quantum dots contacted via topological superconductor
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1Institute of Physics, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
2Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
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We investigate gradual development of the quasiparticle states in two quantum dots attached to opposite
sides of the topological superconducting nanowire, hosting the boundary modes. Specifically, we explore
the nonequilibrium cross-correlations transmitted between these quantum dots via the zero-energy Majorana
modes. Our analytical and numerical results reveal the nonlocal features observable in the transient behavior of
electron pairing, which subsequently cease while the hybrid structure evolves towards its asymptotic steady-state
configuration. We estimate duration of these temporary phenomena. Using the nonperturbative scheme of the
time-dependent numerical renormalization group technique we also analyze nonequilibrium signatures of the
correlation effects competing with the proximity induced electron pairing. These dynamical processes could
manifest themselves in braiding protocols imposed on the topological and/or conventional superconducting
quantum bits, using superconducting hybrid nanostructures.
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I. INTRODUCTION

Majorana quasiparticles localized at the edges of one-
dimensional chains [1], propagating along the boundaries of
two-dimensional topological superconductors [2] and con-
fined on internal defects in p-wave bulk superconductors [3]
have recently been the topic of intensive studies (see, e.g.,
Refs. [4–9] and references cited therein). Such research inter-
ests are motivated by the exotic character of Majorana modes
and additionally stimulated by perspectives for constructing
stable quantum bits (immune to external perturbations due to
topological protection) and for performing quantum computa-
tions (by virtue of their non-Abelian character) [10]. Majorana
quasiparticles, realized in various platforms, including the
minimalistic Kitaev chain consisting of two and three cou-
pled quantum dots [11,12], always emerge in pairs. To what
extent, however, these spatially separated zero-energy modes
are cross-correlated either statically (enabling teleportation
phenomena [13–16]) or dynamically is still a matter of contro-
versy. Some theoretical studies have predicted that Majorana
modes might exhibit their dynamical interdependence in the
shot-noise [17–20]. However, any evidence for such nonlocal
cross-correlations is missing.

Another convenient platform for exploring the unique fea-
tures of Majorana modes are hybrid structures, where single or
multiple quantum dots are side-attached to topological super-
conductors [7]. The natural tendency of Majorana modes to be
harbored at the outskirts of low-dimensional superconductors
gives rise to their leakage onto the attached quantum dot(s)
[21–25]. Such leakage has been indeed reported experimen-
tally [26], stimulating further theoretical studies concerning
the interplay of Majorana modes with the correlation-driven
effects [27–38]. Here we propose to consider similar hy-
brid structures, comprising two quantum dots interconnected
through the topological superconductor, in order to search for
possible signatures of their nonlocal feedback effects appear-
ing under nonequilibrium conditions.

Specifically, we investigate the dynamical properties of our
setup (displayed in Fig. 1) right after coupling its constituents.
The system consists of two quantum dots hybridized with the
topological superconducting nanowire, hosting the Majorana
boundary modes. One of the quantum dots, QD1, is embedded
between the conventional superconductor (S) and normal (N)
leads, enabling its quasiparticles to be probed by the An-
dreev (electron-to-hole scattering) spectroscopy. The second
quantum dot, QD2, is flanked on the opposite side of the topo-
logical superconductor. These spatially distant quantum dots
are communicated solely through the Majorana zero-energy
modes of the topological superconductor. In what follows,
we inspect nonlocal phenomena, appearing in the transient
dynamics of measurable observables.

It is important to note that the time-resolved studies of
topological superconductors have so far addressed various as-
pects, including their dynamics imposed by quantum quench
across the topological transition in the Rashba nanowires
[39,40], the nonequilibrium effects induced upon switching
on and off the topological phase in segments of the Kitaev
chains [41,42], gradual leakage of the Majorana mode onto
single quantum dot [43], the crossed-Andreev and ballistic
charge-transfer processes [15], nonequilibrium dynamics of
the Majorana-Josephson system [44], as well as the waiting
times of a topological Andreev interferometer [45]. As re-
gards the nonlocal effects, they have been mainly investigated
under the static conditions, considering finite hybridization
of the Majorana modes [32]. Our study is therefore comple-
mentary to those, focusing on the nonlocal dynamical effects
detectable in the hybrid structures with topological supercon-
ducting nanowire.

For microscopic considerations we assume the constituents
of our setup to be disconnected until t = 0. After coupling
them, we explore the quantum evolution of physical ob-
servables (for t > 0). In particular, we determine the charge
occupancy of both quantum dots, the local and nonlocal
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FIG. 1. Schematic view of two quantum dots attached to the
opposite sides of the topological superconducting nanowire, hosting
Majorana boundary modes. The first quantum dot, QD1, is placed
between the normal lead (N) and conventional superconductor (S),
so that its emerging quasiparticles can be probed by the Andreev
spectroscopy. The second quantum dot, QD2, is floating.

electron pairings, and the charge current flowing through QD1
in the unbiased and biased setup. The differential conductance
of such current could enable empirical detection of the grad-
ually emerging trivial and topological bound states of QD1.
We find that nonlocal effects extend solely over the transient
region and later on (when additional abrupt or continuous
changes are imposed on the energy levels of quantum dots
and/or the coupling to external leads) they completely vanish.

This paper is organized as follows: In Sec. II we formulate
the microscopic model. Section III presents the method rele-
vant to uncorrelated system and discusses the analytical and
numerical results obtained in the transient region of the unbi-
ased setup. Next, in Sec. IV, we show the numerical results for
the time-dependent charge transport induced by the voltage
applied across QD1 between the external N-S leads. In Sec. V
we study the competition of the Coulomb repulsion with the
superconducting proximity effect, manifested in the local and
nonlocal electron pairings, by means of the time-dependent
numerical renormalization group method. Section VI con-
cludes the paper and summarizes the main findings. Ap-
pendixes A and B present useful technical details, concerning
derivation of the time-dependent physical observables.

II. MICROSCOPIC MODEL

The hybrid structure displayed in Fig. 1 can be modeled by
the following Hamiltonian:

Ĥ =
∑
i=1,2

ĤQDi +
∑

β=N,S

(
Ĥβ + ĤQD1−β

)+ ĤM−DQD. (1)

The ith quantum dot (QDi) is treated as the Anderson-type
impurity

ĤQDi =
∑

σ

εid̂
†
iσ d̂iσ + Un̂i↑n̂i↓, (2)

where the operator d̂iσ (d̂†
iσ ) annihilates (creates) electron with

spin σ = ↑,↓ at the energy level εi and U is the Coulomb
repulsion between opposite-spin electrons.

We assume that QD1 is embedded between the su-
perconducting (β = S) and normal (β = N) leads. The
superconductor is described by the BCS-type Hamil-
tonian ĤS =∑k,σ ξSkĉ†

Skσ ĉSkσ −∑k(�SCĉ†
Sk↑ĉ†

S−k↓ + H.c.),
where the pairing gap �SC is isotropic and the energies
ξSk = εSk − μS are expressed with respect to the chemical
potential μS . The normal lead is treated as a free fermion
gas of itinerant electrons, ĤN =∑k,σ ξNkĉ†

Nkσ ĉNkσ , where
ξNk = εNk − μN . Practically, the latter can be thought of as
a metallic tip of the scanning tunneling microscope (STM).
External voltage V applied across the leads detunes the chem-
ical potentials, μN − μS = eV , inducing the charge current.
Such processes arise from the hybridization terms

ĤQD1−β =
∑
k,σ

(Vβk d̂†
1σ ĉβkσ + V ∗

βk ĉ†
βkσ d̂1σ ), (3)

where Vβk denote the corresponding tunnel matrix elements.
We restrict our considerations to the Andreev (electron-to-
hole) scattering regime, which occurs for small voltages,
|eV | < �SC . Under such circumstances one can use the wide-
band limit approximation, introducing the constant couplings,
�β = π

∑
k |Vβk|2δ(ε − εβk ).

Focusing our study on transient phenomena in the subgap
regime, we treat the pairing gap �SC as the largest energy
scale. Superconducting proximity effect can be then modeled
by ĤS + ĤQD1−S ≈ �S (d̂†

1↓d̂†
1↑ + d̂1↑d̂1↓), where �S plays the

role of the electron pairing induced at QD1 [46].
The last term in (1) describes the Majorana modes of the

topological superconducting nanowire [21,22,47]

ĤM−DQD = λ1(d̂†
1↑ − d̂1↑)γ̂1 + iλ2γ̂2(d̂†

2↑ + d̂2↑) + iεM γ̂1γ̂2,

(4)

where γ̂
†
i = γ̂i are self-Hermitian Majorana operators. We

assume that only the spin-↑ electrons of the quantum dots are
coupled to these Majorana boundary modes with the coupling
strength λi. For nanowires shorter than the superconducting
coherence length one should take into account an overlap εM

between the Majorana modes. Here we restrict ourselves to
sufficiently long nanowires, where such overlap is practically
negligible, unless stated otherwise.

