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This work presents an alternative scheme for modulating near-field radiative heat transfer (NFRHT) within
an extended planar many-body system, marking a significant stride in thermal management for micro- and
nanodevices. Our approach leverages an adjustable number of interacting bodies, offering a dynamic solution
to enhance or suppress NFRHT across diverse configurations. Utilizing the general Green’s function approach
alongside the scattering matrix method, we establish a Landauer-like formalism, providing a clear, compre-
hensive framework for calculating NFRHT in many-body systems. This framework adeptly accommodates
variations in physical parameters such as layer thickness, separation distance, and material properties, thus
facilitating a broad spectrum of many-body planar configurations. Our findings highlight the substantial potential
of introducing intermediate layers between traditional two-body systems, enabling additional heat transfer
channels and significantly influencing the overall radiative heat flux. By adjusting the relative positions of
these layers, the system transitions seamlessly between two-body, three-body, and four-body configurations,
offering versatile heat flux modulation. The introduction of artificially engineered materials as intermediate
layers further amplifies this effect, showcasing a consistent heat flux enhancement across extended gap distances
(d) and thicknesses (t) up to 225 nm, with the maximum amplification of 60% occurring in regions where t ≈ d .
This investigation provides insights into the interactions within complex many-body systems and introduces a
practical methodology for precise thermal flux control, paving the way for advancements in nanoscale energy
harvesting, photonics, and sensing devices.
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I. INTRODUCTION

Near-field radiative heat transfer (NFRHT) is a regime
arising when the size of the objects and/or their separation
distance is comparable to or smaller than the characteristic
wavelength [1]. Many studies have demonstrated that NFRHT
can exceed Planck’s black-body limit thanks to photon tun-
neling of evanescent modes and surface resonances across
the vacuum gap between interacting bodies [2–6]. In addi-
tion to high magnitude heat flux, near-field thermal emission
can be coherent, quasimonochromatic, and polarized, which
has enabled various technologies, including scanning thermal
microscopy [7–9], photonics and sensing devices [10–12],
nanoscale energy harvesting devices [13–17], and contactless
cooling [18]. Additionally, leveraging the unique optical and
thermal properties of interacting materials, NFRHT not only
offers significant advantages for the thermal management of
micro- and nanodevices [19–22] but also plays a crucial role
in a wide array of applications where the precise control
over the direction and intensity of nanoscale heat transfer is
critical [23–27].

The manipulation of NFRHT strongly depends on the
number of interacting objects within the system and their
characteristics. In a two-body system (i.e., a system contain-
ing only two interacting objects), NFRHT has been studied
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for various applications such as thermophotovoltaics power
generation [14,28–34], thermal rectification [35–40], and non-
contact refrigeration [17,41–43]. Further unique behaviors
of NFRHT in two-body systems have been proposed using
alternative materials and surfaces, including 2D layer struc-
tures [44–48], hyperbolic materials [49–53], anisotropic sur-
faces [51,54,55], multilayers [56–58], nanowires [56,59,60],
nanoporous [56,61], and grating patterns [62–66]. While re-
markable manipulation of radiative heat transfer has been
achieved using the above materials, traditional two-body
systems still suffer from inherent limitations due to a con-
strained number of heat transfer channels available in the
transverse wave vector [67,68]. Conversely, in nature and
many practical scenarios, it is more common to encounter
thermal radiation in systems with more than two objects,
making the comprehension of the intrinsic interactions among
multiple bodies crucial. To address these complexities, the
N-body theory [69,70] was developed to examine heat trans-
port in systems composed of mutually interacting spherical
nanoparticles. Subsequent research has focused on creating
comprehensive frameworks for calculating NFRHT within
more intricate many-body geometries. This includes NFRHT
between two particles in the presence of a plate or two
plates [71], between spheroidal particles [72], between arbi-
trary geometries [73–78], and between nanoparticles in the
presence of a cylinder [79,80]. However, focusing specifically
on planar many-body systems, the calculation of NFRHT
initially began by introducing a formalism for nanoscale
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thermal radiation within a three-body system [81]. This idea
was followed by numerous studies exploring the unique in-
herent mutual interactions within three-body planar systems
leading to enhancement or suppression of NFRHT [82,83]
and waveguide effect [84]. For instance, it was demonstrated
that employing a planar three-body system with an artificially
engineered material as an intermediate layer could lead to
a notable enhancement in NFRHT between the two sides
compared to a two-body counterpart [81].

Subsequent research has demonstrated that three-body
systems offer greater potential for nanoscale thermal manage-
ment compared to two-body configurations, owing to the ad-
ditional channels (i.e., number of modes) that contribute to the
heat transfer [81]. Leveraging these channels, later studies fo-
cused on developing innovative thermal management devices,
including thermal radiative transistors [85], switches [86,87],
logic gates and circuits [88,89], and memories [90]. Fur-
thermore, a variety of techniques for modulating radiative
heat flow have emerged, employing strategies such as the
use of metal-insulator transition materials [85,86,91–93],
the application of magnetic fields to magneto-optical mate-
rials [94], the deployment of 2D materials and hyperbolic
components for mode hybridization [84,93,95], and the inte-
gration of grating or nanoporous structures [96–99]. However,
these advancements primarily focus on three-body systems
and face challenges in scalability and adaptability to sys-
tems involving more bodies, due to the complexities and
irreversible modifications required. Hence, there is a press-
ing need for a versatile approach that can efficiently regulate
NFRHT across a broader spectrum of many-body configura-
tions without necessitating significant structural changes.

To address this issue, this work introduces an alternative
scheme for modulating NFRHT within an extended planar
many-body system featuring an adjustable number of interact-
ing bodies. We employ the general Green’s function approach
along with the scattering matrix method [100] and rephrase
the final expressions into a Landauer-like formalism, estab-
lishing a comprehensive framework applicable to a broad
spectrum of many-body planar configurations, including our
focus on extending the system from two to four components.
In this study, we assume the source and sink to be semi-infinite
polar dielectrics with constant temperatures. We further as-
sume that two thin layers are initially attached to the source
and sink, while they can be freely moved away from those
two surfaces. This hypothetical configuration enables us to
investigate the change in NFRHT by altering the relative
placement of these two layers with respect to the sink and
source, exploring the transition from a two-body to a four-
body and three-body configuration.

Subsequently, we examine how the introduction of the
intermediate body(ies) to a conventional two-body system,
resulting in additional contributing heat transfer channels, af-
fects the potential to manipulate overall radiative heat flux. We
also explore the influence of physical parameters such as the
thickness of layers, relative separation distance, and material
properties. Comparing the extended four-body system to the
common two- and three-body configurations, we demonstrate
the remarkable controllability of the heat flux enabled by
introducing intermediate layers. The tuning of heat flux is

accomplished by adjusting the positions of the middle layers
relative to each other and to the source and sink slabs. This
dynamic adjustment leads to varying amounts of heat flux ex-
changed between the objects, ranging from a minimum value
slightly lower than that of the two-body system to significantly
high values. The proposed method introduces opportunities
to leverage extended many-body systems for efficient near-
field thermal management with minimum structural change.
Additionally, it enriches our understanding of the unexplored
interactions among objects within complex many-body sys-
tems, which are still believed to be elusive and much more
complex than those observed in conventional two-body sys-
tems.

The remainder of this paper is organized as follows. In
Sec. II, we present a description of the physical system under
consideration; in Sec. III, we provide the simplified repre-
sentation of Green’s function approach in conjunction with
the scattering matrix for the calculation of the NFRHT in
many-body planar configurations with isotropic materials and
introduce an approach to determine the equilibrium temper-
ature of the intermediate body(ies). Section IV is devoted
to a detailed explanation of the proposed framework for the
extended many-body system and how it can dynamically
transform from a simple two-body system into a more com-
plex configuration. It also includes the analysis of NFRHT in
the proposed framework and investigates the potential of such
a dynamic system in modulating NFRHT. Finally, our main
results are summarized and discussed in Sec. V.

II. PHYSICAL SYSTEM

The schematic representation of the system under study
is depicted in Fig. 1. To begin, we consider the NFRHT
in a planar two-body system comprising two semi-infinite
homogeneous, isotropic, and nonmagnetic parallel slabs, as
shown in Fig. 1(a). These slabs are labeled with indices “h”
and “c” representing the hot source and cold sink, respec-
tively, while their temperatures are fixed. Unless otherwise
stated, the analysis within this manuscript assumes that both
slabs are fabricated from silicon carbide (3C-SiC) where its
frequency-dependent dielectric function is modeled using a
damped harmonic oscillator [101]:

ε(ω) = ε∞

(
ω2 − ω2

LO + iγω

ω2 − ω2
TO + iγω

)
, (1)

where ε∞ = 6.7 is the high-frequency dielectric constant,
ωLO = 1.825×1014 rad s−1 and ωTO = 1.494×1014 rad s−1

are the longitudinal and transverse optical phonon frequen-
cies, respectively, and γ = 8.966×1011 rad s−1 is the damping
factor.

