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Moiré excitons in biased twisted bilayer graphene under pressure
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Using the tight-binding model, we report a gap opening in the energy spectrum of a twisted bilayer graphene
under the application of pressure, that can be further amplified by the presence of a perpendicular bias voltage.
The valley edges are located along the K-� path of the superlattice Brillouin zone, with the band gap reaching
values up to 200 meV in the single-particle picture. Employing the formalism of the semiconductor Bloch equa-
tions, we observe an enhancement of the band gap due to the electron-electron interaction, with a renormalization
of the band gap of about 160 meV. From the solution of the corresponding Bethe-Salpeter equation, we show
that this system supports highly anisotropic bright excitons whose electrons and holes are strongly hybridized
between the adjacent layers.
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I. INTRODUCTION

Moiré patterns naturally appear in overlaying crystals with
different individual lattice parameters or even in homobilayer
when they are slightly offset due to rotation [1,2], such as
turbostratic graphite owed to orientation disorder [3]. Sev-
eral extraordinary phenomena have been studied in different
twisted materials, such as superconductivity and flat bands,
in what is called magic angle in twisted bilayer graphene
(TBG) [4–6], Mott-like insulating states in half-filling TBG
[7], room-temperature ferroelectricity in twisted bilayer MoS2

[8], an alternation between ferromagnetic to antiferromag-
netic domains in twisted bilayer CrI3 [9], and Hubbard physics
in twisted bilayer WSe2 [10].

For vertical stacked two-dimensional (2D) semiconductor
materials with a twist, e.g., rotated transition metal dichalco-
genides’ (TMDs) bilayers, the periodic long-range interaction,
known as the moiré potential [11], results in a modulation
of the band edge energies [12]. In addition, tremendous in-
terest in exciton physics bloomed with the advent of 2D
materials due to their high binding energies [13], stem-
ming from reduced screening and lower dimensionality [14].
In this context, recent experiments have demonstrated that
such structural moiré patterns can trap long-lived and valley-
polarized interlayer excitons, referred to as moiré excitons
[15–19]. Those excitons have a wide range of possible ap-
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plications, including the development of arrays of quantum
emitters [20] and excitonic devices [21].

Since 2006, the band-gap tunability of the AB-stacked
bilayer graphene with a perpendicular electric field has been
well documented [22–24]. This discovery triggered funda-
mental interest in exploring optical properties dominated
by bound states. An additionally reported route to open a
band gap in biased Bernal stacked bilayer graphene is by
nanomechanical control, achieved, for instance, via interlayer
distance decrease [25]. The electrostatic control of electronic
TBG bands and the possibility of band-gap tuning were
theoretically explored [26] for sublattice-exchange-dependent
commensurate TBG with different interlayer shift vectors.

The excitonic physics of bilayer graphene has been exten-
sively explored. For AB-stacked bilayer graphene, theoretical
predictions [27–30] of tunable excitons date back to 2010,
and experimental demonstrations [29] in 2017 showcased the
formation of excitons with large binding energies and dis-
tinct optical selection rules. Conversely, for TBG, despite the
observation of excitonic resonances in the continuum [31]
and prediction of electron-hole bound states between Landau
levels [32], nonmagnetic excitons in semiconductor TBG have
not been predicted or observed to date.

Therefore, motivated by the experimental advances in
the twist physics on the moiré excitons hosted in artificially
engineered homobilayer [33] and heterobilayer [34] TMDs,
that have revealed twist angle dependence in the excitonic
properties and whose layer hybridization can be controlled by
external electric field [34], in this paper, we examine routes
for the formation of excitons in TBG. To achieve that, using
a tight-binding model within a single-particle picture, we first
demonstrate gap opening in TBG under pressure and bias
voltage for certain twist angles that generate commensurate
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unit cells, which suggests the possibility of exciton formation
in bilayer graphene with a twist. Recently, pressure was
applied in twisted TMDs to tune minibands and interlayer
coupling [35,36], which corroborates the feasibility of our
proposal in TBG. Our analysis reveals that the single-particle
bands are highly hybridized between different layers near the
band edge. To appropriately describe the exciton formation,
many-body interactions are added to the model, leading
to the dielectric function calculation in the context of the
random phase approximation (RPA) [37–39], adapting the
Adler-Wiser formula [40,41] to account for the polarized
screening effect between the two layers in 2D systems. Next,
we evaluate the exchange self-energy, which renormalizes the
optical band and corrects the band gap by accounting for the
electron-electron interaction [42,43]. As shall be discussed,
our results clearly show a sixfold symmetric optical band
with six nonequivalent band edges, where the lowest-energy
exciton wave functions are localized.

II. TIGHT-BINDING MODEL

It was recently shown [44] that the geometric relaxation
of atoms can be safely neglected for twist angles above 1.8◦,
which theoretically ensures us to limit discussing large an-
gle cases with rigid rotation features. Hence, a large twist
angle TBG lattice can be safely modeled as two stacked
graphene lattices with a rigid vertical translation d in the out-
of-plane axis and a rigid in-plane rotation θ . In this section,
we present our approach for the modeling of noninteracting
electrons in TBG, considering a rigid structure of two planar
layers with interlayer distance d . The unit cell of TBG is
well defined (commensurate) for twist angles that obey the
equation [45–48]

θ (p, q) = arccos

(
3p2 + 3pq + q2/2

3p2 + 3pq + q2

)
, (1)

where p, q are integers. Further details of the crystallographic
structure of TBG are presented in Appendix A.

A. Formalism

Our description is based on the tight-binding approxima-
tion for the energetically dominant TBG orbitals, pz, in the
vicinity of the energy levels on TBG band edges. The tight-
binding Hamiltonian in the second quantization formalism
can be written as

HTB =
∑
��′

∑
δ�δ�′

∑
RR′

t (R + δ� − R′ − δ′
�′ )c†

R+δ�
cR′+δ�′ , (2)

where t (r) is the transfer integral [49,50], c†
r (cr) is the

fermionic operator that creates (annihilates) a pz electron cen-
tered at r, � = 1 (2) labels the bottom (top) layer, δ� is a basis
vector on layer �, and R is a superlattice vector. By assuring
commensurability [Eq. (1)], the atomic structure of TBG is
guaranteed to be periodic, which allows us to introduce the
Fourier transform

c†
R+δ�

= 1√
N

BZ∑
k

eik·(R+δ� )b†
kδ�

, (3)

FIG. 1. Illustration of the interactions between a pair of pz or-
bitals, decomposed into π - and σ -like interactions. The lobes are
projected onto a pair of axes, one parallel and one perpendicular to
the vector r connecting the orbital centers.

where N is the number of unit cells of the material, b†
kδ�

is
the Fourier transformed operator, and

∑BZ
k is a sum over

wave vectors k restricted to the first Brillouin zone (BZ). The
Hamiltonian (2), rewritten in momentum space, is

HTB =
BZ∑
k

∑
��′

∑
δ�δ�′

∑
R

eik·(R+δ�−δ�′ )t (R + δ� − δ�′ )b†
kδ�

bkδ�′ .

(4)

We emphasize the importance of deriving a formulation for
the Hamiltonian on a finite basis. This allows us to numeri-
cally construct and diagonalize Hamiltonian matrices. Here,
we used the finite set of vectors, δ�, to label this basis, taking
the periodicity of the infinite system into account. As shall
be discussed later in this section, the transfer integrals are
position-dependent functions that decay exponentially with
distance. Thus, the infinite sum over lattice vectors,

∑
R, in

Eq. (4) can be safely truncated.
In the tight-binding picture, the transfer integrals t (r) de-

scribe the energy parameters associated with the hoppings of
electrons between different atomic sites. Here, we consider
one orbital (pz) per atomic site. Since the pz orbitals do not all
align vertically due to the presence of two stacked graphene
layers, geometrical spatial aspects of the pz orbital distribution
must be considered.