For convenience, we recast the self-Hermitian operators
γ̂i = γ̂

†
i by the operators f̂ (†)

i defined through the Bogoliubov
transformation

γ̂1 = 1√
2

( f̂ † + f̂ ), (5)

γ̂2 = i√
2

( f̂ † − f̂ ), (6)

which obey the anticommutation relations { f̂ , f̂ †} = 1 of the
conventional fermion fields.

III. DYNAMICS OF UNBIASED SETUP

Let us first study the time-dependent physical observables
of our unbiased hybrid structure, neglecting the correlations,
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U = 0. For this purpose we adapt the method introduced ear-
lier in Refs. [43,48,49]. Specifically, we solve the Heisenberg
equations of motion ih̄∂t Ô = [Ô, Ĥ ] for the localized d̂ (†)

iσ (t )
and itinerant ĉ(†)

βkσ
(t ) electrons.

We assume the components of our setup (Fig. 1) to
be disconnected until t � 0. This implies that initial (t =
0) expectation values of the mixed operators vanish, i.e.,
〈d̂ (†)

iσ (0)d̂ j �=iσ ′ (0)〉 = 0 [50]. The system is next abruptly
formed and we study its evolution for t > 0 solving the
coupled differential equations of the second quantization op-
erators. It is convenient to introduce the Laplace transforms
O(s) = ∫∞

0 e−st Ô(t )dt to account for the initial conditions of
arbitrary physical observables. This approach is reliable for
uncorrelated structures, U = 0, but it can be also generalized
by incorporating the perturbative treatment of interactions. Fi-
nally, the time-dependent observables O(t ) can be determined
from the inverse Laplace transforms L−1{O(s)}(t ).

In what follows, we assume the energy levels of both quan-
tum dots to be equal, εi = 0, for which we derive analytical
expressions of the Laplace transforms for d̂ (†)

iσ (s) and f̂ (†)(s).

Their inverse Laplace transforms yield analytical expressions
for the expectation values of various local and nonlocal ob-
servables that are of interest in this paper. We also note that in
the absence of correlations on the quantum dots the operator
d̂ (†)

2↓ (s) decouples from the system dynamics, therefore, we do
not consider it in Secs. III and IV.

A. Laplace-transformed equations of motion

Heisenberg equations of motion for the localized electrons
d̂ (†)

1σ mix them (via the hybridization Vβk) with equations for
the itinerant electrons ĉ(†)

βkσ
. Their detailed derivation has been

previously discussed by us in Refs. [48,49], considering a
single quantum dot conventional N-QD-S nanostructure. In
the present case, however, we must additionally take into
account the operators f̂ (†)(s) originating from the coupling
λ1 [43] and indirectly also the operators d̂ (†)

2↑ because of the
coupling λ2.

After some algebra, we find the following Laplace trans-
forms (valid for εi = 0)

d̂1↑(s) = d̂†
1↑(0)

λ2
1(s + �N )2

H3(s)
+ d̂1↑(0)

(s + �N )H1(s)

H3(s)
− id̂†

1↓(0)
�SH1(s)

H3(s)

+ id̂1↓(0)
�Sλ

2
1(s + �N )

H3(s)
− i[ f̂ (0) + f̂ †(0)]

λ1(s + �N )√
2H2(s)

+
∑

k

VkŜk(s), (7)

d̂2↑(s) = d̂2↑(0)
s2 + λ2

2

s
(
s2 + 2λ2

2

) − d̂†
2↑(0)

λ2
2

s
(
s2 + 2λ2

2

) + i
[

f̂ (0) − f̂ †(0)
] λ2√

2
(
s2 + 2λ2

2

) , (8)

f̂ (s) = i
[
d̂†

1↑(0) − d̂1↑(0)
]λ1(s + �N )√

2H2(s)
− [d̂†

1↓(0) + d̂1↓(0)]
λ1�S√
2H2(s)

+ i[d̂†
2↑(0) + d̂2↑(0)]

λ2√
2
(
s2 + 2λ2

2

)
+ f̂ (0)A(s) + f̂ †(0)B(s) + iλ1√

2s

∑
k

Vk[Ŝ†
k(s) − Ŝk(s)], (9)

where

H1(s) = s3 + 2�N s2 + (�2
N + �2

S + λ2
1

)
s + λ2

1�N , (10)

H2(s) = s3 + 2�N s2 + (�2
N + �2

S + 2λ2
1

)
s + 2λ2

1�N , (11)

H3(s) = (s2 + 2s�N + �2
N + �2

S

)
H2(s), (12)

A(s) = s2 + λ2
2

s
(
s2 + 2λ2

2

) − λ2
1(s + �N )

sH2(s)
, (13)

B(s) = s2
(
λ2

2 − λ2
1

)+ s�N
(
2λ2

2 − λ2
1

)+ λ2
2

(
�2

N + �2
S

)
(
s2 + 2λ2

1

)
H2(s)

,

(14)

Ŝk(s) = ĉ†
k↓(0)H1(s)�S

H3(s)(s − iξk )
− i

ĉk↑(0)H1(s)(s + �N )

H3(s)(s + iξk )

+ ĉk↓(0)λ2
1(s + �N )�S

H3(s)(s + iξk )
+ i

ĉ†
k↑(0)λ2

1(s + �N )2

H3(s)(s − iξk )
, (15)

where we now use Vk ≡ VNk, ĉ†
kσ ≡ ĉ†

Nkσ , ξk ≡ ξNk, and εk ≡
εNk. The Laplace transform of d̂1↓(s) can be obtained from the

exact relation

d̂1↓(s) = 1

s + �N

[
i�Sd̂†

1↑(s) + d̂1↓(0) − i
∑

k

Vkĉk↓(0)

s + iξk

]
.

(16)

We can notice that d̂ (†)
1σ (s) does not depend on the second

quantum dot operators d̂ (†)
2σ ′ (0). Similarly, the operator d̂ (†)

2↑ (s)

neither depends on d̂ (†)
1σ ′ (0) nor on ĉ(†)

kσ ′ (0). Such properties
are shown here explicitly for εi = 0, but they are valid for
arbitrary energy levels as well. On this basis, one can expect
that physical observables corresponding to different quantum
dots should be independent of one another. For instance, the
charge occupancy of QD1 should neither depend on the cou-
pling λ2 nor the energy level ε2. In other words, the charges
accumulated at the quantum dots at a given time instant t > 0
are expected to be uncorrelated [51]. In the remaining part of
this section we check whether such expectation is really true.

Using the inverse Laplace transforms of d̂ (†)
iσ (s) we can

explicitly determine the charge occupancy at each quantum
dot niσ (t ) = 〈d̂†

iσ (t )d̂iσ (t )〉, the induced on-dot 〈d̂i↓(t )d̂i↑(t )〉,
interdot 〈d̂1↓(t )d̂2↑(t )〉 electron pairings, etc. Another
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quantity of our interest will be the charge current jNσ (t )
flowing from the normal lead to QD1 because (in presence
of the external voltage eV = μN − μS) its differential
conductance Gσ (V, t ) = ∂ jNσ (t )/∂V could empirically probe
the dynamically evolving quasiparticles of QD1 (see Sec. IV).

For convenience, we assume the superconducting lead to
be grounded, μS = 0. To simplify notation, we set h̄ = e =
kB = 1 and use the coupling �S as a unit for the energies,
unless stated otherwise. In this convention, time will be ex-
pressed in units of h̄/�S and the currents in units of e�S/h̄,
respectively. In realistic situations �S ∼ 200 µeV, therefore
typical timescales would of the order of ≈3.3 ps and the
characteristic current unit would be ≈48 nA.

B. Time-dependent occupations

We start by investigating the time-dependent occupation
number niσ (t ) of the quantum dots and another expectation
value n f (t ) = 〈 f̂ †(t ) f̂ (t )〉, related with the Majorana quasi-
particles. Below, we present explicit expression for the spin-↑
occupancy of QD1 obtained for εi = 0 (its detailed derivation
is presented in Appendix A). Using the Laplace transform (8),
we find

n1↑(t ) = M(t ) +
∑

σ

n1σ (0)Mσ (t ) + �N

π

∫ ∞

−∞
dε
1(ε, t )

− �N

π

∫ ∞

−∞
dε fN (ε)[
1(ε, t ) − 
2(ε, t )], (17)

where

M↑(t ) =
(
L−1

{
(s + �N )H1(s)

H3(s)

}
(t )

)2

− λ4
1

(
L−1

{
(s + �N )2

H3(s)

}
(t )

)2

, (18)

M↓(t ) = �2
Sλ

4
1

(
L−1

{
(s + �N )

H3(s)

}
(t )

)2

−�2
S

(
L−1

{
H1(s)

H3(s)

}
(t )

)2

, (19)

M(t ) = �2
S

(
L−1

{
H1(s)

H3(s)

}
(t )

)2

+ λ4
1

(
L−1

{
(s + �N )2

H3(s)

}
(t )

)2

+ λ2
1

2

(
L−1

{
(s + �N )

H2(s)

}
(t )

)2

, (20)


1(ε, t ) = �2
S

∣∣∣∣L−1

{
H1(s)

(s + iε)H3(s)

}
(t )

∣∣∣∣
2

+ λ4
1

∣∣∣∣∣L−1

{
(s + �N )2

(s + iε)H3(s)

}
(t )

∣∣∣∣∣
2

, (21)


2(ε, t ) =
∣∣∣∣L−1

{
(s + �N )H1(s)

(s + iε)H3(s)

}
(t )

∣∣∣∣
2

+ λ4
1�

2
S

∣∣∣∣L−1

{
(s + �N )

(s − iε)H3(s)

}
(t )

∣∣∣∣
2

, (22)

and fN (ε) = [1 + exp (ε/T )]−1 is the Fermi-Dirac distribu-
tion function, with T being the temperature and kB ≡ 1.
In calculations we assume T → 0. The opposite spin oc-
cupancy n1↓(t ) can be obtained in the same manner [see
Eq. (A3) in Appendix A]. Analytical determination of n1↓(t )
is here feasible, because all needed inverse Laplace transforms
L−1{F (s)}(t ) can be represented in a fractional form F (s) =
(s − s1) · · · (s − sn)/(s − sn+1) · · · (s − sm), where 2n < m.