Now, to demonstrate the significant potential in modulating
heat transfer, we explore the variation of NFRHT by
transforming the same classical two-body system to
three-body and four-body configurations. To this aim, we
conceptualize a hypothetical system wherein two thin layers
(with finite thicknesses t1 and t2) are initially resting on the
two semi-infinite slabs, as shown in Fig. 1(b), while they can
freely move and be separated from the slabs. By detaching
the two thin layers and approaching them together, the system
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FIG. 1. Schematic illustration of our theoretical system. (a) Ini-
tial configuration: The two semi-infinite slabs are separated by a
vacuum gap distance of Di. (b) Hypothetical scenario by assuming
two thin layers with thicknesses t1 and t2 are resting on the bulk slabs
and can be freely moved. (c) Assuming the thin layers (labeled 2 and
3) are separated from the slabs, forming a four-body system. (d) The
two thin layers are joined to make an intermediate layer (labeled
as 2′ with thickness t2′ = t1 + t2), forming a three-body system. In
this context, we label the components using the index j ( j = 1, 2, 3)
starting from the hot source, while we keep the label for the cold sink
as c.

will transition from its initial two-body state to a four-body
configuration and subsequently a three-body setup (when the
two thin layers meet in the middle), see Figs. 1(c) and 1(d). In
our analysis, we do not consider the effect of Casimir forces
between the proximate components to focus on the primary
objective of demonstrating NFRHT variation across different
system configurations. It is important to recognize that while
the configurations suggested by our theoretical model may not
yet be easily achievable with existing experimental methods
due to technical limitations, the insights gleaned from this
study are invaluable. Through this theoretical framework,
we illuminate the variations in NFRHT that accompany the
system’s transition between different configurations, offering
a deeper understanding of the underlying physical phenom-
ena. Looking forward, the authors believe that utilizing
nanofabrication techniques such as electron beam lithography
or focused ion beam milling will enable precise fabrication
of thin layers (labeled 2 and 3) with defined thicknesses t1
and t2 on bulk slabs. Additionally, effective strategies such
as adjusting the thermal expansion of interacting layers to
control the distance between hot and cold sources [102,103],
employing piezoelectric actuators to precisely manipulate
layer positions [43], and fabricating MEMS and NEMS
devices with weight load response [104–106], will enable
adjustments in extended systems.

III. THEORETICAL FRAMEWORK OF THE EXTENDED
MANY-BODY SYSTEM

A. Calculation of NFRHT for an extended many-body system

To begin with, among various methods developed
for the calculation of NFRHT between closely spaced
objects [81,107,108], we employ the general Green’s function
approach, suitable for describing the NFRHT in many-body
planar configurations made of optically isotropic materi-
als [100]. This method is based on the solution of dyadic
Green’s functions, where the amplitude of the fields in each
body is calculated via a scattering matrix approach. Following
this method, the radiative heat flux on the outermost body can
be expressed as a sum of evanescent and propagative wave
contributions originating from other body(ies). By reformu-
lating the proposed NFRHT representation into a well-known
Landauer-like formalism, we provide a comprehensive frame-
work applicable to a wide range of planar many-body systems
consisting of homogeneous, isotropic, and nonmagnetic par-
allel layers. Central to this approach is the derivation of
explicit expressions for transmission probabilities. Following
the convention for indexing the interacting layers introduced
in Fig. 1, the net NFRHT received by the cold sink slab
within the extended many-body system, φc, can be expressed
as the summation of the contributions from each layer, φi→ j ,
as follows:

φc =
∑
j �=c

φ j→c

=
∫ ∞

ω=0
dω

∫ ∞

−∞

dKρ

8π3

∑
j �=c

[
� j (ω, Tj ) × T j→c(Kρ, ω)

− �c(ω, Tc) × Tc→ j (Kρ, ω)
]
, (2)

where index j is considered as 1, 2, or 3 for a two-body,
three-body, or four-body system, respectively. � j (ω, Tj ) =
h̄ω/[exp(h̄ω/kBTj ) − 1] is the mean energy of photons with
angular frequency ω, Kρ = (kx, ky ) is the component of the
wave vector parallel to the interface, and Tc→ j (T j→c) de-
notes the transmission probability for the thermal photons
associated with mode (Kρ, ω) coming from layer c to layer
j (layer j to layer c). It is also important to note that due to
the reciprocity principle, Tc→ j = T j→c.

Moving forward, the polar coordinate system (ρ, θ, z)
is adopted due to the azimuthal symmetry of the prob-
lem. Consequently, using the following cartesian coordinate
relationships Kρ = kxX̂ + kyŶ and dKρ = dkxdky, the trans-
formation of dKρ to the polar coordinate system is performed
as

∫ ∞

−∞
dKρ =

∫ ∞

−∞

∫ ∞

−∞
dkxdky

=
∫ ∞

kρ=0

∫ 2π

θ=0
kρdkρdθ = 2π

∫ ∞

0
kρdkρ. (3)

By substituting Eq. (3) into Eq. (2) and assuming a recip-
rocal system with identical received-transmitted field ratios
when exchanging a source and an observer, the final form of
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the net NFRHT received by layer c can be expressed as

φc =
∫ ∞

ω=0
φω,c dω

=
∫ ∞

ω=0
dω

∫ ∞

kρ=0

kρdkρ

4π2

×
∑
j �=c

[
[� j (ω, Tj ) − �c(ω, Tc)] × T j→c(kρ, ω)

]
, (4)

where transmission probabilities can be defined as

T j→c(kρ, ω) = 4k2
vRe

⎧⎪⎨
⎪⎩iε′′

j (ω)
∫ z′=z j+1

z′=z j

dz′

×

⎡
⎢⎢⎢⎣

gE
jc,ρρ (kρ, zc, z′, ω)gH∗

jc,θρ (kρ, zc, z′, ω)

+gE
jc,ρz(kρ, zc, z′, ω)gH∗

jc,θz(kρ, zc, z′, ω)

−gE
jc,θθ (kρ, zc, z′, ω)gH∗

jc,ρθ (kρ, zc, z′, ω)

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

(5)

with the magnitude of the wave vector in the vacuum defined
as kv = ω/cv , where cv is the speed of light in vacuum. The
terms gE ,H

jc,αβ (kρ, zc, z′, ω) on the right-hand side of Eq. (5)
represent the electric and magnetic Weyl components of the
Dyadic Green’s functions (DGFs) where α and β are the
orthogonal components of a polar coordinate system (i.e., ρ,
θ , z). These functions establish the relationship between the
fields at a source point z′ with frequency ω, located in layer j,
to the point in layer c, denoted as zc, where the radiative heat
flux is calculated. Here, gE

jc,ρρ gH∗
jc,θρ + gE

jc,ρz gH∗
jc,θz can be seen

as a term associated with the transmission probability of the
TM-polarized waves, while gE

jc,θθ gH∗
jc,ρθ is for TE-polarized

waves [100]. It is also important to note that the transmission
probabilities inherently rely on the reflection and transmis-
sion coefficients through the Weyl components of DFGs and
their constitutive field amplitudes of Ac, Bc, Cc, and Dc. The
detailed procedure for utilizing the scattering matrix method
to obtain field amplitudes necessary for computing DGFs in
planar multilayer structures has been slightly modified and
outlined in Appendix A to provide an explicit equation for the
transmission probability. The Weyl components of the DFGs
have also been introduced in Appendix B.

Finally, to derive an explicit equation for the transmission
probability, it is necessary to integrate gE

jc,αβ gH∗
jc,αβ over z′,

which represents the position of the source point within layer
j. This process is straightforward in the specific case of a
semi-infinite source, since the z′-dependence of the DGF Weyl
components can be expressed as [100]

gE
jc,αβ (kρ, zc, z′, ω)gH∗

jc,αβ (kρ, zc, z′, ω)

= gE
jc,αβ (kρ, zc, ω)gH∗

jc,αβ (kρ, zc, ω)e2k′′
z, j z

′
. (6)

As a result, performing analytical integration over z′ from
z j = −∞ to z j+1 = 0 eliminates the dependence of DGFs on
z′ [see Fig. 13(a) in Appendix B]. Thus, the transmission

probabilities can be obtained as

T j→c(kρ, ω)

= 2k2
v

k′′
z, j

Re

⎧⎪⎨
⎪⎩iε′′

j (ω)

⎡
⎢⎢⎣

gE
jc,ρρ (kρ, zc, ω)gH∗

jc,θρ (kρ, zc, ω)

+gE
jc,ρz(kρ, zc, ω)gH∗

jc,θz(kρ, zc, ω)

−gE
jc,θθ (kρ, zc, ω)gH∗

jc,ρθ (kρ, zc, ω)

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭,

(7)

where ε j = ε′
j + iε′′

j and kz, j = k′
z, j + i k′′

z, j =
√

ε jk2
v − k2

ρ are

defined as the frequency-dependent dielectric function and the
z component of the wave vector, both for layer j, respectively.
However, in a general case where the source layer has a
finite thickness, while it is still feasible to perform analytical
integration over z′, this process can be cumbersome; hence,
the final expression for the transmission probability in such
cases is provided in Appendix B.