If r is the distance vector between two pz orbitals, then
cos θpp = (r · ez )/r is the cosine of the angle that r forms with
the z axis. Each pz orbital can be decomposed into a pz cos θpp

component in the direction parallel to r, and a pz sin θpp com-
ponent in the orthogonal direction. The pz cos θpp–pz cos θpp

and pz sin θpp–pz sin θpp interactions resemble a σ bond and
a π bond, respectively, as illustrated in Fig. 1. Orthogonal
interactions pz cos θpp–pz sin θpp vanish due to the opposite
signs of the pz orbital globes. Denoting the pure σ - and π -like
transfer integrals by Vppσ (r) and Vppπ (r), the transfer integral
in Slater-Koster form becomes [49–51]

t (r) = Vppσ (r) cos2 θpp + Vppπ (r) sin2 θpp. (5)

Using the trigonometric identity sin2 θpp = 1 − cos2 θpp and
cos θpp definition, Eq. (5) becomes

t (r) = Vppσ (r)
(r · ez

r

)2
+ Vppπ (r)

[
1 −

(r · ez

r

)2
]
. (6)

Atomic orbitals have exponentially decaying tails far from
their centers. For this reason, the pure σ and π transfer inte-
grals are also assumed to decay exponentially. Thus, they can
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be modeled as exponential functions with fitting parameters
chosen to reflect the physical properties of the real system.
Following the results of Ref. [52], the pure transfer integrals
in Eq. (6) are fitted as

Vppπ (r) = V 0
ppπ exp

(
− r − acc

δ0

)
, (7a)

Vppσ (r) = V 0
ppσ exp

(
− r − d0

δ0

)
, (7b)

where acc = a/
√

3 ≈ 1.42 Å is the carbon-carbon bond
length and d0 ≈ 3.35 Å is the strain-free interlayer distance.
The intralayer and interlayer nearest-neighbor hoppings are,
respectively, given by

Vppπ (acc) = V 0
ppπ ≈ −2.7 eV, (8)

Vppσ (d0) = V 0
ppσ ≈ 0.48 eV, (9)

being set to agree with monolayer graphene and AB-stacked
bilayer graphene band structures, respectively. The decay
length δ0 = 0.148a modulates how fast the exponential func-
tions go to zero. To truncate the sum

∑
R in Eq. (4) preserving

a correct physical description of intra- and interlayer cou-
pling in TBG, we must identify the dominant intra- and
interlayer hopping terms. Following Ref. [52], we restrict
intralayer hoppings to the nearest intralayer neighbors, and
the interlayer ones to atomic distances of r � 4acc.

It is worth emphasizing that applying any strain or pressure
in a crystal modifies the vectors connecting lattice sites and
changes the corresponding hopping parameters. Note that the
transfer integral (6) is a position-dependent term, implying
hopping variations by lattice changes. Here, since we assume
rigid structures, TBG under pressure can be simply modeled
by uniformly varying the interlayer distance.

By applying a uniform electric field E = Eez perpendic-
ular to TBG, a vertical electric potential v(z) = v(0) − Ez
is induced. We set the reference v(d/2) = 0, such that the
potentials at the graphene layers are v(0) = Ed/2 and v(d ) =
−Ed/2. Thus, within the tight-binding approach, the bias volt-
age is included as an on-site potential given by the diagonal
term [53]

HV =
∑

R

∑
�δ�

V

2
s�c†

R+δ�
cR+δ�

=
BZ∑
k

∑
�δ�

V

2
s�b†

kδ�
bkδ�

, (10)

where s� = δ�1 − δ�2 and V = −e[v(d ) − v(0)] = eEd is the
total electric potential energy difference between the adjacent
graphene layers.

Combining Eqs. (4) and (10), we obtain the complete
single-particle Hamiltonian for the noninteracting pz electrons
of TBG under an external perpendicular electric field,

H0 = HTB + HV =
BZ∑
k

∑
��′

∑
δ�δ�′

hδ�δ�′ (k)b†
kδ�

bkδ�′ , (11)

where we defined the matrix element

hδ�δ�′ (k) = V

2
s�δ��′δδ�δ�′ +

∑
R

eik·(R+δ�−δ�′ )t (R + δ� − δ�′ ).

(12)

To diagonalize H0, we introduce the Bloch operator

a†
nk =

∑
δ�

unδ�
(k)b†

kδ�
, (13)

where n is the band label and the Bloch functions unδ�
(k) form

an orthonormal basis. The inverse relation is

b†
kδ�

=
∑

n

u∗
nδ�

(k)a†
nk. (14)

Substituting Eq. (14) in Eq. (11), one gets

H0 =
BZ∑
k

∑
��′

∑
δ�δ�′

∑
nn′

hδ�δ�′ (k)u∗
nδ�

(k)un′δ�′ (k)a†
nkan′k. (15)

Since H0 must be diagonal in the basis a†
nk, Eq. (15) can be

split into the following pair of equations:∑
��′

∑
δ�δ�′

hδ�δ�′ (k)u∗
nδ�

(k)un′δ�′ (k) = Enkδnn′ , (16a)

H0 =
BZ∑
k

∑
n

Enka†
nkank, (16b)

where the eigenvalues Enk describe the energy bands of the
system. The Hamiltonian in the diagonal form (16b) will
be important for further derivations in this work. To obtain
the energy bands and Bloch functions, one should solve the
eigenvalue problem (16a). For that purpose, using the or-
thonormality of the basis of functions unδ�

(k), we can rewrite
Eq. (16a) in the standard form

∑
�′δ�′

hδ�δ�′ (k)unδ�′ (k) = Enkunδ�
(k). (17)

To numerically solve Eq. (17), explicit values for k must
be sampled, as illustrated by small green dots in Fig. 9(b).
For that, we sampled k points, discretizing the momentum
space, in the hexagonal sampling k region highlighted in
Fig. 9(b). Any valid reciprocal unit cell with the same area
as the first Brillouin zone could be chosen; for instance, the
rectangular sampling region illustrated with small gray sym-
bols in Fig. 9(b), where we could assume a rectangular grid
with Ni sampling points in the i = x′, y′ directions. Within
such rectangular discretization, the sampling points can be
explicitly written as

k(i)
nx′ ny′

=
(

nx′

Nx′

√
3

2
G2 · ey + ny′

Ny′
G2 · ex

)
ex

+
(

ny′

Ny′
G2 · ey − nx′

Nx′

√
3

2
G2 · ex

)
ey, (18)

where ni = 0, 1, 2, . . . , Ni − 1. In this manner, the total num-
ber of sampling points, Nk = Nx′Ny′ , will also act as the
number of unit cells that constitute our material. Nk is also
directly related to the chosen convergence parameter since
the larger the Nk, the higher the expected accuracy. Instead
of the equivalent discussed rectangular unit cell, we use the
hexagonal Brillouin zone with a triangular grid suggested by
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the C6 symmetry of the system, as also shown in Fig. 9. The
points of such a grid are described by the equation

kn1n2 = n1(2G1 + G2) + n2(G1 + 2G2)

3(Nh − 1)
, (19)

where Nh is a positive integer, and n1, n2 is any pair of integers
such that −Nh < n1, n2 < Nh and |n1 + n2| < Nh. The total
number of grid points, Nk = 3Nh(Nh − 1) + 1, is regulated
monotonically by Nh.

As will be shown later, it will be necessary to evaluate the
single-particle wave function unδ�

(k) at points k in the six
Brillouin zones adjacent to the first Brillouin zone. However,
we know that unδ�

(k) is periodic in reciprocal space, following
the rule

unδ�
(k) = unδ�

(k + m1G1 + m2G2), (20)

for any pair of integers m1, m2. Additionally, the relation

kn1n2 + m1G1 + m2G2 = kn′
1n′

2
(21)

holds for

n′
1 = n1 + (Nh − 1)(2m1 − m2), (22a)

n′
2 = n2 + (Nh − 1)(2m2 − m1). (22b)

For our purposes, Eq. (21) will be restricted to values of
m1, m2 that shift the grid points kn1n2 in the first Brillouin
zone to the six Brillouin zones adjacent to it, i.e., (m1, m2) =
(1, 0), (0, 1), (−1, 0), (0,−1), (1, 1), (−1,−1).

