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The quantum geometric tensor (QGT) reveals local geometric properties and associated topological informa-
tion of quantum states. Here a generalization of the QGT to mixed quantum states at finite temperatures based
on the Sjöqvist distance is developed. The resulting Sjöqvist QGT is invariant under gauge transformations
of individual spectrum levels of the density matrix. A Pythagorean-like relation connects the distances and
gauge transformations, which clarifies the role of the parallel-transport condition. The real part of the QGT
naturally decomposes into a sum of the Fisher-Rao metric and Fubini-Study metric, allowing a distinction
between different contributions to the quantum distance. The imaginary part of the QGT is proportional to a
weighted summation of the Berry curvatures, which leads to a geometric phase for mixed states under certain
conditions. We present three examples of different dimensions to illustrate the temperature dependence of the
QGT and a discussion on possible implications.
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I. INTRODUCTION

The quantum geometric tensor (QGT) characterizes the
distance and local geometry of quantum states as a set of pa-
rameters changes [1–4]. The QGT has played an increasingly
important role in various fields of physics, including quantum
statistics, quantum information, condensed matter physics,
and atomic, molecular, and optical physics [1,4–14]. Since
quantum states are usually described by their amplitudes and
phases, the QGT is in general a complex second-order tensor
after gauge invariance with respect to the overall phase factor
of the state has been taken care of. For pure states, the real and
imaginary parts of the QGT are respectively the Fubini-Study
metric [15] and (proportional to) the Berry curvature [16,17].
Thus, it can reveal local geometry [18,19] and associate with
globally topological features [20–24] by examining the re-
sulting distances or integrals. It has also been discussed in
non-Hermitian systems [25]. For pure states, the QGT has
been found relevant to some physical observables via response
functions or topological indicators [26–33]. Those connec-
tions allow the pure-state QGT to be experimentally studied
in many platforms, such as NV centers in diamonds [34],
superconducting qubits [35], exciton-photon polaritons [36],
plasmons [37], and ultracold atoms [38]. Furthermore, the
pure-state QGT is behind many striking phenomena, includ-
ing open quantum systems with general Lindbladians [39],
quantum phase transitions [18], orbital magnetic susceptibil-
ity [40,41], and superfluidity on the Lieb lattice [19].

While most of the studies of the QGT focus on pure states,
a generalization to mixed quantum states is necessary and
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inevitable since the latter is common in nature, including
all finite-temperature systems in thermal equilibrium. Since
two pure states that differ by a phase factor should be con-
sidered physically equivalent, the invariance of the QGT
against local U(1) transformations due to the phase factor of
the wave function guarantees the distinction between phys-
ically equivalent and inequivalent states. Thus, the real part
of the gauge-invariant QGT measures the genuine quantum
distance between physically inequivalent pure states. When
generalizing to mixed states, a natural requirement is that
the corresponding QGT is also invariant under suitable gauge
transformations, so it can measure the distance between phys-
ically inequivalent mixed states.

One possible mixed-state QGT has been developed in
Ref. [42] based on the Uhlmann approach. Explicitly, the total
and physical spaces of full-rank density matrices are char-
acterized via purification and the Uhlmann parallel-transport
condition [43]. The phase factor arises from the polar de-
composition of the amplitude of the density matrix, thereby
introducing a U(N ) gauge transformation. The U(N )-invariant
QGT has a real part that reduces to the Bures metric and an
imaginary part that vanishes for typical systems. By consid-
ering thermal states approaching the zero-temperature limit,
the real-part of the U(N )-invariant QGT agrees with that of
the pure-state QGT. In contrast, the imaginary part of the
U(N )-invariant QGT is zero but that of the pure-state QGT
is the Berry curvature, which is not necessarily zero. The
U(N )-invariant QGT is mathematically rigorous, but it may
be quite restricted when applied to physical systems.

Recently, Sjöqvist introduced a distance between density
matrices [44], which will be called the Sjöqvist distance
although it was also derived in Refs. [45–47]. We will
show that it is invariant under the UN (1) ≡ U(1) × · · · × U(1)︸ ︷︷ ︸
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gauge transformation for full-rank density matrices.
Compared with the U(N ) invariance of the Uhlmann-based
approach, the gauge-invariance condition of the Sjöqvist
distance is more relaxed, which also makes it more
experimentally feasible [44]. Moreover, we will construct a
UN (1)-invariant QGT for mixed states, called the Sjöqvist
QGT, based on the Sjöqvist distance. Its real part is a
Riemannian metric that contains the contributions from the
Fisher-Rao metric and the Fubini-Study metric. Interestingly,
its imaginary part introduces a 2-form that does not vanish.
Moreover, in some situation, an integral of the imaginary part
of the Sjöqvist QGT produces a geometric phase that belongs
to the thermal Berry phase [48], which is different from the
Uhlmann phase [43,49] and the interferometric geometric
phase [50] of mixed states.