In agreement with the expectations, we notice that n1↑(t )
is independent of the initial fillings of n2σ (0) and n f (0). The
term M(t ) [see the last part of Eq. (20)], however, contributes
some influence of the Majorana modes to n1↑(t ) because
d̂1↑(t ) expanded in terms of the electron operators at t = 0
contains nonvanishing contribution proportional to f̂ (0) and
f̂ †(0)

−i[ f̂ (0) + f̂ †(0)]
λ1√

2
L−1

{
s + �N

H2(s)

}
(t ). (23)

For �N = 0, this expression yields

λ2
1

2

sin
(
t
√

�2
S + 2λ2

1

)
�2

S + 2λ2
1

. (24)

Such a term does not depend on n f (0), but it reveals the
influence of QD1 coupling λ1 to the topological nanowire.

The parts which depend on the initial occupancy of QD1
are separated from another contribution dependent on the
itinerant electrons of the normal lead, represented by the last
terms of Eq. (17). Notice, however, that some information
about coupling with the normal lead enters M, M↑, and M↓
through the term with �N . It is interesting that n1σ (t ) is
independent of any parameter characterizing QD2 [i.e. λ2,
ε2↑, n2σ (0)]. Such dependence could eventually arise only for
nonvanishing overlap εM �= 0 between the Majorana modes.

Let us now analyze in some detail the case �N = 0, for
which explicit expressions can be derived. Assuming the ini-
tial empty fillings of both QDs, niσ (0) = 0, from the general
expression (17) we obtain

n1↑(t ) = 1

2
+ �S

2
√

�2
S + 2λ2

1

sin (t�S ) sin
(
t
√

�2
S + 2λ2

1

)

− 1

2
cos (t�S ) cos

(
t
√

�2
S + 2λ2

1

)
, (25)

n1↓(t ) = 1

2
+ �S

2
√

�2
S + 2λ2

1

sin (t�S ) sin
(
t
√

�2
S + 2λ2

1

)

− �2
S

2
(
�2

S + 2λ2
1

) cos (t�S ) cos
(
t
√

�2
S + 2λ2

1

)

− λ2
1

�2
S + 2λ2

1

cos (t�S ). (26)

For vanishing λ1 the occupancy has an oscillatory behavior

n1σ (t ) = sin2 (t�S ), (27)

with the time period equal to π/�S . For the opposite case
λ1 � �S , we can rewrite Eqs. (25) and (26) in the following
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approximate forms:

n1↑(t ) � 1
2 [1 − cos (t�S ) cos (

√
2tλ1)], (28)

n1↓(t ) � sin2

(
t�S

2

)
. (29)

The occupancy of QD2 behaves quite differently in com-
parison to n1σ (t ). From Eq. (8) we can notice that the operator
d̂2↑(s) is not coupled to a continuous spectrum of the nor-
mal lead, i.e., it does not depend on �N . For this reason we
get its undamped oscillations. Assuming the initial condition
n2↑(0) = 0, we analytically obtain

n2↑(t ) = 2λ2
2

2λ2
2 + ε2

2

sin2

(
t

2

√
2λ2

2 + ε2
2

)
, (30)

with the period 2π/(2λ2
2 + ε2

2 )1/2 and the constant amplitude
(unaffected by the coupling of QD1 to the normal lead). Only
for a finite overlap between the Majorana modes, εM �= 0, the
relaxation processes could be activated, driving the occupancy
of QD2 towards its steady limit (t → ∞) value.

Using Eq. (9) for f̂ (s), we can determine the time-
dependent occupancy n f (t ). For εi = 0 and �N = 0, it is
given by

n f (t ) = 1

2
+ [2n f (0) − 1] cos (

√
2λ2t )

×
[

λ2
1

�2
S + 2λ2

1

cos
(
t
√

�2
S + 2λ2

1

)+ �2
S

2
(
�2

S + 2λ2
1

)
]
,

(31)

which turns out to be independent of the initial values of
niσ (0).

Figure 2 presents the time-dependent occupancies com-
puted numerically for λ1 = λ2 = 8, assuming �N = 0
[Fig. 2(a)] and �N �= 0 [Fig. 2(b)]. We note that the obtained
results nearly coincide with the approximate formulas (28)
and (29). The spin-↓ occupancy of QD1 has a similar form
as for the λ1 = 0 case, but the oscillations are twice slower
with the period equal to 2π/�S . Note that, generally, the
oscillations of n1σ (t ) are substantially different for each spin
component. In the time-dependent occupancy n1↑(t ) we ob-
serve superposition of two oscillations: the fast ones, with the
period equal to

√
2π/λ1, and the amplitude oscillations, with

the time period equal to 2π/�S (related to the proximitized
QD1 in absence of the Majorana modes). On the other hand,
the opposite spin occupancy n1↓(t ) oscillates with the period
equal approximately to 2π/�S , cf. Eq. (29).

Let us now analyze the occupation dynamics in the case
of finite coupling �N . The corresponding results are shown
in Fig. 2(b), while in Fig. 3 we present detailed behavior of
n1σ (t ) together with contributions stemming from relevant
terms of the analytical formulas. First of all, one can note
that now a damping of the oscillatory behavior occurs, see
Fig. 2(b). This is even more revealed in different contributions
to n1σ (t ). In particular, the dashed-green line represents the
contribution from the term M(t ), cf. Eq. (20). One can clearly
observe its damped oscillations caused by the coupling �N .
On the other hand, the black-dashed line represents the contri-
bution due to the coupling of QD1 to a continuous spectrum of

FIG. 2. Time-dependent occupancies niσ (t ) of both quantum dots
(as indicated) and nf (t ) for λ1 = λ2 = 8, ε1 = ε2 = 0, assuming
the initial conditions niσ (0) = nf (0) = 0, and �N = 0 (upper panel),
�N = 0.2 (bottom panel). For clarity the curves are vertically shifted
by one (their initial value is zero). All parameters are expressed in
units of �S ≡ 1.

the normal lead, which basically describes the envelope of the
oscillations. The total sum of these contributions gives the re-
sulting time-dependent occupancy n1↑(t ) displayed by the red
curve in Fig. 3. The stationary limit value n1↑(t → ∞) = 0.5
is approached after a sequence of quantum oscillations with
the exponentially suppressed amplitude. Performing similar
calculations for n1↓(t ) we get the result presented by the thick
solid line. Now, the fast oscillations are very much suppressed
and one only observes slow oscillations decaying towards the
steady-state value of 1/2, see the blue curve in Fig. 3.

C. Time dependence of the on-dot pairing

The time-dependent electron populations of the individual
quantum dots are further interrelated with development of
the local and nonlocal pairings. Let us study this issue, first
considering the singlet pairing

C11(t ) ≡ 〈d̂1↓(t )d̂1↑(t )〉 (32)

induced on QD1 via its proximity to the (trivial) bulk su-
perconductor. We can analytically determine C11(t ) using the
inverse Laplace transforms of the operators d̂1σ (s) and follow-
ing the procedure, which is analogous to the calculations of
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FIG. 3. The time-dependent occupancies n1σ (t ) obtained for the
same set of model parameters as in Fig. 2 with �N = 0.2. To clarify
the behavior of n1↑(t ) we show the contributions from the term M(t )
(curve A) and the last term of Eq. (7) (curve B).

the charge occupancy n1σ (t ). For the initially empty quantum
dots and εi = 0, the on-dot pairing (32) is given by

C11(t ) = D(t ) + i�N�S

∫ ∞

−∞

dε

π
[ fN (ε)D1(ε, t ) + D2(ε, t )],

(33)

with functions D(t ) and D1,2(ε, t ) presented explicitly by
Eqs. (A10)–(A12) in Appendix A.