B. Band-gap opening in single-particle TBG spectrum

The single-particle Hamiltonian (11) describes biased
TBG’s noninteracting pz electrons under pressure. The
Hamiltonian depends on the parameters p, q, V , and d . The
integers p, q vary the twist angle θ (p, q), therefore changing
the relative atomic positions and interactions. The electric bias
V adjusts the gate voltage between the TBG layers, thereby
opening the possibility for band-gap formation. At last, the
interlayer distance d mimics the effect of exerting vertical
pressure in TBG, which changes its interlayer distance away
from the equilibrium configuration (d = d0 = 3.35 Å), there-
fore also changing the interlayer atomic relative positions and
interactions. For the numerical calculation, we also have the
integer Ni, which monotonically regulates the number of sam-
pled k points in the BZ, which allows one to study momentum
space convergence. No changes due to pressure are considered
on the intralayer hoppings, i.e., we will neglect the Poisson
ratio. For sufficiently small unit cells, the eigenvalue problem
(17) can be solved in momentum space for each sampled k
point. In addition to experimental concerns that may break the
rigid TBG model, such as static stability and atom reconfigu-
ration, the need for small unit cells also brings a computational
concern that motivated us to restrict our discussion to large
angles. In fact, the overall increase in the number of atoms per
unit cell (unit cell number) with decreasing twist angle puts
a limit to the dimension of Hamiltonians that we can exactly
diagonalize.

We present, in Fig. 2, the electronic band gap of TBG
for all the commensurable twist angles (1) that generate
unit cells of less than 500 atoms, as a function of the

FIG. 2. Contour plots of the band gap induced in TBG due to
interlayer distance d changes with respect to the equilibrium posi-
tion d0, mimicking the application of vertical pressure, and under
a perpendicularly applied electric field with bias voltage V , for all
twist angles that generate commensurate unit cells with less than 500
atoms.

bias potential and the interlayer distance. In general, one
can notice the following: (i) highly twisting angle-dependent
metallic-to-semiconductor transition induced solely by pres-
sure, an external electric field, or the combination of them; and
(ii) θ (1, 3k) (k ∈ Z) twist angles exhibit a particular gap ten-
dency, increasing as d decreases, until some optimal value
where the gap is maximum. This optimal point is brought
closer to the equilibrium interlayer distance line d = d0 as V
increases. This tunability of the maximum band gap through
the external bias enhances the prospects for experimental re-
production of this behavior in situ, demanding lower pressures
more feasibly reached in experiments.

Figures 3(a) and 3(b) show color plots of the single-particle
band-gap dependence on the interlayer distance d and the
external bias V for a TBG with twist angle (a) θ (1, 1) =
21.79◦ and (b) θ (1, 6) = 46.83◦. Our findings demonstrate,
in certain configurations, band gaps of up to 0.2 eV when
one combines electric bias and pressure, although just one
of them is enough to generate a gap opening in some cases,
as shown in Fig. 2. Therefore, it turns TBG into a nar-
row gap semiconductor and, consequently, robust enough to
support excitons. The electronic band structures and their
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FIG. 3. Electric field and pressure-induced band-gap opening in
TBG with a twist angle of (a) θ (1, 1) = 21.79◦ and (b) θ (1, 6) =
46.83◦. The corresponding electronic band structures along the path
� − M − K − � for the highest gap-opening values for a fixed bias
potential of V = 3 eV are shown with (c) Eg ≈ 0.18 eV and (d) Eg ≈
0.068 eV, respectively, as marked by the crossing points of the dashed
lines with (a) d = 2.6 Å and (b) d = 2.8 Å. The color map indicates
the layer hybridization associated with the bottom-top wave-function
composition. The inset in (b) illustrates the TBG under pressure with
an interlayer distance d and bias potential V .

layer composition, associated with the spatial localization of
the electrons on the individual layers projected in each band
for a fixed bias potential V = 3 eV, are depicted in Figs. 3(c)
and 3(d). In Fig. 3(c), the interlayer distance is d = 2.6 Å and
the twist angle, θ (1, 1) = 21.79◦. In Fig. 3(d), on the other
hand, we have d = 2.8 Å and θ (1, 6) = 46.83◦. They reveal
strong layer hybridization around the bands’ edges in both
cases. Thus, we will show in latter sections that gapped TBG
hosts layered-hybridized moiré excitons. Besides pressure, we
could also consider the stretching of TBG layers, not included
here, which would increase the interlayer over intralayer hop-
ping ratios, favoring the appearance of a band gap. Recently,
it has been demonstrated [26] that the sliding of one graphene
layer over the other could open a band gap.

III. DIELECTRIC SCREENING

In Sec. II, the electronic structure of single-particle exci-
tations, considering noninteracting electrons, was described
through the tight-binding formalism. To describe exciton for-
mation, we must add many-body interactions to the model,
i.e., electron-electron and electron-hole interactions. For this
reason, in the current section, we shall derive analytically the
static dielectric function of TBG, which will describe how the
system is polarized due to the application of an external elec-
tric field and how this polarization screens the electrostatic
linear response of the system itself. In this work, the dielectric
function is calculated in the context of the RPA [37–39] for a
periodic system [40,41].

Our goal is to express the dielectric function solely in
terms of eigenenergies Enk and the overlap of the wave func-
tions unδ(k) of the unperturbed system, described by the
Hamiltonian H0 present in Sec. II. Such theoretical derivation
is based on the works of Refs. [40,41] for layered 2D materi-
als. We will consider that the potential at k is only affected by

k′ = k and its periodical repetitions, which can be included in
our model by restricting the dielectric function to

ε��′
(k, k′) =

∑
G1

ε��′
(k, k′)δk+G1,k′ . (23)

The remaining contributions are assumed to average out to
zero, which is well justified in the RPA context. In fact, we
could go a step further and restrict the screening contribu-
tions to the dominant term G1 = 0 (k′ = k) only, meaning
that the dielectric function would be approximated to a lo-
cal function in momentum space. However, the formulation
(23) allows us to be a bit broader and inspect how the
terms G1 	= 0 affect the screening if necessary. Expand-
ing k and k′ as k = q + G and k′ = q′ + G′, respectively,
with q and q′ wave vectors restricted to the Brillouin zone, and
G and G′ being the reciprocal lattice vectors, Eq. (23) can be
rewritten as

ε��′
(q+ G, q′ + G′) =

∑
G1

ε��′
(q + G, q′ + G′)δq+G+G1,q′+G′

=
∑
G′

1

ε��′
(q + G, q′ + G′)δq+G′

1,q
′

= ε��′
GG′ (q)δq,q′ , (24)

where we defined ε��′
GG′ (q) = ε��′

(q + G, q + G′).
The electronic distribution fluctuations around the ground

state are associated with a certain induced potential φind.
To study how excitons are formed in this system, instead
of obtaining the exact form of φext, we will, however, ap-
proach this problem by associating a dielectric function
that will establish a direct relation between φext and the
total potential φ = φext + φind. We treat each carbon site
of the TBG as a point charge, such that variations in
charge density due to fluctuations on the Fermi sea can be
written as

σ1(r)δ(z) + σ2(r)δ(z − d ), (25)

where σ�(r) is the surface charge density fluctuation of layer
� and δ(z) is the delta function. The induced potential is
obtained by the solution of the Poisson equation associated
with this charge density,

∇2φind(r, z) = − 1

ε0
[σ1(r)δ(z) + σ2(r)δ(z − d )]. (26)

Fourier transforming Eq. (26), one obtains the solution in
momentum space,

φ�
ind(k) =

∑
�′

X ��′
(k)σ�′ (k), (27)

where φ�
ind(k) = φind(k, z�) with z1 = 0 and z2 = d , and

X ��′
is a term associated to the Coulomb potential without

screening,

X ��′
(k) = δ��′ + (1 − δ��′ )e−kd

2ε0k
, (28)
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denominated bare Coulomb potential. This potential acts on
the system through the one-body Hamiltonian,

Hind = − e
∑
�δ�

∑
R

φ�(R + δ�)c†
R+δ�

cR+δ�

= − e

S

BZ∑
q

∑
�

∑
G

φ�(q + G)

×
BZ∑
k

∑
nn′

Mnn′
� (k, q, G)a†

nkan′k+q, (29)

where S is the surface area of TBG, and we define the overlap
term

Mnn′
� (k, q, G) =

∑
δ�

u∗
nδ�

(k)eiG·δ�un′δ�
(k + q). (30)

On the other hand, the Liouville equation linearized for slow,
adiabatic perturbations ρind on the density matrix gives

ih̄∂tρind = [H0, ρind] + [Hind, ρ0], (31)

where ρ0 is the equilibrium density matrix (given by the
Fermi-Dirac statistics). In the static approximation, we have
∂tρind ≈ 0 and

〈nk|ρind|n′k + q〉 = f (Enk ) − f (En′k+q)

Enk − En′k+q
〈nk|Hind|n′k + q〉.