We will illustrate the UN (1)-invariant QGT by solvable
examples in 1D, 2D, and 3D. As will be explained later,
the 1D case is special because the imaginary part of the
QGT vanishes automatically. In general, a smooth peak at
finite temperature appears in the real part of the QGT due
to its asymptotic behavior in the low- and high-temperature
limits. The 2D example shows the behavior of a geometric
phase associated with the imaginary part of the QGT. The
3D s-wave Fermi superfluid gives an example of the smooth-
ness of the QGT across a phase transition. The examples
also elucidate the geometric structures under simple physical
systems via the QGT.

The rest of the paper is organized as follows. In Sec. II, a
derivation of the Sjöqvist QGT is given based on purification
of density matrices, quantum distances between mixed states,
and gauge transformations. The expressions of the real and
imaginary parts of the Sjöqvist QGT are presented and ana-
lyzed. In Sec. III, three examples of different dimensions are
provided to visualize the Sjöqvist QGT. Section IV discusses
experimental and theoretical implications of the QGT. Finally,
Sec. V concludes the work. The appendices give some details
and derivations.

II. BASIC FORMALISM

A. Purification of density matrix

Before generalizing the QGT to mixed states, a key tool
that provides a pure-state-like description of the density ma-
trix is briefly reviewed. A mixed quantum state is in general
depicted by a Hermitian density matrix ρ without explicit
information of any phase from the wave functions. To incor-
porate the effect of phases into mixed states, purification of
the density matrix has been frequently used in quantum infor-
mation theory [51]. For a density matrix ρ, its purification (or
amplitude) is defined as W = √

ρU or conversely ρ = WW †,
where U is an arbitrary unitary matrix often referred to as
the phase factor. The relation is also known as the polar
decomposition of W , which is uniquely determined if ρ is full
rank. Our discussion will focus on full-rank density matrices,
which cover systems in thermal equilibrium.

Purification of ρ has U(N ) degrees of freedom since ρ is
invariant under a transformation W → W ′ = WU with U ∈
U(N ). Therefore, purification allows phase effects of mixed
states to be introduced like those of pure states. By diagonal-

izing the density matrix as ρ = ∑N−1
n=0 λn|n〉〈n|, purification is

expressed by W = ∑N−1
n=0

√
λn|n〉〈n|U , where N = rank(ρ).

W is isomorphic to |W 〉 = ∑
n

√
λn|n〉 ⊗ U T |n〉, which is

known as the purified state. Furthermore, one can introduce
the inner product between two purified states via the Hilbert-
Schmidt product 〈W1|W2〉 = Tr(W †

1 W2). We will set h̄ = kB =
1 and use the convention of Einstein summation over repeated
indices in the subsequent discussions.

B. Quantum distances between mixed states

Through purification, several types of distances between
density matrices have been developed. Assuming W (or
equivalently, ρ) continuously depends on a set of real-
valued parameters R = (R1, R2, . . . , Rk )T , the “raw” distance
between W (R + dR) and W (R) is introduced via the
Hilbert-Schmidt product:

d2(W (R + dR),W (R)) = ||W (R + dR)〉 − |W (R)〉|2
= 〈∂μW (R)|∂νW (R)〉dRμdRν . (1)

We refer to gμν ≡ 〈∂μW |∂νW 〉 as the “raw” metric. It is
evident that neither this distance nor gμν is invariant un-
der a local gauge transformation W ′(R) = W (R)U (R) with
U (R) ∈ U(N ). Consequently, Eq. (1) does not measure the
distance between physically inequivalent mixed states. Proper
corrections must be imposed to eliminate the extra gauge
redundancy.

The gauge-invariance problem has been encountered in
pure states, and a proper solution has been developed to estab-
lish a U(1) gauge-invariant metric via the quantum geometric
tensor [3]. For mixed states, there have also been several
methods to address this challenge. One approach is to take
the infimum of the raw distance, leading to the Bures distance
between different density matrices [43]:

d2
B(ρ(R + dR), ρ(R)) = inf

U∈U(N )
||W (R + dR)〉 − |W (R)〉|2.

(2)

The infimum is taken with respect to all possible phase factors
U ∈ U(N ). Another method follows the standard procedure
used for pure states and introduces a U(N) gauge-invariant
metric by utilizing the formalism of the Uhlmann bundle [42].
The distance derived from this method is named the Uhlmann
distance. Interestingly, the Uhlmann distance reduces to the
Bures distance when restricted on the base manifold of the
Uhlmann bundle.

Yet another distance of mixed states has been proposed by
Sjöqvist [44], which will be generalized to a gauge-invariant
QGT in the following discussion.

C. The Sjöqvist distance

We first briefly review the original construction of the
Sjöqvist distance before generalizing it. A smooth path
R(t ) = (R1(t ), R2(t ), . . . , Rk (t ))T in the parameter mani-
fold induces an evolving mixed state ρ(t ) ≡ ρ(R(t )). In
this work, we focus on full-rank density matrices. With
the instantaneous eigenstates, the diagonal form is ρ(t ) =∑N−1

n=0 λn(t )|n(t )〉〈n(t )|. Following Ref. [44], one may in-
troduce N spectral rays {eiθn(t )|n(t )〉} (n = 0, 1, . . . , N − 1)
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along the path R(t ) and let B(t ) = {√λn(t )eiθn(t )|n(t )〉}N−1
n=0

be the spectral decomposition along the path. The Sjöqvist
distance is defined as the minimum distance between B(t ) and
B(t + dt ):

d2
S(t + dt, t ) = inf

θn

N−1∑
n=0

|
√

λn(t + dt )eiθn (t+dt )|n(t + dt )〉

−
√

λn(t )eiθn (t )|n(t )〉|2

= 2 − 2 sup
∑

n

√
λnλn(t )|〈n|n(t )〉| cos φn(t ).