We notice the absence of any term dependent on λ2. It
means that electron pairing induced at QD1 is completely
unaffected by the second QD2. The pairing function (33)
depends on the initial filling of QD1, whereas it has no de-
pendence on n f (0), despite the appearance of operators f̂ (0)
and f̂ †(0) in the Laplace transform of d̂1↑(s). Such terms yield
the following result [see the last part of Eq. (A10)]

〈[ f̂ (0) + f̂ †(0)]2〉 i�Sλ
2
1

2
L−1

{
1

H2(s)

}
(t )L−1

{
s + �N

H2(s)

}
(t ),

(34)

which is indeed independent of n f (0).
For �N = 0 and initially empty QD1, the pairing correla-

tion function C11(t ) is purely imaginary. It can be written in
the following simple form:

C11(t ) = − i

2

[
λ2

1

�2
S + 2λ2

1

sin (t�S ) + �2
S + λ2

1

�2
S + 2λ2

1

× sin (t�S ) cos
(
t
√

�2
S + 2λ2

1

)+ �S√
�2

S + 2λ2
1

× cos (t�S ) sin
(
t
√

�2
S + 2λ2

1

)]
, (35)

representing a combination of the oscillations with
frequencies �S and (�2

S + 2λ2
1)1/2, respectively. For

λ1 � �S , the oscillations are characterized by a small
period ≈2π/(�2

S + 2λ2
1)1/2 and the amplitude modulated

by another periodicity of 2π/�S . In this case
C11(t ) ≈ − i

2 sin (t�S ) cos2 [ t
2 (�2

S + 2λ2
1)1/2].

FIG. 4. The on-dot pairing C11(t ) induced at QD1 obtained for
the same set of model parameters as in the bottom panel of Fig. 2
with λ1 = 8 (solid lines). For comparison, we also show C11(t ) in the
absence of topological nanowire, i.e., for λ1 = 0 (dashed curves).

For small values of the coupling λ1, one can neglect the
terms proportional (and of higher order) to ( λ1

�S
)2 and get

C11(t ) ≈ − i
2 sin (2t�S ). This result is identical to the case

when QD1 is coupled only to the superconducting lead, cf.
Refs. [48,49]. For �N �= 0, the on-dot pairing becomes a com-
plex function. Its real part originates from the last term in
Eq. (8) stemming from continuous spectrum of the normal
lead. This part depends on the Fermi level of the normal lead,
see Eq. (A3).

Figure 4 displays the time-dependent pairing C11(t ) ob-
tained for the unbiased setup (μ = 0) and for finite �N . We
observe an oscillating structure of the imaginary part, similar
to the behavior of n1↑(t ), cf. Figs. 2 and 3. This is related to the
transient charge current, flowing through QD1. These oscilla-
tions are damped, because of a continuum states responsible
for the relaxation processes at QD1. On the other hand, the
real part evolves monotonically to its asymptotic (negative)
value. For comparison, we also plot the complex function
C11(t ) for the case of λ1 = 0, i.e. when QD1 is embedded
only between the normal and superconducting leads [49]. The
structure of ImC11(t ) manifests the high-frequency oscilla-
tions ≈(�2

S + 2λ2
1)1/2 coexisting with the beats of frequency

≈�S . Note that for vanishing λ1 the imaginary part of C11(t )
exhibits only one component oscillations with the frequency
equal to �S .

For hybrid structures, where topological superconductivity
is induced by contacting the semiconducting nanowires with
bulk superconductors, one has to take into consideration the
influence of external magnetic field responsible for the Zee-
man splitting of the quantum dot energy levels, Bz = εi↓ −
εi↑. In analogy to a detrimental role of magnetic impurities in
bulk superconductors, this Zeeman splitting turns out to sup-
press the electron pairing at QD1 (see Fig. 5). One can notice
that the magnitude of the stationary on-dot pairing |C11(t →
∞)| gets reduced upon increasing the magnetic field. Further-
more, the transient region narrows and the oscillations of the
complex function C11(t ) acquire rather complicated profiles,
due to transitions between the Majorana zero-energy mode
and the spin-polarized Andreev states.
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FIG. 5. Transient dynamics of the on-dot pairing C11(t ) obtained
for different values of the magnetic field Bz = 0, 1, and 3, using the
same set of model parameters as in Fig. 2.

D. Time-dependent interdot pairing

We now consider the nonlocal electron pairing induced
between the spatially distant quantum dots. In analogy to the
previous section, we focus on the singlet pairing

C12(t ) ≡ 〈d̂1↓(t )d̂2↑(t )〉. (36)

In practice this sort of electron pairing could be detected via
the crossed Andreev reflections in hybrid structures with an
additional electrode contacted to QD2. Let us remark that
C12(t ) originates from the local pairing of QD1 electrons,
which is further extended onto QD2 by the Majorana quasi-
particles. Technically this is provided by the operators f̂ (†)(0)
appearing in the Laplace transforms of d̂1↓(s) and d̂2↑(s) [see
Eqs. (8) and (16)]. For εi = 0 we find

C12(t ) = iλ1λ2�S

[
1

2
− n f (0)

]

×L−1

{
1

H2(s)

}
(t )L−1

{
1

s2 + 2λ2
2

}
(t ). (37)

In the limit of �N = 0 the pairing C12(t ) simplifies to

C12(t ) = iλ1�S√
2
(
�2

S + 2λ2
1

) [1 − 2n f (0)]

× sin (
√

2tλ2) sin2

(
t

2

√
�2

S + 2λ2
1

)
. (38)

On the other hand, for finite �N , we obtain

C12(t ) = iλ1�S

2
√

2
[1 − 2n f (0)] sin (

√
2tλ2)

× e−at + e−bt
[

a−b
c sin (ct ) − cos (ct )

]
(b − a)2 + c2

, (39)

where the parameters a, b, c correspond to three roots si (i =
1, 2, 3) of the cubic equation H2(si ) = 0. One of these roots,
say s1, is real and it defines the positive-valued parameter
a > 0 via s1 = −a. The other parameters, b and c, are re-
lated with the conjugated roots s2 = s�

3. They are expressed
as s2 = −b + ic and s3 = −b − ic, where b > 0.

Equation (39) implies that the interdot pairing (36) does
not depend on the initial occupation niσ (0) of the quantum
dots. Furthermore, C12(t ) has no explicit dependence on the
voltage μ applied across QD1 between the external leads
because the operators ĉkσ (0) do not appear simultaneously
in d̂1↓(t ) and d̂2↑(t ). Influence of the normal lead, however,
enters indirectly through the roots s1–s3 (where a, b, and c
depend on �N ). We observe that for �N = 0 the amplitude of
C12(t ) oscillations diminishes upon increasing λ1, whereas for
�N �= 0, we observe a similar behavior, although with damped
oscillations.

In general, the nonlocal pairing (36) is sensitive to the
position of the energy levels εi of the quantum dots. It is purely
imaginary only for ε2 = 0. Otherwise, for ε2 �= 0 and arbitrary
QD1 energy level, the function C12(t ) becomes complex with
nonvanishing real and imaginary parts.

The time-dependent interdot pairing for selected values of
the quantum dot energy levels is shown in Fig. 6. First of
all, we notice that the interdot pairing survives only in the
transient region. The time-dependent profile of this complex
pairing function C12(t ) is sensitive to specific values of the
quantum dot energy levels. Additional effects can arise from
the quantum quenches. The middle plot of Fig. 6 displays
the evolution of C12(t ) after a sudden change of ε1 imposed
at t = 5/�S . This quench substantially affects the real and
imaginary parts of the nonlocal pairing C12(t ). It is evident
that for t � 5/�S the time-dependent interdot pairing pre-
sented in the middle panel of Fig. 6 differs from the bottom
panel, even though the energy levels are identical. We have
checked, however, that signatures of the nonlocal pairing are
completely absent in all quantum quenches imposed outside
the transient regime. This observation emphasizes the sub-
tle importance of transient phenomena, which enable mutual
correlations between spatially distant quantum dots. Such dy-
namical nonlocal effects would be observable in the crossed
Andreev transmission, and could possibly arise via the single-
particle teleportation as well.

Let us also inspect the influence of the Zeeman field Bz on
the nonlocal pairing C12(t ) between opposite spin electrons
(see Fig. 7). In analogy to C11(t ), we notice that the magnetic
field quickly suppresses this interdot pairing. Such effects are
visible only in the transient region (because the stationary
limit value of C12(t → ∞) vanishes for all cases). This sup-
pression arises from a competition of the magnetic field with
the singlet pairing, no matter whether it is local or nonlocal.
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FIG. 6. The complex interdot pairing function C12(t ) obtained
for λ1 = λ2 = 2, �N = 0.2 and several values of quantum dot energy
levels, as indicated. The red curves refer to the real and the green
curves to the imaginary parts of C12(t ), respectively. The middle plot
presents the evolution of C12(t ) when imposing a sudden change of
the energy level from ε1 = 0 to ε1 = 2 at t = 5/�S .

E. Dynamics of the triplet pairing

Finally let us consider the mixed pairing between QD2 and
the topological superconducting nanowire

C2 f (t ) = 〈d̂2↑(t ) f̂ (t )〉. (40)

This triplet pairing is associated with leakage of the Majorana
mode onto the side-attached QD2, and similar process occurs
on QD1 regardless of n1σ (0). Let us recall that from both
operators d̂2↑(s) and f̂ (s) only the latter depends on ĉ(†)

kσ
(0).