B. Determination of the equilibrium temperature
of the intermediate body(ies)

Assuming that the outermost slabs are kept at constant
temperatures T1 and Tc, the intermediate layers achieve steady
state in the absence of external bias, settling at new equi-
librium temperatures denoted as Tj ( j = 2′ or 2, 3). The
equilibrium temperature of the intermediate layers is assumed
to be uniform across the thin layers and can be determined by
applying energy balance, ensuring that the net energy flux to
and from layer j is zero [81,96,109]. By inspecting Figs. 1(c)
and 1(d), the equilibrium temperature of the described layers
is determined from⎡
⎢⎢⎢⎢⎣

⎧⎨
⎩
φ2,net = φ1→2 + φ3→2 + φc→2 = 0

for four-body system,
φ3,net = φ1→3 + φ2→3 + φc→3 = 0

φ2′,net = φ1→2′ + φc→2′ = 0 for three-body system,
(8)

where considering the finite thickness of the intermediate slab
of j, the radiative heat flux absorbed by this layer, denoted
as φi→ j , is determined by calculating the difference between
the flux received by its left and right interfaces. To this end,
the contribution of each layer in the net radiative heat flux
received by body j at interface z = z±

j can be expressed as

φi→ j (z
±
j ) =

∫ ∞

ω=0
dω

∫ ∞

kρ=0

kρdkρ

4π2

[
[�i(ω, Ti ) − � j (ω, Tj )]

× Ti→ j (kρ, ω, z±
j )

]
. (9)

However, by plotting the spectral heat flux φω,c when all
bodies are of SiC [which supports surface phonon polaritons
(SPhPs)], we can observe a quasimonochromatic heat-flux
spectrum, as depicted in Fig. 2. This observation allows for a
simplified approach to establishing the equilibrium tempera-
ture of the intermediate layer(s) by solving the energy balance
[i.e., Eqs. (8) and (9)] exclusively at the SPhP frequency of
SiC, denoted as ωSPhP = 1.786×1014 rad s−1 [101]. Employ-
ing this approach within the proposed extended many-body
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FIG. 2. Spectral heat fluxes φω,c within two-, three-, and four-
body systems for two different initial gap distances: Di of 200 and
500 nm while the temperature of the hot and cold slabs for both cases
are set at T1 = 400 K and Tc = 300 K, respectively. For each case,
the specified values of t1, t2 have been used where t2′ = t1 + t2. (a) In
the first case, the values are chosen as t1 = t2 = 100 nm. (b) For the
second case, the assigned values are t1 = t2 = 250 nm.

system composed of SiC, with the hot and cold slabs set
at T1 = 400 K and Tc = 300 K, respectively, results in the
intermediate body stabilizing at T2 = 357.1 K for the three-
body configuration. In this configuration, the thickness of
the intermediate layer is t2′ = 200 nm, with gap distances
of d12′ = d2′c = 100 nm. Similarly, for a four-body config-
uration with equal thicknesses of t1 = t2 = 100 nm and gap
distances of d12 = d3c = 70 nm and d23 = 60 nm, the middle
layers achieve equilibrium temperatures of T2 = 366.4 K and
T3 = 347.4 K, respectively. The obtained equilibrium temper-
atures ensure a zero net heat flux absorbed by the intermediate
layer(s) in the proposed extended system.

IV. MANIPULATION OF HEAT FLUX IN THE EXTENDED
MANY-BODY SYSTEM

To investigate the influence of varying the relative positions
of interacting layers within an extended many-body system
on radiative heat flux, we examine two specific scenarios. In
the first scenario, the system transitions from a two-body to
a four-body configuration by holding the outer semi-infinite
slabs stationary while progressively moving the two thin lay-

ers closer together. This process continues until the layers
converge, effectively creating a three-body system. The sec-
ond scenario contrasts by keeping the thin layers fixed while
the semi-infinite slabs are relocated outwards, thereby main-
taining a four-body configuration. This methodical adjustment
in both scenarios facilitates a detailed investigation into the
effect of spatial rearrangements on the radiative heat flux
across the system.

A. First scenario: Inward movement of inner layers

We begin our investigation by assessing the total radiative
heat flux received by slab c, focusing on the effect of varying
the separation distance between the middle thin layers. During
this analysis, the two outer slabs remain stationary, facilitating
the expansion from a two-body system to more complex con-
figurations, as shown in Figs. 3(a) and 3(b). To this end, the
temperatures of slab 1 and slab c are set at T1 = 400 K and
Tc = 300 K, respectively. The initial gap distance in the two-
body system is specified as Di = 200 nm, and the thickness
of the two thin layers is selected as t1 = t2 = t = 100 nm.
In this scenario, the sum of all gap distances between layers
remains constant. For instance, in the case of a four-body
system, D = d12 + d23 + d3c + 2t , where d12, d23, and d3c are
the distances between adjacent layers and t is the thickness
of each thin layer. Note that d12 + d23 + d3c = Di, meaning
that D − Di = 2t . Conversely, for a three-body system, D =
d12′ + d2′c + 2t = Di + 2t , where the merged middle layer is
represented by 2′. We will focus our study on the symmetric
configurations where the gaps between the thin layers and
the outer slabs are equal, i.e., d12 = d3c = d , with d vary-
ing from 10 to 90 nm within a four-body system. For the
transitioned three-body system, the distances transform to
d12′ = d2′c = (D − 2t )/2, reflecting the merger of the two thin
layers into a single entity. It is also important to reiterate that
the equilibrium temperatures of the intermediate layers are
determined through the energy balance analysis. This ensures
a rigorous determination of thermal equilibria consistent with
the system’s configuration and spacing adjustments.

Figure 3(c) demonstrates the total heat flux φc, as a func-
tion of the gap distance d , where d = 0 and d = 100 nm
correspond to two-body and three-body systems, respectively.
It should be noted that the intervals between d = 0 nm to
d = 10 nm and from d = 90 nm to d = 100 nm are high-
lighted as transition zones, where the system undergoes a
change in the number of interacting layers. We intentionally
chose separation increments of 10 nm to confidently apply
the fluctuation-dissipation theorem in our calculations and to
avoid nonlocal effects and the necessity for quantum correc-
tions. This selection necessitates that the thin layers move in
steps of 10 nm to transition from a two-body system to a four-
body and then a three-body configuration while remaining
within the valid application range of the theorem.

Initially, as the thin layers start to separate from the semi-
infinite slabs, there is a marked increase in heat flux. This
rise, however, is followed by a decrease as the layers con-
tinue to move apart from the slabs, eventually stabilizing
into a plateau for the three-body system configuration, which
slightly exceeds the heat flux levels of the original two-body
system. This phenomenon can be attributed to the coupling
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FIG. 3. Schematic of inward movement of the thin intermediate layers. (a) The system transforms from the initial two-body to a four-body
configuration through the described adjustment. (b) As the thin layers keep approaching, they eventually combine, giving rise to a three-body
system with t2′ = t1 + t2. (c) Total radiative heat flux as a function of vacuum gap distance within the extended many-body system with t = 100
nm: Transitioning from two-body to four-body and finally to three-body configurations through inward movements of the thin layers. (d) Heat
transfer coefficient for an extended many-body system with t = 100 nm and Tc = 300 K. For the two-body setup, this coefficient is represented
as hr,1→c; for the three-body arrangement, it is hr,1→c + hr,2′→c; and for the four-body configuration, it is hr,1→c + hr,2→c + hr,3→c.

of hybridized modes within the many-body system as the
thin layers are separated. In the context of thin film layers,
SPhP modes manifest on both interfaces, offering a richer
mode spectrum than that available to semi-infinite slabs. Thus,
in a four-body system configuration with narrow gaps (d),
these additional channels contribute to a sharp increase in heat
flux compared to a two-body system. As the gap widens, the
contribution of these modes gradually lessens, culminating in
a plateau that mirrors the heat flux characteristics of a simpler
two-body system.

