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Topological valley plasmons in twisted monolayer-bilayer graphene moiré superlattices
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In topological photonics, artificial photonic structures are constructed for realizing nontrivial unidirectional
propagation of photonic information. On the other hand, moiré superlattices are emerging as an important avenue
for engineering quantum materials with novel properties. In this paper, we combine these two aspects and
demonstrate theoretically that moiré superlattices of small-angle twisted monolayer-bilayer graphene provide
a natural platform for valley-protected plasmons. Particularly, a complete plasmonic bandgap appears stemming
from the distinct optical conductivities of the ABA and ABC stacked triangular domains. Moreover, the
plasmonic crystals exhibit nonzero valley Chern numbers and unidirectional transport of plasmonic edge states
protected from intervalley scattering is presented.
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I. INTRODUCTION

Graphene plasmons, hybrids of Dirac quasiparticles and
photons, exhibit low-loss, strong electromagnetic confinement
and electrical tunability [1–3]. Graphene plasmons provide
excellent opportunities for exploring light-matter interac-
tions at the nanoscale, which is promising for applications
in integrated photonics [4] and biosensing [5]. Particularly,
constructing graphene plasmonic crystal (GPC) provides an
efficient approach for modulating plasmonic band structures
[6–8]. By introducing the concept of topology, unidirectional
propagation of graphene plasmons protected against disorder
and backscattering can be realized [9–11]. Especially, infrared
topological graphene plasmons are predicted by breaking
time-reversal symmetry with magnetic fields [9,10]. Mean-
while, the valley binary degree of freedom can be utilized
by breaking inversion symmetry [12–14], and topologically
robust transport of valley-locked graphene plasmons were
presented theoretically [11]. However, the requirements of
complex artificial geometries and configurations obstruct the
experimental realizations of topological graphene plasmons.

On the other hand, by stacking and twisting different lay-
ers of van der Waals materials, two-dimensional (2D) moiré
superlattices are emerging as an important avenue for en-
gineering quantum materials with novel properties [15–21].
In particular, in small-angle twisted heterostructures, atomic
reconstruction effects generate domain walls separating two
kinds of periodically arranged domains with different stacking
orders [22–24], with the period a that can be flexibly manip-
ulated by varying twist angle θ according to the formula a =
a0/[2sin(θ/2)] (a0 is the lattice constant of individual layer).
Specifically, a can reach hundreds of nanometers for twisted
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graphene layers with θ < 0.1◦ [25,26], comparable to the
wavelength of graphene plasmons. Consequently, the regular
modifications of the electronic structures and optical prop-
erties provide a natural and lithography-free host for GPCs,
as demonstrated from recent studies on plasmonic crystal
response of small-angle twisted bilayer graphene moiré su-
perlattices [25,27]. However, the stacking domains, which
dominate most regions of the superlattices hold identical plas-
monic responses, and the limited discrepancy near the domain
walls does not open a complete plasmonic bandgap.

With the rapid explorations of twisted heterostructures,
reconstructed moiré superlattices with two types of stack-
ing domains of different optical responses are emerging
[24,26,28–30]. In this paper, the effect of triangular domains
with distinct optical conductivities on the plasmonic band
structures is revealed. In particular, the plasmon properties
of small-angle twisted monolayer-bilayer graphene (tMBG)
are investigated, whose moiré superlattices consist of trian-
gular domains with the Bernal (ABA) and the rhombohedral
(ABC) stacking [26,31], as illustrated in Fig. 1(a). The ABA
and ABC graphene have different electronic band structures
[32–34] where the ABA graphene is a semimetal with a tun-
able band overlap, while the ABC one is a semiconductor
with a gate-tunable band gap and a flat band. Therefore,
the two stacking show distinct optical conductivities [35,36].
Here we demonstrate theoretically that tMBG moiré super-
lattice provides a natural platform for GPC, where complete
plasmonic bandgap occurs. Specifically, the pronounced tail
of interband transitions from the ABC graphene yields suffi-
cient difference between plasmon response of the two stacked
domains. Furthermore, the effects of nontrivial chiral valley
topology of the GPC are emphasized. Finally, robust transport
of graphene plasmon waves with suppressed intervalley scat-
tering is shown at the interfaces separating two GPCs with
opposite valley Chern numbers. Our study motivates further
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explorations of photonic phenomena in the rich platform of
reconstructed moiré superlattices.