For this reason the mixed pairing (40) does not depend on the
normal lead electrons and thereby on the bias voltage V .

In what follows, we focus on the initially empty dot
n2↑(0) = 0 and n f (0) = 0, assuming the isotropic couplings
λ1 = λ2 ≡ λ. Under such conditions we obtain (for εi = 0)

C2 f (t ) = i

2
sin (

√
2λt )

[
cos2

(
λt√

2

)

+ λ2L−1

{
s�N + �2

S + �2
N

(s2 + 2λ2)H2(s)

}
(t )

]
. (41)

For �N = 0, formula (41) simplifies to

C2 f (t ) = i sin (
√

2λt )

2
(
�2

S + 2λ2
)
[
�2

S + 2λ2 cos2

(√
�2

S + 2λ2

2
t

)]
,

(42)

FIG. 7. Transient dynamics of the nonlocal pairing C12(t ) in the
singlet channel obtained for the same set of model parameters as in
Fig. 5.

revealing an oscillatory behavior. This analytical result (42) is
valid when the quantum dots interconnected through the Ma-
jorana quasiparticles are not coupled to a continuous spectrum
of the normal lead that could activate the relaxation processes.
It appears, however, that even in the case of �N �= 0, the mixed
pairing function (41) oscillates against time with nonvanishing
amplitude. To observe it, we evaluated the pairing function
(41) in the long-time limit

C2 f (t ) = i

2
sin (

√
2λt )

×
[

cos2

(
λt√

2

)
2λ2�N Re

(
ei

√
2λt s16

s12s13s14s15

)]
. (43)

Here snm = sn − sm, and s1 = i
√

2λ, s2 = −s1, s3 = −a, s4 =
−b + ic, s5 = −b − ic, s6 = −(�2

S + �2
N )/�N , where s3, s4,

s5 are the roots of the cubic equation H2(si ) = 0 and a, b
are real positive parameters. In the large-t limit this pairing
function is purely imaginary and it has oscillating character.
The formula presented in Eq. (43) is valid for ε1 = ε2 = 0.
Otherwise, the operators d̂2↑(s) and f̂ (s) depend on the energy
levels εi affecting the pairing function C2 f (t ). In particular, the
influence of QD1 on the triplet pairing C2 f (t ) is incorporated
via the operator f̂ (s).
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IV. TUNNELING CONDUCTANCE

In this section we study the differential conductance
Gσ (V, t ) = ∂

∂V jNσ (t ) of the time-dependent current jNσ (t ),
flowing between QD1 and the normal lead. For convenience
we express Gσ (V, t ) in units of 2e2/h and investigate its de-
pendence on the applied bias voltage V . We recall that eV =
μN − μS and the topological superconductor is assumed to
be grounded μS = 0, such that eV = μN ≡ μ. The tunneling
current can be determined from the evolution of the total

number of electrons in the normal electrode. For our setup
it can be written as [49]

jNσ (V, t ) = 2Im
∑

k

Vke−iεkt 〈d̂†
1σ (t )ĉkσ (0)〉 − 2�N n1σ (t ).

(44)

Substituting the inverse Laplace transform of d̂1↑(s) [see
Eq. (8)], we obtain the derivative of the first term appearing
in Eq. (44) with respect to μ in the following way:

∂

∂μ
2Im

⎛
⎝i
∑
k,k1

VkVk1 e−iεktL−1

{
(s + �N )H1(s)

(s − εk1 )H3(s)

}
(t )〈ĉ†

k1↑(t )ĉk↑(0)〉
⎞
⎠

= ∂

∂μ

2�N

π
Re
∫ ∞

−∞
dε fN (ε)e−iεtL−1

{
(s + �N )H1(s)

(s − ε)H3(s)

}
(t )

= 2�N

π
Re

(
e−iμtL−1

{
(s + �N )H1(s)

(s − μ)H3(s)

}
(t )

)
. (45)

In the next step we subsequently calculate ∂n1↑(t )/∂μ taking into consideration only such terms which depend on the bias
voltage [see Eq. (A2)]. As a result we get

∂n1↑(t )

∂μ
= �N

π

{
�2

Sλ
4
1

∣∣∣∣L−1

{
s + �N

(s + iμ)H3(s)

}
(t )

∣∣∣∣
2

+
∣∣∣∣L−1

{
(s + �N )H1(s)

(s + iμ)H3(s)

}
(t )

∣∣∣∣
2

− �2
S

∣∣∣∣L−1

{
H1(s)

(s + iμ)H3(s)

}
(t )

∣∣∣∣
2

− λ4
1

∣∣∣∣∣L−1

{
(s + �N )2

(s + iμ)H3(s)

}
(t )

∣∣∣∣∣
2
⎫⎬
⎭. (46)

The definition G↑(V, t ) = ∂
∂V jN↑(V, t ) along with

Eqs. (44), (45), and (46) yield the information on
time-dependent quasiparticle states of our hybrid structure.
The relevant inverse Laplace transforms can be obtained in a
form of the linear combinations of exp (−�Nt ) and exp (−sit )
with coefficients being the functions of s1, . . . , s8, where
s1 = −�N + i�S , s2 = −�N − i�S and s3, s4, s5 (s6, s7, s8)
are solutions of the cubic equation H1(s) = 0 [H2(s) = 0].

Figure 8 presents the time-dependent conductance versus
the bias voltage V obtained for λ = 0.6, 1, and 2 (λ ≡ λ1 =
λ2), respectively. It shows how the quasiparticle peaks of
QD1 develop in time. For weak couplings, λ = 0.6 and 1, we
observe roughly two quasiparticle peaks emerging from the
initial broad structure, see Figs. 8(a) and 8(b). Their steady-
limit shape establishes at relatively long time in comparison
with the results obtained for a stronger coupling, λ = 2. After
a closer inspection, however, we can notice some tiny split-
ting between the maxima. In contrast, for larger coupling λ,
there appear four quasiparticle peaks well separated from one
another. Their steady limit structure establishes pretty fast,
nearly at t ≈ 5/�S . The duration of the transient region is thus
strongly sensitive to the coupling strength λ.

In Fig. 9 we present the steady limit differential conduc-
tance Gσ (V, t → ∞) obtained for different couplings λ, as
indicated. Since one of the solutions, s3 (s6) for the cubic
equation has a negative real value and the other solutions are

complex (with negative real parts), we get

G↑(μ,∞) = 2�N Re

(
φ1(μ)

φ3(μ)

)
− 2�2

N

[|φ1(μ)|2 − �2
S |φ2(μ)|2

+ λ4
(
�2

N + μ2
)(

�2
S − �2

N − μ2
)]/|φ3|2, (47)

where φ2(μ) =∏ j=3,4,5(iμ − s j ), φ1(μ) = (iμ + �N )φ2(μ),
and φ3(μ) =∏ j=1,2,6,7,8(iμ − s j ). We can approximately
evaluate G↑, taking into consideration only the first term
appearing in Eq. (47). From this analysis, we can determine
positions of peaks in the differential conductance. We ob-
serve two peaks at positive and two peaks at negative bias
voltage. The internal peaks at eV = ±�S hardly depend on
λ, whereas the outer peaks appear at eV � ±(�2

S + 2λ2)1/2.
Moreover, the spectral weight of the internal peaks varies
from 1 (for λ = 0) to 0.5 (for stronger couplings λ). At the
same time, the spectral weight of the outer peaks at eV =
±(�2

S + 2λ2)1/2 increases to 1 (for λ � 1).
The time-dependent differential conductance shown Fig. 8

and its asymptotic limit (Fig. 9) provide information about the
Andreev-type states of QD1 (due to superconducting prox-
imity effect) obtained for the special case, when the energy
level ε1 = 0 coincides with the zero-energy Majorana mode.
Under such circumstances, the influence of the Majorana
mode on the quasiparticle spectrum of QD1 is manifested
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FIG. 8. The time-resolved differential conductance of the charge
current flowing through the first quantum dot (QD1) induced by
the voltage bias V applied between the normal and superconduct-
ing leads. The consecutive panels refer to the different couplings
λ ≡ λ1 = λ2, as indicated. The other parameters are the same as in
Fig. 2 with �N = 0.2.

by destructive quantum interference in analogy to Fano-type
lineshapes appearing in double quantum dot T-shaped con-
figurations [52–54]. Here, QD1 is at the interface between
the superconducting and normal leads with the side-attached
Majorana mode, playing the role of “second quantum dot.”
Electrons moving between external leads can hop aside to
the zero-energy level of the nanowire and return with a dif-
ferent phase, giving rise to destructive quantum interference,
thereby depleting the spectral function of QD1 near ω = ε1.
Such a situation is no longer present for ε1 �= 0 because the
side-attached Majorana mode has nothing to interfere with.
In the present case, this destructive interference shows up as
a tiny dip at zero voltage for a weakly coupled heterostruc-
ture (see the curves presented in Fig. 9 for λ = 0.4 and
λ = 0.6).