This observation can be verified by examining how the
heat flux coefficient changes with varying the gap distance.
For simplicity, it is assumed that the temperature differences
within the system are sufficiently small (i.e., |Tj − Tc| �
min{T1, . . . , Tc}), permitting a linearization of �. Under this
assumption, the net heat flux equation can be linearized by
introducing the heat transfer coefficient hr as [110]

φc 	
∑
j �=c

hr, j→c(Tj − Tc), (10)

with Tj = Tc + �Tj,c and hr, j→c defined as [94]

hr, j→c = lim
�Tj,c→0

φ j→c

�Tj,c

=
∫ ∞

ω=0
dω

∫ ∞

kρ=0

kρdkρ

4π2

×
[

∂�c(ω, Tc)

∂Tc
× T j→c(kρ, ω)

]
. (11)

The overall heat transfer coefficient, hr , depicted in
Fig. 3(d), demonstrates the effects of varying gap distances
(d) while keeping the thicknesses of the layers constant
(t1 = t2 = 100 nm). Notably, hr significantly increases as the

system transitions from a two-body to a four-body config-
uration, followed by a gradual decrease as the vacuum gap
widens. This trend highlights the significant potential of the
explored mechanism for modulating near-field thermal trans-
fer with minimal structural changes. Additionally, the heat
transfer coefficient magnitudes for the first (hr,1→c) and sec-
ond layers (hr,2→c) are relatively insignificant compared to
the third layer (hr,3→c), which is expected due to its closer
proximity to the receiver, enhancing the coupling between
them.

To better understand the impact of expanding a two-body
system on heat flux, we analyze the transmission probability
at the surface phonon polariton frequency (ω = ωSPhP), as a
function of the dimensionless wave vector cvkρ/ωSPhP and
thickness t across various gap distances. This approach helps
to unravel the dynamics within systems comprising different
numbers of interacting bodies. In our study, the effective
transmission probabilities for the three-body and four-body
systems are characterized as T3 = (T1→c + T2′→c)/2 and
T4 = (T1→c + T2→c + T3→c)/3, respectively. It is notewor-
thy that our analysis exclusively considers TM polarization,
which is the primary contributor to heat transfer. Further-
more, we focus on symmetric configurations, where the gap
distances between the thin layers and the outer slabs are main-
tained equal, i.e., for the three-body system d12′ = d2′c = d
and for the four-body system d12 = d3c = d , as illustrated in
Figs. 3(a) and 3(b).

Figure 4 illustrates the transmission probability of a two-
body system with an initial gap size of Di = 200 nm,
compared against its three-body and four-body counterparts
across various gap distances (d), while layer thickness (t)
varies from 10 to 300 nm. Observations from Figs. 4(a)
and 4(b) reveal a considerable broadening of the transmis-
sion probability’s wave-vector range in the four-body system,
extending the cutoff beyond 800. However, when the layer
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FIG. 4. Transmission probabilities at the ω = ωSPhP of the (a) two-body system T2 with an initial gap distance of Di = 200 nm, compared
to that of a four-body system T4 with (b) d = 10 nm, (c) d = 25 nm, (d) d = 50 nm, (e) d = 90 nm, and (f) three-body system T3 with
d = 100 nm. It should be noted that the distances between the thin layers and the outer slabs are assumed equal (i.e., d12′ = d2′c = d for
the three-body system and d12 = d3c = d for the four-body system). (g) The relative shift in the transmission probability is observed across
different configurations of the extended many-body system. Here, the thickness is fixed at t = 100 nm for the intermediate layers.

thickness t is much larger than d (i.e., t 
 d), the transmis-
sion probability of the four-body system becomes independent
of thickness, suggesting the intermediate layers effectively be-
have as semi-infinite slabs. As the gap distances increase, the
wave vector’s cutoff value decreases, diminishing the long-
range wave-vector dependency of transmission probability,
as seen in Figs. 4(c) and 4(d). Eventually, at d = 90 nm,
as shown in Fig. 4(e), the transmission probability closely
aligns with that of a three-body [Fig. 4(f)], albeit at a lower
magnitude. Despite this difference in the magnitude, we ob-
served a comparable heat flux for these two cases in Fig. 3(c).
This phenomenon is explained by the balancing effect of tem-
perature differences between the setups. Specifically, while
the transmission probability is lower in the four-body system
compared to the three-body, the greater temperature differ-
ence between the intermediate layers and the cold slab in
the four-body setup compensates for this. Consequently, the
multiplication of transmission probabilities and temperature
gradients yields similar heat fluxes for both scenarios, demon-
strating the complex interplay between structural geometry
and thermal dynamics in many-body systems.

Figure 4(g) illustrates the relative shift in the position of
the transmission probability peaks for different configura-
tions of the extended many-body system, along with their
respective cutoff values when the thickness of the intermediate

layers is fixed at t = 100 nm. These observations substantiate
the pronounced increase in heat flux as the system transi-
tions from a two-body to a four-body configuration. This
increase is attributed to a significant widening in the effective
wave-vector range, despite the higher magnitudes observed in
the two-body system. Consequently, while the transmission
probability magnitude in a two-body system exceeds that of
a four-body, its concentration within a narrow wave-vector
range results in a comparatively lower heat flux than that seen
in the four-body setup. Subsequently, as the gap distance d
continues to increase, the transmission probability of a four-
body system experiences a relative shift as the cutoff values
gradually decrease, eventually reaching a level similar to that
of a three-body system.

To enrich our understanding of the dynamics within the
proposed extended many-body system, it is important to ex-
amine how variations in the thickness (t) of the intermediate
layers and their gap distance from the semi-infinite slabs (d)
impact total heat flux. To achieve this, we calculate the ra-
tio of total heat flux in the four-body configuration to that
in the two-body setup, denoted as φ4b(d, t )/φ2b(Di ), where
the initial gap distance is defined as Di = 200 nm. Figure 5
illustrates the overall heat flux enhancement across a range
of thicknesses from 10 to 100 nm, while varying the gap
distance d12 = d3c = d from 10 to 95 nm. This range is
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FIG. 5. Heat flux amplification of a four-body system with re-
spect to the two-body setup, φ4b(d, t )/φ2b(Di ), as a function of the
gap distance d and thickness t for inward movement.

deliberately selected to maintain a minimum gap of 10 nm,
essential for facilitating transitions between two-body and
four-body configurations. Figure 5 highlights the proposed
extended many-body system’s ability to modulate heat flux,
demonstrating an amplification factor that varies from a base-
line of 1 for large gap distances to a peak of approximately

21. This maximum amplification is attained in regions where
10 < d < 20 nm and 35 < t < 100 nm. Furthermore, it is
evident that up to d = 40 nm, the total heat flux received by
slab c is attributed to the four-body effect involving all bodies
and increases with thickness.

To deepen our comprehension regarding how variations
in gap distance and layer thickness affect heat flux amplifi-
cation, we delve into the analysis of effective transmission
probabilities in a four-body system (T4) and its constituent
components (i.e., T1→4, T2→4, and T3→4). Figure 6 illus-
trates this analysis across two gap distances, 20 and 70 nm,
each evaluated under three thickness conditions: 10, 50, and
100 nm. In the first series of plots (d = 20 nm), as thickness
increases, we notice changes in both the shape and positioning
of the transmission probability peaks for individual layers.
These changes boost the system’s overall effective transmis-
sion probability (T4) from t = 10 nm to larger thicknesses.
Such an enhancement aligns with the observed variations in
the amplification factor at d = 20 nm with increasing thick-
ness, as highlighted in Fig. 5. In contrast, the second series
of plots reveals that while adjustments in thickness modify
the transmission probability magnitudes of each contribut-
ing layer (T1→4, T2→4, and T3→4), the collective effective
transmission probability (T4) of the four-body system remains
largely unaffected. This observation helps explain the neg-
ligible impact of thickness variations on the amplification
factor for regions where d > 40 nm in Fig. 5. Notably, an
enhancement in the local amplification factor is observed in

FIG. 6. Effective transmission probability of a four-body system (T4) and its individual layer contributions (i.e., T1→4, T2→4, and T3→4).
(a)–(c) d = 20 nm while t = 10 nm, t = 50 nm, and t = 100 nm, respectively. (d)–(f) d = 70 nm while t = 10 nm, t = 50 nm, and t = 100 nm,
respectively.
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FIG. 7. Total radiative heat flux as a function of gap distance d
within an extended many-body system with t = 100 nm, capable of
transitioning between two-body and four-body configurations during
outward movement.

areas where the gap distance and thickness are equivalent
(d = t), particularly up to 30 nm. This finding resonates with
prior research on three-body systems, which also assessed
heat flux amplification compared to two-body setups, thus
validating the coherence of our observations with established
literature [81].

