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Localization and conductance in fractional quantum Hall edges
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The fractional quantum Hall (FQH) effect gives rise to abundant topological phases, presenting an ultimate
platform for studying the transport of edge states. Generic FQH edge contains multiple edge modes, commonly
including the counterpropagating ones. A question of the influence of Anderson localization on transport through
such edges arises. Recent experimental advances in engineering novel devices with interfaces of different FQH
states enable transport measurements of FQH edges and edge junctions also featuring counterpropagating modes.
These developments provide an additional strong motivation for the theoretical study of the effects of localization
on generic edge states. We develop a general framework for analyzing transport in various regimes that also
naturally includes localization. Using a reduced field theory of the edge after localization, we derive a general
formula for the conductance. We apply this framework to analyze various experimentally relevant geometries of
FQH edges and edge junctions.
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I. INTRODUCTION

The fractional quantum Hall (FQH) effect [1–5] is a
paradigmatic platform for generating a rich variety of topo-
logical states of matter. Via bulk-boundary correspondence,
the topological order of the FQH bulk states is fully encoded
in their edges and thus can be measured by edge probes. Pro-
totypical examples are observation of fractional charge [6,7]
and, more recently, of fractional (anyonic) exchange statistics
[8–10] of elementary quasiparticles. These exotic properties
of topological excitations have been measured by exploring
FQH edge transport in specially designed geometries; see
Ref. [11] for a recent review.

Gapless excitations on the edge of an Abelian FQH state
are described by an integer-valued matrix K and an integer-
valued vector t characterizing the bulk topological order [12].
Most natural transport observables characterizing the edge are
the electric and thermal conductances, which have been the
subject of intense theoretical studies [13–19]. It was shown
[17] that, in the presence of counterpropagating modes, the
conductances depend not only on the underlying topology but
also on the transport regime. In particular, for the ν = 2/3
state, the electric conductance (in units of e2/h) was predicted
to be 4/3 for a clean (ballistic) edge, and 2/3 in the regime
of inelastic equilibration (also studied in Ref. [18]), with both
limiting values reflecting the topology of the state.

On the experimental side, recent years have witnessed
major advances in investigations of electric and thermal trans-
port in various FQH edges with counterpropagating modes
in GaAs and graphene samples [20–26]. Furthermore, over
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the past few years, there has been significant progress in
fabricating novel structures involving FQH edge states and
measuring their transport properties. For instance, in GaAs
samples, interfaces of different FQH states have been engi-
neered [27–31], as well as for the case when they originate
from different FQH layers [32,33]. This experimental ap-
proach gives rise to a new versatile platform for engineering
“artificial” FQH edges with multiple edge modes, including
counterpropagating modes. Controlling experimental tuning
knobs, such as the magnetic field and the gate voltage, al-
lows one to create a variety of FQH edges at the interface.
Furthermore, the quantum-point-contact geometry provides
another route to FQH state engineering; see, e.g., Ref. [34] for
more details. Recently, such a novel structure has also been
achieved in graphene [35], triggered by the development of
quantum point contacts in this material [36,37].

FQH edges are multimode one-dimensional (1D) struc-
tures. On the other hand, it is well known that Anderson
localization has dramatic implications for low-temperature
transport in conventional 1D wires. This leads to a question:
Does Anderson localization affect low-temperature (coherent)
transport properties of FQH edges in the presence of disorder?
Clearly, localization can only be operative for edges that allow
for a back-scattering, i.e., involve counterpropagating modes.
Indeed, it has been known since the work [13] on ν = 2/3
edge that disorder may play an important role on edges with
counterpropagating modes. At the same time, the coherent
transport of a ν = 2/3 edge is not characterized by local-
ization; rather, the electric conductance exhibits mesoscopic
fluctuations [17]. Does this apply to other FQH states as well?
The answer has been known since the seminal paper by Hal-
dane [38], who introduced the notion of topological stability
of FQH states. The ν = 2/3 state is stable, as well as any other
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FQH state with only two edge modes. At the same time, FQH
states with three or more counterpropagating edge modes are
frequently topologically unstable. This implies that the edges
of these FQH phases are prone to localization.

Implications of topological instability for the edge physics
were addressed by using an example of the ν = 9/5 state in
Ref. [39], where the notion of binding transition was intro-
duced. Since we consider a disordered edge, with random
tunneling between the modes, the physics of this transition
on the edge will be that of localization. Specifically, coun-
terpropagating edge modes may undergo a localization phase
transition driven by tunneling processes between the modes.
As a result, two counterpropagating modes are effectively
eliminated by this localization process and, hence, do not con-
tribute to the low-energy dynamics. Consequently, topological
low-energy excitations are governed by a certain reduced the-
ory (Kred, t red) involving only the remaining modes (those that
do not participate in the localization process).

While Ref. [39] focused on tunneling to the edge, man-
ifestations of localization transition in transport properties
of the ν = 9/5 edge were studied in Ref. [40]. The local-
ization transition in topologically unstable edges takes place
in the parameter space spanned by tunneling strengths and
interaction couplings. This transition is expected to be of
Berezinskii-Kosterlitz-Thouless type, in analogy with the case
of conventional interacting disordered wires [41]. In this pa-
per, we will not consider the physics near the transition but
rather will focus on the properties of the two systems before
and after localization.

Recent experimental progress reviewed above paves the
way for the engineering of a wealth of multimode edges and
edge junctions, thus providing a strong motivation for the
investigation of the effect of localization on FQH transport.
This makes it highly desirable to develop a general theoretical
framework for understanding and evaluating transport proper-
ties in various setups with multiple FQH edge modes, which
is the central goal of this work.

In this paper, we develop a general framework for the eval-
uation of conductance of a multimode FQH edge in various
transport regimes, including (i) ballistic transport, (ii) inco-
herent equilibration, (iii) localization, and (iv) localization
in a junction in combination with incoherent equilibration
in edge segments connecting the junction to the leads. In
particular, in the presence of localization, we determine the
reduced theory (Kred, t red) and derive a general result for
the conductance within this theory. Furthermore, we show
how this general framework actually works in a number of
relatively simple examples: (a) ν = 9/5 edge, (b) ν = 8/3
edge, (c) spin-polarized and spin-unpolarized ν = 2/3 edges,
and (d) interface between spin-polarized and spin-unpolarized
ν = 2/3 states.

The paper is organized as follows. Section II presents the
basics of the edge theory. In Sec. III, we describe contacts by
employing a line-junction model and find the conductance in
the clean limit (ballistic transport). Section IV deals with the
fully equilibrated case where the conductance always acquires
a universal value. In Sec. V, we finally include the localization
in the formalism and derive a formula for the conductance
through a localized region. This section further considers an
interplay of localization and inelastic equilibration. Specifi-

cally, we explore the geometry of a junction that undergoes
localization transition and is connected by equilibrated seg-
ments to the leads. Section VII contains a summary of the
results of this work and a discussion of future research direc-
tions.

Throughout the paper, we use units of e = h̄ = kB = 1.
The dimensional conductance G is measured in units of e2/h,
according to the common convention. Technical details of our
analysis are presented in several appendices.

II. EDGE THEORY

A. Effective action and excitations

We begin by briefly summarizing relevant aspects of Wen’s
K-matrix formalism [12,42]. The effective theory of an edge
with d modes is described by the action

S0 = 1

4π

∫
dtdx

d∑
a,b=1

∂xφa(Kab∂tφb − Vab∂xφb), (1)

where Kab is an integer-valued symmetric matrix, with
dim(K ) = d , which is determined by the topological order of
the FQH state. The signature of K , i.e., the number of positive
(nR) and negative (nL) eigenvalues of K , determine the number
of right and left-moving modes, respectively. Further, Vab is a
positive-definite velocity matrix, which is nonuniversal (de-
pending on the strengths of interactions between the modes).

The particle density and current of the ath edge mode are
ρa = ∂xφa/2π and Ia = ∂tφa/2π , respectively. The charges of
the modes are specified by an integer-valued charged vector
ta; thus, the charge current carried by ath mode is given by
Ja = taIa, where we set the electron charge to be e = 1. The
bulk filling factor ν is related to K matrix and t vector via

ν = taK−1
ab tb, (2)

where K−1
ab is the ab matrix element of the inverse matrix

K−1. (The sum over repeated indices is assumed unless stated
otherwise.)

Upon canonical quantization, ρa and φb obey commutation
relations

[ρa(x), φb(x′)] = iK−1
ab δ(x − x′). (3)

The operators that annihilate quasiparticles,

χm(x) ∝ ei
∑

a maφa(x), (4)

are parameterized by integer-valued vectors ma. From the
commutation relations Eq. (3), one sees that χ†

m(x) creates a
charge

Qm = taK−1
ab mb (5)

at the position x. The exchange statistics of quasiparticles χm(1)

and χm(2) reads θ12 = πm(1)
a K−1

ab m(2)
b .

B. Basis change

The action Eq. (1) has the same form under field redefini-
tion φ̃ = O−1φ, where O ∈ GL(d,R), with the transformed
matrices K̃ = OT KO and Ṽ = OT V O. This transformation
also implies the transformation of the charge vector, t̃ = OT t ,
and of quasiparticle excitation vectors, m̃ = OT m. However,
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the integer-valued characters of K , t , and m are, in general,
not preserved by such a transformation.

The theory fully retains its form if we restrict transfor-
mations φ̃ = W −1φ to W ∈ SL(d,Z) (the group of matrices
with integer entries and unit determinant). Then quasiparticle
vectors transform as m̃ = W T m and remain integer valued.
Furthermore, the topological order is given, as before, by an
integer-valued K̃ matrix and an integer-valued charge vector
t̃ ,

K̃ = W T KW, t̃ = W T t . (6)

The currents and the chemical potentials transform under such
a transformation as Ĩ = W −1I and μ̃ = W T μ.