In the remaining part of this section, we investigate the
quasiparticle features appearing in the conductance G↑(μ, t )
for ε1 �= 0, while ε2 = 0. In such a situation the Majorana
mode has a constructive influence on the transport proper-
ties, inducing the zero-energy quasiparticle which enhances
the zero-bias conductance. This effect resembles a typical
Majorana leakage on the quantum dot hybridized to the
normal (metallic) electrodes [27–38]. For nonzero ε1, we

FIG. 9. The steady-state limit of the differential conductance
G↑(V,∞) obtained for ε1 = ε2 = 0 and several values of λ ≡ λ1 =
λ2, as indicated. The other parameters are the same as in Fig. 8.

obtain

G↑(μ, t ) = 2�N Re

[
e−iμtL−1

{
(s + iε + �N )F1(s)

(s − iμ)F2(s)

}
(t )

]

− 2�2
N

[∣∣∣∣L−1

{
(s + iε + �N )F1(s)

(s − iμ)F2(s)

}
(t )

∣∣∣∣
2

+�2
Sλ

4
1

∣∣∣∣L−1

{
s + iε + �N

(s − iμ)F2(s)

}
(t )

∣∣∣∣
2

−�2
S

∣∣∣∣L−1

{
F1(s)

(s + iμ)F2(s)

}
(t )

∣∣∣∣
2

− λ4
1

∣∣∣∣∣L−1

{
(s + �N )2 + ε2

(s + iμ)F2(s)

}
(t )

∣∣∣∣∣
2]

, (48)

where F1(s) = s3 + 2�N s2 + s(ε2 + �2
S + �2

N + λ2
1) −

λ2
1(iε − �N ) and F2(s) = (s2 + 2�N s + ε2 + �2

S + �2
N )[s3 +

2�N s2 + s(�2
N + ε2 + �2

S + 2λ2
1) + 2λ2

1�N ].
Figure 10 shows the time-dependent differential conduc-

tance G1↑(V, t ) obtained for nonzero value of the QD1 energy
level, ε1 = 2, and several values of the coupling λ, as in-
dicated. In the stationary limit (t → ∞), the height of the
zero-energy peak tends to 0.5, which is a typical fractional
value initially predicted for the leaking Majorana mode
[22,27,28] for arbitrary λ. Its width increases here upon in-
creasing the coupling λ, as can be also seen in the stationary
limit presented in Fig. 11, which displays the behavior of the
differential conductance in the stationary limit.

To estimate the time interval in which the zero-
energy Majorana mode leaks onto QD1 we introduce a
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FIG. 10. The time-dependent differential conductance G↑(V, t )
obtained for nonzero energy level of the first quantum dot, ε1 = 2,
while ε2 = 0, and for different values of the coupling λ, as indicated.
The other parameters are the same as in Fig. 8.

FIG. 11. The steady-state limit of the differential conductance
G↑(V, t = ∞) obtained for several values of λ (as indicated) and the
other parameters the same as in Fig. 10.

FIG. 12. The zero-bias differential conductance G↑(V = 0, t )
varying against time for ε1 = 1 (A, B, C, D curves) and ε1 = 2 (E,
F, G lines) using different values of λ listed in Table I. The other
parameters are the same as in Fig. 10.

phenomenological parameter τ defined by [43]

G↑(0, t ) = G↑(0,∞)[1 − et/τ ]. (49)

This parameter characterizes the timescale, over which the
zero-bias conductance approaches the stationary limit value
G↑(0,∞). We computed τ for two different values of energy
levels ε1 (while ε2 = 0) and several values of the coupling
λ. Figure 12 presents the zero-bias conductance G↑(V = 0, t )
for ε1 = 1 (A, B, C, D curves) and ε1 = 2 (E, F, G lines),
using λ specified in Table I. We found τ ≈ 7.5, 2.5, 1.25, 1.0
(expressed in units of 1

�N
) for the couplings λ = 0.4, 0.8, 2,

and 8, respectively. Similarly, for the other value of the energy
level, ε1 = 2, we estimated the leakage timescales τ ≈ 1.6,
1.15, 1.1. We thus conclude that the development of the zero-
energy Majorana mode on QD1 occurs faster upon increasing
the coupling to topological superconductor λ.

Summarizing this section, we emphasize that quasiparti-
cles emerging on QD1 (presented in Figs. 10 and 11) represent
the trivial Andreev bound states (at finite voltage V ) coexist-
ing with the topological (zero-bias) feature. Their formation
occurs over some characteristic timescale τ [see Table I]
and is accompanied by the damped quantum oscillations.
Buildup of the quasiparticles is predominantly controlled by
the coupling of QD1 to a continuous spectrum of the metallic
lead, but spectral weights and energies of such quasiparticles

TABLE I. The timescale τ of the Majorana leakage obtained
for several couplings λ ≡ λ1 = λ2 and different values of the first
quantum dot energy level ε1 with ε2 = 0.

Curve λ[�S] ε1[�S] τ [1/�N ]

A 0.4 1 7.5
B 0.8 1 2.5
C 2.0 1 1.25
D 8.0 1 1.0
E 2.0 2 1.6
F 4.0 2 1.15
G 6.0 2 1.1
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depend on the energy level ε1 of QD1, what indirectly affects
the profile of damped quantum oscillations observed in the
transient regime.

Let us also comment about the characteristic energy and
timescales of our setup which could be verified empiri-
cally. Topological superconductivity of the semiconducting
nanowires and magnetic nanochains has been so far achieved
by contacting them with the conventional superconductors,
such as Al or Pb whose pairing gaps (safely below Tc) are
about 0.5 meV. The topological gap (which separates the
zero-energy Majorana modes from the trivial bound states) is
even smaller, on the order of 0.1–0.2 meV. This establishes
the typical energy scale for our hybrid system, because within
the effective low-energy description (4) we consider only the
Majorana modes of nanowire, neglecting any other (higher-
energy) trivial bound states. As far as the coupling �S of
QD1 is concerned, we assume it to be at most comparable
to the topological gap of the nanowire (because otherwise
QD1 would hybridize with trivial states of the nanowire).
The other coupling �N = 0.1�S , controlling the relaxation
processes, is on the order of 10 µeV. Under such conditions
the typical transient region would extend from a fraction to
a few nanoseconds (for more detailed quantitative evaluations
for the single dot topological superconductor hybrid structure,
see Ref. [43]).

V. CORRELATION EFFECTS

Finally, we address the role played by the Coulomb
repulsion Un̂i↑n̂i↓, which can be expected to suppress the su-
perconducting proximity effect. We study its influence both on
the local and nonlocal electron pairings. For a single quantum
dot attached to superconductor, this issue has been extensively
studied, considering the static [55,56] and nonequilibrium
conditions [57–60]. Depending on the ratio of �S/U and the
energy level, the quantum dot was predicted to be either singly
occupied or in the BCS-type configuration. The supercon-
ducting proximity effect is efficient only in the latter case.
In this section we analyze effects of the Coulomb repulsion
on the time-dependent pairings in the transient region and in
asymptotic behavior of our hybrid structure (Fig. 1).

To accurately describe the correlation effects and system’s
dynamics, we resort to the numerical renormalization group
(NRG) method [61–63]. This method has been successfully
used to analyze the stationary properties of the Anderson
impurity coupled to superconductor [55,64]. Here, we make
use of its time-dependent extension [65–67] to address the
dynamical effects of our setup. The main idea of the NRG
approach is a logarithmic discretization of the conduction
band, which allows one to map the Hamiltonian to a chain-
like form. Matrix Hamiltonian of such a model can be next
diagonalized in an iterative fashion, keeping an appropriate
number of the low-energy states. This technique can be used
to determine the time-dependent physical observables and is
not limited by perturbative approximations (for details see,
e.g., Refs. [65–67]).

In Fig. 13 we present the time-dependent local electron
pairings C11(t ) = 〈d1↓(t )d1↑(t )〉 obtained for the half filled
quantum dots εi = −U/2 and different values of �S/U . In
this figure the quench is performed in all the couplings, i.e.,

FIG. 13. The real part of C11(t ) = 〈d1↓(t )d1↑(t )〉 obtained by
time-dependent NRG calculations for the half filled quantum dots
ε1 = ε2 = −U/2, assuming �N/U = 0.1 and λ/U = 0.2 (λ ≡ λ1 =
λ2), with U = 1, and different values of �S , as indicated. Energies
are now expressed in terms of band half-width.

the couplings to both leads and topological superconductor.
To identify temporal extent of the transient region, we plot
all observables against the logarithm of time. First of all, one
can notice that transient phenomena start developing when
t � 1/U and are most important for timescales coinciding
roughly with t ∼ 1/�N . Moreover, a closer inspection of the
local electron pairing induced on QD1 reveals its substantial
suppression caused by the Coulomb repulsion. This ten-
dency is consistent with the steady-state solution for N-QD1-S
nanostructure [55,64]. The reduction of the local electron
pairing is associated with ensuing changeover of the quantum
dot ground state, from the BCS-type to the singly occupied
configuration. In the absence of the topological superconduc-
tor (λ = 0) such quantum phase transition would occur at
�S/U = 0.5 [55]. However, the influence of the side-attached
topological superconductor partly smears this singlet-doublet
phase transition in our setup [35,36].