II. PLASMONIC BAND STRUCTURES

A. Optical conductivities of the ABA and ABC stacked graphene

Generally, plasmon wave vector q of graphene is related to
its conductivity σ (ω) through

q = 2ωε0εr i/σ (ω), (1)

where ω is the light frequency and εr is the effective di-
electric constant of environment. To reveal plasmon response
of the ABA and ABC graphene under doping, their elec-
tronic band structures were calculated from the tight-binding
model self-consistently [37] and optical conductivities can
be obtained from the Kubo formula for the intraband (σD)
and interband (σIB) terms, following the approach adopted
in previous studies [35,36,38,39]. Figures 1(b)–1(e) show
the representative results for a back-doped carrier density of
2 × 1013 cm−2, which is easily achievable in experiments [40]
(see Appendix A for results at other doping levels).

While the Drude terms are similar between the two stack-
ing orders, with the one for the ABA graphene being slightly
stronger [36] [Figs. 1(c) and 1(e)], the obtained interband
terms σIB are distinct, in agreement with previous reports
[35]. For the ABC graphene, the doping induced an electronic
bandgap between bands b1 and t1 [Fig. 1(d)]. Consequently,
the two strong transition peaks P1 and P2 in the curve of ReσIB

in Fig. 1(e) correspond to transitions from band t1 to t2 and
from band b1 to t2, respectively, and their energy difference
reflects the size of the electronic bandgap [35]. On the other
hand, the interband transitions are strongest at P3 for the
ABA graphene [Fig. 1(c)] [35,38], which is at around

√
2γ1

and barely moves with doping (γ1 is the nearest-neighbor
interlayer coupling strength in the tight-binding model).

According to Eq. (1), the ratio between real parts of q,
i.e., Re(q), of the two stacking can be obtained from χ =
ImσABC/ImσABA. Figure 2(a) compares the extracted Imσ

within a frequency range between 600 and 1300 cm−1, where
tails of the intraband and interband transitions are observed.
If only the intraband terms are considered, a constant value of
χ = χ0 = 0.78 is obtained for all the frequencies, as shown
in Fig. 2(b). Actually, the value of χ0 depends on the Fermi
velocities for the two stacking orders, and varies slightly with
different doping levels (Appendix A). In reality, the intraband
terms dominate the conductivities at lower frequencies, and
χ is close to χ0. With the increase of the light frequency, the
intraband terms decrease while the interband terms contribute
more. Moreover, the ABC graphene presents lower values of
ImσIB, stemming from the influence of the intense peak P1
shown in Fig. 1(e). Consequently, χ decreases dramatically
with the increase of the light frequency, reaching 0.5 at around
ω = 1200 cm−1. Therefore, a big difference of Re(q) between
the two stacking graphene can be obtained.

Generally, graphene plasmons are weakly damped if the
light frequency is far below the interband transitions and the
intraband term dominates [1,2]. Here, to clarify influence of
the interband transitions on plasmon damping, the interband
damping factor κIB = ReσIB/Imσ [2,3] is studied and com-
pared with the intraband one κD = ReσIB/Imσ . As shown

in Fig. 2(c), with the increase of the light frequency, κIB

increases with the rate faster for the ABC graphene than for
the ABA one, stemming from the stronger interband transition
of the ABC graphene. Nonetheless, κIB stays at a same level
of κD for the considered frequency range if assuming same
values of electronic broadening factors in the Kubo formula
(Appendix A), which are both 1 meV in this calculation (a
value achievable at low temperatures [3]). Therefore, inter-
band transitions related plasmon damping is still quite weak,
as the light frequency is well below the interband transition
peaks. Similar results can be obtained for other doped carrier
densities (Appendix A).

B. Plasmonic band structures and valley topology

Based on the large difference between plasmon response
of the ABA and ABC graphene, next we calculate plasmonic
band structures of the moiré superlattices. As illustrated
in Fig. 2(d), the interlaced triangular lattices of ABA and
ABC graphene form a natural photonic crystal for graphene
plasmons, with a rhombic unit cell made of two triangular
domains. The plane-wave expansion method (PEM) is em-
ployed for calculating plasmonic band structures, where an
eigenproblem for the electromagnetic potential ϕ(r) is solved
(Appendix B). Figure 2(d) presents the plasmonic band struc-
tures for superlattice constant a = 150 nm. The first plasmonic
band has a maximum at the K (K’) point, while the second
band is lowest at the M point. Particularly, a complete plas-
monic bandgap of around 20 cm−1 wide is observed at around
ω = 1270 cm−1. The evolution of plasmonic band structures
with a is shown in Fig. 9 below. Clearly, the opening of
plasmonic bandgap stems from the lower value of χ at high
frequency. Here, domain walls between the ABA and ABC
graphene are ignored for simplicity, and their influence will
be discussed later.