B. Second scenario: Outward movement of semi-infinite slabs

In this section, we focus on the effects of expanding a two-
body system into a four-body configuration by moving the
outer semi-infinite slabs outwardly. This investigation begins
with an initial gap distance of Di = 100 nm for the conven-
tional two-body setup. Unlike the inward adjustment scenario
previously discussed, here, the intermediate layers remain
stationary, as illustrated in the inset of Fig. 7. Here, the tem-
peratures for slab 1 and slab c are maintained at T1 = 400 K
and Tc = 300 K, respectively, while the equilibrium temper-
ature of the middle layers is determined through the energy
balance analysis. The thickness of each intermediate layer is
fixed at t = 100 nm. In this outward extension scenario, we
focus on symmetric cases where the gap distances between the
thin layers and the outer slabs are identical (d12 = d3c = d).
This leads to a total gap distance for a four-body configuration
expressed as D = Di + 2d + 2t .

Figure 7 depicts the variation of the total heat flux received
by slab c across various gap distances within the extended
many-body system, transitioning between two-body and four-
body configurations. Similar to the first scenario, a significant
rise in the total heat flux occurs once the outer slabs are
separated from the inner layers, forming a four-body system.
This initial surge in heat flux eventually tapers off, leading
to a distinct suppression effect in regions where d � 45 nm.
Here, the heat flux within the four-body system falls below
that of the original two-body setup. As discussed before,
this observation can be attributed to the interaction of SPhP
modes, which are present on both sides of the thin layers,
whereas in the semi-infinite slab, they manifest only on one

FIG. 8. Examining the effect of increasing gap distance on the
transmission probability T of an extended many-body system with
t = 100 nm during outward movement. (a) Two-body system with an
initial gap distance of Di = 100 nm. (b) Four-body system with
d = 10 nm. (c) Four-body system with d = 50 nm. (d) Four-body
system with d = 100 nm.

side. The coupling of these SPhP modes between the thin films
and the bulk layers initially enhances heat transfer. However,
as the gap between layers increases, this coupled effect wanes,
leading to the observed reduction in heat flux. Ultimately,
as d continues to increase, the four-body system yields a
smaller heat flux compared to the two-body configuration.
Contrary to the first scenario, which consistently showcased
an enhancement in heat flux, this scenario reveals a more com-
plex behavior, exhibiting both enhancement and suppression
effects depending on the gap distances. This dual behavior
demonstrates the capability to finely adjust near-field radiative
heat flux in many-body systems, highlighting the nuanced
potential of our proposed modulation mechanism.

To further understand the enhancement and suppression
patterns, we analyze the transmission probabilities for each
specified gap distance, as shown in Fig. 8. In the two-body
configuration, the cutoff value of the normalized wave vector
is limited to 100 at the SPhP resonance frequency of SiC.
However, in the four-body configuration with d = 10 nm, the
cutoff value escalates beyond 800 due to the hybridization
of surface modes between the thin films and the bulk slabs,
resulting in an amplification factor of 2.3; see Figs. 8(a)
and 8(b). As the gap distance widens, the cutoff values begin
to mirror those of the two-body configuration, signaling a
reduction in surface mode hybridization. Consequently, the
transmission probabilities drop below those observed in two-
body, leading to amplification factors of 0.95 and 0.68 for
gap distances d = 50 nm and d = 100 nm, respectively. This
suppression is evident in Figs. 8(c) and 8(d), depicting the
nuanced relationship between gap distance, surface mode in-
teractions, and their collective impact on heat flux modulation
within the system.
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FIG. 9. Heat flux amplification φ4b(d, t )/φ2b(Di ) as a function of
gap distance d and thickness t for outward movement with an initial
gap distance of Di = 100 nm.

We further investigate the impact of varying the thickness
of the intermediate layers on the total heat flux amplification
factor, as illustrated in Fig. 9. Specifically, we focus on iden-
tifying the transition between regions of enhancement and
suppression as delineated by the critical amplification factor
of 1. At very small gap distances, the outward scenario mirrors
the behavior observed in the inward situation, characterized
by a substantial increase in heat flux reaching an amplifica-
tion factor of 21. However, as the gap distance increases, we
observe a descending trajectory in the amplification factor,
ultimately dipping below 1 (as depicted by the dark blue
region in Fig. 9). This trend underscores the versatility of the
proposed modulation mechanism, demonstrating its capacity
to either enhance or reduce near-field radiative heat flux in
many-body systems. Such adaptability highlights the potential
of strategic layer and gap distance adjustments in tailoring
thermal radiation properties for various applications, offering
a nuanced control over heat transfer processes in complex
configurations.

C. Special case: Long-range enhancement of NFRHT
via artificially engineered material

Until now, we have observed a significant increase in the
heat flux within the proposed extended many-body system
when dealing with relatively small gap distances. However,
for larger gap distances, the amplification factor approaches
unity in the first scenario or decreases in the second scenario.
This suggests that with larger gap distances, we either main-
tain the same heat flux as in a two-body system or experience
a reduction in heat flux. This observation can change dra-
matically if we use an artificially engineered material for the
intermediate layers to enhance coupling between the phonon
polariton modes of SiC. To this aim, we adopt the suggested
engineered material introduced in Ref. [81], utilizing it as the
intermediate layers within our expanded many-body system,
with the dielectric function defined as

ε(ω) = 1 − ω2
p

ω2 + iωγp
, (12)

FIG. 10. (a) Schematic illustration of the initial two-body system
constructed with two intermediate layers of engineered materi-
als resting on the semi-infinite SiC slabs while the gap is d .
(b) Schematic of a four-body system with uniform gap distances
between all bodies. (c) Heat flux amplification φ4b(d, t )/φ2b(d ) as
a function of gap distance (d) and thickness (t). The area marked by
the dashed line indicates the region where the amplification factor
exceeds one.

where ωp and γp are the plasma frequency and the relax-
ation rate, respectively. By setting the plasma frequency to
ωp = √

2 ωSPhP, we align the engineered material’s surface
plasmon polariton mode frequency with that of SiC, based
on the Drude model’s predictions. The relaxation rate is also
chosen as γp = 10−3 ωp, ensuring optimal enhancement of
mode coupling.

To evaluate the effectiveness of the engineered material in
enhancing heat transfer at larger gap distances, we examine an
extended many-body scenario where all the gap distances are
identical and equal to that of the two-body system, as depicted
in Figs. 10(a) and 10(b). It is assumed that all layers can move
freely, with the only constraint that all the separation distances
remain equal. Figure 10(c) shows the heat flux amplification
in the many-body system shown in Fig. 10(b) compared to
that of the two-body shown in Fig. 10(a), as a function of
gap distance (d) and layer thickness (t). This figure clearly
demonstrates a consistent amplification of heat flux, even
for relatively larger gap distances up to 225 nm, while the
maximum amplification factor of 1.6 occurs in regions with
t 	 d . This outcome suggests a long-range enhancement of
near-field radiative heat transfer, a stark contrast to the second
scenario where amplification was confined to d < 60 nm. The
assumption of uniform gap distances within the four-body
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FIG. 11. Field patterns in a multilayer configuration where the point source Z ′ in layer s emits in both forward (z-positive) and backward
(z-negative) directions. The receiver point (Zc) is assumed in layer c, where the radiative heat flux is calculated.

system in this scenario underscores the efficacy of incorpo-
rating an engineered material in significantly enhancing heat
flux. That is, this system not only sustains an increased heat
flux but also supports expanding the gap distance by up to
threefold, extending to d = 225 nm. Such an achievement
demonstrates considerable potential for practical implemen-
tations, showcasing the engineered material’s capability to
facilitate long-range NFRHT enhancements in many-body
configurations.