Let us now focus on the dynamics of the triplet pairing
C2 f (t ) = 〈d̂2↑(t ) f̂ (t )〉, which is presented in Fig. 14. To an-
alyze its behavior, we fix the couplings to the normal and
superconducting contacts and perform quench only in the cou-
pling to topological superconductor. The upper panel presents
the evolution of the real part of C2 f (t ) for different values
of the couplings to topological superconductor in the case of
εM = 0, while the bottom panel shows the imaginary part of
C2 f (t ) for one selected value of λ, while assuming finite εM ,
as indicated. We first notice that the mixed (triplet) pairing,
in contrast with the local pairing induced at QD1, hardly
depends on �S . This property indicates that the leakage of
the Majorana mode on the side-attached quantum dots is not
endangered by the interplay of correlations and supercon-
ducting pairing on the first quantum dot. Finite C2 f (t ) starts
developing when t � 1/U , showing considerable oscillations
for t � 1/�N , which however die out at longer times. As can
be seen, the amplitude of these oscillations increases with
raising coupling to topological superconductor λ, giving rise
to larger value of C2 f (t ) in the long time limit, see Fig. 14(c).
On the other hand, the imaginary part of C2 f (t ) shows
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FIG. 14. The variation of the (a) real and (b) imaginary parts
of C2 f (t ) obtained by time-dependent NRG calculations for the
half-filled quantum dots ε1 = ε2 = −U/2, assuming �N/U = 0.1,
coupling �S/U = 0.75 and different values of (a) λ ≡ λ1 = λ2 and
(b) the overlap between the Majorana modes εM , as indicated.

considerable oscillations in the transient regime only when
there is a finite overlap between Majorana modes (the real part
hardly depends on εM), see Fig. 14(b). The amplitude of these
oscillations increases with εM , indicating a nonlocal character
of Majorana quasiparticles in the transient regime.

VI. SUMMARY AND OUTLOOK

We have studied the local and nonlocal transient phenom-
ena of a hybrid structure composed of two quantum dots
attached on opposite sides to the topological superconduct-
ing nanowire. We have shown that in a steady-state limit
these spatially distant quantum dots interconnected through
the Majorana edge-modes develop the quasiparticle spec-
tra independent of one another. Despite the lack of static
cross-correlations, however, we have found dynamical non-
local effects transmitted between the dots surviving over a
finite time interval. These effects are apparent in the interdot
electron pairing, both for the singlet and triplet channels,
which could be detectable in the crossed Andreev reflection
spectroscopy.

We have also investigated gradual development of the
quasiparticle states of QD1 (placed) on interface between the

normal and conventional superconductor), focusing on sig-
natures of the Majorana mode. We have found coexistence
of the Andreev (trivial) bound states with the zero-energy
(topological) feature. Emergence of these quasiparticles can
be empirically verified by time-resolved differential conduc-
tance of the tunneling current induced across QD1 by the bias
voltage between the external metallic and superconducting
leads. For the zero energy level ε1 = 0, the Majorana mode
imprints a tiny dip at zero voltage, originating from its de-
structive quantum interference on the spectrum of QD1. This
effect is analogous to the Fano-type interference observed
in T-shaped configurations of double quantum dot junctions
[52–54]. Otherwise, i.e. for ε1 �= 0, the Majorana mode in-
duces the zero-energy conductance peak. In the latter case
the leakage of the Majorana mode yields a fractional value of
the zero-bias differential conductance, Fig. 11. We have also
studied the effect of Coulomb interactions on the transient
phenomena and revealed their destructive influence on the
local (on-dot) pairing.

Our analysis relied on the assumption of very large pairing
gap �SC of the superconducting lead. In realistic situa-
tions one should additionally take into account the electronic
states from outside this pairing gap, which for conven-
tional superconductors is typically a fraction of meV. The
influence of such continuum has been discussed for supercon-
ducting nanostructures, using various many-body techniques
[57,58,60,68–71] suitable to capture also the correlation ef-
fects. These methods could be adopted to the present setup
as well. In general, the quasiparticles from outside the pair-
ing gap would contribute to the relaxation processes, partly
reducing the relevant timescales characterizing the transient
phenomena. Another important issue could be associated with
qualitative changeover of the trivial (Andreev) and topological
(Majorana) states imposed by the quantum quenches [39,41].
Postquench evolution could lead to the dynamical phase tran-
sition [59], but this challenging topic is beyond the scope of
the present study.

For possible verification, we have evaluated the timescale
needed for emergence of the trivial (Andreev) and topological
(Majorana) bound states. In typical realizations of super-
conducting hybrid structures (where the couplings �N,S of
the quantum dots to external leads are ≈ meV) the dura-
tion of the transient effects would cover nanoseconds region.
Currently available tunneling spectroscopies [72] should be
able to detect the nonlocal cross-correlations between the
spatially distant quantum dots embedded into the setup pre-
sented in Fig. 1. Detection of transient nonlocal pairing in
the singlet C12(t ) and triplet CT

12(t ) channel could be obtained
by crossed Andreev spectroscopy, analogous to the methods
used recently in the minimal-length topological supercon-
ducting system [11,12]. As concerns the triplet channel,
its measurement would be feasible by means of the equal
spin electron-to-hole scattering [73]. Time-resolved nonlocal
spectroscopy could be done for the hybrid structure, using
either semiconducting nanowires (e.g., InAs) partly covered
by conventional superconductors (like in the setup reported in
Ref. [26]) or by depositing magnetic atoms (Fe) on supercon-
ductors and attaching other nonmagnetic impurities to them
that can be probed by scanning spin-polarized Andreev spec-
troscopy [74]. Detailed knowledge of such transient nonlocal
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effects might be useful for reliable control of braiding pro-
tocols for conventional and/or topological superconducting
quantum bits [75,76].

Finally, we would like to mention that it would be worth-
while to extend the present analysis of the nonlocal transient
phenomena onto hybrid structures with quasi-Majorana states.
These quasiparticles have been predicted to form at the
boundaries of semiconducting nanowires proximitized to su-
perconducting materials, due to a flat confining potential [77],
a suppressed superconducting pair potential and/or an ex-
cess Zeeman field [78] or attachment of quantum dot(s) [79].
Under such circumstances the trivial Andreev states appear
at nearly zero energy, and their properties, such as, e.g., the
zero-bias conductance peak [80,81], the fractional Joseph-
son effect [82], and the braiding schemes [83], very much
resemble the behavior of true Majorana modes. In static situ-
ations, it is rather difficult to discern whether the zero-energy
edge modes have their trivial or topological origin [84,85].

However, the theoretical results reported in Ref. [40] seem to
indicate that the true Majorana modes could be unambigu-
ously manifested by the characteristic quantum oscillations
in time-dependent conductance right after applying a source-
drain voltage, which otherwise would not occur for the trivial
modes. In this regard, a follow-up in-depth study of the non-
local transient effects for quasi-Majorana modes in similar
hybrid devices as considered here would be desirable.
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APPENDIX A: TIME-DEPENDENT EXPECTATION VALUES

To calculate the electron occupancy of QD1 embedded in the uncorrelated setup we use the expression (8) for d̂1↑(s) and obtain

n1↑(t ) = 〈L−1{d̂†
1↑(s)}L−1{d̂1↑(s)}〉

= [1 − n1↑(0)]λ4
1

(
L−1

{
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H3(s)

}
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+
∑
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VkVk1〈L−1{S†
k(s)}(t )L−1{Sk1 (s)}(t )〉, (A1)

where H1(s), H2(s), H3(s), and Sk(s) are defined in Eqs. (10), (11), (12), and (15). The first five terms can be rewritten in the
form given by Eq. (17) and calculation of the last term can be performed as follows:
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ĉ†
k1↑(0)(s + �N )2

(s − iεk1 )H3(s)

}
(t )

〉

=
∑
k,k1

VkVk1

{
�2

S

〈
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k1↓(0)
〉
L−1

{
H1(s)

(s + iεk )H3(s)

}
(t )L−1

{
H1(s)

(s − iεk1 )H3(s)

}
(t ) + 〈ĉ†
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1〈ĉ†
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This expression can be simply transformed to the form given in Eq. (17).
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Performing similar calculations for n1↓(t ) we obtain
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Note, that n1↓(t ) does not depend on λ2 and ε2.
The intradot pairing function (32) can be computed, using the Laplace transforms d̂1↑(s) and d̂1↓(s) expressed in equations (8)

and (16). Following the procedure discussed above for the charge occupancies we finally obtain (assuming the initial empty dots)
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APPENDIX B: TRANSITION PROBABILITIES
FOR �N = 0 CASE

In Sec. III B we have shown that the electron occupancy of
QD1 does not depend on the topological nanowire coupling
to the second quantum dot. With this conclusion in mind, let
us first consider a simplified version of our setup, λ2 = 0, in
order to determine the charge occupancy of the proximitized
QD1 side-attached to the Majorana nanowire (i.e., com-
pletely ignoring any influence of QD2). We choose the basis
states |n1↑, n1↓, n f 〉, where n1σ represents either the empty or

occupied σ spin of QD1 and n f stands for the number of non-
local fermion constructed from the Majorana quasiparticles.