Importantly, triangular domains with different optical con-
ductivities break the inversion symmetry, which is the key to
valley photonics [11–13]. Therefore, nontrivial topology of
the GPC is investigated by calculating the valley Chern num-
bers Cν = 1

2π i

∫
�ν

d2kF (k) [11], where ν is the valley index
(K or K’), F (k) = ∇k × 〈ϕk|∇k|ϕk〉 is the Berry curvature, ϕk
is the eigenstate of ϕ(r) at wave vector k, and �v represents
the integral triangle of each valley ν. Figure 2(e) presents
the distribution of F (k) for the first plasmonic band. As ex-
pected [11,13,14], opposite Berry curvatures are observed for
the two valleys, yielding nonzero and opposite valley Chern
numbers CK′ = –CK = 0.14. They are not exactly at one
half, which is well noticed in a similar study [41]. Since the
bandgaps are largely opened, the Berry curvature for both
valleys will overlap with each other, as shown in Fig. 2(e).
As a consequence, the valley Chern number is not exactly
0.5. Nonetheless, protection of the topological valley phase
is still well ensured [41], as shown below. Besides, the broken
inversion symmetry would lift of the degeneracy between the
two sublattice pseudospins, and valley chiral states would
appear [12,42]. This is confirmed from phase distributions of
the z components of electric fields Ez in Fig. 2(f) (calculated
using the finite-element method). For the K (K′) valley, the Ez

phase increases clockwise (counterclockwise) by 2π at each
unit-cell corner. Thus the two valleys have opposite circular
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FIG. 1. Moiré superlattices made of twisted monolayer-bilayer graphene. (a) Sketch of a moiré superlattice made of domains of ABA and
ABC stacked graphene. The right part represents atomic structures of the two stacking orders, where the symbols with black, gray, and red
colors label the first, second, and third atomic layers, respectively. (b) Calculated electronic band structure of the ABA graphene. (c) Frequency
dependence of the calculated optical conductivities for the ABA graphene, including imaginary part of the intraband transition term (ImσD),
imaginary (ImσIB), and real (ReσIB) parts of the interband transition term. (d), (e) Same as (b) and (c), but for the ABC graphene.

orbital angular momentums (OAMs) [43], and unidirectional
excitation of these valley chiral states can be realized by
sources carrying OAM with proper chirality [12,43].

III. TOPOLOGICALLY PROTECTED EDGE STATES

Topologically protected edge states can be created at
the interface between two graphene plasmonic crystals with

opposite valley Chern numbers [11]. As an example, we study
the interface structures shown in Fig. 3(a) (see Appendix C
for calculation details). The regions GPC1 and GPC2 pos-
sess domains of ABA and ABC with reversed orders, and
therefore carry opposite valley Chern numbers. As plotted in
Fig. 3(b), the edge states cross the plasmonic bandgap, with
opposite directions of group velocity near the two valleys.
Dispersions of edge states for other geometric parameters
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FIG. 2. Plasmonic band structures of the moiré superlattices. (a) Extracted curves of ImσD and ImσIB for the two stacked graphene within
the frequency range marked in Figs. 1(c) and 1(e) (gray regions). (b) Frequency dependence of χ . χ0 is the value considering only the Drude
terms. (c) Plot of intraband (κD) and interband (κIB) damping factors for the two stacking orders. (d) (Top) Sketch of the graphene plasmonic
crystal made of moiré superlattices. The dashed rhombus labels a unit cell, with lattice constant of a. (Bottom) Calculated plasmonic band
structures of the GPC for a = 150 nm. The inset shows the Brillouin zone and its reciprocal vectors b1, b2. (e) Distributions of the Berry
curvature F (k) for the first plasmonic band. (f) Phase distributions of the z components of electric fields for the K and K’ valleys at the first
band.