V. CONCLUSIONS

In this study, we presented an alternative method for mod-
ulating near-field radiative heat transfer (NFRHT) through an
extended many-body system capable of adjusting the number
of interacting bodies. Our approach, grounded in the general
Green’s function and the scattering matrix methods, yielded
explicit expressions within a Landauer-like formalism,
offering a versatile framework for various planar many-body
configurations. Our findings revealed that in scenarios where
outer (semi-infinite) slabs are stationary, separating intermedi-
ate layers from the slabs results in a significant initial increase
in heat flux within a four-body configuration, followed by
a decline, eventually reaching a plateau as the system tran-
sitions to a three-body setup. This transition enhances heat
flux, with the amplification factor ranging from 21 at minimal
gap distances to just over 1 at larger gaps. Conversely, when
the intermediate layers remain fixed while outer slabs are
adjusted, we observe a similar initial amplification, which
diminishes as the gap distance increases, ultimately falling be-
low 1 and indicating suppression of NFRHT. This underscores
the proposed system’s capability to precisely adjust NFRHT
within many-body configurations through minimal structural
changes. Additionally, employing artificially engineered ma-
terials as intermediate layers while maintaining uniform gap
distances, consistently amplified heat flux, achieving a factor
of 1.6 for regions with t 	 d . This amplification persists even
for relatively large sets of gap distance and thickness, up to
225 nm. This long-range enhancement of NFRHT demon-
strates the system’s potential to significantly expand the gap
distance up to threefold compared to the two-body setup. Our
findings demonstrate the potential of extended many-body
systems in manipulating NFRHT, paving the way for new
applications of engineered materials in thermal management
technologies, and offering significant implications for the de-
sign and optimization of nanoscale thermal devices.
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APPENDIX A: SOLUTION OF THE FEILD AMPLITUDES
USING SCATTERING MATRIX APPROACH

1. Scattering matrix method

This section details the use of the scattering matrix method
to derive the field amplitudes in a typical multilayer scenario.
Let us consider a layer labeled s, with a thickness zs+1 − zs,
emitting thermal radiation. Here, it is assumed that waves with
unit amplitudes are emitted in both forward (z-positive) and
backward (z-negative) directions from a given source point z′
located within layer s, as illustrated in Fig. 11. Since z′ repre-
sents any point along the z axis within the source layer, when
we calculate the radiative heat flux at a specific point zc within
layer l , it is essentially the sum of contributions from all these
distributed source points within layer s. Notably, layer l could
be positioned either to the left or right of the source layer s.
The field within each layer results from multiple reflections
within the structure and can be broken down into four prin-
cipal components. Within this framework, the coefficients A
and B represent the amplitudes of waves traveling forward and
backward, respectively, originating from a source emitting in
the forward direction. Similarly, coefficients C and D denote
the amplitudes of waves traveling forward and backward,
respectively, generated by a source emitting in the backward
direction.

Now, to determine the coefficients Al , Bl , Cl , and Dl , we
employ the scattering matrix method (S-matrix) [111,112],
which is essentially a modified version of the transfer ma-
trix (T -matrix) approach [113] to ensure the stability of the
algorithm [100]. Initially, it is important to highlight that
the coefficients for forward-emitting sources (Al and Bl ) and
backward-emitting sources (Cl and Dl ) can be solved inde-
pendently. For the purpose of this analysis, we will focus on Al

and Bl while noting that the methodology applies equivalently
to Cl and Dl .
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FIG. 12. Schematic of the field amplitudes for four general cases based on the thickness of the source and observer layers. (a) Both source
and observer layers are half-space. (b) The source layer is a thin film and the observer layer is half-space. (c) The source layer is half-space
and the observer layer is a thin film. (d) Both source and observer layers are thin films.

Therefore, the relationship between the incoming and out-
going waves across the layers 1 and l can be written as[

Al

B1

]
= S(1, l )

[
A1

Bl

]
, (A1)

where S(1, l ) is the scattering matrix between layers 1 and
l . To determine the coefficients within each layer l , the rela-
tionship between the matrix S(1, l ) and S(1, l + 1) needs to
be specified. By utilizing the T -matrix relation between the
coefficients A and B in layers l and l + 1, the components of
the 2×2 S-matrix at l + 1 in terms of the S-matrix components
at l are derived as

S11(1, l + 1) = S11(1, l ) tl,l+1 eikz,l (zl+1−zl )

1 − S12(1, l ) rl,l+1 e2ikz,l (zl+1−zl )
, (A2a)

S12(1, l + 1) = S12(1, l ) e2ikz,l (zl+1−zl ) − rl,l+1

1 − S12(1, l ) rl,l+1 e2ikz,l (zl+1−zl )
, (A2b)

S21(1, l + 1) = S11(1, l + 1) S22(1, l ) rl,l+1 eikz,l (zl+1−zl )

tl,l+1

+ S21(1, l ), (A2c)

S22(1, l + 1) = S22(1, l ) [rl,l+1 S12(1, l + 1) + 1] eikz,l (zl+1−zl )

tl,l+1
,

(A2d)

with the following initialization:[
S11(1, 1) S12(1, 1)
S21(1, 1) S22(1, 1)

]
=

[
1 0
0 1

]
, (A3)

where rl,l+1 and tl,l+1 in Eqs. (A2a) to (A2d) represent Fres-
nel’s reflection and transmission coefficients at the interface
l, l + 1, respectively.

It should be emphasized that the S-matrix coefficients can
be computed in reference to any arbitrary layer k, not neces-
sarily constrained to layer 1. Similarly, the initialization of the

S-matrix relative to itself S(k, k) adopts a 2×2 identity matrix,
with subsequent calculations of S(k, l ) for l ranging from
k + 1 to N carried out utilizing Eqs. (A2a) through (A2d). No-
tably, coefficients for each polarization state are determined
independently, employing the appropriate definitions of Fres-
nel’s transmission and reflection coefficients for TE and TM
polarizations.

2. Determination of amplitude coefficients

It is critical to acknowledge that the wave emissions within
the extended many-body system are assumed to originate
solely from the interacting layers themselves, without any
external energy source impinging on the system. Conse-
quently, this leads to zero amplitudes for waves originating
from outside the system, denoted by A1 =C1 =BN = DN = 0.
Figure 12 provides a schematic that categorizes the field am-
plitudes into four general cases based on the thickness of the
source and observer layers—whether they are thin films or
semi-infinite slabs. To effectively determine the field ampli-
tudes, we consider two primary scenarios: the case of a thin
film emitter (with finite thickness), and the case of an emitting
half-space.

a. Case of an emitting thin film

As depicted in Fig. 11, a source point z′ in layer s emits
waves of unit amplitude in both forward and backward direc-
tions. In this section, we focus on calculating the coefficients
Al and Bl for the source layer when emitting in the forward
direction. Given that no waves enter the structure from the
outside, we set A1 = BN = 0. Consequently, considering the
layers 1, s, and N , we have four unknowns expressed as
B1, As, Bs, and AN , which need to be determined using the
S-matrix method. This involves employing two equations:
one establishing the S-matrix relation between layers 1 and
s, and another equation via the S-matrix relating layers s
and N .
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Substituting A1 = 0 in Eq. (A1), the relationship between
layers 1 and s is derived as

As = S12(1, s)Bs, (A4a)

B1 = S22(1, s)Bs. (A4b)

Similarly, considering BN = 0, the relationship between
layers s and N is determined as[

AN

Bs

]
=

[
S11(s, N ) S12(s, N )
S21(s, N ) S22(s, N )

][
As + S+

0

]
. (A5)

It should be emphasized that when determining the coeffi-
cients of layer N , the presence of the emitting source in layer s
must be taken into account, as layer N is located at a position
z greater than z′. The amplitude of the source at the boundary
zs in layer s is given by S+ = eikz,sts where ts = zs+1 − zs.
Equation (A5) provides the following two

relationships:

AN = S11(s, N )(As + S+), (A6a)

Bs = S21(s, N )(As + S+). (A6b)

Substituting Eq. (A4a) in Eq. (A6b) results in

Bs = S21(s, N )S+

1 − S21(s, N )S12(1, s)
. (A7)

Consequently, the coefficients of layers 1, s, and N (As, AN ,
and B1) can be found starting from Eq. (A7). Then, utilizing
the S-matrix method, a recursive scheme can determine the
coefficients within each layer inside the system. Beginning
with layer 1, where both A1 and B1 are already known, we
can find A2 and B2 by employing the S-matrix between layers
1 and 2. Similarly, by applying the scattering matrix method
between layers 1 and l when z < z′, and between s and l when
z > z′, the field coefficients for any layer within the system
can be derived as

⎧⎨
⎩

Bl = B1
S22(1,l )

for z < z′: l = 2, . . . , s − 1,
Al = S12(1, l )Bl

(A8a)

⎧⎨
⎩

Bl = Bs−S21(s,l )(As+S+ )
S22(s,l )

for z > z′: l = s + 1, . . . , N − 1.
Al = S11(s, l )(As + S+) + S12(s, l )Bl

(A8b)

Now, let us consider the scenario where the source layer
emits in the backward direction. We aim to calculate the field
coefficients denoted as Cl and Dl , while already knowing that
C1 = DN = 0 due to the absence of incoming waves from
outside the system. Similar to the forward emitting scenario,
we have four unknown coefficients (D1, Cs, Ds, and CN ) that
can be determined using S-matrix between layers 0 and s,
and layers s and N . Considering that C1 = 0, the relationship
between layers 1 and s can be determined using the following
equation:[

Cs

D1

]
=

[
S11(1, s) S12(1, s)
S21(1, s) S22(1, s)

][
0

Ds + S−

]
, (A9)

where S− = eikz,s (−ts ) is utilized to consider the influence of the
source within layer s when computing the field coefficients
within layer 0, located at z < z′.