(3)

The infimum is taken among all possible sets of spec-
tral phases {θn(t ), θn(t + dt )}. Here cos φn(t ) = θ̇n(t )dt +
arg[1 + 〈n(t )|ṅ(t )〉dt] + O(dt2). Thus, the infimum is ob-
tained if

iθ̇n(t ) + 〈n(t )|ṅ(t )〉 = 0, for n = 0, . . . , N − 1. (4)

This is precisely the parallel-transport condition associated
with each individual spectral level. Some details are in
Appendix A.

Via purification, the Sjöqvist distance can be derived in a
more instructive manner. By encoding a specific set of phase
factors into the unitary operator U (t ) = ∑

n eiθn(t )|n(t )〉〈n(0)|,
ρ(t ) can be purified by the amplitude

W (t ) =
∑

n

√
λn(t )|n(t )〉〈n(t )|U (t )

=
∑

n

√
λn(t )|n(t )〉〈n(0)|eiθn(t ), (5)

which corresponds to the purified state

|W (t )〉 =
∑

n

√
λn(t )eiθn(t )|n(t )〉 ⊗ |n(0)〉. (6)

Similar to the Bures distance given by Eq. (2), we introduce a
UN (1)-invariant distance:

d2
UN (1)(t + dt, t ) = inf

θn

||W (t + dt )〉 − |W (t )〉|2

= inf
U∈UN (1)

||W (t + dt )〉 − |W (t )〉|2. (7)

Here the infimum is obtained with respect to the
gauge transformation W ′(t ) = W (t )U (t ), where U (t ) =∑

n eiχn |n(0)〉〈n(0)|. We note that the second spectral state
|n(0)〉 in |W (t )〉 is independent of t and gives no contribution
to the local distance. One may observe that d2

UN (1)
is indeed

equal to d2
S, the Sjöqvist distance, by comparing Eq. (7) with

Eq. (3).

D. Decomposition of distances

The Sjöqvist distance can also be derived from a geometric
point of view. Using the compact notations |n〉 ≡ |n(R(t ))〉
and |n0〉 ≡ |n(R(0))〉 and applying

|∂μW 〉 =
∑

n

[∂μ

√
λneiθn |n〉 +

√
λneiθn |∂μn〉

+ i
√

λneiθn∂μθn|n〉] ⊗ |n0〉 (8)

and the identity
∑

n

√
λn∂μ

√
λn = 1

2∂μ

∑
n λn = 0, it can be

shown that the raw distance (1) is

d2(W + dW,W ) =
∑

n

[∂μ

√
λn∂ν

√
λn + λn(〈∂μn|∂νn〉

+ ∂μθn∂νθn − iωnμ∂νθn − iωnν∂μθn)]

× dRμdRν . (9)

Here ωnμ = 〈n|∂μn〉 = −〈∂μn|n〉 is the component form of
the Berry connection ωn = 〈n|d|n〉 of the nth spectral level.
In terms of differential forms, it can also be equivalently
expressed as

d2(W + dW,W ) =
∑

n

{(d
√

λn)2 + λn[〈dn|dn〉

+ (dθn)2 − 2iωndθn]}. (10)

Accordingly, the minimizing condition (4) is cast into the
form

∂μθn − iωnμ = 0, or dθn − iωn = 0. (11)

Under the minimum condition, the Sjöqvist distance is

d2
S(ρ + dρ, ρ) =

∑
n

{(d
√

λn)2 + λn[〈dn|dn〉 + (ωn)2]}

= d2
FR +

∑
n

λnd2
FSn. (12)

Here

d2
FR(ρ + dρ, ρ) =

∑
n

(d
√

λn)2 =
∑

n

(dλn)2

4λn
(13)

is the Fisher-Rao distance [51] representing the contribution
from the thermal distribution, and

d2
FSn = 〈dn|dn〉 + (ωn)2 = 〈dn|(1 − |n〉〈n|)dn〉 (14)

is the Fubini-Study distance [52] of the nth spectral level.
Comparing Eqs. (10) and (12), we come to a decomposi-

tion of the raw distance:

d2(W + dW,W ) = d2
S(ρ + dρ, ρ) +

∑
n

λn(dθn − iωn)2.

(15)

If each spectral level undergoes parallel transport according
to Eq. (4), or equivalently Eq. (11), no contribution from the
phase factor of each spectral level adds to the total distance
since eiθn (t+dt )|n(t + dt )〉 is kept in phase with eiθn(t )|n(t )〉 in
this case. Following parallel transport, the raw distance thus
reduces to the Sjöqvist distance for physically inequivalent
mixed states. Interestingly, a similar decomposition that con-
nects the raw distance and the U(N )-invariant Bures distance
has been discussed in Ref. [42].