C. Interfaces

When two FQH states described by (KA, tA) and (KB, tB)
are interfaced, the resulting edge theory is described by a
block-diagonal K matrix and by a combined t vector,

KAB =
(

KA 0
0 −KB

)
, tAB = (tA, tB). (7)

The velocity matrix, however, is not block-diagonal, reflecting
the density-density interactions between the edges.

D. Disorder

In realistic systems, the disorder breaks translation sym-
metry, facilitating momentum nonconserving tunneling pro-
cesses between different modes comprising the edge [43].
Random tunneling is described by an action

Stun = −
∫

dtdx ξ (x) exp

[
i
∑

a

Maφa

]
+ H.c., (8)

where M is an excitation with zero charge, QM = 0. In the
interface geometry, Sec. II C, we have M = (mA,−mB), and
the tunneling process is allowed if the quasiparticle charges
are equal, QmA = QmB . Furthermore, if the two edges, A and
B, are separated by vacuum, then only electrons are allowed
to tunnel between them, leading to an extra constraint: mi =
KiLi with Li being an integer vector and i = A, B.

The back-scattering induced by random tunneling Eq. (8)
may lead to the localization of counterpropagating modes.
Such edges are referred to as topological unstable [38].

E. Topological stability

As was discovered by Haldane in Ref. [38], if for a given
(K, t ) there exists an integer-valued null vector Ma such that
the corresponding excitation is (a) charge neutral,

taK−1
ab Mb = 0, (9)

and (b) nonchiral (characterized by zero topological spin),

MaK−1
ab Mb = 0, (10)

then the theory is topologically unstable. Depending on the
velocity matrix, the term (8) in the action of a topologically
unstable edge may be relevant or irrelevant in the renormal-
ization group sense. In the former case, the tunneling term
flows to strong coupling and becomes dominant at a certain

scale, determining the localization length ξ . In such a case,
two counterpropagating modes get localized and do not con-
tribute to transport at distances longer than ξ . In this regime,
the edge theory is effectively described by a reduced matrix
Kred with nR − 1 right-moving and nL − 1 left-moving modes,
respectively.

After this brief review of key aspects of the edge theory
(serving as a starting point for this work), we are ready to turn
to the analysis of charge transport in the edge.

III. BALLISTIC TRANSPORT

In this section, we derive a set of kinetic equations describ-
ing transport in the edge coupled to the contacts and solve
these equations to obtain the two-terminal conductance in the
ballistic regime.

A. Contacts

The equation of motion of Eq. (1),

∂x(KabIb − Vabρb) = 0, (11)

is interpreted as a continuity equation for the current of ath
mode Ia = (1/2π )∂tφa. The solution imposes the relation
between the current and the density: Ia = K−1

ab Vbcρc. By def-
inition, the chemical potential of ath mode μa reflects the
energy change due to a change in the density ρa,

μa = δH

δρa
= 2πVabρb, (12)

where H = π
∫

dxρaVabρb is the Hamiltonian corresponding
to Eq. (1). Thus, currents and chemical potentials are related
by

Ia = 1

2π
K−1

ab μb. (13)

Importantly, the V matrix does not enter Eq. (13). This in-
dicates that the interaction between the modes and the mode
velocities do not affect the transport properties, see Ref. [44]
for a related discussion of a conventional Luttinger-liquid wire
that corresponds to K = diag(1,−1).

We adopt the line junction model for a contact employed
in Refs. [19,45], which involves tunneling processes between
electrons in the reservoir (a contact) at a chemical potential
μ and electron-like excitations on the edge underneath the
contact x ∈ [−D, D], see Fig. 1. It is crucially important that
the tunneling Hamiltonian involves the tunneling of electrons
(rather than some fractionally charged excitations) and that
μ is the chemical potential of electrons in the contact. There
are (infinitely) many excitations that are “made of electrons”
in the edge; they are created by operators χ

†
l [see Eq. (4)]

with l = Km, where m is an integer-valued vector whose
components have no common divisor. The corresponding
charge is QKm = tT m ∈ Z, according to Eq. (5). We assume
that the most dominant tunneling processes involve linearly
independent vectors m(a) with nonzero integer charge, with
a = 1, . . . , d . (The subleading tunneling terms result in the
back-scattering between the modes and are considered in Ap-
pendix A.) We keep only these dominant processes and write
the equations of motion in the basis determined by them. In
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= − =

FIG. 1. Line-junction model of a contact. A contact of length 2D
(depicted as a green region) at a chemical potential μ is coupled
via electron tunneling (red arrows) to nR right-moving and nL left-
moving edge modes φa with a = 1, 2, . . . , d (black arrows). The
contact is sufficiently long to ensure the equilibration of respective
modes to a chemical potential μ; see text for detail.

this basis, the modes coupled to the contact are m(a)
b = δab,

and the charges are Ql (a) = ta. If originally a different ba-
sis was chosen, then this can be achieved by performing a
W ∈ SL(d,Z) transformation; see Sec. II B. The tunneling
current to mode a is proportional to the difference between
chemical potentials μa − taμ, which is the energy difference
of removing ta electrons from the contact and adding one
particle of charge ta to the edge a so that the current in mode
a obeys

∂xIa(x) = − �a

2πta
[μa(x) − taμ], (14)

where �a > 0 are (nonuniversal) charge tunneling strengths
per unit length. Using Eq. (13), we obtain the current-balance
equation of the form,

∂xIa(x) = −�a

ta

∑
b

Kab
[
Ib(x) − I (0)

b (μ)
]
, (15)

where I (0)
b (μ) = (μ/2π )

∑
c K−1

bc tc is the equilibrated particle
current. We absorb this constant term by shifting the current,
δIa(x) ≡ Ia(x) − I (0)

a (μ), and define a diagonal matrix of tun-
neling strengths, ϒab = δab�a/ta. Equation (15) takes then the
following matrix form:

∂xδI = −ϒKδI. (16)

Since �a > 0, the matrix ϒK has the same signature as K ,
i.e., nR positive and nL negative eigenvalues. (This follows
from the Sylvester’s law of inertia.) The positive (negative)
eigenvalues correspond to the solutions that decay in the
right (respectively, left) direction. We assume that the contact
length 2D is sufficiently long so that all these decay rates (gov-
erned essentially by �a) are much larger than 1/2D. Then, up
to exponentially small corrections, the contact can be viewed
as imposing boundary conditions at x = D (x = −D) on nR

(respectively, nL) combinations of currents corresponding to
the positive (respectively, negative) eigenvectors of ϒK .

Equation (16) can be solved by performing a ba-
sis change that diagonalizes ϒK . Similarly to Ref. [43],
we first define the basis change I → I′ = MK I that di-
agonalizes K , such that K = MT

K MK , where  is the
(nR, nL ) pseudoidentity matrix with aa ≡ λa = +1 for

a � nR and aa = −1 for a > nR. As a result of this
basis change, the tunneling matrix ϒ transforms to a
positive-definite, symmetric matrix ϒ ′ = MKϒMT

K . In a
second step, we diagonalize ϒ ′ by a pseudo-orthogonal matrix
Oϒ ∈ SO(nR, nL ) so that OϒOT

ϒ =  and [Oϒϒ ′OT
ϒ ]ab =

δabτa, with τa > 0. Thus, we have

K = U T U and UϒKU −1 = τ̂ (17)

with U = OϒMK , where τ̂ is a diagonal matrix with eigenval-
ues τa, i.e., the transformation U diagonalizes ϒK . To avoid
confusion, we note that, in a general case, U does not belong
to SL(d,Z).

We now define f = UδI so that currents and chemical
potentials can be expressed in terms of f as

I(x) = μ

2π
K−1t + U −1 f (x), (18)

μ(x) = μt + U T  f (x). (19)

The matrix equation (16) decouples when written in terms of
the components fa of f :

∂x fa = −τaλa fa. (20)

We immediately see that the solutions fa(x) = Cae−τa (D+λax)

exponentially decay in the positive x direction for right-
moving modes, λa > 0, and in the negative x direc-
tion for left-moving modes, λa < 0. We define the pro-
jection matrices χR = diag(1, . . . 1, 0, . . . , 0) and χL =
diag(0, . . . 0, 1, . . . , 1), such that  = χR − χL. Discarding
exponentially small corrections, we thus obtain

f (D) = χLC, f (−D) = χRC (21)

at the boundaries of the contact. In other words, the first
nR components of f (those corresponding to right-moving
modes) vanish at the right boundary, x = D, and the remaining
nL components vanish at the left boundary, x = −D.

The following comment is in order here. We considered
here an idealized contact: The only tunneling processes that
we retained in the contact region are the electron tunneling
between the contact and d modes in the edge. What we
discarded are tunneling processes between these modes. As
a result, the tunneling matrix ϒ in the above analysis was
diagonal in a certain basis that can be obtained by a SL(d,Z)
transformation. This is fully justified in many cases, in partic-
ular, when the modes forming the edge are spatially separated
(like 1 and 1/3 modes for the spin-polarized ν = 2/3 state; see
also below) so that tunneling between them is much weaker
than the tunneling between any of them and the contact. At
the same time, in some situations, there might also be a siz-
able tunneling between the modes in the contact. The above
analysis can be straightforwardly adjusted to this case; see
Appendix A.