(32)

Further details on this last derivation are presented in
Appendix B.

The fluctuations in the distribution function are also closely
related to the charge density through the equation

σ�(r) = −e
∑
δ�R

δ(r − R − δ�)〈R + δ�|ρind|R + δ�〉, (33)

which is Fourier transformed to

σ�(q + G) =
∫

d2r e−ikrσ�(r)

= − e
BZ∑
k

∑
nn′

[
Mnn′

� (k, q, G)
]∗

× 〈nk|ρind|n′k + q〉. (34)

Plugging Eq. (32) into Eq. (34), then explicitly writing the
matrix elements 〈nk|Hind|n′k + q〉 according to Eq. (29), one
gets

σ�(q + G) = e2

S

BZ∑
k

∑
nn′

[
Mnn′

� (k, q, G)
]∗

× f (Enk ) − f (En′k+q)

Enk − En′k+q

×
∑
�′

∑
G′

φ�′
(q + G′)Mnn′

�′ (k, q, G′). (35)

Merging Eqs. (27) and (35), and rearranging some terms,
we get

φ�
ind(q + G) = e2

S
∑
�′G′

φ�′
(q + G′)

∑
�′′

X ��′′
(|q + G|)

×
∑
nn′

BZ∑
k

[
Mnn′

�′′ (k, q, G)
]∗

× f (Enk ) − f (En′k+q)

Enk − En′k+q
Mnn′

�′ (k, q, G′), (36)

which establishes a relation between φind and φ solely in terms
of the energies Enk and the overlap of wave functions unk, both
of them associated with the unperturbed system H0. Putting
this aside for a moment, we recall that φ = φext + φind and
define the dielectric function as

φ�
ext(q + G) =

∑
�′G′

ε��′
GG′ (q)φ�′

(q + G′). (37)

This allows one to derive another relation between φind and φ,

φ�
ind(q + G) =

∑
�′G′

φ�′
(q + G′)

[
δ��′δGG′ − ε��′

GG′ (q)
]
. (38)

Comparing Eqs. (36) and (38), we arrive at the following
expression for the dielectric function:

ε��′
GG′ (q) = δ��′δGG′ − e2

S
∑
�′′

∑
nn′

BZ∑
k

X ��′′
(|q + G|)

× [
Mnn′

�′′ (k, q, G)
]∗ f (Enk ) − f (En′k+q)

Enk − En′k+q

× Mnn′
�′ (k, q, G′), (39)

which can be seen as a set of matrix elements indexed by
{�, G} and {�′, G′}. In the limit of zero temperature, we can
rewrite Eq. (39) as

ε��′
GG′ (q) = δ��′δGG′ + e2

S
∑
�′′

∑
ncnv

BZ∑
k

X ��′′
(|q + G|)

×
[[

Mncnv

�′′ (k, q, G)
]∗

Mncnv

�′ (k, q, G′)
Enck − Envk+q

+
[
Mnvnc

�′′ (k, q, G)
]∗

Mnvnc
�′ (k, q, G′)

Enck+q − Envk

]
, (40)

where nc (nv) is a band index that only sums over conduction
(valence) bands.

At last, we emphasize that for q of the small norm, i.e.,
within the long-wavelength regime, the dominant term ε��′

00 can
be simplified in light of the Rytova-Keldysh potential [54,55]
for 2D systems. In this case, it takes the form

ε��′
GG′ (q) ≈ (

δ��′ + r��′
0 q

)
δG0δG′0, (41)

where r��′
0 are the screening lengths.

Figure 4 presents color plots of the dielectric function
calculated using Eq. (40) restricted to the reciprocal lattice
vectors G = G′ = 0 and intralayer contribution � = �′ = 0,
for a biased TBG system with gate potential V = 3 eV, taking

035405-6



MOIRÉ EXCITONS IN BIASED TWISTED BILAYER … PHYSICAL REVIEW B 110, 035405 (2024)

FIG. 4. Dominant term (� = �′ = 0, G = G′ = 0) of the dielec-
tric function in momentum space [see Eq. (40)] as a function of
the transferred momentum q, calculated in the hexagonal unit cell
as shown by the green symbols inside the first Brillouin zone in
Fig. 9(b), for a TBG under bias voltage V = 3 eV, and twist angles
and interlayer distances of (a) θ (1, 1) = 21.79◦ and d = 2.6 Å, and
(c) θ (1, 6) = 46.83◦ and d = 2.8 Å. A pronounced ringlike peak is
observed in the dielectric function around (qx, qy ) = (0, 0). Cross
sections (red and black curves) of the dielectric function’s contour
plots (a) and (c) are depicted in (b) and (d), respectively, showing
linear-fit (gray solid) curves for small |q|.

the twist angle and interlayer distance as θ (1, 1) = 21.79◦
and d = 2.6 Å [Figs. 4(a) and 4(b)], and θ (1, 6) = 46.83◦
and d = 2.8 Å [Figs. 4(c) and 4(d)]. After some inspection,
we verified that the G = G′ = 0 contribution is the dominant
one, to such an extent that the remaining contributions could
be safely neglected in favor of numerical efficiency. From the
contour plots of Figs. 4(a) and 4(c), one can observe an al-
most circularly symmetric ringlike peak for small transferred
momenta, exhibiting a linear increasing slope with |q|, as
emphasized by the gray solid curve fitting plot of the dielectric
function’s cross sections in Figs. 4(b) and 4(d). Far from the
vicinities of q = (0, 0), the dielectric matrix ε00

00 (q) varies
slowly, without major fluctuations in its magnitude. Moreover,
one verifies that the ringlike peak value oscillates with ∠q.

Given that the q = (0, qmax
y′ ) and q = (qmax

x′ , 0) cases maxi-
mize the dielectric function at the fixed momentum directions
qx′ = 0 and qy′ = 0, respectively, where the (′) index indicates
the rotated momenta directions, we can make estimates about
the anisotropy of the dielectric function. For instance, for
θ (1, 6) = 46.83◦ shown in Figs. 4(c) and 4(d), one has the ra-
tios ε00

00 (0, qmax
y′ )/ε00

00 (qmax
x′ , 0) ≈ 1.08 and qmax

y′ /qmax
x′ ≈ 1.21,

where the fixed momentum choices are illustrated by the two
cross-section curves in black and red dashed lines in Fig. 4(c)
and the corresponding direction-dependent peaks shown in
Fig. 4(d). These ratios provide a rough quantitative picture
of the anisotropy of the dielectric function, which forbade us
from simplifying the dielectric function to a ‖q‖-dependent
function. Despite that, we can verify that the dielectric func-
tion presents a linear dependence with respect to q for small
‖q‖ values and goes to 1 at q = 0, in agreement with Eq. (41),

as shown by the fit curves (solid gray) in Figs. 4(b) and 4(d).
Taking the first-order expansion term of the dielectric func-
tion, i.e., by the slope of the fit curves in Figs. 4(b) and 4(d),
we obtain r00

0 ≈ 208.2 Å and r00
0 ≈ 340.6 Å for the intralayer

contribution with respect to θ (1, 1) = 21.79◦ and θ (1, 1) =
46.83◦, respectively. For different cross-section directions,
one has that the exact fit value of r��′

0 is highly dependent
on ∠q, which is another anisotropy indicator. Both screening
lengths are higher than those of monolayer TMDs [56]. The
obtained r0 values obey the trend reported in Ref. [57] that the
smaller the band gap, the higher the screening length.