E. The Sjöqvist QGT

Equation (12) leads to the Sjöqvist metric

gS
μν =

∑
n

[
∂μλn∂νλn

4λn
+ λn〈∂μn|∂νn〉 − λn〈∂μn|n〉〈n|∂νn〉

]
,

(16)
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where only the term 〈∂μn|∂νn〉 is complex-valued. By sym-
metrizing and antisymmetrizing the indices μ and ν, its
real and imaginary parts can be obtained. Moreover, using
Eqs. (13) and (14), we can decompose the Sjöqvist metric into

gS
μν = gFR

μν + gFS
μν − i
μν, (17)

where

gFR
μν =

∑
n

∂μλn∂νλn

4λn
(18)

is the Fisher-Rao metric,

gFS
μν =

∑
n

λngFS
nμν =

∑
n

λn(Re〈∂μn|∂νn〉 + ωnμωnν ) (19)

is the weighted summation of the Fubini-Study metrics from
all spectral components, and


μν = i

2

∑
n

λn(〈∂μn|∂νn〉 − 〈∂νn|∂μn〉)

≡ 1

2

∑
n

λnFnμν (20)

is half of a weighted summation of all Berry curvatures

Fnμν ≡ i∂μωnν − i∂νωnμ. (21)

We note that gFR
μν and gFS

μν are both symmetric tensors and
belong to the real part of the Sjöqvist metric. Accordingly,
they both contribute to the Sjöqvist distance. Meanwhile, 
μν

is an antisymmetric tensor and is the negative imaginary part
of gS

μν . It makes no contribution to the Sjöqvist distance.
The gauge invariance of the Sjöqvist metric can also be

explicitly verified by modifying the raw metric gμν from
Eq. (1) and provides another construction inspired by the
formalism of the U(1)-invariant QGT of pure states [3]. The
details are summarized in Appendix B. Since the Sjöqvist
metric contains both local geometric information via gFR

μν and
gFS

μν and possibly topological information via 
μν , we refer to
the Sjöqvist metric gS

μν as the UN (1)-invariant QGT for mixed
states, or simply the Sjöqvist QGT, in the following.

F. �μν and its integrals

Although the imaginary part of the Sjöqvist QGT, 
μν ,
does not contribute to the Sjöqvist distance, its surface integral
may result in a geometric phase. As we have pointed out be-
fore, 
μν is the weighted summation of the Berry curvatures
Fnμν , n = 0, 1, . . . , N − 1. Since the Berry curvature is a field
strength tensor, an interesting question is whether 
μν from
the Sjöqvist QGT is also a valid field strength tensor of some
gauge field. For the pure-state case, the answer is affirmative
[3]. Although Eq. (21) shows that Fnμν can be expressed
as a field strength of the gauge field ωn, it does not imply

μν = i∂μ(

∑
n λnωnν ) − i∂ν (

∑
n λnωnμ) since the derivatives

of λn do not necessarily vanish. The next attempt is instead
to find a gauge field Aμ such that 
μν = i∂μAν − i∂νAμ. In
general, both λn and ωnμ are unknown functions of R. Hence,
an explicit solution to the aforementioned equation may not
exist. Nevertheless, since 
μν is UN (1) gauge-invariant, it
may reveal some global features of the system. Moreover, its
surface integral should also be gauge-invariant.

To quantify what 
μν entails, we introduce the 2-form

 = 1

2
μνdRμ ∧ dRν = 1
2

∑
n λnFn with Fn = 1

2 FnμνdRμ ∧
dRν . Similar to the real part of the QGT, 
 also possesses
some interesting features. For example, if the parameter space
forms a 2D manifold, 
 must be closed because d
 is a
3-form, which necessarily vanishes on a 2D manifold. When
the dimension of the parameter space is greater than 2, deter-
mining whether 
 is closed is difficult because a solution of
the gauge field Aμ may not be easily determined either. Fur-
thermore, since 
 is also nondegenerate and skew-symmetric,
it is a symplectic form [53] in the 2D case. When the system
evolves along a loop C in a 2D parameter space, the integral
of 
μν over a surface S enclosed by C is

θg(C) =
∫

S

 = 1

2

∑
n

∫
S
λnFn. (22)

If all λn are constant over the area S,

θg(C) = 1

2

∑
n

λn

∫
S

Fn = 1

2

∑
n

λnθBn(C). (23)

Here θBn(C) is the Berry phase associated with the nth spec-
tral level. In this particular case, θg(C) represents half the
weighted summation of all Berry phases, indicating its nature
as a geometric phase. Following this clue, we employ θg(C)
from Eq. (22) to search for internal geometric information
of the system. A careful comparison shows that θg(C) is dif-
ferent from two geometric phases of mixed states commonly
found in the literature, the Uhlmann phase [43] and the in-
terferometric geometric phase [50]. Interestingly, the special
case of Eq. (23) belongs to the thermal Berry phase, whose
general definition has been introduced in Ref. [48]. In general
situations, however, θg(C) is no longer (half of) the weighted
summation of the Berry phases.