B. Clean limit: Ballistic conductance

After having analyzed the equilibration between the con-
tact and the edge modes, we turn to the calculation of the
conductance of an edge coupled to two contacts at chemical
potentials μL and μR, see Fig. 2(a) for the schematic setup. We
consider first the clean limit, i.e., the absence of intermode
scattering in the edge, which implies the ballistic transport.
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FIG. 2. (a) Schematic setup for the transport within an edge
segment between the left and right contacts (green regions) at chem-
ical potentials μL and μR. Here ICon-L and ICon-R represent the
currents on the edge segment boundaries with the left and right
contacts, respectively. (b) Two-terminal conductance setup with the
edge coordinate x ∈ [−D, 3D + 2L], where the points x = −D and
x = 3D + 2L are identified. In the contact regions, x ∈ [−D, D] ∪
[D + L, 3D + L], charge tunnels between the contacts and the edge
modes (red arrows). In the edge segments between the contacts,
x ∈ [D, D + L] ∪ [3D + L, 3D + 2L], the charge in the edge is con-
served. If the charge tunneling between the modes in these regions
(blue arrows) is allowed, then inelastic equilibration or (for topolog-
ically unstable edges) localization may take place. In the absence of
such tunneling, the transport is ballistic. (c) Three-terminal setup to
measure the conductance. The potential μC is applied to the central
contact, while the left and right contacts are usually grounded, i.e.,
μR = μL = μ0. Then, charge current JC is inserted to the central
contact, and it is split to JL and JR, which are collected at the left
and right contacts. The two-terminal conductance G is obtained as
G = JC/(μC − μ0 ) = (JR + JL )/(μC − μ0 ); see text for more detail.

For simplicity, we assume that the contacts are equivalent
so that the modes coupled to the contact and the tunneling
strengths �a (and, consequently, also the matrices U ) are
the same for both contacts. In the clean limit, there is no
back-scattering, so the current emanating from the left con-
tact ICon-L ≡ I(D) propagates unimpeded to the right contact
ICon-R ≡ I(D + L); see Fig. 2(a). According to Eqs. (18) and
(21), the continuity equation ICon-L = ICon-R takes the form

ICon-L = μL

2π
K−1t + U −1χLCL

= ICon-R = μR

2π
K−1t + U −1χRCR. (22)

When written in components, this equation represents a set of
nR + nL equations for nR variables [CR]a�nR and nL variables

[CL]a>nR . Multiplying Eq. (22) by χpU with p = R, L and
using that χRχL = 0 and χ2

p = χp, we get the solution:

χRCR = μL − μR

2π
χRUK−1t, (23)

χLCL = −μL − μR

2π
χLUK−1t . (24)

Using these solutions, we obtain the total charge current along
the edge, Jtot = tT ICon-L = tT ICon-R, as

Jtot = μL

2π
ν − μL − μR

2π
tT U −1χLUK−1t

= μR

2π
ν + μL − μR

2π
tT U −1χRUK−1t, (25)

where we used that ν = tK−1t . Averaging over these equa-
tions, we get

Jtot = (μL + μR)
ν

4π
+ (μL − μR)

1

4π
G, (26)

with the two-terminal conductance G,

G = tT U −1UK−1t, (27)

where we used χR − χL = .
Using KU −1 = U T , we can equivalently write this equa-

tion as

G = tT (U T U )−1t. (28)

It should be emphasized that the total current Eq. (26) is
anomalous in the sense that it is not a function of μL − μR.
This is a manifestation of the fact there is a current on the
boundary of a FQH sample at equilibrium and that we have
included, up to now, only one edge segment between the
two contacts. Consider now a two-terminal setup shown in
Fig. 2(b). The total current between the contacts now includes
contributions of the upper and lower edges, yielding

Jtwo-term = Jtot(μL, μR) − Jtot(μR, μL )

= (μL − μR)
1

2π
G. (29)

We see that the anomaly cancels here as expected, and G is
indeed the two-terminal conductance.

According to common convention, we define the dimen-
sionless conductance G as measured in units of e2/h. This
explains the factor 1/2π in front of G in Eq. (29). (We recall
that we set e = h̄ = 1 in all formulas.)

When writing Eq. (29), we assumed that the upper and
lower edges of the two-terminal device shown in Fig. 2(b) are
identical (and thus characterized by the same G). In practice,
one frequently uses a three-terminal scheme to measure the
conductance shown in Fig. 2(c). In a typical experiment, the
left and right contacts are grounded, μL = μR = μ0, while
the central contact is biased and has a potential μC . The
current JC enters the system through the central contact and
is split into JL and JR measured at left and right contacts,
with JL + JR = JC , see Fig. 2(c). Let us denote by GL the
two-terminal conductance corresponding to the segment be-
tween the left and central contacts (i.e., the conductance of
the device shown in Fig. 2(b) with both edges identical to this
segment). Similarly, let GR be the two-terminal conductance
corresponding to the segment between the central and right
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contacts. Then, applying Eq. (26) to all three segments of
the edge in Fig. 2(c) and using the current conservation at
contacts, we get

JL = 1

4π
(GL − ν)(μC − μ0) ; (30)

JR = 1

4π
(GR + ν)(μC − μ0) ; (31)

JC = 1

4π
(GR + GL )(μC − μ0). (32)

For a symmetric device, GL = GR = G, Eq. (32) becomes
equivalent to Eq. (29) (with μL → μC and μR → μ0). The
three-terminal scheme allows one also to measure GL and
GR separately in nonsymmetric devices where GL and GR

may be different (e.g., due to different lengths of segments
LC and CR leading to different transport regimes, including
localization and inelastic equilibration that are studied below
in this paper). This is in particular relevant to measurements
of the conductance in interface structures, see Sec. V C.

Equation (28) is the sought general result for the two-
terminal conductance G in the ballistic regime. It expresses
G in terms of the charge vector t and the matrix U defined by
(17). The conductance is determined by the topology of the
edge (K and t) and by the way the modes are fed from the
contact (matrix ϒ). Importantly, the conductance (28) does
not depend on the interactions in the edge: The matrix Vab

of mode velocities and intermode interactions have dropped
completely from the result. In order to better understand the
result (28), we now discuss some special cases and examples.

As the simplest case, consider first a fully chiral edge, with
all modes propagating in the same direction: nL = d and nR =
0. In this case  = 1, Eq. (27) reduces to G = tT K−1t = ν.
The conductance for such edges is thus fully universal and
is equal to the filling factor ν. We turn now to edges with
counterpropagating modes.

C. Commuting K and ϒ matrices: Spin-polarized ν = 2
3 edge

For an edge with counterpropagating modes, the conduc-
tance (28) depends on how contacts feed electrons to edge
modes. This includes two aspects: (i) the basis of edge modes
that are fed (which is the basis in which the matrix ϒ is
diagonal and which we are using here) and (ii) values of the
corresponding tunneling strengths �a. In general, the conduc-
tance will continuously change as a function of �a (more
precisely, of their ratios) and will be thus nonuniversal (see
Sec. III D). There is, however, an important class of FQH
edges for which a high degree of universality is restored.
These are systems for which the matrix K is diagonal in the
basis determined by the coupling to contacts, i.e., the matrices
K and ϒ commute and are thus diagonal in the same basis.
In this case, the matrix U defined above is diagonal so that
U −1U =  and Eq. (27) for the conductance reduces to

G = tT K−1t . (33)

We see that the conductance does not depend on relations
between the strengths �a, implying its universality announced
above. To avoid confusion, it is worth recalling that the form
of Eq. (33) is not preserved under SL(d,Z) transformations;
it is written in the preferential basis in which the matrices

K and ϒ are diagonal. Nevertheless, the results are invariant
under the basis change, as can be seen from the transformation
properties of ϒ ; see Appendix A.

What is the physical situation in which K and ϒ matrices
commute so that Eq. (33) applies? This is, in particular, the
case when there is a basis of modes a = 1, . . . , d that satisfy
two conditions. First, these modes should be spatially sepa-
rated so that one can argue that these are the modes that are
(predominantly) fed from the contact. Second, the matrix K
should be diagonal in this basis.

A paradigmatic example of such a situation is the edge of
a spin-polarized ν = 2/3 state. This edge consists of counter-
propagating 1 and 1/3 modes, which are spatially separated:
The 1 mode is closer to the physical boundary of the FQH
system, and the 1/3 mode is closer to its interior [46]. In the
basis of 1 and 1/3 modes, the K matrix and the t vector are

K =
(

1 0
0 −3

)
, t =

(
1
1

)
, (34)

and Eq. (33) yields the conductance

G = 4
3 . (35)

The universal value (35) of the ballistic conductance of the
2/3 state was derived in Ref. [17]. It is worth contrasting
this result to an interaction-dependent formula proposed in
Ref. [13], which was based on a naive application of an
infinite-system Kubo formula without a proper treatment of
contacts.

On the experimental side, observation of the ballistic
charge transport in the 2/3 edge is a challenging task in
view of a rather short inelastic equilibration length in typical
structures at experimentally relevant temperatures. How-
ever, recent fabrication progress has allowed achieving the
ballistic transport regime (and exploring the full ballistic-to-
equilibrated crossover) in an engineered structure in Ref. [33],
which experimentally confirmed the value G = 4/3 of the
ballistic conductance of the 2/3 edge.

The above spatial structure of edge modes of the ν = 2/3
state is related to the fact that this state is a daughter state of
the ν = 1 state in the hierarchy picture. Thus, the 2/3 state
can be viewed as resulting from a δν = −1/3 condensate on
top of a ν = 1 condensate, implying the corresponding two
edges. This argument can be extended to other spin-polarized
single-layer hole-conjugated FQH states. For example, the
ν = 3/5 state is obtained on the next step of the hierarchy
from the 2/3 by the formation of an additional δν = −1/15
condensate. Its edge thus consists of three modes (counting
from the boundary of the sample towards its interior): the
downstream 1 mode, the upstream 1/3 mode, and the up-
stream 1/15 mode. Arguing again that they are sufficiently
well separated spatially, we obtain the ballistic conductance
G = 1 + 1/3 + 1/15 = 7/5.