Consequently, the relationship between layers 1 and s is
derived as

Cs = S12(1, s)(Ds + S−), (A10a)

D1 = S22(1, s)(Ds + S−). (A10b)

Following this, the S-matrix relationship between layers s
and N is given by[

CN

Ds

]
=

[
S11(s, N ) S12(s, N )
S21(s, N ) S22(s, N )

][
Cs

0

]
, (A11)

wherein the subsequent relationships can be obtained:

CN = S11(s, N )Cs, (A12a)

Ds = S21(s, N )Cs. (A12b)

Substituting Eq. (A12b) in Eq. (A10a) yields

Cs = S12(1, s)S−

1 − S12(1, s)S21(s, N )
, (A13)

where the coefficients of layers 1, s, and N (As, AN , and D1)
can be found starting from Eq. (A13). Finally, similar to the
forward emitting scenario, by applying the scattering matrix
method between layers 1 and l when z < z′, and between s
and l when z > z′, the field coefficients for any layer within
the system can be derived as⎧⎨

⎩
Dl = D1

S22(1,l )
for z < z′: l = 2, . . . , s − 1,

Cl = S12(1, l )Dl

(A14a)⎧⎨
⎩

Dl = Ds−S21(s,l )Cs

S22(s,l )
for z > z′: l=s +1, . . . , N−1.

Cl = S11(s, l )Cs + S12(s, l )Dl

(A14b)

b. Case of an emitting half-space

In the case of an emitting half-space, all Cl and Dl coef-
ficients for l = 1 to N are assumed to be zero as there is no
wave emitted in the backward direction that can propagate in
the one-dimensional layered medium. Similarly, if half-space
N is considered a source layer, then all Al and Bl coefficients
for l = 1 to N should be zero. Furthermore, it can be deduced
that A1 = BN = 0, as there is no field incoming from outside
of the system. Then considering layers 1 and N , we are left
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with two unknowns (B1 and AN ) which can be determined by
utilizing the scattering matrix method between layers 1 and N
as follows:[

AN

B1

]
=

[
S11(1, N ) S12(1, N )
S21(1, N ) S22(1, N )

][
S+
0

]
, (A15)

with the amplitude of the source to be S+ = 1. The subsequent
relationships can be inferred from Eq. (A15):

AN = S11(1, N ), (A16a)

B1 = S21(1, N ). (A16b)

Finally, applying the S-matrix between layers 1 and l leads
to the following relationships to obtain Al and Bl ,

Bl = B1 − S21(1, l )

S22(1, l )
, (A17a)

Al = S11(1, l ) + S12(1, l )Bl . (A17b)

APPENDIX B: DERIVATION OF THE EXPLICIT
EXPRESSIONS FOR TRANSMISSION PROBABILITIES

In this section, we begin our discussion by introducing
the Weyl representation of the magnetic and electric Dyadic
Green’s functions (DGFs) formalism, which have already
been presented in terms of the TE- and TM-polarized unit
vectors by Francoeur et al. [100]. Following this, the Weyl
representation of the electric DGF can be expressed in tensor
form as

¯̄gE
sl (kρ, zc, z′, ω) =

⎡
⎢⎢⎣

gE
sl,ρρ 0 gE

sl,ρz

0 gE
sl,θθ 0

gE
sl,zρ 0 gE

sl,zz

⎤
⎥⎥⎦, (B1)

with the electric components defined as

gE
sl,ρρ (kρ, zc, z′, ω) = ikz,l

2kskl

(+ATM
l ei[kz,l (zc−Zl )−kz,sZ ′] − BTM

l ei[−kz,l (zc−Zl )−kz,sZ ′]

−CTM
l ei[kz,l (zc−Zl )+kz,sZ ′] + DTM

l ei[−kz,l (zc−Zl )+kz,sZ ′]

)
, (B2a)

gE
sl,ρz(kρ, zc, z′, ω) = ikz,l kρ

2kz,skskl

(−ATM
l ei[kz,l (zc−Zl )−kz,sZ ′] + BTM

l ei[−kz,l (zc−Zl )−kz,sZ ′]

−CTM
l ei[kz,l (zc−Zl )+kz,sZ ′] + DTM

l ei[−kz,l (zc−Zl )+kz,sZ ′]

)
, (B2b)

gE
sl,θθ (kρ, zc, z′, ω) = i

2kz,s

(+ATE
l ei[kz,l (zc−Zl )−kz,sZ ′] + BTE

l ei[−kz,l (zc−Zl )−kz,sZ ′]

+CTE
l ei[kz,l (zc−Zl )+kz,sZ ′] + DTE

l ei[−kz,l (zc−Zl )+kz,sZ ′]

)
, (B2c)

gE
sl,zρ (kρ, zc, z′, ω) = ikρ

2kskl

(−ATM
l ei[kz,l (zc−Zl )−kz,sZ ′] − BTM

l ei[−kz,l (zc−Zl )−kz,sZ ′]

+CTM
l ei[kz,l (zc−Zl )+kz,sZ ′] + DTM

l ei[−kz,l (zc−Zl )+kz,sZ ′]

)
, (B2d)

gE
sl,zz(kρ, zc, z′, ω) = ik2

ρ

2kz,skskl

(+ATM
l ei[kz,l (zc−Zl )−kz,sZ ′] + BTM

l ei[−kz,l (zc−Zl )−kz,sZ ′]

+CTM
l ei[kz,l (zc−Zl )+kz,sZ ′] + DTM

l ei[−kz,l (zc−Zl )+kz,sZ ′]

)
, (B2e)

where k j is the magnitude of the wave vector in the layer j defined as k j = √
ε j×(ω/cv ). Similarly, the Weyl representation of

the magnetic DGF can be expressed in tensor form as

¯̄gH
sl (kρ, zc, z′, ω) =

⎡
⎢⎢⎣

0 gH
sl,ρθ 0

gH
sl,θρ 0 gH

sl,θz

0 gH
sl,zθ 0

⎤
⎥⎥⎦, (B3)

with the magnetic components expressed as

gH
sl,ρθ (kρ, zc, z′, ω) = kz,l

2kz,s

(+ATE
l ei[kz,l (zc−Zl )−kz,sZ ′] − BTE

l ei[−kz,l (zc−Zl )−kz,sZ ′]

+CTE
l ei[kz,l (zc−Zl )+kz,sZ ′] − DTE

l ei[−kz,l (zc−Zl )+kz,sZ ′]

)
, (B4a)

gH
sl,θρ (kρ, zc, z′, ω) = kl

2ks

(−ATM
l ei[kz,l (zc−Zl )−kz,sZ ′] − BTM

l ei[−kz,l (zc−Zl )−kz,sZ ′]

+CTM
l ei[kz,l (zc−Zl )+kz,sZ ′] + DTM

l ei[−kz,l (zc−Zl )+kz,sZ ′]

)
, (B4b)

gH
sl,θz(kρ, zc, z′, ω) = kl kρ

2kskz,s

(+ATM
l ei[kz,l (zc−Zl )−kz,sZ ′] + BTM

l ei[−kz,l (zc−Zl )−kz,sZ ′]

+CTM
l ei[kz,l (zc−Zl )+kz,sZ ′] + DTM

l ei[−kz,l (zc−Zl )+kz,sZ ′]

)
, (B4c)

gH
sl,zθ (kρ, zc, z′, ω) = kρ

2kz,s

(−ATE
l ei[kz,l (zc−Zl )−kz,sZ ′] − BTE

l ei[−kz,l (zc−Zl )−kz,sZ ′]

−CTE
l ei[kz,l (zc−Zl )+kz,sZ ′] − DTE

l ei[−kz,l (zc−Zl )+kz,sZ ′]

)
. (B4d)
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Accordingly, as previously elucidated, the spectral radiative heat flux at position z = zc within layer l along the z direction,
attributed to a source layer s spanning a volume zs+1 − zs, can be expressed as

φω, s→l (zc) =
∫ ∞

kρ=0

kρdkρ

4π2

[
[�s(ω, Ts) − �l (ω, Tl )] × Ts→l (kρ, ω, zc)

]
. (B5)

Now, taking into account Eq. (5), we will investigate the
two scenarios outlined in Appendix A and develop explicit
expressions for the transmission probabilities.