We remark that systems with only a single parameter in
parallel transport should be viewed as a special case. Let R1

be the only variable in parallel transport; the QGT then has
just one component gS

11. Moreover, the imaginary part must
vanish because the indices of the latter are antisymmetric. This
is consistent with the observation that the Berry curvature as a
2-form vanishes on a 1D manifold. However, the Berry phase
can still be evaluated in the single-parameter case from the
holonomy although it is not directly related to the QGT.

III. EXAMPLES

A. 1D Su-Schrieffer-Heeger model

Our first example to demonstrate properties of the
Sjöqvist QGT at finite temperatures is the one-dimensional
(1D) Su-Schrieffer-Heeger (SSH) model [54], which is
described by the following Hamiltonian with periodic bound-
ary condition: Ĥ = ∑L

i=1(J1a†
i bi + J2a†

i bi−1 + H.c.). Here
the alternating hopping coefficients J1,2 are both posi-
tive. In momentum space, the SSH model can be writ-
ten as Ĥ = ∫ 2π

0
dk
2π

�
†
k H (k)�k , where �k = (bk,−ak )T is

a Nambu spinor, and H (k) = d(k) · σ with d(k) = (−J1 −
J2 cos k, J2 sin k, 0)T . The SSH model exhibits different topo-
logical properties between the regimes with J1/J2 > 1 and
J1/J2 < 1. Hence, we introduce the dimensionless parameter
r = J1/J2.
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The two eigenvalues and their associated energy levels are
respectively given by

E± ≡ ±R̃J2 = ±J2

√
1 + r2 + 2r cos k (24)

and

|u±〉 = 1√
2R̃

(
R̃

∓(r + e−ik )

)
. (25)

At temperature T with β = 1
T , the thermal equilibrium state

is represented by ρ = 1
2 [1 − tanh(βJ2R̃)R̂k · σ], whose eigen-

values are λ± = 1
2 [1 ∓ tanh(βJ2R̃)]. In this model, we choose

the momentum k as the parameter to calculate the Sjöqvist
QGT. As mentioned before, for the 1D SSH model with only
a single parameter k in parallel transport, the QGT has only
one component gS

kk , and its imaginary part vanishes.
Using Eq. (16), a straightforward calculation shows gS

kk =
gFR

kk + gFS
kk , where

gFR
kk = sech2(βJ2R̃)β2J2

2
r2 sin2 k

4R̃2
,

gFS
kk = (r cos k + 1)2

2R̃4
. (26)

Interestingly, the contribution from the Fubini-Study metric
is independent of temperature. The expression shows that no
significant difference appears when the regime changes from
r < 1 to r > 1. This is in contrast to a change of the Berry
phase by π from the Berry holonomy since the real part of
the Sjöqvist QGT only reveals local properties, unlike the
topological indicator that reflects global properties. Moreover,
the vanishing imaginary part of the single-parameter case like
the 1D SSH model limits its information of topology as a
special case.

We emphasize that the Sjöqvist QGT is invariant under the
UN (1) gauge transformation from a local phase transforma-
tion of the N spectral rays of states. However, it is not invariant
under a gauge transformation of the Bloch Hamiltonian with
H (k) → UkH (k)U †

k and �k → Uk�k , where the introduction
of the unitary operator Uk mixes the contributions within �k

but leaves the total Hamiltonian Ĥ invariant. Under the afore-
mentioned transformation, it can be shown that gFR

kk remains
invariant, but gFS

kk changes according to

gFS
kk → gFS

kk +
∑

i=+,−
λi(2Re〈∂kui|U †

k ∂kUk|ui〉

+ 〈ui|∂kU
†
k ∂kUk|ui〉). (27)

Figure 1 shows the quantitative behavior of the QGT of
the SSH model. The top and bottom panels show gS

kk and
gFR

kk as functions of T with r = 2.0 (top) and 0.5 (bottom).
Since gFS

kk remains a constant in this case, gFR
kk shows identical

behavior to gS
kk with a vertical shift. They all exhibit a peak

at finite temperature that will be explained here. As T → 0,
λ0 → 1 and λn>0 → 0, thus gFR

kk → 0 and the Sjöqvist QGT
approaches the Fubini-Study metric of the ground state. As
T → +∞, ρ → 1

N 1N , all density matrices converge to the

FIG. 1. Top panel: gS (dashed line) and gFR (solid line) of the
1D SSH model as functions of T in units of J2 with k = π/2 and
r = J1/J2 = 2.0. Bottom panel: Same plot for r = 0.5.