are presented in Appendix C. Figure 3(c) exhibits the local
electric field confinement near the interface and the opposite
directions of energy flux for the two edge states near the K
(left) and K’ (right) valleys. Moreover, robust propagation
of graphene plasmons protected from intervalley scattering
are demonstrated at ω0 = 1270 cm−1 in Figs. 3(d)–3(f). As
a representative example, a Z-shape waveguide is constructed
[Fig. 3(e)] and the propagation of graphene plasmons is com-
pared with the straight one [Fig. 3(d)]. Graphene plasmon
waves are excited by a right-hand circularly polarized mag-
netic point dipole [inset of Fig. 3(e)]. Besides, to model the
absorption loss, a weak damping factor value κ = Reσ/Imσ

= 1/300 is assumed for all the graphene nanostructures,
which might be achieved at low temperature for encapsulated
graphene [3]. For both cases, the excited plasmon waves
propagate along the interfaces unidirectionally. Moreover,
according to the attenuation of plasmon power plotted in
Fig. 3(f), the absorption (analytic curve of slope κω0/2vg,
where vg is the group velocity) is the only source of propa-
gation loss. Strikingly, the plasmon waves can go around the
120◦ corners without intervalley scattering. Notably, various
approaches might be explored to compensate the plasmon
loss, for instance, via gain media [44], stimulated electron
tunneling [45], nonlinear optical effects [46], and synthesized
complex frequency excitation [47].

In practice, fabrications of the periodic moiré superlattices
are advancing with the rapid understanding of morphology
[22–24,48] and improvements of stacking techniques [49].
Particularly, moiré patterns with tunable periodicity and ul-
tralow disorder have been reported recently [50]. Furthermore,
based on the controllable switching and local arrestments of
stacking domain orders in tMBG [26], a possible route for
preparing the interface structures could be envisioned (Ap-
pendix D). Moreover, various strategies can be employed to
enlarge the difference of plasmon response between the two
domains, like engineering the dielectric environment [51] and
exploring the stacking domain-dependent surface functional-
ization [52], which would increase the plasmonic bandgap and
thus minimize the influence of fabrication inaccuracy. Exper-
imentally, the edge states can be excited near a resonant an-
tenna by far-field illumination [7] (Fig. 14 in Appendix D) and
detected via the well-demonstrated technique of scattering-
type scanning near-field microscopy (s-SNOM).

IV. INFLUENCE OF THE DOMAIN WALLS

Finally, influence of the domain walls is discussed. Various
kinds of domain walls between the ABA and ABC graphene
can exist [26,53]. Here, for simplicity, we assume identi-
cal conductivity profile along the three directions across the
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FIG. 3. Valley topologically protected edge states. (a) Sketch of the studied interface structures, where an interface (marked within the blue
lines, in x direction) separates two plasmonic crystals (GPC1 and GPC2) with opposite valley Chern numbers. The two GPCs are shifted in x
direction by s, and gapped in y direction by h. The interface is assumed as ABA stacked graphene. (b) Dispersion of the edge states (represented
by the red curves) for wave vectors in x direction (ky = 0). Here, the geometric parameters are h = a/(2

√
3), and s = 0.5a. The blue regions

mark the 2D plasmon states. (c) Spatial distributions of |Ez|2 and energy flux at the edge states near the K (left) and K’ (right) valleys at
ω0 = 1270 cm−1 as labeled in (b) (dashed line). Length and direction of the black arrows represent magnitude and direction of the energy flux,
respectively. These values are extracted at 20 nm above graphene. [(d), (e)] Propagation of graphene plasmons along the straight (d) and Z
shape (e) interfaces (labeled by blue lines) at the light frequency of 1270 cm−1. The inset in (e) illustrates top view of the point sources (red
dots), which sit 10 nm above the graphene surfaces. (f) Propagating length dependence of the plasmon powers calculated by integrating |Ez|2
along the directions perpendicular to the interfaces. The analytic curve (in dashed black) is presented with a slope of κω0/2vg.

domain walls as indicated in Fig. 4(a), and consider two kinds
of contributions from the walls. Firstly, instead of a infinite
sharp boundary (δ = 0), a transition boundary with finite
width δ = 6 nm [26,53] is assumed, which can be described
by

M(x) = σABA − σABC

2
erf

(
x√
2δ

)
+ σABA + σABC

2
, (2)

where erf(x) is the error function. Secondly, a peak in the
conductivity curve might emerge at the boundary stemming
from the distinct electronic band structures like the case of bi-
layer graphene [54]. This is described by a Gaussian function
gσABA+σABC

2 exp( −x2

2δ2 ) [Fig. 4(b)], where g represents weight of
this term. Figure 4(a) plots conductivity profiles for the three
cases: infinite sharp boundary (δ = 0), transition boundary
with δ = 6 nm, g = 0, and transition boundary with δ =
6 nm, g = 0.2. The plasmonic band structures for the GPC
are recalculated, and presented in Fig. 4(c). As observed, the
transition boundaries lower the entire plasmonic bands, while
the bandgap width is barely changed. Besides, although the
bandgap width is reduced by including the Gaussian term,
complete plasmonic bandgap is still observable for the mod-
erate value of g = 0.2 (close to the value for domain walls of
twisted bilayer graphene in reality [25]).