IV. EXCITONS AND OPTICAL RESPONSE

A. Dielectric screening of the electron-electron interaction

In this section, we follow an approach very analogous to
Sec. III, but now treating the potential of any pz electron in
TBG, placed at site r1 and layer �1, as an “external” potential
acting on another pz electron placed at site r2 and layer �2. We
denote this external potential by φ

�1�2
0 (r1, r2) and the screened

total potential by φ�1�2 (r1, r2).
The total potential can be expanded in plane waves by

applying the Fourier transform with respect to the real space
of r2 positions,

φ�1�2 (r1, r2) = 1

S

BZ∑
q

∑
G

φ�1�2 (r1, q + G)ei(q+G)·r2 . (42)

Now, introducing the inverse dielectric function through

φ�1�2 (r1, q + G) =
∑
�′G′

ε−1�2�
′

GG′ (q)φ�1�
′

0 (r1, q + G′), (43)

with the relation∑
�1G1

ε
��1
GG1

(q)ε−1�1�
′

G1G′ (q) = δ��′δGG′ , (44)

we obtain

φ�1�2 (r1, r2) = 1

S

BZ∑
q

∑
G

∑
�′G′

ε−1�2�
′

GG′ (q)

× φ
�1�2
0 (r1, q + G′)ei(q+G)·r2 . (45)

The bare Coulomb potential satisfies φ
�1�2
0 (r1, r2) =

φ
�1�2
0 (r2 − r1), which allows us to apply the translation prop-

erty of the Fourier transform,

φ
�1�2
0 (r1, q + G′) = φ

�1�2
0 (|q + G′|)e−i|q+G′ |·r1 , (46)

recognizing that the bare Coulomb potential in momentum
space is φ

�1�2
0 (|q + G|) = −eX �1�2 (|q + G|) [see Eq. (28)].

Replacing Eq. (46) into Eq. (45) results in

φ�1�2 (r1, r2) = − e

S

BZ∑
q

∑
GG′

ψ
�1�
GG′ (q)ei(q+G)·r2 e−i(q+G′ )·r1 ,

(47)

where we defined the screening term

ψ
�1�2
GG′ (q) =

∑
�′

ε−1�2�
′

GG′ (q)X �1�
′
(|q + G′|). (48)
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Then, the interaction between pz electrons originating from
this potential is a two-body operator, written as

Hee = − e

2

∑
�1�2

∑
δ�1 δ�2

∑
R1R2

φ�1�2 (R1 + δ�1 , R2 + δ�2 )

× c†
R1+δ�1

c†
R2+δ�2

cR2+δ�2
cR1+δ�1

=
∑

n1n2n3n4

BZ∑
k1k2k3k4

V k1k2k3k4
n1n2n3n4

a†
n1k1

a†
n2k2

an3k3 an4k4 , (49)

where the factor of 1/2 is included to avoid double counting,
and we defined the auxiliary term

V k1k2k3k4
n1n2n3n4

= e2

2S
∑
�1�2

∑
GG′

ψ
�1�2
GG′ (k1 − k4)

× [
Mn1n4

�1
(k4, k1 − k4, G′)

]∗
× Mn2n3

�2
(k2, k3 − k2, G)δk1−k4,k3−k2 . (50)

B. Excitonic spectrum

To study the exciton properties using the tight-binding
formalism, we employ the semiconductor Bloch equa-
tions (SBEs) [42], as explained in detail in Appendix C. The
SBE is obtained by writing the Heisenberg equation of motion
for the interband transition amplitude pcv (k) = 〈â†

ckâvk〉, with
ânk being the annihilator operator for an electron at the band
n with wave number k for the incidence of an electromagnetic
wave with frequency ω and amplitude E . We neglected the
Auger process, considering only the highest valence (v) and
lowest conduction bands (c), and used the rotating-wave ap-
proximation and equilibrium occupation numbers T = 0 K.
Under all these considerations, the SBE simplifies to

(h̄ω − h̄ω̃k + iγ )pcv (k) +
∫

d2q
(2π )2

K (k, q)pcv (q)

= dvc(k) · E, (51)

where h̄ω̃k is the renormalized transition energy with the in-
clusion of the exchange self-energy h̄ω̃k = Eck − Evk + �k,
γ is a phenomenological term for the relaxation transition
rate, the integral is performed over the first Brillouin zone,
dnm(k) = −e〈nk|r|mk〉 is the dipole moment matrix element,
and the kernel K (k, q) is

K (k, q) = e2
∑
�1�2

∑
GG′

ψ
�1�2
GG′ (q − k)

[
Mcc

�1
(k, q − k, G′)

]∗
× Mvv

�2
(k, q − k, G), (52)

with the self-energy �k given by

�k = e2
∑
�1�2

∑
GG′

∫
d2q

(2π )2
ψ

�1�2
GG′ (q)

{[
Mvv

�1
(k, q, G′)

]∗
× Mvv

�2
(k, q, G) − [

Mvc
�1

(k, q, G′)
]∗

Mcv
�2

(k, q, G)
}
.

(53)

For the calculation of exciton states, we solve the homoge-
neous version of Eq. (51), setting E = 0 and h̄ω = En to be
the corresponding eigenvalue.

FIG. 5. (a) Renormalized optical band structure, exhibiting a six-
fold minimum in the first Brillouin zone of the supercell, and (b) a
merging plot of the six first excitonic wave functions in momentum
space, located exactly in the optical band edges, for a TBG with
θ (1, 1) = 21.79◦, V = 3 eV, and d = 2.6 Å.

From the numerically calculated Bloch functions unδ�
(k)

and using the inverse of the dielectric function (40), we ob-
tain the exchange self-energy term and then the renormalized
optical band h̄ωk. Such results are shown in Fig. 5(a) for
θ (1, 1) = 21.79◦, V = 3 eV. As expected, the lower exciton
wave functions are localized near the most likely formation
points in reciprocal space, i.e., the band-gap points. The renor-
malization of the band gap was almost of 120 meV, resulting
in band gaps up to 364 meV; however, no pronounced qual-
itative changes were observed on the transition energy h̄ωk.
From Fig. 5(a), one clearly notices a sixfold minimum in
the h̄ω̃k spectrum located on the band edges along the K-�
path in the first Brillouin zone of the supercell. In Fig. 5(b),
we show the superposition of the six first excitonic wave
functions in momentum space, each of them located exactly
at one of the six minima of the optical band. They are also
strongly anisotropic, spread along the direction orthogonal to
the K-� path.

The exciton wave functions φ j (k) and energies Ej ( j =
1, 2, 3, . . .) are obtained by setting the right-hand side of
Eq. (51) to zero and solving it as an eigenvalue problem,
with eigenenergies h̄ωk → Ej and eigenfunctions pcv (k) →
φ j (k). Performing such calculations, we show in Figs. 6(a)
and 6(b) the first 20 excitonic eigenenergies for (a) θ (1, 1) =
21.79◦, V = 3 eV, and d = 2.6 Å and (b) θ (1, 6) = 46.83◦,
V = 3 eV and d = 2.8 Å. The dashed lines in Figs. 6(a) and
6(b) correspond to the optical band minimum mink ωk for
the assumed sampling k points. From Figs. 6(a) and 6(b),
12 and 16 excitonic bound states are observed, respectively,

FIG. 6. The first 20th excitonic energies of TBG, taking Nh =
120 [see Eq. (19)], for (a) θ (1, 1) = 21.79◦, V = 3 eV, and d =
2.6 Å, and (b) θ (1, 6) = 46.83◦, V = 3 eV, and d = 2.8 Å. The
dashed lines indicate the optical band minima in each case. A clear
sixfold degeneracy is observed in (a), in agreement with the C6

system symmetry.
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FIG. 7. Bar plot of electron (Pele, blue) and hole (Phol, orange)
probabilities of being localized in the top or bottom layers of TBG
[see Eqs. (54a) and (54b)], for (a) θ (1, 1) = 21.79◦, V = 3 eV, and
d = 2.6 Å and (b) θ (1, 6) = 46.83◦, V = 3 eV, and d = 2.8 Å. We
used Nk = 8600 sampling k points. The probabilities of the first 12
excitonic bound states are close to 0.5, indicating high exciton layer
hybridization.

i.e., excitons with energies below the band gap. Figure 6
shows how the convergence of the exciton calculations is
highly sensitive on the unit cell number. In fact, for Nh =
120, the first configuration [Fig. 6(a)] already exhibits the
expected sixfold degeneracy of the ground-state exciton, in
agreement with the six equivalent optical band edges shown
in Fig. 5(a).