D. Noncommuting K and ϒ matrices: Spin-unpolarized
ν = 2

3 edge

We now consider the situation of the K matrix being non-
diagonal in the basis of modes coupled to the contact. As
discussed above, the conductance (28) depends, in this case,
on ratios between tunneling strengths �. To illustrate this,
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it is instructive to consider the model of a spin-unpolarized
ν = 2

3 state. The corresponding K matrix and t vector, when
written in the basis of two opposite spin projections (parallel
and antiparallel to magnetic field), read

K =
(

1 2
2 1

)
, t =

(
1
1

)
. (36)

Assuming that spin conservation holds, we can expect that
the spin-up and spin-down modes are those that are fed by
the contact, i.e., that the matrix ϒ is diagonal in this basis.
We parametrize the corresponding two tunneling strengths as
�1 = (1 − α)� and �2 = (1 + α)� with 0 � |α| � 1.

The MK and Oϒ that diagonalize Eq. (16) (equilibration
with contacts) are now found to be

MK =
⎛
⎝
√

3
2

√
3
2

−
√

1
2

√
1
2

⎞
⎠, Oϒ =

(
cosh θ sinh θ

sinh θ cosh θ

)
, (37)

where

θ = 1

4
log

2 − α
√

3

2 + α
√

3
. (38)

Substituting U = OϒMK into Eq. (28), we obtain the ballistic
two-terminal conductance,

G = 4

3
√

4 − 3α2
. (39)

We see that the conductance is nonuniversal and bounded
between G = 2/3 for a symmetric (α = 0) coupling to the
contact and G = 4/3 for the maximally asymmetric (α →
±1) case.

Let us emphasize that the edge theory (36) is topologi-
cally equivalent to (34), i.e., they are related by a SL(2,Z)
transformation. If we perform such a transformation in the
spin-unpolarized case, then the K matrix will acquire the form
(34), but the matrix ϒ of coupling to the contact will become
nondiagonal. This leads to a remarkable difference between
the results (35) and (39) for the ballistic conductance despite
their topological equivalence.

IV. INCOHERENT EQUILIBRATION

In this section, we consider the effect of equilibration be-
tween the edge modes in the region between two contacts
with potentials μL and μR; see Fig. 2(b). Such equilibration
results when tunneling processes between edge modes are
added incoherently. The corresponding inelastic equilibration
length (above which the equilibration within the edge be-
comes operative) diverges in the zero-temperature limit but
is rather short at typical experimental temperatures in most
structures. We first consider the upper edge of Fig. 2(b),
assuming for definiteness that ν = tT K−1t > 0 so that the
dominant (“downstream”) direction of charge flow is the pos-
itive x direction.

The tunneling charge current δJT
ab between the ath and bth

channels is proportional to the energy difference of taking
the charge δQT = taδρa from ath channel and adding δQT =
tbδρb to bth channel. This energy difference reads, in terms of
the chemical potentials (12) of edge modes, μaδρa − μbδρb =

(t−1
a μa − t−1

b μb)δQT . Thus, the current balance equation in
the edge subjected to incoherent equilibration has the form

∂xIa = −
∑

b

γab

2π

(
μat−1

a tb − μb
)
, (40)

where we introduced a charge tunneling strength per unit
length γab > 0 between modes a and b. Equation (40) can be
rewritten as

∂xI = −T KI, (41)

with a symmetric matrix

Tab = δab

∑
c

t−1
a γactc − γab. (42)

Clearly, the two terms in Eq. (42) are the scattering-out and
scattering-in terms, respectively. Due to the charge conser-
vation, the matrix T has a zero eigenvalue corresponding
to eigenvector t . All other eigenvalues of T are positive. It
follows (under the above assumption ν = tT K−1t > 0) that
the matrix T K has one zero, nR − 1 positive, and nL negative
eigenvalues. We will provide proof of this important statement
at the end of this section.

We denote the eigenvalues of T K by τ̃ j and order them
according to τ̃1 > τ̃2 > . . . so that the first nR − 1 eigenvalues
are positive, τ̃nR = 0, and the last nL eigenvalues are negative.
We further denote by v j the corresponding eigenvectors of
T K . The eigenvector corresponding to the zero eigenvalue
is vnR = K−1t (“charge mode”); the remaining eigenvectors
( j 	= nR) are neutral since tT v j = τ̃−1

j tTT Kv j = 0 in view of
tTT = 0. A general solution of Eq. (41) reads

I =
∑
j<nR

A jv je
−τ̃ j (x−D) + AnRvnR

+
∑
j>nR

A jv je
−(D+L−x)|τ̃ j |, (43)

with nR + nL = d coefficients Aj . These coefficients should
be determined from the boundary conditions at the contacts;
see Sec. III A. Specifically, Eq. (21) provides exactly d condi-
tions needed to determine the d coefficients Aj .

Let us consider the limit of strong equilibration, L 

|τ̃ j |−1 for all nonzero eigenvalues ( j 	= nR). This means that
the edge length L is sufficiently large, such that the edge
modes are fully equilibrated with each other, and the edge
reaches a steady state in the region far from the contacts. Then
all contributions in Eq. (43) with τ j 	= 0 are exponentially
suppressed away from the contacts, and the only contribution
comes from the zero mode vnR , yielding

I = AnRvnR =
(μeq

2π

)
K−1t . (44)

Here AnR = μeq/2π is defined in terms of the chemical po-
tential in the equilibrated region μeq. Consequently, the total
charge current reads

Jtot = tT I = μeqν

2π
, (45)

which solely depends on the value of μeq. To find μeq, we use
Eqs. (18) and (21) for the current on the left (upstream) con-
tact I(x = D) = ICon-L. Equating it to Eq. (43) and discarding
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exponentially small terms [the second sum in Eq. (43)], we
obtain

μL − μeq

2π
K−1t −

∑
j<nR

A jv j + U −1χLCL = 0. (46)

The left-hand side of Eq. (46) represents a linear combination
of d vectors in the d-dimensional space. [Or, equivalently,
Eq. (46) is a system of d homogeneous linear equations for
d variables.] These vectors are linearly independent so that
the only solution is trivial: Aj<nR = 0, χLCL = 0, and μeq =
μL. (An explicit proof of this statement is provided in Ap-
pendix C.) Thus, the total charge current is

Jtot = νμL

2π
. (47)

This result reflects the fully chiral nature of the edge that
emerges in the equilibrated limit. Note also that the value of
the total current, Eq. (47), does not depend on the microscopic
details of contacts. The universality of transport properties is
fully restored in this incoherent regime.

We turn now to the full two-terminal geometry of Fig. 2(b)
involving the upper and the lower edge. The total current from
the left to the right terminal is then

Jtwo-term = ν(μL − μR)

2π
, (48)

resulting in the fully universal value of the two-terminal
charge conductance in the equilibrated regime,

G = 2π
Jtwo-term

μL − μR
= ν. (49)

It follows from the above analysis that the conductance G
approaches exponentially to the value G = ν in the incoherent
(equilibrated) regime as L grows.

The fact that the inelastic relaxation between the edge
modes tends to establish universal quantized values of con-
ductances in quantum Hall devices was pointed out in early
works [45,47]. More recently, the incoherent transport regime
was studied in detail in the context of the ν = 2/3 edge
[16–19,48].

We return now to the proof of the signature of the matrix
T K . If the matrix T would be positive-definite, then the signa-
ture of T K would be the same as that of K , i.e., nR positive and
nL negative eigenvalues, by virtue of Sylvester’s inertia law.
The tricky point is that while all but one eigenvalue of T are
positive, there is one zero eigenvalue with eigenvector t . This
obviously means that T K also has a zero eigenvalue corre-
sponding to the eigenvector v0 = K−1t . The question is, what
are the signs of remaining nR + nL − 1 eigenvalues? We will
now prove that for ν ≡ tT K−1t > 0, there are nR − 1 positive
and nL negative eigenvalues, while for tT K−1t < 0, there are
nR positive and nL − 1 negative eigenvalues. An alternative
proof of this statement is presented in Appendix B. The case
tT K−1t = 0 is thus special, and we will also comment on it.

We consider first the special case when the matrices K
and T commute and thus can be simultaneously diagonal-
ized. The statement of the signature of T K that we have just
made then immediately follows for both cases tT K−1t > 0
and tT K−1t < 0. We now continuously vary the matrix T
(preserving its signature), so that its eigenvector t correspond-

ing to zero eigenvalue changes, and thus tT K−1t changes
as well, to interpolate between the cases tT K−1t > 0 and
tT K−1t < 0. The signature of T K should change at some
point on such an interpolating trajectory from (nR − 1, 1, nL )
to (nR, 1, nL − 1), where (m, p, q) means m positive, n zero,
and q negative eigenvalues. Obviously, in the transition point
we should have two zero eigenvalues. On the other hand, we
know that T K has only one eigenvector corresponding to a
zero eigenvalue. (If it would have a second one, then T would
also have a second one, which contradicts our assumptions.) It
follows that, at the transition point, the matrix T K has a 2 × 2
Jordan block with zero eigenvalue. There is thus a vector u0

such that T Ku0 = v0. Multiplying this equation on the left by
tT and using v0 = K−1t and tTT = 0, we obtain tT K−1t = 0.