V. CONCLUSIONS

In conclusion, small-angle tMBG moiré superlattices are
demonstrated as natural GPCs with complete plasmonic
bandgap. Moreover, the inversion symmetry is broken, and
valley topology of the GPC is revealed. Our studies thus
provide an avenue for realizing unidirectional propagating
of graphene plasmons protected from intervalley scattering.
Therefore, various tunable and compact valley plasmonic de-
vices including resonators, modulators, and switches can be
foreseen, which are promising for applications in integrated
photonics and biosensing. More importantly, our studies
demonstrate topological plasmon polariton effects of domains
with distinct optical response, which can be generally applied
for exploring various kinds of photonic phenomena with the
advance of new and complex moiré superlattices [20,55–59],
such as topological phonon polaritons [60] in twisted hBN
layers [30], topological exciton polaritons [61] in twisted

TABLE I. Values of the coupling parameters, in unit of eV.

γ0 γ1 γ3 γ4

3.12 0.377 0.29 0.12
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FIG. 4. Influence of the domain walls on plasmonic band structures. (a) Conductivity profiles for the three cases: sharp boundary (δ = 0),
transition boundary (δ = 6 nm, g = 0), and transition boundary (δ = 6 nm, g = 0.2). (b) Profile of the conductivity with a Gaussian distributions,
centering at the middle of the boundary. (c) Bulk plasmonic dispersions calculated for the three cases shown in (a).

transition metal dichalcogenide materials [23,29]. Moreover,
the plasmon response considered here is mainly contributed
by the intraband terms, whereas the interband plasmons [62]
can be quite interesting and studied in the future.
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APPENDIX A: ELECTRONIC BAND STRUCTURE
AND CONDUCTIVITY CALCULATIONS

1. Tight-binding model

Tight-binding model is employed for calculating band
structures of the ABA and ABC graphene [37,38]. In the ba-
sis |A1〉, |B1〉, |A2〉, |B2〉, |A3〉, |B3〉, the Hamiltonian of ABA
stacking can be written as

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−�12 γ0 f γ1 −γ4 f ∗ 0 0

γ0 f ∗ −�12 −γ4 f ∗ γ3 f 0 0

γ1 −γ4 f 0 γ0 f ∗ γ1 −γ4 f

−γ4 f γ3 f ∗ γ0 f 0 −γ4 f γ3 f ∗

0 0 γ1 −γ4 f ∗ �23 γ0 f

0 0 −γ4 f ∗ γ3 f γ0 f ∗ �23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A1)
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FIG. 5. Calculated temperature dependence of the imaginary parts of optical conductivities for the ABA (a) and ABC (b) graphene, in
together with the robustness of the bandgap with temperature (c).
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quentially shifted by a value of 10 for clarification. Here, electronic
broadening parameters are assumed as �IB = �D = 10 meV.

and for the ABC stacking, the Hamiltonian is

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−�12 γ0 f γ1 −γ4 f ∗ 0 0

γ0 f ∗ −�12 −γ4 f ∗ γ3 f 0 0

γ1 −γ4 f 0 γ0 f ∗ γ3 f −γ4 f ∗

−γ4 f γ3 f ∗ γ0 f 0 −γ4 f ∗ γ1

0 0 γ3 f ∗ −γ4 f �23 γ0 f

0 0 −γ4 f γ1 γ0 f ∗ �23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A2)

Here f = eiqxa0/
√

3 + 2e−iqxa0/
√

3 cos(qya0/2), a0 = 2.46 Å
is the in-plane lattice parameter and q is the momentum.
�12 = αnp,12 is the interlayer potential difference between
the bottom and middle layers, and �23 = αnp,23 is the one
between the middle and top layers, where α=e2c0/(ε0ε), with
c0 = 3.35 Å as the interlayer distance, and ε is taken as 2.3
[63]. The carrier density parameters np,12 and np,23 satisfy

n2 = np,12 − np,23,

n3 = ntop + np,23,

ntop + nback = n1 + n2 + n3,

where n1 is the excess density of electrons on the closest layer
to the back gate, and n2 (n3) is the excess density on the second
(third) layer. ntop and nback are the top and back gates induced
electronic densities respectively.