N × N identity matrix. Hence, gFR
kk also approaches 0 in this

limit. Since gFR
kk (T → 0) = gFR

kk (T → ∞) = 0, there must be
at least a maximum at finite temperature. Moreover, the bot-
tom panel confirms that the Sjöqvist QGT is insensitive to
the topological phase transition point at r = 1.0, where the
Berry phase jumps. The change of r only changes the vertical
shift between gFR

kk and gS
kk . We caution that a mixed-state

generalization of the geometric phase, known as the Uhlmann
phase, exhibits a finite-temperature transition in the topolog-
ical regime of the SSH model [55]. In contrast, the QGT
only depicts local geometric features of the quantum states
and does not reveal the finite-temperature geometric phase
transition of the SSH model. Therefore, mixed-state QGT
and topological or geometric indicators may complement each
other to unveil interesting physics of quantum systems at finite
temperatures.

B. 2D Dirac-fermion model

Our second example is a 2D Dirac-fermion system with the
Hamiltonian H (k) = d(k) · σ, where d1 = kx, d2 = ky, and
d3 = m. The eigenenergies and their eigenstates are given by
E±(k) = ±d (k) = ±√

k2 + m2 and

|u±〉 = 1√
2d (d ± d3)

(
d ± d3

±(d1 + id2)

)
. (28)

Here 2m is the gap between the two eigenenergies at k = 0,
and the Dirac fermions are time-reversal invariant only when
d3 = m = 0. It appears that |u−〉 may be singular as k → 0.
However, this is an artifact because by parametrizing d(k)
as d1 = d (k) sin θk cos φk, d2 = d (k) sin θk sin φk, and d3 =
d (k) cos θk, Eq. (28) implies

|u+〉 =
(

cos θk
2

sin θk
2 eiφk

)
, |u−〉 =

(
sin θk

2

− cos θk
2 eiφk

)
, (29)

both of which are then well behaved.
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FIG. 2. Contour plot of gS
11 of the 2D model, where kx = 1.0 and

ky = 0.3.

In this model, we choose the 2D momentum k = (kx, ky)T

as the parameters to evaluate the Sjöqvist QGT. It is
straightforward to show that gS

i j = gFR
i j + gFS

i j − i
i j , where

gFR
i j = β2

4d2
sech2(βd )did j,

gFS
11 = d2

1 d2
3 + d2d2

2

4d4
(
d2 − d2

3

) ,

gFS
22 = d2

2 d2
3 + d2d2

1

4d4
(
d2 − d2

3

) ,

gFS
12 = gFS

21 = d1d2

4d2
,


12 = − 
21 = tanh(βd )
d3

4d3
. (30)

The contributions from the Fubini-Study metric in this case
are also temperature-independent. However, the Sjöqvist QGT
now has a nonzero imaginary part if m = 0. At first look,
gFS

11,22 seems singular as k → 0. However, this is resolved by
noting that

lim
k→0

gFS
11 = lim

k→0
gFS

22 = d2
(
d2

1 + d2
2

)
4d4

(
d2 − d2

3

) = 1

4d2
, (31)

where d2 = d2
1 + d2

2 + d2
3 has been applied. Thus, the

Sjöqvist QGT is nonsingular for gapped systems when k → 0.
We choose gS

11 as a representative of the Sjöqvist QGT
and show its contour plot at (kx, ky) = (1.0, 0.3) in Fig. 2.
It is symmetric about the time-reversal-invariant line m = 0,
and its dependence on T is similar to that of the 1D SSH
model. As T → 0, it approaches gFS

11 since gFR
11 → 0. There

is a peak around T ∈ [1.0, 1.4], and gFS
11 → 0 as T → ∞. gS

11
is also insensitive to the topological properties of the system.
We found that gS

12 of this case does not exhibit additional
features.

Figure 3 shows θg(C) from Eq. (22) of the 2D model as
a function of m, where C is the loop formed by points at
infinity. As T → 0, θg(C) approaches half the Berry phase of

FIG. 3. θg [defined in Eq. (22)] of the 2D model as a function of
m for selected temperatures.

the ground state. Explicitly, Eq. (22) yields

θg(C) = π

∫ ∞

0
dkk tanh(βd )

m

(k2 + m2)
3
2

→ π

2
sgn(m)

= 1

2
θ−

B (C). (32)

When m = 0, the energy gap closes at k = 0, and the two
energy eigenvalues join together there. Thus, the manifold of
the spectrum of the Dirac fermion no longer has a consistent
orientation. As a consequence, the Berry phase is no longer
well defined. The red solid line (T = 0) in Fig. 3 shows that
θg jumps by a factor of π when crossing the m = 0 line due to
the geometric phase transition. At finite temperatures, θg(C)
shows some resemblance to θ−

B (C) but changes smoothly as
m varies from m < 0 to m > 0.

C. 3D superconductor

Finally, we consider a 3D spin-singlet Fermi superfluid
with the mean-field Hamiltonian Ĥ = ∑

k �
†
kH (k)�k, where

�k = (ψk↑, ψ
†
−k↓)T is the Nambu spinor of two-component

fermions with spins ↑ and ↓, and

H (k) = d(k) · σ = d1(k)σ1 + d3(k)σ3. (33)

Here d1 = � is the order parameter or gap function, which de-
pends on temperature, and d3 = εk = −2t (cos kx + cos ky +
cos kz ) − μ, where t is the nearest-neighbor hopping coeffi-
cient, and μ is the chemical potential. The gap function is
determined by the gap equation � = U

∑
k〈ψk↑ψ−k↓〉, where

U is the pairing coupling constant. The energy dispersion
and the corresponding energy levels are respectively given by

E±(k) = ±d (k) = ±
√

�2 + ε2
k and

|u±〉 = 1√
2d (d ± d3)

(
d ± d3

±d1

)
. (34)

Here the dependence on k of Eq. (34) has been suppressed for
simplicity.