We have thus proven that the signature of T K is (nR −
1, 1, nL ) for ν > 0, (nR, 1, nL − 1) for ν < 0, and (nR −
1, 2, nL − 1) for ν = 0, where ν = tT K−1t . Before closing
the section, we briefly comment on the special case ν = 0.
While this situation is obviously not relevant to FQH edges, it
can be realized in edge junctions. The second zero eigenvalue
leads to the appearance of a linear-in-x term in Eq. (43) and
consequently to a linear dependence of the equilibrated poten-
tial μeq on x. This corresponds to a diffusive transport, with
the conductance scaling as G ∝ 1/L. The simplest realization
of this incoherent transport regime at ν = 0 is the con-
ventional disordered Luttinger liquid [corresponding to K =
diag(1,−1) and tT = (1, 1)] at elevated temperatures [49].

V. LOCALIZATION

A. Basics

The localization can be viewed as a coherent counterpart of
equilibration. It may happen on an edge with counterpropagat-
ing modes if the edge is not topologically stable; see Sec. II E.

It is instructive to begin with a simple example of local-
ization between counterpropagating integer electron modes.
Consider, for instance, a coherent transport via an edge with
K = diag(1, 1,−1) and tT = (1, 1, 1) (which can be obtained
as a junction between ν = 2 and ν = 1 edges). In the absence
of intermode tunneling, we have a ballistic conductance G =
3. Now, we “switch on” random intermode tunneling. For a
repulsive interaction (or a not-too-strong attraction), the tun-
neling term between the second and third modes, ei(φ2+φ3 ) ≡
eiM1φ with MT

1 = (0, 1, 1), is relevant and thus flows to strong
coupling. This results in the localization of two counterpropa-
gating modes, φ2 and φ3. In such a case, they do not contribute
to the transport on the scale beyond the localization length ξloc,
where only the mode φ1 remains. As a result, the conductance
is reduced down to G = 1. There is an alternative tunneling
process, ei(φ1+φ3 ) ≡ eiM2φ with MT

2 = (1, 0, 1), which may
lead to the localization of counterpropagating modes φ1 and
φ3. As a result of this localization, the modes φ1 and φ3 would
not propagate at distances larger than the localization length,
and we would stay only with the mode φ2, again yielding
the conductance G = 1. Obviously, the localization channels
corresponding to M1 and M2 are competing: the localization
may take place only in one of these channels but not in both.
After having inspected this simple example, we turn to a
general situation of localization in FQH edges.
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Localization of counterpropagating edge modes is driven
by tunneling processes between the edge modes, given by

Stun = −
∫

dxdt g(x) cos[MT φ + ζ (x)], (50)

where the tunneling strength g(x) = |ξ (x)| and the phase
ζ (x) = arg[ξ (x)]. This tunneling process permits localiza-
tion, provided that the tunneling vector M satisfies Haldane
topological-instability conditions: the charge neutrality con-
dition

tT K−1M = 0 (51)

and the null-vector condition

MT K−1M = 0. (52)

When such a tunneling process is relevant in the
renormalization-group sense, the tunneling term flows to
a strong-coupling regime, and the phase of the cosine in
Eq. (50) is locked to a minimum MT φ(x, t ) + ζ (x) = 0 and
is thus time independent. This implies that

∂t MT φ/2π = MT I(x) = 0, (53)

i.e., a certain combination of current components Ia is zero.
If localization is possible, then one frequently finds that

it is possible in more than one channel. In other words, if
there exists a neutral null vector, then one frequently finds
multiple neutral null vectors. In most of the examples that
we will consider below, there will be multiple competing null
vectors M j such that the localization cannot happen in two
channels simultaneously; see the beginning of this section for
a simple example of such a situation with two competing null
vectors M1 and M2. On the other hand, in the most general
case, an edge may also permit multiple independent neutral
null vectors M j , with j = 1, . . . , m, that fulfill the condition

MT
j K−1Mk = 0, (54)

which generalizes Eq. (52). In this case, the localization may
take place simultaneously in all m independent channels gov-
erned by these null vectors M j .

We note that a set of null vectors {M j} satisfying Eq. (54)
forms a group: addition of two such null vectors yields again
a null vector. If one can find m linearly independent null vec-
tors to satisfy Eq. (54) for d = 2m-dimensional edge theory,
then the edge can be fully gapped (or fully localized for a
disordered edge). An equivalent criterion for the possibility
to fully gap an edge, formulated in terms of a Lagrangian
subgroup, was established in Ref. [50]. In a more frequently
encountered situation of a topologically unstable edge (as
considered in this paper), the edge gets only partly localized,
i.e., 2m < d . We also note that Ref. [50] relaxed the charge-
neutrality condition (51) by considering a FQH edge coupled
to a superconductor. In the present paper, we assume charge
conservation in the edge, so that null vectors M j must satisfy
also Eq. (51).

To analyze a topologically unstable edge, we perform a
basis transformation by a matrix W ∈ SL(d,Z) such that

W T KW = Kred ⊕ q1σz ⊕ · · · ⊕ qmσz︸ ︷︷ ︸
m copies

,

W T t = t red ⊕ [(
t1
loc, t1

loc

)T ]⊕ · · · [(tm
loc, tm

loc

)T ]
, (55)

where q1, . . . , qm are odd integers. This implies that, after
transformation to a new basis, the reduced, topologically sta-
ble sector governed by Kred and t red is decoupled from the
modes undergoing localization. The procedure for deriving a
suitable W transformation is detailed in Appendix D. The ma-
trix W −1, which transforms currents according to Ĩ = W −1I,
can be written as

W −1 = (
ered

1 , . . . , ered
d−2m, wloc

1 , . . . , wloc
m

)T
,

(56)

where ered
i are basis vectors of the reduced theory, and

wloc
j = (eloc

j , M j − eloc
j ) represents a pair of counterpropagat-

ing modes.
In the simple example at the beginning of this section, with

K = diag(1, 1,−1) and tT = (1, 1, 1), only one pair of modes
can get localized. For the localization governed by the null
vector MT = (0, 1, 1), the theory is in the form (55) with m =
1 and q1 = 1 without any basis change needed (i.e., W = 1).
The pair of modes wloc consists of vectors eloc = (0, 1, 0)T

and M − eloc = (0, 0, 1)T . The reduced theory has a single
mode, with ered = (1, 0, 0)T , K = 1, and t = 1.

It is instructive to compare Eq. (55) with the form of the
K matrix of a topologically unstable theory as derived in the
pioneering paper [38] by Haldane. In Eq. (4) of Ref. [38], the
block that represents the topologically unstable sector (and
thus can undergo localization) has the form

K0 =
(

0 1
1 k

)
, t0 =

(
0
b

)
, (57)

with either (i) k = 1 and odd b or (ii) k = 0 and even b. In
the first case, k = 1, it is easy to see that there is a SL(2,Z)
rotation that transforms K0 → σz and t0 → (b, b)T in cor-
respondence with our Eq. (55) with q j = 1. The q j factor
is absent in Eq. (4) of Ref. [38] because it is written for
a “primitive-form” theory (as defined in Ref. [38]), while
our Eq. (55) does not involve this assumption. In the second
case, k = 0, we have K0 = σx in Eq. (57). While σx cannot
be SL(2,Z) transformed to σz, we should take into account
that there is also the remaining sector of the theory Kred. As
was shown in Ref. [51], for any odd matrix Kred, there exists
W ∈ SL(d,Z) such that

W T (Kred ⊕ σx )W = Kred ⊕ σz. (58)

Here the matrix K is called odd if at least one of its diagonal
elements is odd; otherwise, (all diagonal elements are even), it
is called even. The matrix K representing a fermionic system
must be odd (since otherwise, it would not have fermionic
excitations). Correspondingly, if in some basis it has a form
Kred ⊕ σx, then the matrix Kred must be odd. Thus, we can use
Eq. (58) to trade σx to σz. For several independent localization
channels, as in Eq. (55), this can be done consecutively for all
σx involved. Therefore, Eq. (55) is fully generic for the case
of a fermionic (odd) K matrix that we assume.

B. Conductance of an edge with localization

We now consider the conductance of a disordered edge that
undergoes localization, Fig. 3. Specifically, we consider an
edge with nR right-moving and nL left-moving modes coupled
to two contacts with potentials μL and μR. In the central part
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M

FIG. 3. Schematic setup for transport through a localization re-
gion, depicted as blue-shaded. Vertical dashed lines on the left and
right depict interfaces with contacts (green regions). Edge segments
L and R are clean so that each individual component of the current
vector ICon-L (ICon-R) flowing through the cross section with the left
(right) contact is conserved along the segment L (respectively, R).
The disordered region M has a length much larger than the localiza-
tion length ξloc. The current vector in the central part of this region is
denoted IMid.

M (blue, shaded region) of the edge, the random intermode
scattering is operative and leads to localization, as discussed
in Sec. V A. The length of this segment is much larger than
the localization length ξloc. For convenience, we assumed in
Fig. 3 that there are clean regions L and R that connect the
disordered region M to the contact regions (green). The pres-
ence of these ballistic regions is immaterial; the conductance
does not depend on their lengths.

The currents emanating from the left and right contacts
ICon-L and ICon-R satisfy the corresponding boundary condi-
tions given by Eqs. (18) and (21). The boundary conditions
yield nR equations for ICon-L and nL equations for ICon-R, i.e.,
in total nR + nL = d equations for 2d current components
ICon-L and ICon-R. We will now determine the remaining d
equations that are needed to find the currents.