To investigate how the excitons are arranged in TBG, we
evaluate the electron and hole layer compositions for the first
12 excitonic bound states. The electron and hole probabilities
of each exciton state to be located in the top layer of TBG are
given, respectively, by

Pele
j =

BZ∑
k

∑
δ2

|ucδ2 (k)φ j (k)|2, (54a)

Phol
j =

BZ∑
k

∑
δ2

|uvδ2 (k)φ j (k)|2, (54b)

where uvδ�
(k) and ucδ�

(k) are the single-particle electron
wave functions for the highest valence and lowest conduction
bands, respectively. Probabilities close to 1 (0) indicate elec-
tron or hole localization in the top (bottom) layer. However,
intermediate values close to 0.5 will indicate the hybridiza-
tion of the electrons or holes between the TBG layers. In
Fig. 7, we show the exciton hybridization between layers
for (a) θ (1, 1) = 21.79◦, V = 3 eV, and d = 2.6 Å and
(b) θ (1, 6) = 46.83◦, V = 3 eV, and d = 2.8 Å, evaluated
using the probabilities that electrons and holes are local-
ized in one layer or another according to Eqs. (54a) and
(54b). As noticed, all excitonic bound states’ probabilities are
mixed with values close to 0.5, demonstrating that such bound
excitons in TBG are strongly layer hybridized, suggesting
its interlayer nature, as previously discussed in Figs. 3(c)
and 3(d).

From the numerical convergence explained in Appendix D,
we found the exciton energy of 350 meV and a binding energy
of 13.6 meV. Compared to the few meV binding energies of
excitons in bulk materials and hundreds of meV in conven-
tional 2D semiconductors, this result indicates that excitons in
TBG are formed with midrange binding energies. It indicates,
however, that TBG has potential as a platform for excitons in
the midinfrared range.

C. Optical response

To analyze the optical response, we calculate the expecta-
tion value of the polarization operator,

〈P〉 = −e
∑
R�δ�

〈
c†

R+δ�
(t )(R + δ�)cR+δ�

(t )
〉
, (55)

which can be rewritten using Eqs. (3) and (14) as

〈P〉 =
∑
nn′

BZ∑
kk′

dk′k
n′n pk′k

n′n , (56)

where dk′k
n′n = −e〈n′k′|r|nk〉 and pk′k

n′n = 〈a†
n′k′ank〉. Since we

seek the optical response in the energy range of the bound
excitons in TBG, close to the band gap, we restrict the band
transitions to the dominant term, from the highest valence
band to the lowest conduction band. Assuming momentum
conservation and linear regime on the frequency domain, the
polarization vector becomes

〈P〉 =
BZ∑
k

dcv (k)pcv (k)eiωt . (57)

Further details of this derivation are presented in Appendix C.
Now, we decompose the interband transition amplitude

into the excitonic basis and a continuum part,

pcv (k, ω) =
∑

j

c j (ω)φ j (k) + φc(k), (58)

where the dependency on ω is clearly defined and φc denotes
the continuum part, corresponding to the states above the band
gap, which are orthogonal to any excitonic state φ j .

Replacing Eq. (58) back into Eq. (51), and using the or-
thogonality property of the exciton wave function, we arrive
at the following expression for the coefficient c j (ω):

c j (ω) = d j · E
h̄ω − Ej + iγ

, (59)

where we defined the exciton dipole d j moment as

d j =
∑

k

φ∗
j (k)dkk

vc . (60)

Using Eqs. (58)–(60), we can rewrite Eq. (57) as

P(ω) =
∑

j

(d j · E )d∗
j

h̄ω − Ej + iγ
, (61)

where 〈P〉 = P(ω)eiωt and P(ω) is the polarization vector.
Plugging into Eq. (61) the classical electromagnetism re-
lations J = ∂t P and J = σ (ω) · E , we arrive at the Elliot
formula for the optical conductivity tensor,

σ (ω) = 4ih̄ωσ0

∑
j

d̃∗
j ⊗ d̃ j

h̄ω − Ej + iγ
, (62)

where ⊗ denotes the outer product, σ0 = e2/4h̄, and d̃ j ≡
d j/e the dimensionless exciton dipole moment. The dipole
moment is calculated through the expression

dn′n(k) = ie
〈n′k|∇kHk|nk〉

En′k − Enk
, (63)
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FIG. 8. Light absorption for different values of the relaxation rate
γ . The parameters of the TBG are θ (1, 1) = 21.79◦, V = 3 eV, and
d = 2.6 Å.

where we defined

Hk =
∑

n

Enka†
nkank. (64)

Further details of the derivation of the dipole moment are
presented in Appendix C.

For bright excitons, reflectance and absorption measure-
ments will show signatures of their presence [58]. From
optical conductivity calculations using Eq. (62), one can ex-
tract the absorption [59]. We calculated the absorption for a
suspended sample, where we include the contribution of the
first six degenerated exciton states (see Fig. 5), and we show
the results in Fig. 8 for different values of the relaxation rate
γ , which represents the effects of disorder and temperature.
The absorption increases as the nonradiative decay rate γ de-
creases, reaching values up to 10% absorption for γ = 2 meV,
a value that is compatible with excitons in TMDs [60]. Thus,
we show that optical measurements can probe the presence of
excitons in this system.

V. CONCLUSION

In summary, we demonstrated that a band gap can be in-
duced in TBG under pressure for realistic conditions when
a voltage bias is applied. In this gapped TBG case, we pre-
dicted the existence of highly anisotropic moiré excitons that
strongly interact with light. Moreover, the methodology de-
veloped here for studying excitons in moiré systems can be
applied to other 2D twisted materials.
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APPENDIX A: CRYSTALLOGRAPHIC STRUCTURE

We model a TBG as two planar graphene layers, i.e., buck-
ling effects are neglected. We choose a coordinate system in
which the layers are located at z = 0 and z = d , and thus d
is the vertical distance between the layers. Each monolayer
graphene lattice is composed of two triangular sublattices, A
and B, and their crystalline orientations are rotated relative
to each other by an angle θ . Figure 9 shows the TBG lattice
from the reference point of an observer looking from above,
in the direction −ez. The sublattice vectors for the unrotated
layer (� = 1 with sublattices A1 and B1) and the rotated layer
(� = 2 with sublattices A2 and B2) can be explicitly written,
respectively, as

rA1 = ma1 + na2, (A1a)

rB1 = rA1 + (a1 + a2)/3, (A1b)

rA2 = rot(θ )rA1 + dez, (A1c)

rB2 = rot(θ )rB1 + dez, (A1d)

where m, n ∈ Z, a1,2 = a(
√

3ex ∓ ey)/2 are the primitive vec-
tors of the (� = 1)-graphene layer, as depicted in Fig. 9(a),
a = 2.46 Å is a lattice constant, and rot(θ ) is the rotation
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matrix

rot(θ ) =
⎡
⎣cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦. (A2)

The following analysis is restricted to TBG structures with
well-defined superlattices and unit cells. In other words, the
TBG superlattice must be periodic. This is guaranteed if some
atomic positions of different layers match horizontally, which
can be written mathematically as

m1a1 + n1a2 = m2a1 + n2a2, (A3)

for some sets of integers {m1, n1, m2, n2}. This Diophantine
equation is known as the commensuration condition [45–48].
Its solutions are given in terms of an arbitrary pair of coprime
positive integers {p, q}, such that the possible twist angles
between graphene layers are

θ (p, q) = arccos

(
3p2 + 3pq + q2/2

3p2 + 3pq + q2

)
. (A4)

The primitive vectors of the resulting commensurate superlat-
tices are given by

L1 =
{(

p + q
3

)
a1 + q

3 a2 if q is divisible by 3

pa1 + (p + q)a2 otherwise,
(A5a)

L2 = rot(60◦)L1. (A5b)

Here, we denote by R = mL1 + nL2 (m, n ∈ Z) the su-
perlattice vectors and by δ� the subset of basis vectors of
the graphene layer � = {1, 2} that define the unit cell of the
superlattice, as illustrated in Fig. 9(a). Mathematically, δ� is
any lattice vector whose projection in the xy plane can be
written as

xL1 + yL2, 0 � x, y < 1. (A6)

Any sublattice vector (A1) can be generically rewritten
as R + δ�. The compact notations

∑
� = ∑2

�=1,
∑

R, and∑
δ�

will be used to indicate sums over all layers, superlat-
tice vectors, and basis vectors, respectively. The reciprocal
lattice vectors G = mG1 + nG2 (m, n ∈ Z), the reciprocal
primitive vectors

G1 = 2π
L2 × ez

|L1 × L2| , (A7a)

G2 = 2π
ez × L1

|L1 × L2| , (A7b)

and the first Brillouin zone with some of the high-symmetry
points (located at the hexagon center � = 0, the vertices K,
and the edge midpoints M) are depicted in Fig. 9(b).