For specific considerations, we assume the initial
(t � 0) configuration to be empty |0, 0, 0〉. In what follows,
we compute the time-dependent fillings after connecting the
proximitized QD1 to the topological nanowire. Expressing the
time-dependent state vector by

|n1↑(t ), n1↓(t ), n f (t )〉 = a1(t )|0, 0, 0〉 + a2(t )|1, 1, 0〉
+ a3(t )|0, 1, 1〉 + a4(t )|1, 0, 1〉,
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we solve the Schrödinger equation to find the probability
coefficients a j (t ) for t > 0. From straightforward calculations
we obtain the following coefficients:
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⎤
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where

b = 1
2

(
λ2 + �2

S + �S

√
�2

S + 2λ2
)

and c = 1
2

(
λ2 + �2

S − �S

√
�2

S + 2λ2
)
.

The time-dependent occupancies can be expressed in terms
of these coefficients as

n1↑(t ) = |a2(t )|2 + |a4(t )|2, (B5)

n1↓(t ) = |a2(t )|2 + |a3(t )|2, (B6)

n f (t ) = |a3(t )|2 + |a4(t )|2, (B7)

and they are consistent with Eqs. (25) and (26) obtained in the
main part for the �N = 0 case.

We can say that the formulas (B5)–(B7) resemble the Rabi
oscillations of a four-level quantum system. In comparison
with a two-level quantum system (realized when the uncor-
related quantum dot is coupled to superconducting lead in
the limit of infinite pairing gap [49]) we observe here the
oscillation of the state vector between four quantum states. We
can describe the system evolution as an alternate oscillations
between |0, 0, 0〉 and |1, 0, 1〉 (two upper curves in Fig. 15)
and between |0, 1, 1〉 and |1, 1, 0〉 states (two lower curves in
Fig. 15), respectively.

Note, that for the complete setup with both quantum dots
the situation is more complicated because transitions would
occur in larger basis |n1↑, n1↓, n f , n2↑〉 comprising 16 possible
configurations. Eight states correspond to even-parity and the
other eight to odd-parity sectors. Assuming the initially empty
state |0, 0, 0, 0〉 we can express the latter state vector by a
linear combination of the eight even-parity states with the
corresponding time-dependent coefficients.

FIG. 15. Time-dependent probabilities |aj (t )|2 of a transition
from the initial empty configuration to the state | j〉 defined in the
basis |n1↑, n1↓, nf 〉 obtained for the limit of �N = 0, λ1 = 8, λ2 = 0.

Introducing the auxiliary notation |1〉 = |0, 0, 0, 0〉,
|2〉 = |1, 0, 0, 0〉, |3〉 = |0, 1, 0, 0〉, |4〉 = |1, 1, 0, 0〉,
|5〉 = |0, 0, 1, 0〉, |6〉 = |1, 0, 1, 0〉, |7〉 = |0, 1, 1, 0〉,
|8〉 = |1, 1, 1, 0〉, |9〉 = |0, 0, 0, 1〉, |10〉 = |1, 0, 0, 1〉,
|11〉 = |0, 1, 0, 1〉, |12〉 = |1, 1, 0, 1〉, |13〉 = |0, 0, 1, 1〉,
|14〉 = |1, 0, 1, 1〉, |15〉 = |0, 1, 1, 1〉, |16〉 = |1, 1, 1, 1〉, we

FIG. 16. Time-dependent probabilities |aj (t )|2 of a transition
from the initial empty configuration to the state | j〉 defined in the
basis |n1↑, n1↓, nf , n2↑〉 obtained for �N = 0, λ1 = λ2 = 8.
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FIG. 17. Transient dynamics of the nonlocal pairing CT
12(t ) in the

triplet channel obtained for several values of the Zeeman field Bz,
using the same set of model parameters as in Fig. 5.

can express the time-dependent occupancies of QD1 as

n1↑(t ) = |a4(t )|2 + |a6(t )|2 + |a10(t )|2 + |a16(t )|2, (B8)

n1↓(t ) = |a4(t )|2 + |a7(t )|2 + |a11(t )|2 + |a16(t )|2. (B9)

The spin-↑ (spin-↓) occupancy of QD1 indicates that at a
given instant of time the system can be found in configura-
tions with the occupied second quantum dot |1, 0, 0, 1〉 and
|1, 1, 1, 1〉 (|0, 1, 0, 1〉 and |1, 1, 1, 1〉).

In Fig. 16 we plot the probabilities |aj (t )|2 for the corre-
sponding states | j〉 as indicated. During the time evolution we
observe clear oscillations between |0, 0, 0, 0〉 and |1, 0, 0, 1〉
states (two upper curves in upper panel in Fig. 16) and si-
multaneously oscillations between the states |1, 1, 0, 0〉 and
|0, 1, 0, 1〉 (two lower curves in upper panel in Fig. 16).

From such considerations, we can also determine the pair-
ing functions, expressing them by the complex coefficients
aj (t ). For the initial empty configuration, the on-dot pairing
(32) takes the following form:

C11(t ) = a�
1(t )a4(t ) + a�

13(t )a16(t ), (B10)

whereas for the initial odd-parity one obtains

C11(t ) = a�
9(t )a12(t ) + a�

5(t )a8(t ). (B11)

In other words, the on-dot pairing function depends on the
amplitude probabilities that the system evolving over all

FIG. 18. Transient dynamics of the nonlocal pairing CT
12(t ) in the

triplet channel obtained for the nonoverlapping (upper panel) and
overlapping Majorana modes (bottom panel), using the same model
parameters as in Fig. 5.

basis states can be found in states |0, 0, 0, 0〉, |1, 1, 0, 0〉,
|0, 0, 1, 1〉, and |1, 1, 1, 1〉, respectively.

Similarly, we can determine the nonlocal pairing functions.
For the initial empty configurations they are given by

C12(t ) = a�
6(t )a16(t ) − a�

1(t )a11(t ), (B12)

C2 f (t ) = a�
4(t )a16(t ) + a�

1(t )a13(t ). (B13)

Note, that (B10) and (B13) depend on the same coefficients
a j (t ), but in different combinations.

APPENDIX C: NONLOCAL TRIPLET PAIRING

The leakage of Majorana modes onto the side-attached
quantum dots is strictly related to the intersite triplet pair-
ing between the outer sites of the topological nanowire and
quantum dots. Within the present low-energy approach, such
mechanism is captured by the mixed pairing 〈d̂i↑(t ) f̂ (t )〉, as
discussed in Sec. III E. In this context, it is natural to explore
the possible emergence of the nonlocal triplet pairing

CT
12(t ) = 〈d̂1↑(t )d̂2↑(t )〉 (C1)

because its efficiency might be detectable using the spin-
polarized crossed Andreev reflection spectroscopy. Adopting
our methodology to the nonlocal triplet pairing (C1), we ob-
tain for εiσ = 0 and εM = 0

CT
12(t ) = λ1λ2

(
n f (0) − 1

2

)
L−1

{
s + g

H2s

}
(t )

×L−1

{
1

s2 + 2λ2
2

}
(t ). (C2)

035413-17



R. TARANKO et al. PHYSICAL REVIEW B 110, 035413 (2024)

In particular, for �N = 0, this formula simplifies to

CT
12(t ) = λ1√

2�2 + 4λ2
1

(
n f (0) − 1

2

)
sin (

√
2λ2t )

× sin
(√

�2 + 2λ2
1t
)
, (C3)

indicating that interdot triplet pairing occurs exclusively when
both couplings λ1,2 �= 0. For vanishing �N , the relaxation
mechanism is blocked, hence under such conditions, CT

12(t )
acquires oscillatory behavior with a convolution of the fre-
quency

√
2λ2 and

√
2λ1(1 + �2/2λ2

1)1/2.

More general results obtained numerically for finite �N are
presented in Figs. 17 and 18. Again we notice that the triplet
nonlocal pairing survives only temporarily, in similar fashion
as the singlet nonlocal pairing does. Magnetic field affects
the profile of quantum oscillations, however, in contrast with
the singlet interdot pairing, it seems that CT

12(t ) survives over
pretty long timescale upon increasing Bz (Fig. 17). Appar-
ently, this is related to the coexistence of magnetism and
triplet pairing [86]. Hybridization of boundary modes εM is
another factor that prolongs the existence of nonlocal triplet
pairing (Fig. 18). Such an effect is perhaps less surprising
because the degree of overlapping Majorana modes goes hand
in hand with the shortening of the topological nanowire, which
can be expected to favor the mutual interdot pairing.
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play between correlations and Majorana mode in proximitized
quantum dot, Sci. Rep. 8, 15717 (2018).
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