In terms of the Nambu spinor, the model is equivalent to a
two-band system. The associated thermal state is described by
the density matrix ρk = 1

2 {1 − tanh[βd (k)]d̂(k) · σ}, whose
eigenvalues are λk± = 1

2 {1 ∓ tanh[βd (k)]}. At temperature
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FIG. 4. Top row: The order parameter of the 3D superconductor model as a function of T , where the pairing strength increases from left
to right (U/t = 8, 10, 24) and the number density is nearly constant (n = 1.20, 1.10, and 1.08). Bottom row: The corresponding gS and gFR vs
T at kx = ky = kz = π

4 . Here the green dots label the critical temperature Tc. The black and red lines respectively represent gS and gFR. Above
Tc, gS = gFR.

T with a given t , �, and μ can be obtained by solving the
number equation

n =
∑

k

[
1 − εk

d (k)
[1 − 2 f (d (k))]

]
(35)

and the gap equation

1

U
+

∑
k

1 − 2 f (d (k))
2d (k)

= 0 (36)

simultaneously. Here n is the number density, and f (x) =
(e

x
T + 1)−1 is the Fermi distribution function. Tc is the su-

perconducting transition temperature determined by � > 0 if
T < Tc and � = 0 if T > Tc. In this model, we are interested
in the behavior of the Sjöqvist QGT across Tc.

Taking k as the parameter, the Sjöqvist QGT is evaluated
according to Eq. (17). Although the Sjöqvist QGT is found
to be real-valued in this 3D model, complex-valued Sjöqvist
QGT may be possible in more complicated systems. More-
over, gS

i j = gFR
i j + gFS

i j for i, j = x, y, z, where

gFR
i j = sin ki sin k j

t2β2d2
3 sech2(βd )

d2
,

gFS
i j = sin ki sin k jt

2 d2
1

d4
= sin ki sin k j�

2t2(
�2 + ε2

k

)2 . (37)

Interestingly, gFS
i j is proportional to �2 in this model and is

expected to reflect the change of the order parameter. On the
other hand, gFR

i j only has implicit dependence on � through
the energy dispersion in the thermal factor. Combining those

effects, Sjöqvist QGT should exhibit different behavior as the
system crosses Tc.

Figure 4 shows gS
i j and gFR

i j of three selected sets of pa-
rameters of the model as functions of temperature. Moreover,
we show the temperature dependence of � in the top row of
Fig. 4. In the three cases, the number densities are basically
the same. The pairing coupling constant is set to U/t = 8,
10, and 24 to represent relatively weak to strong pairing ef-
fects. From the temperature at which � vanishes, the critical
temperatures are extracted as Tc/t = 1.75, 2.31, and 5.90 for
the three cases. At T = 0, the order parameters are respec-
tively �/t = 3.33, 4.47, and 11.72. For kx = ky = kz = π

4 ,
all nine components of the metrics are equal according to
Eq. (37). As mentioned before, gFS is proportional to �2,
which results in different behavior across Tc for the three
cases. One can see that gFS vanishes above Tc since � = 0,
so gS = gFR above Tc. At low temperatures, gFR → 0 for the
same reason as explained previously. Therefore, gS = gFs in
the zero-temperature limit. Near Tc, the contributions from
gFS and gFR experience significant decreases and increases,
respectively. In the relatively weak-pairing regime (for exam-
ple, U/t = 8 with Tc = 1.75t), the combination of these two
opposite effects results in a valley near Tc. This is due to the
factor sech2(d/T )

d2 in the expression of gFR, which is a mono-
tonically increasing function near Tc. Its effect becomes more
dominant with larger Tc when U increases. Consequently, in
the relative medium-coupling regime (for example, U/t = 10
with Tc = 2.31t), the valley of gS disappears. Finally, in the
relative strong-coupling scenario (for example, U/t = 24 with
Tc = 5.90t), a peak emerges below Tc. The contrasts among
the three cases demonstrate the rich behavior of the Sjöqvist
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QGT as the system crosses the superfluid transition point with
different pairing strengths.

IV. IMPLICATIONS

The pure-state QGT has been experimentally measured in
various physical platforms, as mentioned in the Introduction.
The mixed-state QGT is a developing concept and needs more
research explorations in the future. The Sjöqvist distance has
been proposed to be related to some physical observables,
such as the maximal probability to find particles in a Mach-
Zehnder interferometer [44] and the magnetic susceptibility
and fidelity susceptibility [44,56]. The Sjöqvist QGT derived
here inherits the Sjöqvist metric as its real part and broadens
its geometric implications in realistic quantum systems. The
imaginary part of the Sjöqvist QGT, on the other hand, is
related to the thermal Berry phase in certain situations and
may be inferred from the Berry phases of individual spectrum
levels and their thermal distribution. The decomposition of
the Sjöqvist metric into the Fisher-Rao metric and the Fubini-
Study metric further helps categorize the contributions from
the variations of the states and distributions, which serves as
useful information for designing future quantum systems with
robust features against parameter variations.