APPENDIX B: LIOUVILLE EQUATION

The Liouville equation

ih̄∂tρ = [H, ρ] (B1)

describes the evolution of a quantum system of particles in
terms of the distribution function ρ in phase space associated
with a Hamiltonian H. For the unperturbed system, we have
H = H0 and ρ = ρ0, where ρ0 is the well-known distribution

of the independent electrons’ system, which obeys the Pauli
exclusion principle. Thus, we can write

ρ0|nk〉 = f (Enk )|nk〉, (B2)

where f (E ) is the Fermi-Dirac distribution,

f (E ) = 1

exp{(E − EF )/kBT } + 1
, (B3)

with kB being the Boltzmann constant, T the temperature,
and EF the Fermi energy. Notice that as T approaches zero,
Eq. (B3) simplifies to

f (E ) =

⎧⎪⎨
⎪⎩

1 if E < EF

1/2 if E = EF

0 if E > EF .

(B4)

This equation shows that in the ground state (T = 0), only the
states below the Fermi level (namely, the valence states) are
occupied, whereas the states above the Fermi level (namely,
the conduction states) are all unoccupied.

The unperturbed distribution ρ0 commutes with H0 since
they are simultaneously diagonalized by the basis of Bloch
states |nk〉, as shown in Eqs. (16b) and (B2). For this reason,
the unperturbed distribution remains static, and Eq. (B1) sim-
plifies down to

ih̄∂tρ0 = [H0, ρ0] = 0. (B5)

To explicitly express the matrix elements of ρind in the basis
|nk〉, we recognize that as a first-order approximation, the
differential equation (B1) can be linearized by setting ρind pro-
portional to the perturbation Hind. Under this consideration,
the commutator [Hind, ρind] will vanish, as well as [H0, ρ0]
and the time derivative ∂tρ0 from Eq. (B5). Thus, one obtains

ih̄∂tρind = [H0, ρind] + [Hind, ρ0]. (B6)

The final step is to recognize that in the static approximation,
ρind will vary slowly. Therefore, setting ∂tρind ≈ 0, it gives

〈nk|ρind|n′k + q〉 = f (Enk ) − f (En′k+q)

Enk − En′k+q
〈nk|Hind|n′k + q〉.

(B7)

APPENDIX C: SEMICONDUCTOR BLOCH EQUATIONS

For this Appendix, we will use a compact notation to
soften the burden of the algebraic manipulations and keep the
equations reasonably short. First, we will use the compound
index i ≡ {ni, ki}. For even more simplicity, we will write
the annihilation and creation operators through the simple
notation

i ≡ aniki . (C1)

In addition, we will also consider implicit summations in
a similar fashion to Einstein’s notation, but only for i =
3, 4, 5, 6.

First, we define the full Hamiltonian, written as the sum of
three terms,

H = H0 + HI + Hee. (C2)
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The dipole energy term HI is related to the interaction of
pz electrons with the classical electric field E of the incident
light,

HI = d343†4, (C3)

where d34 = E · d34, d34 is the dipole matrix element,

d34 = −e〈3|r|4〉, (C4)

and r is the position operator. Substituting Eq. (C3) into
Eq. (C2) and rewriting the single-particle [Eq. (16b)] and
electron-electron [Eq. (49)] Hamiltonians in the compact no-
tation, we obtain

H = E33†3 + d343†4 + V34563†4†56. (C5)

Next, we introduce the Heisenberg equation of motion,

−ih̄
d

dt
p12 = 〈[H, 1†2]〉, (C6)

where p12 = 〈1†2〉. Substituting Eq. (C5) into Eq. (C6),
we get

−ih̄
d

dt
p12 = 〈[E33†3, 1†2]〉 + 〈[d343†4, 1†2]〉

+ 〈[V34563†4†56, 1†2]〉. (C7)

To compute the commutators on the right-hand side, we must
apply the anticommutation rules of the fermionic creation and
annihilation operators,

{1, 2} = 0, (C8a)

{1†, 2} = δ12. (C8b)

Due to the relation (C8a), we also have the property

V1234 = V2143 (C9)

and the approximation

〈1†2†34〉 ≈ p14 p23 − p13 p24, (C10)

which truncates the equation of motion by neglecting three-
particle and higher-order terms. Using Eqs. (C8b), (C9), and
(C10) to simplify Eq. (C7), it follows that

−ih̄
d

dt
p12 = (E1 − E2)p12 + d31 p32 − d23 p13

+ 2p45[(V3451 − V3415)p32

+ (V4253 − V2453)p13]. (C11)

Equation (C11) represents a general form of the SBE, a
set of equations whose solutions are the expectation values of
the density matrix elements p12. In the scope of this work, we
are solely concerned with transitions between the uppermost
valence (v) and the lowermost conduction band (c). This is
commonly referred to as the two-band approximation. More-
over, momentum is conserved in the electronic transitions
since the electric field is homogeneous over all the sample.
This allows us to write

p12 ≡ pk1k2
n1n2

= pk1k1
n1n2

δk1k2 . (C12)

Now we rewrite Eq. (C11) going back to the previous notation
and applying Eq. (C12),

−ih̄
d

dt
pkk

n1n2
= (En1k − En2k )pkk

n1n2

+
∑

n3

dkk
n3n1

pkk
n3n2

− dkk
n2n3

pkk
n1n3

+ 2
∑

n3n4n5

BZ∑
k4

pk4k4
n4n5

[(
V kk4k4k

n3n4n5n1
− V kk4kk4

n3n4n1n5

)
pkk

n3n2

+ (
V k4kk4k

n4n2n5n3
− V kk4k4k

n2n4n5n3

)
pkk

n1n3

]
, (C13)

where the summations
∑

ni
are restricted to ni = c, v. For the

purposes of this work, it will be enough to obtain the solution
of the SBE for the matrix element pkk

cv . For the dipole energy
terms, intraband transitions, i.e., terms with factors of dkk

cc or
dkk

vv , can be safely neglected. Moreover, terms involving pkk
vc

will be neglected in light of the rotating wave approximation
(RWA). We also neglect nonlinear terms, i.e., terms where
factors of (pkk

nin j
)2 appear. In the end, we remember that the

condition of charge neutrality implies pkk
vv = 1 and pkk

cc = 0.
Under all these considerations, Eq. (C13) simplifies to

−ih̄
d

dt
pkk

cv = (Eck − Evk )pkk
cv + dkk

vc

+ 2
BZ∑
k4

[
pkk

cv

(
V kk4k4k

cvvc − V kk4kk4
cvcv + V k4kk4k

vvvv

−V kk4k4k
vvvv

) + pk4
cv

(
V kk4k4k

vcvc − V kk4kk4
vccv

)]
. (C14)

Now we recognize the terms

�k ≡ 2
BZ∑
k4

V kk4k4k
cvvc − V kk4kk4

cvcv + V k4kk4k
vvvv − V kk4k4k

vvvv ,

(C15a)

K (k, k4) ≡ −2S
(
V kk4k4k

vcvc − V kk4kk4
vccv

)
. (C15b)