In the middle region, the localization governed by m
independent null vectors M j with 1 � j � m takes place.
According to Eq. (53), this implies that

MT
j IMid = 0, j = 1, . . . , m, (59)

where IMid is the current in the localized region. Let us re-
call that tunneling operators that we consider are eiMT

j φ. This
tunneling conserves the density combinations MT

i ρ in view of[
MT

i ρ(x), MT
j φ(x′)

] = iMT
i K−1M jδ(x − x′) = 0, (60)

where we used Eqs. (3) and (54). Thus, ∂t MT
i ρ = 0 and,

consequently,

∂xMT
i I(x) = 0, i = 1, . . . , m. (61)

It follows from Eqs. (59) and (61) that MT
j I = 0 holds ev-

erywhere in the edge, including the ballistic regions L and R
adjacent to the contacts:

MT
j ICon-L = MT

j ICon-R = 0, (62)

which yields 2m equations for the current components.
Furthermore, the currents of the reduced theory Ired =
[W −1I]a�d−2m are not affected by tunneling in the localized
sector and, therefore, are continuous. This imposes d − 2m

conditions (
ered

a

)T
ICon-L = (

ered
a

)T
ICon-R, (63)

where we used the form Eq. (56) of the matrix W . In total,
the boundary conditions Eqs. (18) and (21) in combination
with Eqs. (62) and (63) provide the required 2d equations for
2d current components ICon-L and ICon-L. By solving them,
we can find the current components and thus the total charge
current and the conductance.

To derive a general formula for the conductance, it is con-
venient to parametrize the currents ICon-s, with s = L, R, in
terms of the chemical potentials μs

Con of modes in the ballistic
regions L and R via the relation (13):

ICon-L = 1

2π
K−1μL

Con, ICon-R = 1

2π
K−1μR

Con. (64)

The boundary conditions on interfaces with contacts,
Eqs. (18) and (21), imply

μL

2π
K−1t + U −1χLCL = 1

2π
K−1μL

Con,

μR

2π
K−1t + U −1χRCR = 1

2π
K−1μR

Con. (65)

Acting with the matrix χRU on the first of these equations and
with the matrix χLU on the second one, we eliminate the
unknown coefficients CL and CR and obtain

μL

2π
χRUK−1t = 1

2π
χRUK−1μL

Con,

μR

2π
χLUK−1t = 1

2π
χLUK−1μR

Con. (66)

Next, according to the conditions (62), we can expand the
chemical potentials μs

Con as

μs
Con =

d−2m∑
a=1

μs,a
redered

a +
m∑

j=1

μs
jM j, s = L, R. (67)

The first term on the right-hand side of Eq. (67) corresponds
to the reduced-theory sector, spanned by the modes ered

a that
do not participate in the localization processes and remain
conducting through the localization region. The second term
involves modes that get localized. The current conservation of
the reduced part, Eq. (63), results in

μL,a
red = μR,a

red ≡ μa
red. (68)

We have thus in total d unknown chemical potentials: d −
2m potentials μa

red of the reduced modes and 2m potentials
μL

j , μR
j in the localized sector. They are determined from the

system of d equations, Eq. (66). We present only the result
here; details of the derivation can be found in Appendix E.
The total current reads

Jtot = ν

4π
(μL + μR) + G

4π
(μL − μR), (69)

where we have defined the two-terminal conductance as
before [see Eqs. (26) and (29)]. The final result for the con-
ductance reads

G =
d−2m∑
a,b=1

t a
red(W T U T UW )−1

ab tb
red −

m∑
j, j′=1

BjC
−1
j j′ Bj′ , (70)
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Vacuum Vacuum
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( , )

LA

LB

RA

RB

FIG. 4. The junction at the interface between two different FQH
bulk states characterized by the respective sets of K matrix and t
vector, (KA, tA) and (KB, tB ). The edges A and B are in proximity
to each other in the middle region (shaded blue), where the local-
ization may occur. The edge segments LA, LB, RA, and RB bridge
the localization region to the contacts that undergo the incoherent
equilibration. The transport in these segments may be either ballistic
(coherent) or equilibrated (incoherent).

with

Bj =
d−2m∑
a=1

t a
red[(U T UW )−1M j]a, (71)

Cj j′ = MT
j (U T U )−1M j′ . (72)

As a sanity check, in the absence of localization (m = 0),
we have t red = W T t according to Eq. (55) so that Eq. (70)
reproduces the ballistic conductance Eq. (28).

If the theory becomes fully chiral (i.e., all modes propagate
in the same direction) after localization, then the resulting
conductance should be G = ν. We show in Appendix E that
Eq. (70) indeed reduces to G = ν for this special class of
edges.

C. Conductance of edge junctions with localization:
Interplay of localization and equilibration.

The question of localization is particularly relevant to inter-
faces of two FQH phases, naturally giving rise to multimode
edge junctions with counterpropagating modes. We now con-
sider the conductance of a junction of two FQH edges as
shown schematically in Fig. 4. Specifically, we consider an
interface between two different FQH states, A and B. We
assume that the edges A and B are in close proximity of each
other in the central part of the device (blue shaded region in
Fig. 4) so that the localization processes in the combined edge
become operative. This combined edge is described by the K
matrix and t vector given by

KAB = KA ⊕ (−KB), tAB = tA ⊕ tB. (73)

The transport in this AB junction is assumed to be coherent,
i.e., the length of the junction is much shorter than the inelastic
equilibration length.

In the remaining part of the device, the edges A and B
are assumed to be far apart so that they do not affect each
other. The transport in the corresponding segments LA, LB,
RA, and RB may be either coherent (ballistic) or incoher-
ent (equilibrated) depending on whether the length of these
segments is smaller or larger than the inelastic equilibration
length. To study the case with some degree of incoherent
equilibration present in these segments, we can equivalently

shift this equilibration in the contact region by modifying the
corresponding boundary conditions, see Appendix A.

Only an integer charge is allowed to tunnel between the
edges A and B. Nevertheless, it turns out that localization is
not only possible in such junctions but is, in fact, ubiquitous
when the total number of counterpropagating modes in the
combined edge is four or larger. As a result of localization,
a reduced theory (Kred, t red ) will emerge in the junction, thus
making the two edges A and B “entangled.” In general, this
localization will also modify the two-terminal conductance G
of the device.

We recall that the two-terminal conductance G is defined
for a setup including two identical edge segments, or two
identical edge interfaces of the type shown in Fig. 4. Exper-
imentally, it can be also measured in a three-terminal setup,
see a discussion in Sec. III B, which allows one to determine
G in a structure with a single junction.

VI. EXAMPLES OF EDGES WITH LOCALIZATION
AND THEIR CONDUCTANCES

We now proceed by presenting several characteristic exam-
ples of FQH edges and edge junctions that are topologically
unstable and thus prone to localization. For each of them, we
will use our general formalism to calculate the form of the
reduced theory as well as the resulting conductance.

A. ν = 9/5 state

The ν = 9/5 state is arguably the simplest example of
a three-mode edge that exhibits binding transition, as was
shown in Ref. [39]. Manifestations of localization in transport
properties of the 9/5 edge were studied in Ref. [40]. We use
the ν = 9/5 state as a first test for our general theory. The
ν = 9/5 edge consists of two right-moving integer modes and
one left-moving 1/5 mode and is characterized by

K =
⎛
⎝1 0 0

0 1 0
0 0 −5

⎞
⎠, t =

⎛
⎝1

1
1

⎞
⎠. (74)

The above three modes are spatially well separated so that
the matrix ϒ of coupling to contacts is diagonal in the same
basis. The ballistic conductance of the edge in the absence of
localization is thus

G = 11
5 (75)

according to Eq. (33).
The theory possesses two competing null vectors M1 =

(−2, 1,−5)T and M2 = (1,−2,−5)T (they are related by
an exchange of the two integer modes and, in this sense,
equivalent). After localization in any of these channels, the
reduced theory possesses a single conducting mode and is
characterized by

Kred = 3, tred = 5. (76)

Assuming for definiteness that the localization is driven by
M1, the W −1 matrix brings the theory to the form (55) (with
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m = 1 and q1 = 1) is

W −1 =
⎛
⎝0 1 2

1 0 0
0 −2 −5

⎞
⎠, (77)

see Appendix D for more details on the scheme to find Kred,
t red, and W .

Since the reduced theory is fully chiral, the conductance
after localization is

G = tredK−1
red tred = ν = 9

5 . (78)

We have verified that our formula (70) for G indeed yields this
result. For the generality of this test, we have also allowed for
an arbitrary degree of equilibration between the modes in the
contact region [which would modify the value of the conduc-
tance (75) in the absence of localization; see Appendix A].
We recall that the matrix U entering (70) is U = OϒMK ,
where MK = diag(1, 1,

√
5) and Oϒ in general depends on

the coupling strengths and intermode equilibration at contacts.
The matrix Oϒ ∈ SO(2, 1) can be written as Oϒ = BR with a
boost matrix B and a rotation matrix R. While R is parameter-
ized by a single angle θ , the boost matrix B is parameterized
by a two-component vector p = (p1, p2) as [43]

B =

⎡
⎢⎣

p2
2+γ p2

1
p2

p1 p2(γ−1)
p2 p1

p1 p2(γ−1)
p2

p2
1+γ p2

2
p2 p2

p1 p2 γ

⎤
⎥⎦,

R =
⎛
⎝cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠, (79)

with γ =
√

1 + p2. We have checked that, with this most
general form of coupling to the contacts, the two-terminal
conductance formula (70) indeed yields the universal conduc-
tance (78) of the 9/5 edge on localization.