The rich physics of mixed quantum states allows multiple
QGTs from different gauge transformations and parallel con-
ditions. The UN (1)-invariant Sjöqvist QGT is distinct from
the U(N )-invariant Uhlmann QGT [42]. One has to verify the
conditions when comparing different QGTs with experimental
data, as experiments may impose particular constraints on the
quantum processes. While the real parts of both Sjöqvist and
Uhlmann QGTs approach the Fubini-Study metric in the zero-
temperature limit, Ref. [42] shows that the Sjöqvist distance
cannot exceed the Bures distance from the Uhlmann QGT.
On the other hand, only the imaginary part of the Sjöqvist

QGT approaches the Berry curvature as T → 0, which is the
imaginary part of the pure-state QGT, because the imaginary
part of the Uhlmann QGT vanishes in general systems.

V. CONCLUSION

Through the formalism of the Sjöqvist distance, we ex-
tend the concept of the QGT from pure states to mixed
states at finite temperatures and construct a UN (1)-invariant
QGT applicable to thermal equilibrium states. Based on its
geometric structure, a Pythagorean-like equation connecting
different types of distances is presented. The real part of the
QGT contains the contributions from the Fisher-Rao metric
and the Fubini-Study metric from each energy level, while
the imaginary part defines a gauge-invariant quantity from
the weighted summation of the Berry curvatures. Our exam-
ples illustrate the temperature dependence of the metrics and
geometric phase associated with the QGT. Furthermore, the
Sjöqvist QGT is expected to serve as a tool for discovering
and quantifying geometric information of mixed states.
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APPENDIX A: SOME DETAILS
OF THE SJÖQVIST DISTANCE

By expanding the right-hand side of Eq. (3), we get

2 −
√

λn(t )λn(t + dt )
[
eiθ̇n (t )dt 〈n(t )|n(t + dt )〉 + e−iθ̇n (t )dt 〈n(t + dt )|n(t )〉]

= 2 −
√

λn(t )λn(t + dt )|〈n(t )|n(t + dt )〉|[eiθ̇n (t )dt ei arg〈n(t )|n(t+dt )〉 + e−iθ̇n (t )dt e−i arg〈n(t )|n(t+dt )〉]
= 2 − 2

√
λn(t )λn(t + dt )|〈n(t )|n(t + dt )〉| cos[θ̇n(t )dt + arg〈n(t )|n(t + dt )〉]. (A1)

The infimum of the left-hand side of Eq. (3) is obtained when
θ̇n(t )dt + arg〈n(t )|n(t + dt )〉 = 0. Since

arg〈n(t )|n(t + dt )〉 = arg[1 + 〈n(t )|ṅ(t )〉dt + O(dt2)]

≈ arg ei(−i〈n(t )|ṅ(t )〉dt )

= −i〈n(t )|ṅ(t )〉dt, (A2)

the minimization condition is equivalent to

iθ̇ (t ) + 〈n(t )|ṅ(t )〉 = 0, for n = 0, . . . , N − 1, (A3)

which is precisely the parallel-transport condition associated
with each individual pure state in the ensemble.

APPENDIX B: ANOTHER CONSTRUCTION
OF THE UN (1)-INVARIANT QGT

Similar to Eq. (9), for W = ∑
n

√
λn|n〉〈n|, the raw metric

is given by

gμν =
∑

n

[
∂μλn∂νλn

4λn
+ λn〈∂μn|∂νn〉

]
. (B1)

Under the UN (1) gauge transformation W → W ′ = WU with
U = diag(eiχ0 , eiχ1 , . . . , eiχN−1 ), the first term of gμν , the
Fisher-Rao metric, is already invariant while the second term
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is not. However, it is not hard to see that the imaginary part
of the second term, which is 
μν , is also invariant under the
transformation. To impose a proper modification, we first note
that the raw distance changes as

d2(W + dW,W ) → d′2(W + dW,W )

=
∑

n

[∂μ

√
λn∂ν

√
λn + λn(〈∂μn|∂νn〉 + ∂μχn∂νχn

− iωnμ∂νχn − iωnν∂μχn)]dRμdRν . (B2)

Similar to the pure-state case [3], to maintain the gauge invari-
ance, we can modify the raw metric as

γμν = gμν +
∑

n

λnωnμωnν . (B3)

Comparing with Eq. (17), one can see that γμν is nothing but
the Sjöqvist metric. The gauge invariance becomes clear by
noting that the extra terms of gμν in Eq. (B2) are canceled
by the changes of the Berry connections. For the nth spectral
level, ωnμ → ω′

nμ = ωnμ + i∂μχn, then γμν = gS
μν is indeed

invariant under the transformation W ′ = WU .
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