a. Case of an emitting thin film

When addressing an emitting thin film, as depicted in
Fig. 11, it becomes evident that integrating over Z ′ is neces-
sary to consider all arbitrary point sources potentially located
within layer s. To this end, we first separate the nonzero Weyl

components of the DGF between layers s and l at location zc in
terms of TE- and TM-polarization for convenience, and then
perform analytical integration to eliminate the z′ dependency.
Here, upon examining Eq. (7), the expression gE

sl,ρρ gH∗
sl,θρ +

gE
sl,ρz gH∗

sl,θz can be interpreted as a term related to the transmis-
sion probability of TM-polarized waves, whereas gE

sl,θθ gH∗
sl,ρθ

pertains to TE-polarized waves. Subsequently, integrating the
product of the mentioned Weyl components of the DGF over
the volume of the emitter at zc = zl yields the following ex-
pressions for TM- and TE-polarization, respectively:

gE
sl,ρρgH∗

sl,θρ (kρ, zc = zl , ω) + gE
sl,ρzg

H∗
sl,θz(kρ, zc = zl , ω)

= ikz,l k∗
l

8k′
z,sk

′′
z,skl |ks|2|kz,s|2

⎡
⎢⎢⎢⎢⎢⎣

k′
z,s(e

2k′′
z,sts − 1)

(|kz,s|2 + k2
ρ

)(−∣∣ATM
l

∣∣2 − ATM
l BTM∗

l + ATM∗
l BTM

l + ∣∣BTM
l

∣∣2)
+ ik′′

z,s(e
−2ik′

z,sts − 1)
(|kz,s|2 − k2

ρ

)(
ATM

l CTM∗
l + ATM

l DTM∗
l − BTM

l CTM∗
l − BTM

l DTM∗
l

)
+ ik′′

z,s(1 − e2ik′
z,sts )

(|kz,s|2 − k2
ρ

)(
ATM∗

l CTM
l + BTM∗

l CTM
l − ATM∗

l DTM
l − BTM∗

l DTM
l

)
+ k′

z,s(1 − e−2k′′
zsts )

(|kz,s|2 + k2
ρ

)(−∣∣CTM
l

∣∣2 − CTM
l DTM∗

l + CTM∗
l DTM

l + ∣∣DTM
l

∣∣2)

⎤
⎥⎥⎥⎥⎥⎦, (B6a)

gE
sl,θθ gH∗

sl,ρθ (kρ, zc = zl , ω)

= ik∗
z,l

8k′
z,sk

′′
z,s|kz,s|2

⎡
⎢⎢⎢⎢⎢⎣

k′
z,s(e

2k′′
z,sts − 1)

(∣∣ATE
l

∣∣2 − ATE
l BTE∗

l + ATE∗
l BTE

l − ∣∣BTE
l

∣∣2)
+ ik′′

z,s(e
−2ik′

z,sts − 1)
(
ATE

l CTE∗
l − ATE

l DTE∗
l + BTE

l CTE∗
l − BTE

l DTE∗
l

)
+ik′′

z,s(1 − e2ik′
z,sts )

(
ATE∗

l CTE
l − BTE∗

l CTE
l + ATE∗

l DTE
l − BTE∗

l DTE
l

)
+k′

z,s(1 − e−2k′′
z,sts )

(∣∣CTE
l

∣∣2 − CTE
l DTE∗

l + CTE∗
l DTE

l − ∣∣DTE
l

∣∣2)

⎤
⎥⎥⎥⎥⎥⎦. (B6b)

In this context, it is crucial to acknowledge that when
zc = zl , the thickness of the observer layer up to this point
(zc) becomes insignificant (tc = 0). As a result, the related
exponential terms simplify to e2k′′

z,stc = 1. Consequently, by
integrating the Weyl DGF components over z′ at zc = zl and
substituting them into Eq. (5), the specific expression for
the transmission probability of an emitting thin film can be
obtained.

b. Case of an emitting half-space

In the scenario of a semi-infinite source configuration,
the dependency on z′ of the Weyl DGF components can be
explicitly isolated as expressed in Eq. (6). Then, performing
analytical integration over z′ from z j = −∞ to z j+1 = 0 elim-
inates the dependence of DGFs on z′:∫ 0

−∞
gE

sl,αβ (kρ, zc, z′, ω)gH∗
sl,αβ (kρ, zc, z′, ω)dz′

=
∫ 0

−∞
gE

sl,αβ (kρ, zc, ω)gH∗
sl,αβ (kρ, zc, ω)e2k′′

z,sz′
dz′

= gE
sl,αβ (kρ, zc, ω)gH∗

sl,αβ (kρ, zc, ω)

2k′′
z,s

. (B7)

Accordingly, in this scenario, the electric Weyl DGF com-
ponents required for calculating the spectral heat flux incident
on the observer layer are given by setting zc = zl :

gE
sl,ρρ (kρ, zc = zl , ω) = ikz,l

2kskl

(
+ATM

l − BTM
l

−CTM
l + DTM

l

)
, (B8a)

gE
sl,ρz(kρ, zc = zl , ω) = ikz,l kρ

2kz,skskl

(
−ATM

l + BTM
l

−CTM
l + DTM

l

)
, (B8b)

gE
sl,θθ (kρ, zc = zl , ω) = i

2kz,s

(
+ATE

l + BTE
l

+CTE
l + DTE

l

)
, (B8c)

gE
sl,zρ (kρ, zc = zl , ω) = ikρ

2kskl

(
−ATM

l − BTM
l

+CTM
l + DTM

l

)
, (B8d)

gE
sl,zz(kρ, zc = zl , ω) = ik2

ρ

2kz,skskl

(
+ATM

l + BTM
l

+CTM
l + DTM

l

)
. (B8e)
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FIG. 13. Schematic of two common scenarios of NFRHT within a one-dimensional layered system: (a) Configuration featuring the source
and observer layers as half-spaces. (b) Configuration incorporating thin films for both the source and observer layers.

Similarly, the magnetic Weyl DGF components at zc = zl

are provided as

gH
sl,ρθ (kρ, zc = zl , ω) = kz,l

2kz,s

(
+ATE

l − BTE
l

+CTE
l − DTE

l

)
, (B9a)

gE
sl,θρ (kρ, zc = zl , ω) = kl

2ks

(
−ATM

l − BTM
l

+CTM
l + DTM

l

)
, (B9b)

gE
sl,θz(kρ, zc = zl , ω) = klkρ

2kskz,s

(+ATM
l + BTM

l

+CTM
l + DTM

l

)
, (B9c)

gE
sl,zθ (kρ, zc = zl , ω) = kρ

2kz,s

(−ATE
l − BTE

l

−CTE
l − DTE

l

)
. (B9d)

Finally, substituting the derived Weyl DGF components at
zc = zl into Eq. (7) results in the explicit form of the transmis-
sion probability for an emitting half-space.

With explicit expressions for transmission probabilities de-
rived, we now focus on computing NFRHT in two specific
scenarios where we consider both the source and the observer
to be (1) semi-infinite slabs or (2) thin film layers, as de-
picted in Fig. 13. When dealing with a semi-infinite slab for
either the source or observer layer, as shown in Fig. 13(a),
we assign a thickness of t = 0 for that particular layer. The
thickness for subsequent layers is defined by ti = zi+1 − zi.
Conversely, when the configuration involves thin film layers
for both the source and observer, as shown in Fig. 13(b),

it becomes necessary to introduce hypothetical semi-infinite
vacuum slabs at both ends of the system. These slabs are as-
signed a thickness of t = 0 and a dielectric constant of ε = 1,
positioned before the thin source layer and after the observer
layer, respectively, increasing the total number of interacting
layers in the S-matrix method by two. Additionally, when
dealing with thin-film emitters, to prevent numerical insta-
bilities, we divide the thin-film emitter with a thickness of ts
into two equally thinner sublayers [100], each with a thickness
of ts1 = ts2 = ts/2. As a result, our original N layered system
is transformed into a N + 1 layered system. Following this,
we deliberately designate the latter sublayer [depicted by the
green section in Fig. 13(b)] with a thickness of ts2 as the
adjusted source layer to ensure the numerical stability of the
S-matrix algorithm. Then, we calculate the field amplitudes
using the S-matrix method, incorporating the index of the
newly adjusted source layer (second sublayer) indicated by
s′ = s + 1. Similarly, the observer layer is now represented
by l ′ = l + 1 due to the splitting of the emitter layer. The
system is thus effectively considered as having N + 1 layers.
It is important to ensure that the integration over z′ covers the
entire thickness of the source layer. Therefore, following the
computation of the field amplitudes, during the integration of
the Weyl DGF components over z′, we treat both sublayers
[dashed and green sections in Fig. 13(b)] as a unified source
layer with a thickness of ts = 2ts2. Further insights into the
algorithm required to tackle the NFRHT problem using this
S-matrix approach can be found in Ref. [100].
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