B. ν = 8/3 state

While localization is a rare occurrence for three-mode
edges, it becomes more of a rule than an exception for edges
with d � 4 modes. As an example, we now consider the
ν = 8/3 edge, which consists of three integer right-moving
modes and one left-moving 1/3 mode. The corresponding K
matrix and t vector read

K = diag(1, 1, 1,−3), tT = (1, 1, 1, 1). (80)

These four modes are spatially well separated so that the
matrix ϒ of coupling to contacts is diagonal in the same basis.
Therefore, the ballistic conductance of the edge in the absence
of localization is

G = 10

3
(81)

according to Eq. (33).
This edge is topologically unstable and, moreover, there

are multiple competing null vectors. To see this, consider
first the general form of M satisfying the neutrality condition
tT K−1M = 0:

Mnc,n1,n2 = (nc + n1 + n2,−n1,−n2, 3nc)T , (82)

with three integers (nc, n1, n2). Here nc denotes the num-
ber of electrons tunneling to the 1/3 mode, whereas
n1 and n2 describe the reshuffling of electrons within
the integer modes. By imposing the null-vector condition
MT

nc,n1,n2
K−1Mnc,n1,n2 = 0, we arrive at the equation

(nc + n1 + n2)2 + n2
1 + n2

2 = 3n2
c . (83)

This equation has many (presumably infinitely many) integer-
valued solutions. Note that we focus on primitive null vectors,
i.e., such that the components Ma do not have a common
divisor. Obviously, a multiplication of a null vector by any
integer yields again a null vector. We are not interested in such
nonprimitive null vectors since they are always less relevant in
the renormalization-group sense than the corresponding prim-
itive null vectors and the corresponding tunneling processes
have smaller amplitudes.

It is easy to see from Eq. (83) that nc should be an odd
number. Among the multiple competing null vectors, we
consider those with the smallest nc: single-electron tunnel-
ing (nc = 1) to the 1/3 mode and three-electron tunneling
(nc = 3). For the electron tunneling, we find three null
vectors: M1,−1,−1 = (−1, 1, 1, 3)T , M1,−1,1 = (1, 1,−1, 3)T ,
and M1,1,−1 = (1,−1, 1, 3)T . Clearly, they are related by per-
mutation of integer modes, and thus, the localization in any of
these channels will result in the same reduced theory. Using
the formalism presented in Appendix D, we find:

Kred =
(

2 1
1 2

)
, t red =

(
2
2

)
, (84)

which can be interpreted as a bosonic Jain state [52] of charge-
two particles. This state can be constructed by starting from
the fermionic integer quantum Hall state with K = diag(1, 1)
and attaching a flux quantum to each particle.

Note that the reduced theory that resulted from localiza-
tion has a bosonic character: The diagonal elements of the
K matrix and the components of the t vector are even. This
theory does not contain fermionic (electron) excitations: All
integer-charged excitations are bosons with an even charge.

Similarly, we find null vectors involving the tun-
neling of three electrons to the 1/3 mode: M3,1,−5 =
(−1,−1, 5, 9)T , M3,−5,1 = (−1, 5,−1, 9)T , and M3,1,1 =
(5,−1,−1, 9)T . The localization in any of these channels
results in a reduced theory that turns out to be characterized
(in an appropriately chosen basis) by the same (Kred, t red) as
given by Eq. (84).

While the reduced theory contains two modes, they are
copropagating. Thus, the theory becomes fully chiral after
localization so that the conductance of the edge is

G = ν = 8
3 , (85)

independent of any details of the coupling to contacts. Indeed,
we have verified that for any matrix Oϒ describing coupling to
contacts (which in this case can be parameterized by a boost
matrix with three parameters and a rotation matrix with three
parameters), application of Eq. (70) gives G = 8/3 for the
reduced theory, Eq. (84).

In the following subsections, we will consider examples of
four-mode edge junctions for which the two modes remaining
after localization propagate in opposite directions, i.e., Kred
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has the signature (1,−1). We will see that this leads to a still
richer physics. In particular, the value of the conductance G
after localization will depend on which null vector wins the
competition for governing the localization.

C. Interface between ν = 2/5 and ν = 2/9 states

We now consider an edge junction that is formed at the
interface between the ν = 2/5 and ν = 2/9 FQH states; see
the setup in Fig. 4. The 2/5 and 2/9 edges (that we label by A
and B, respectively) are characterized by K matrices

KA =
(

3 2
2 3

)
, KB =

(
5 4
4 5

)
, (86)

both with t = (1, 1)T . Taken separately, each of these edges
consists of two copropagating modes. In view of this, and
since it is assumed that the 2/5 and 2/9 edges are far apart in
the contact regions (see Fig. 4), the conductance is indepen-
dent of the form of coupling of these edges to the contacts.
When the 2/5 and 2/9 edges are fully decoupled (i.e., there
is no junction in the middle region), the two-terminal conduc-
tance is

G = 2
5 + 2

9 = 28
45 . (87)

When a junction is formed in the central region, the
composite four-mode edge is described by KAB = KA ⊕
(−KB) and t = (1, 1, 1, 1)T , with two right-moving and two
left-moving modes. Only electrons, or integer multiple of
electrons, are allowed to tunnel across the vacuum region
between A and B so that allowed vectors M satisfying the
charge neutrality condition have the form

Mnc,nA,nB = KAB(nA, nc − nA,−nB,−nc + nB)T (88)

with three integers (nc, nA, nB). Here nc denotes the charge
that tunnels between A and B, while nA and nB represent the
reshuffling of charge within the edges of A and B, respec-
tively. The null-vector condition MT

nc,nA,nB
K−1

ABMnc,nA,nB = 0
yields the equation

(nA − nB)(nA + nB − nc) = n2
c . (89)

It is easy to see that Eq. (89) possesses infinitely many
primitive solutions and, moreover, that there is at least one
such solution for any even nc. (It is also easy to see that
there are no solutions for odd nc.) Among these multiple com-
peting null vectors, we consider those with the two smallest
numbers of electrons tunneling between A and B: nc = 0
(neutral tunneling) and nc = 2 (two-electron tunneling). For
the neutral tunneling, Eq. (89) has two solutions nA = nB =
1 and nA = −nB = 1. The corresponding two null vectors
M0,1,1 = (1,−1, 1,−1)T and M0,1,−1 = (1,−1,−1, 1)T are
related by a simple permutation of modes within the edge B.
Localization driven by any of them yields the reduced theory

Kred =
(

22 23
23 22

)
, t red =

(
2
2

)
, (90)

which can be viewed as a holelike bosonic Jain state of charge-
two particles. This state can be constructed by starting with a
fermionic theory with K = diag(−1,−1) and adding 23 flux
quanta to each particle.

Similarly to the above case of the 8/3 edge, the localization
thus converts a four-mode fermionic theory into a two-mode
bosonic theory. Evaluating the conductance G according to
Eq. (70), we find

G = 28
45 , (91)

so that the localization in this neutral channel does not affect
the conductance.

We turn now to the case of two-electron tunneling,
nc = 2. Equation (89) yields two primitive solutions (nA =
−1, nB = 1) and (nA = 3, nB = 1), which yield the null vec-
tors M2,−1,1 = (3, 7, 9, 9)T and M2,3,1 = (7, 3, 9, 9)T (related
by a permutation of modes in the 2/5 edge). The localization
due to any of those null vectors results in the same reduced
theory as Eq. (90). At the same time, the conductance takes
on localization a very different value

G = 8
45 . (92)

This analysis of the (2/5, 2/9) junction explicitly shows
that when the reduced theory involves counterpropagating
modes, different localization processes may give rise to dif-
ferent values of G. Remarkably, this happens in the above
example of two localization channels (with nc = 0 and
nc = 2) despite the fact that the resulting reduced theories
(Kred, t red) are equivalent.

D. Interface between spin-polarized and spin-unpolarized
ν = 2/3 states

As another example of localization in a four-mode junc-
tion, we consider an interface between spin-polarized and
spin-unpolarized ν = 2/3 states. This example is inspired by
Refs. [28,53], which considered tunneling contact between
two such states. Our setup, shown in Fig. 4, is, however, in
general different, although a direct relation emerges in the
limit of strong equilibration in the segments LA, LB, RA, and
RB. We will return to this relation at the end of this subsection.

As before, the composite edge in the junction is described
by KAB = KA ⊕ (−KB), with KA and KB representing now
edge theories of ν = 2/3 spin-unpolarized and spin-polarized
states, respectively,

KA =
(

1 2
2 1

)
, KB =

(
1 0
0 −3

)
. (93)

The corresponding t vector is tAB = (1, 1, 1, 1)T . The trans-
port in spin-polarized and spin-unpolarized 2/3 edges sepa-
rately is discussed above in Sec. III C and III D.

Similarly to the example of the interface of (2/5, 2/9)
states in the previous subsection, only electrons, or integer
multiple of electrons, are allowed to tunnel across the vacuum
region between A and B. Thus, allowed vectors M satisfying
the charge-neutrality condition have the same form as (88). At
variance with the previous example, the theories of A and B
edges in the present case are, however, topologically equiv-
alent. Thus, if we allow for localization without any further
restrictions, then all four modes can get localized, leaving an
empty theory with no propagating modes (and, obviously, zero
conductance). We impose such a restriction by assuming spin
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conservation, which implies the following condition on M:

sT K−1
ABMnc,nA,nB = 0, (94)

where s = (1,−1, 1, 1)T is the vector that encodes the spin of
individual edge components similarly to t that encodes their
charge. This form of the spin vector reflects the fact that KA is
written in the basis of spin-up and spin-down modes, while
the edge B is fully spin-polarized. This condition leads to
nA = nc for the neutral vectors (88). The null-vector condition
MT

nc,nA,nB
K−1

ABMnc,nA,nB = 0 further requires

(nB − nc)(nB − 2nc) = 0, (95)

resulting in two competing primitive solutions (nA, nB, nc) =
(2, 1, 1) and (2,2,1), with the null vectors M2,1,1 =
(1, 2, 1, 0)T and M2,2,1 = (1, 2, 2, 3)T .

Localization driven by any of these two competing null
vectors yields the reduced theory

Kred =
(−3 0

0 3

)
, t red =

(
1
1

)
. (96)

Clearly, this theory is, in general, not topologically stable.
However, in the present case, further localization is forbidden
by the spin conservation constraint.