In the Hamiltonian Eqs. (A1) and (A2), the parameters �12

and �23 are related to the carrier densities n1, n2, and n3.
On the other hand, the individual carrier densities are related
to the eigenfunction of the Hamiltonian Eqs. (A1) and (A2)
through [37,38],

nl = 1

2π2

∑
i

∫
d2q

(
F (εi,q) − 1

2

)
(|cAl |2 + |cBl |2) (A3)

where F (ε) = (1 + e
ε−μ

KBT )−1 is the Fermi-Dirac distribution,
i represents the different bands, and cAl and cBl (l = 1, 2,
and 3, corresponding to the different layers) are the projec-
tions of the total electronic eigenfunction on the sublattices
Al and Bl . Therefore, the above equations are calculated self-
consistently, following previous studies [37,38], with values
of the coupling parameters shown in Table I.

2. Kubo formula

After obtaining the band structures, the Kubo formula is
employed for calculated optical conductivities σ (ω) of the
ABA and ABC graphene, written as σ (ω) = σD(ω) + σIB(ω).
The intraband [σD(ω)] and interband [σIB(ω)] contributions
are obtained from

σD(ω) = 2
σ0

π2

∑
i

∫
d2q

∣∣∣∣〈q, i| ∂H

∂qx
|q, i〉

∣∣∣∣
2

×
[

− ∂F (εq,i)

∂ε

]
i

h̄ω + i�D
, (A4)

σIB(ω) = 2
σ0

π2

∑
i, j 	=i

∫
d2q

∣∣∣∣〈q, i| ∂H

∂qx
|q, j〉

∣∣∣∣
2

×
[
− f (εq,i) − F (εq, j )

εq,i − εq, j

]
i

h̄ω + εq,i − εq, j + i�IB
,

(A5)

where σ0 = e2/4h̄ ≈ 6.08 × 10−5 �−1, and �D and �IB are
the electronic broadening parameters for the two terms sep-
arately. In our calculations, the temperature is taken as T =
10 K. Temperature would have little influence on the imag-
inary parts of the optical conductivities and therefore the
observation of plasmonic bandgap, as shown in Figs. 5(a)
and 5(b). Moreover, as demonstrated in Fig. 2, the plasmonic
bandgap occurs between the first band at K point and the sec-
ond band at M point. Therefore, in Fig. 5(c) below, we show
the calculated frequencies for the corresponding two points.
Although a slight shift of the frequencies with temperature
due to the Fermi-Dirac distributions, the plasmonic bandgap
width is robust, and bandgap within 1275 and 1290 cm−1 is
always expected for the various temperatures. On the other
hand, concerning real parts of optical conductivities, which
are relevant to plasmon damping, their quantitative character-
izations require further experiments.

Noticeably, phonon-related conductivity effect [64,65]
is not considered here, as it occurs at higher frequency
(1585 cm−1) and the peak is very narrow (2.5 cm−1). Its influ-
ence on χ is negligible for the frequency range between 600
and 1300 cm−1 considered in the main text.

3. Optical conductivities at different doping levels

The conductivities of the ABA and ABC graphene are
calculated at different backside-doped levels, as shown in
Fig. 6. With the increase of doping, the transition peak at
around ω = 2890 cm−1 (close to γ1, which is at 3035 cm−1)
of the ABC graphene at zero doping splits into two peaks P1
and P2, and the energy difference between these two peaks
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FIG. 7. (a) Calculated ratio of Imσ between the ABC and ABA graphene for different doping levels. χ0 corresponds to the case where
only the intraband terms are considered. [(b),(c)] Frequency-dependent damping factors for the ABA (b) and ABC (c) graphene. κD and κIB

are the contributions from the intraband and interband terms, respectively. Here, electronic broadening parameters are assumed as �IB = �D

= 10 meV.

increases with doping level. This phenomena corresponds to
the opening of electronic bandgap [35].