The term �k physically represents the exchange self-energy
correction, which corrects the optical band of the system.
Using �k, we write the renormalized optical band as

h̄ω̃k = Eck − Evk + �k. (C16)

The term K (k, k4), on the other hand, is commonly referred
to as the kernel of the SBE. Using these definitions, clarifying
the dipole energy term dkk

vc = E · dkk
vc , and considering the lin-

ear regime in frequency domain pkk
cv (t ) ≈ pkk

cv (ω)eiωt , where
ω is the frequency of oscillation of the electric field, we can
rewrite Eq. (C14) as, finally, the final form of our SBE:

h̄(ω − ω̃k )pcv (k) + 1

S

BZ∑
q

K (k, q)pcv (q) = E · dvc(k),

(C17)

where pcv (k) ≡ pkk
cv (ω) and dvc(k) ≡ dkk

vc . This is a linear in-
tegral equation for pcv (k). Setting the independent term on the
right-hand side to zero is equivalent to solving the equation of
motion without the dipole energy term, whose solutions will
give us the exciton states that the material can host. In this
case, h̄ω is exchanged by the exciton eigenenergies En, and
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pcv (k), by the exciton wave functions φn(k), forming an
eigenvalue problem [61]. When the dipole energy term is
included, however, we will investigate the optical response
of the material for incidence of monochromatic light with
frequency ω, resulting in an interband transition amplitude
pcv (k). Performing the replacement h̄ω → h̄ω + iγ , where
γ is a phenomenological term for the relaxation transition
rate, and rewriting the summation in q in the continuum limit∑

q → S
∫

d2q/(2π )2, we rewrite the SBE as

(h̄ω − h̄ω̃k + iγ )pcv (k) +
∫

d2q
(2π )2

K (k, q)pcv (q)

= E · dvc(k). (C18)

To simplify the terms (C15) even further, first we notice
that terms with factors of the type V kk4k4k

n3n4n5n6
can be safely

neglected taking into account that for the sums in G, G′,
the terms G = G′ = 0 will be exactly compensated by the
charged background of ions, and the remaining terms will
not have any q dependence, but will decay as 1/|G| and can
be safely neglected. This allows us to write the exchange
self-energy and the kernel as

�k = 2
BZ∑
q

V k+q,k,k+q,k
vvvv − V k+q,k,k+q,k

vcvc

= e2
∫

d2q
(2π )2

∑
�1�2

∑
GG′

ψ
�1�2
GG′ (q)

{[
(Mvv

�1
(k, q, G′)

]∗
× Mvv

�2
(k, q, G) − [

Mvc
�1

(k, q, G′)
]∗

Mcv
�2

(k, q, G)
}
,

(C19a)

K (k, q) = 2SV kqkq
vccv = 2SV qkqk

cvvc

= e2
∑
�1�2

∑
GG′

ψ
�1�2
GG′ (q − k)

[
Mcc

�1
(k, q − k, G′)

]∗
× Mvv

�2
(k, q − k, G). (C19b)

To analyze the optical response, we calculate the expecta-
tion value of the polarization operator,

P = −e
∑
R�δ�

c†
R+δ�

(t )(R + δ�)cR+δ�
(t ), (C20)

with the field operator written as a combination of Eqs. (3)
and (14),

c†
R+δ�

(t ) = 1√
N

∑
n

BZ∑
k

eik·(R+δ� )u∗
nδ�

(k)a†
nk(t ). (C21)

Replacing Eq. (C21) into Eq. (C20), the polarization operator
becomes

P = − e

N

∑
nn′

BZ∑
kk′

∑
R�δ�

ei(k′−k)·(R+δ� )u∗
n′δ�

(k′)unδ�
(k)

× (R + δ�)a†
n′k′ank. (C22)

Identifying

〈n′k′|r|nk〉 = 1

N

∑
R�δ�

ei(k′−k)(R+δ� )u∗
n′δ�

(k′)unδ�
(k)(R + δ�),

(C23)

we obtain

P =
∑
nn′

BZ∑
kk′

dk′k
n′n a†

n′k′ank, (C24)

using the dipole moment matrix element definition dk′k
n′n =

−e〈n′k′|r|nk〉. Applying the expectation value operator on
Eq. (C24), we get

〈P〉 =
∑
nn′

BZ∑
kk′

dk′k
n′n pk′k

n′n . (C25)

Using the local approximation (C12) and the linear regime on
the frequency domain, we have

pk′k
n′n (t ) ≈ pkk

n′n(ω)δkk′eiωt . (C26)

Then,

〈P〉 =
∑
nn′

BZ∑
k

dkk
n′n pkk

n′n(ω)eiωt . (C27)

Since we seek the optical response near the excitonic energy
inside the band gap, we shall limit ourselves to the inclusion
of the uppermost valence and lowermost conduction bands.
Thus,

〈P〉 =
BZ∑
k

dkk
cv pkk

cv (ω)eiωt . (C28)

Next, we need to expand the dipole moment. For this, we
note that

r|R + δ�〉 = (R + δ�)|R + δ�〉, (C29)

and so

r|nk〉 =
∑
R,δ�

(R + δ�)ei(R+δ� )·kunδ�
(k)|R + δ�〉. (C30)

Defining

Hk =
∑

n

Enk|nk〉〈nk|, (C31)

we have

[Hk, r] =
∑

n

Enk

∑
R,δ�

[(R + δ�) − (R′ + δ′
�)]

× ei(R+δ� )·kunδ�
(k)e−i(R′+δ′

� )·ku∗
nδ�

′ (k)

× |R + δ�〉〈R′ + δ′
�′ |, (C32)

which can be rewritten as

[Hk, r] = − i∇kHk −
∑

n

∇k(Enk )|kn〉〈kn|

−
∑

n

∑
R,δ�

∑
R′,δ′

�

∇k
[
u∗

nδ�
′ (k)unδ�

(k)
]

× e−i(R′+δ′
� )·kei(R+δ� )·k|R + δ�〉〈R′ + δ′

�′ |. (C33)
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Now, for m 	= n,

〈mk|[Hk, r]|nk〉 = − i〈mk|∇kHk|nk〉
−

∑
n′

∑
R,δ�

∑
R′,δ′

�

∇k
[
u∗

n′δ�
′ (k)un′δ�

(k)
]

× u∗
mδ�

(k)unδ′
�
, (C34)

and we can show that∑
n′

∑
R,δ�

∑
R′,δ′

�

∇k
[
u∗

n′δ�
′ (k)un′δ�

(k)
]
u∗

mδ�
(k)unδ′

�
= 0. (C35)

Thus,

〈mk|[Hk, r]|nk〉 = −i〈mk|∇kHk|nk〉, (C36)

and using that

〈mk|[Hk, r̂]|nk〉 = (Emk − Enk )〈mk|r̂|nk〉, (C37)

we obtain, finally,

dk′k
n′n = −e〈n′k′|r|nk〉 = ie

〈n′k′|∇kHk|nk〉
En′k′ − Enk

. (C38)

Notice that the dipole moment satisfies the property
(dk′k

n′n )∗ = dkk′
nn′ .

APPENDIX D: NUMERICAL CONVERGENCE

Performing calculations with successively increasing Nh

[Eq. (19)], we were able to study the convergence of the band
gap and exciton energies with respect to the density of sam-
pled k points. Since our main interest is to showcase exciton
formation in TBG, the discussion is hereafter restricted to
one TBG configuration: θ (1, 1) = 21.79◦, V = 3 eV, and d =
2.6 Å. The procedure is entirely analogous to exciton cal-
culations in other gapped TBG configurations, although the
convergence may become stiffer due to increased unit cell
numbers. The calculations of the band gap mink ωk and
ground-state exciton energy E1, vs 1/Nh for several values
of Nh, showed a linear trend. Hence, we were able to obtain
the energy values for Nh → ∞, namely, the converged values,
by verifying the intersection with the vertical axis of linear
fits for mink ωk vs 1/Nh and E1 vs 1/Nh. By performing this
procedure, we obtained the converged values of mink ωk =
364 meV for the band gap and E1 = 350.4 meV for the first
exciton, thus resulting in a binding energy of 13.6 meV.
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