Furthermore, Fig. 7 presents the dependence of ratio pa-
rameter χ = ImσABC/ImσABA and damping factors with light
frequency ranging from 600 to 1300 cm−1 for varied carrier
densities from 10 to 20 × 1012 cm−2. Consistence with the
main text, χ decreases with the increase of frequency for
all the investigated doping levels. Moreover, the interband
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FIG. 8. Comparison between PEM and Comsol. (a) Calculated
N-dependent eigenfrequency of the first plasmonic band at the K
point for the GPC. (b) Comparison between the PEM and Comsol,
where N = 9 is taken in the PEM. The lattice constant of the GPC is
taken as a = 150 nm.

transition related damping factors κIB stay at the same level
of κD for all cases, if assuming same electronic broadening
parameters in the Kubo formula.

APPENDIX B: CALCULATIONS OF THE BULK
PLASMONIC BAND STRUCTURES

1. Description of the plane-wave expansion method (PEM)

PEM is widely employed for band structure calculations of
graphene plasmonic crystals [6,9,11]. It starts from the equa-
tion of the quasistatic in-plane potential ϕ(r) for a periodically
varying conductivity σ (r),

ϕ(r) = i

4πε0εrω

∫
d2r′ ∇ · [σ (r′)∇ϕ(r′)]

|r′ − r| , (B1)

where εr is the efficient dielectric constant of the environment,
and ω is the angular frequency of light.

The periodic conductivity can be written in terms of recip-
rocal lattice vectors Gm,

σ (r) =
∑

m

σGm eiGm·r. (B2)

Meanwhile, the in-plane potential ϕ(r) has the Bloch form,

ϕ(r) =
∑

m

pmei(Gm+k)·r. (B3)

Equation (B1) then becomes an eigenproblem. In k space,

HC = AC, (B4)

where the elements of H are

Hm,n = (Gm + k) · (Gn + k)√|Gm + k||Gn + k| σGm−Gn . (B5)

The eigenvector C has elements Cm = pm
√|Gm + k|, and the

eigenvalue is A = 2iε0εrωa. Therefore, εr and a enters the
eigenvalue problem through εra, and εr is assumed as 1 in this
paper. For the moiré superlattices where the domain walls are
neglected, σGm at a reciprocal lattice vector Gm = l1b1 + l2b2

can be obtained analytically, which is expressed as

1

2
(σ1 + σ2), if l1 = 0, l2 = 0,
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FIG. 9. Opening of plasmonic bandgap with the decrease of moiré period a, which occurs at high frequency when χ is low.
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FIG. 10. Calculation details of plasmonic edge states.
(a) Schematic of the structures of the unit cell used in the
calculation, which are periodic in both x and y directions, with the
interfaces A (width of h) and B (width of h′) separating regions
GPC1 and GPC2. The two GPCs are shifted in x direction by s.
(b) Dispersions of edge states for the two interfaces, where the
red and blue curves are the edge modes for interfaces A and B,
respectively. Here, h = h′ = a/(2

√
3) and s = 0.5a.

The frequency dependence of σGm is considered in cal-
culating Figs. 2, 3, and 4 of the main text. We adopted a
numerical convergence method, which was coded in Matlab
to solve the frequency dependent Eqs. (11) and (12). Each
plasmonic band is calculated separately. For calculating each
plasmonic band, there are many loops in the calculations. For
the first loop j = 1, we set a very high hypothetical input
value of ω expressed as ωin,1, with which one can get the
values of σGm−Gn from the above analytical expressions. This
ωin,1 in only works for calculating σGm−Gn . Then by solving
Eqs. (11) and (12), one can get a calculated output value of
ω expressed as ωout,1. Then for the second loop j = 2, we
set ωin,2 as ωin,2 = ωout,1, and repeat the above procedure
again. After j loops, the values of ωout, j and ωin, j would
be very close. The convergence condition in our calculation
is |ωout, j-ωin, j| < 0.1 cm−1, which is precise enough, and
typically converges very efficiently (around 10 to 20 loops).

On the other hand, in the PEM, the reciprocal lattice vec-
tors are defined as Gm = l1b1 + l2b2, where the integers l1 and
l2 take values of {−N,−N + 1, ...,−1, 0, 1, ..., N − 1, N}.
Here, the positive integer N determines calculation accuracy.
Convergence of the calculated eigenfrequency with N is tested
and shown in Fig. 8(a). The result converges fast with the
increase of N . Moreover, Fig. 8(b) compares the calculated
plasmonic band structures from PEM with those from Com-
sol. Only for Fig. 8 here, optical conductivities of the ABA
and ABC graphene are taken as 2iσ0 and iσ0 respectively,
which are for the comparison and not related to the actual
case. For a value of N = 9, PEM generates consistent results
with Comsol, while saves huge a lot of time. Therefore, PEM
is adopted in the calculations of plasmonic dispersions of the
2D and edge modes in the main text, and N = 9 is employed
for calculating the 2D plasmon modes.

2. Opening of plasmonic bandgap

The opening of plasmonic bandgap is determined by the
parameter χ as shown in Fig. 2. To further elaborate on this,
we show in Fig. 9 the plasmonic band structures for various
values of the moiré period a, which determines the frequency
of plasmonic bandgap. For higher values of a, the first and
second plasmonic bands split at lower frequencies, and more-
over their separation becomes smaller. The latter stems from
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FIG. 11. Influence of the interface width h on the edge state dispersions. The red and blue curves are the edge modes for the interfaces A
and B, respectively. Here, s = 0.5a. For simplicity, frequency-independent values of conductivity for the ABA and ABC graphene are taken as
the ones at ω = 1270 cm−1.

the higher values of χ at lower frequencies. For example,
χ is around 0.7 at 700 cm−1, 0.65 at 900 cm−1 and 0.5 at
1200 cm−1. Therefore, a large separation between the first and
second bands and therefore the existence of a direct plasmonic
bandgap is expected at high frequency when χ is low.

APPENDIX C: CALCULATIONS OF THE PLASMONIC
EDGE STATES

For the numerical calculation of edge states, periodic con-
ditions in both x and y directions are employed, and Fig. 10(a)
presents the structures of the unit cell. There exists two

interfaces with widths h (interface A) and h′ (interface B)
separating the two GPCs. Edge states of the interface A is
presented in the main text. In the calculation, finite height of
5
√

3a for the two GPCs are used, which is large enough to
ensure the calculation accuracy of edge states. Moreover, in
the PEM, different values of N are necessary for the x (Nx) and
y (Ny) directions [11]. In our calculations, Nx = 7 and Ny is
proportionally scaled according to spatial sizes of the unit cell
in these two directions. Figure 10(b) presents the calculated
dispersions for the edge states of the two interfaces, where
the red and blue curves correspond to the edge modes for the
interfaces A and B, respectively.
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are taken as the ones at ω = 1270 cm−1.
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FIG. 13. A proposal for fabricating the interface structures, including twisting, local arrestments fabrication, and switching.

Furthermore, evolutions of the edge states at the interface
A with varied geometric parameters h and s are investigated,
as shown in Figs. 11 and 12 (red curves). Here, for simplicity
and without loss of the trends, frequency-independent values
of conductivity for the ABA and ABC graphene are taken as
the ones at ω = 1270 cm−1. Existing frequency range of the
edge states varies with these two parameters. Nonetheless, in
practice, careful design of the geometric parameters can be
done via local engineering of the stacking domains [26,31,53]
to maximize the existing frequency range.

APPENDIX D: POSSIBLE EXPERIMENTAL
REALIZATIONS

In practice, the interface structures can be fabricated by
combining twisting, local modifications and switching. In

previous studies [26], the stacking domains can be switched
by local load imposed from AFM tip and the switching can
propagate spontaneously in a domino-like fashion. Moreover,
local arrestments/confinements like wrinkles can completely
block the propagation of switching, resulting in two regions
with heterogenous domains with diverse patterns. Accord-
ingly, we propose a possible approach for fabricating the
interface structures, as illustrated in Fig. 13. Firstly, the pe-
riodic domains are prepared by twisting between monolayer
and bilayer graphene. Secondly, local arrestments are created
by various kinds of approaches like AFM writing [66] or ion
beam modifications [67]. Finally, stacking orders on one side
is switched by local load, resulting in an interface separating
domains with opposite valley Chern numbers. Furthermore,
the rapid advances in understanding and manipulations of

FIG. 14. The edge states can be excited by near-field of an resonant antenna under far-field illuminations. Here, a gold rod with length,
width and height of 3, 0.3, and 0.1 µm is utilized. The light frequency is at 1270 cm−1.
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moiré superlattices would benefit precise fabrications of the
interface structures.

Excitations of the edge states can be realized experi-
mentally by far-field illuminations on a metallic antenna
nearby, as demonstrated numerically in Fig. 14. Moreover,

scattering-type scanning near-field microscopy can be em-
ployed for detecting the edge states. Similar configu-
rations have been employed for excitation and detec-
tion of propagating plasmons in graphene plasmonic
crystals [7,8].
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