We now calculate the conductance G. For generality, we
assume a certain degree of incoherent equilibration in the
segments LA, LB, RA, and RB. As discussed in Sec. V C, we
incorporate it by using the general contact boundary condi-
tions; see Appendix A. The matrix U = OϒMK that enters the
boundary conditions and the final result for the conductance
then has the form

Oϒ =
(

cosh θu sinh θu

sinh θu cosh θu

)
⊕
(

cosh θp sinh θp

sinh θp cosh θp

)
,

MK =
⎛
⎝
√

3
2

√
3
2

−
√

1
2

√
1
2

⎞
⎠⊕

(
1 0
0

√
3

)
, (97)

parameterized by two real numbers, θu and θp. Evaluation of
the conductance G by using Eq. (70) yields

G = 2

3

1 + 2 cosh[2(θu + θp)] − √
3 sinh[2(θu + θp)]

2 cosh(2θu) + cosh(2θp) − √
3 sinh(2θu)

. (98)

The parameter θu, which characterizes the spin-unpolarized
edge, depends on the asymmetry of mode coupling and on
the degree of incoherent equilibration, see Appendix A. The
parameter θp that refers to the spin-polarized edge is zero
in the absence of inelastic equilibration (since the matrix ϒ ,
in this case, commutes with KB, see Sec. III C) but becomes
nonzero if equilibration is included. We now analyze various
limiting cases of the result for G.

First, we consider the case of no incoherent equilibration in
the spin-polarized edge modes (i.e., in the segments LB and
RB). Then θp = 0, as we have just pointed out. This yields the
conductance

G = 2
3 , (99)

regardless of the value of θu, i.e., independently of the
asymmetry of contact couplings of the modes of the spin-
unpolarized edge A and of the degree of equilibration in

the segments LA and LB. Interestingly, localization restores
universality in this regime: In the absence of localization,
the conductance of the spin-unpolarized edge B (and thus of
the whole system) was dependent on θu, see Sec. III D and
Appendix A.

Second, we consider the case when both spin-polarized
and spin-unpolarized edge modes (segments LA, LB, RA,
and RB) are fully equilibrated. As discussed in Sec. V C,
the effect of equilibration can be mimicked by including the
intermode equilibration γab into the ϒ matrix; see Appendix A
for details. To describe the fully equilibrated case, we take the
limit γab 
 �a in the ϒ matrix (A3), which leads to θu = 0
and θp = 1

2 log(2 + √
3). Inserting those values in Eq. (98),

we obtain

G = 1
3 . (100)

We remind that, in the absence of coupling between the edges
A and B, the conductance of the combined system in this
equilibrated limit was G = 2/3 + 2/3 = 4/3. Interestingly,
the spin-conserving localization reduces it down to 1/3.

We comment now on a relation between the result (100)
and that of Ref. [53]. In the paper, the tunneling transport
between the spin-polarized and spin-unpolarized 2/3 systems
was considered, which corresponds to applying a bias between
systems A and B, i.e., between top and bottom in our Fig. 4. In
general, this is essentially different from our setup, where the
bias is applied between left and right since this corresponds to
different conductances of a device with four terminals. How-
ever, the situation simplifies in the limit of strong equilibration
in the segments LA, LB, RA, and RB, which implies only
“downstream” transport in these segments. It is not difficult to
see that the top-to-bottom conductance GAB is then given by
GAB = (G0 − G)/2, where G0 = 4/3 is the value of conduc-
tance in the absence of coupling between the edges A and B.
Substituting the result (100), we obtain GAB = 1/2, which is
the value that was found in Ref. [53]. It is worth reiterating
that we obtained this result under the conditions that (i) the
transport in the junction is coherent, with the junction length
being larger than the localization length, and (ii) the transport
in the remaining segments of the edges (bridging the junction
with the contacts) is incoherent.

An alternative scenario of localization in a junction of two
2/3 edges may be realized at an interface of two ν = 2/3
FQH states with opposite spin polarizations, where neutral
tunneling across the interface is allowed and may lead to su-
perconductivity of neutral modes [54]. Results for the reduced
theories and conductances that emerge out of this type of
localization will be published elsewhere [55].

VII. SUMMARY AND OUTLOOK

To summarize, we have investigated the impact of local-
ization on the electrical conductance through FQH edges.
We have derived a reduced edge theory involving only the
remaining modes (i.e., those that do not participate in the
localization process) and have determined a general formula
for the conductance. We have further shown how this general
analysis and the resulting formula for the conductance can be
applied to setups involving junctions of FQH edges, with the
localization taking place in the junction. Such setups may be
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fully coherent or else, with incoherent equilibration occurring
in edge segments bridging the junction to contacts. We have
demonstrated the application of our formalism to a number
of examples of FQH edges and edge junctions that undergo
localization.

The general framework developed in this paper is di-
rectly applicable to a variety of novel experimentally relevant
structures involving engineered complex FQH edges. These
include, in particular, structures with multiple subbands as
well as interfaces or different FQH states. The localization in
complex FQH edges and edge junctions is one of the most
remarkable hallmarks of the coherent transport in these de-
vices. Experimental studies of coherent transport in the FQH
regime are a subject of major interest currently. We hope that
the theoretical framework developed in our work will provide
a further boost to experimental activities in the field, including
the fabrication of novel FQH devices and investigations of
their transport properties.

While the present paper focuses on Abelian edges, our
analysis can also be extended to non-Abelian edges with
Majorana modes. We briefly outline in Appendix F how the
presence of Majorana modes may make a FQH edge topo-
logically unstable, thus making it prone to localization. We
leave a detailed analysis of transport in non-Abelian edges
with localization to future work.
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APPENDIX A: CONTACTS WITH INTERMODE
EQUILIBRATION

In Sec. III, we considered an idealized contact by keeping
only processes of tunneling between the contact and d edge
modes. This yielded a tunneling matrix ϒ that is diagonal in
a certain basis than can be obtained by an SL(d,Z) transfor-
mation. The corresponding assumption was that the contact
is strongly coupled to the edge so that the tunneling rates
between the modes and the contact are much larger than
the tunneling rates between the modes so that the intermode
equilibration can be discarded. Following Refs. [19,45], we
consider a more general situation by retaining also the inter-
mode equilibration in the contact region.

As in Sec. III A, we assume that d modes of the edge
equilibrate with the contact (that has a chemical potential μ)
with charge tunneling rates �a > 0, see Eq. (14). In addition,
we assume that the edge modes equilibrate among themselves
with charge tunneling rates γab = γba > 0. Equation (14) is
then modified to

∂xIa = − 1

2π

�a

ta
(μa − taμ) − 1

2π

∑
b

γab
(
t−1
a μatb − μb

)
.

(A1)

We offset chemical potentials and currents to absorb the con-
stant term, �μa = μa − taμ and �Ia = Ia − μ

2π

∑
b K−1

ab tb,

which yields

∂x�Ia = − 1

2π

�a

ta
�μa − 1

2π

∑
b

γab
(
t−1
a �μatb − �μb

)
.

(A2)

Further, we define a symmetric matrix

ϒab = δab

(
�a

ta
+
∑

c

t−1
a γactc

)
− γab, (A3)

so that Eq. (A2) becomes

∂x�Ia = − 1

2π

∑
b

ϒab�μb = −
∑
b,c

ϒabKbc�Ic, (A4)

where we used the relation (21) between the currents and the
chemical potentials.

Equation (A4) has the same form as Eq. (16) with the only
difference in the form of matrix ϒ . The subsequent derivation
of the boundary condition proceeds as in Sec. III A, and the
calculation of the conductance as in Sec. III B, with the result
Eq. (28). The details of the contact are incorporated in the
matrix U , more specifically in Oϒ .

As an example, we consider the edge of a spin-unpolarized
ν = 2

3 state, described by (K, t ) given by Eq. (36). The
conductance of such edge in the absence of equilibration
between the spin-up and spin-down modes in the contact
was calculated in Sec. III D; now we include the intermode
equilibration.

The equilibration matrix (A3) reads

ϒ =
(

�1 + γ12 −γ12

−γ12 �2 + γ12

)
. (A5)

The MK and Oϒ matrices that diagonalize the equilibration
equations are now given by

MK =
⎛
⎝
√

3
2

√
3
2

−
√

1
2

√
1
2

⎞
⎠, Oϒ =

(
cosh θ sinh θ

sinh θ cosh θ

)
, (A6)

where

θ = 1

4
log

2 − α
√

3 + β

2 + α
√

3 + β
(A7)

and we parametrized the matrix ϒ as follows: �1 = (1 − α)�,
�2 = (1 + α)�, and γ12 = β�. The two-terminal conduc-
tance evaluates to

G = 2(2 + β )

3
√

(2 + β )2 − 3α2
. (A8)

In the absence of intermode equilibration, β = 0, this repro-
duces Eq. (39). For a very strong intermode equilibration
β → ∞, Eq. (A8) yields G → 2/3, in correspondence with
the general result G → ν in the case of strong incoherent
equilibration in the edge, see Sec. IV.

Returning to contacts without intermode equilibration, it
is worth recalling that Eq. (16) was written in a preferential
basis of modes coupled to the contact so that the matrix
ϒ is diagonal. One can, of course, perform a transforma-
tion to another basis by a matrix W ∈ SL(d,Z). Under this
transformation, the matrix ϒ will be transformed as ϒ →
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ϒ̃ = W −1K (W T )−1 and will in general become off-diagonal.
Equation (16) will retain its form in the new basis, with the
transformed ϒ̃ , K̃ and Ĩ . Clearly, the result for the conduc-
tance G does not depend on the basis in which it is evaluated.

APPENDIX B: SIGNATURE OF T K

In this Appendix, we prove the statement about the spec-
trum of the matrix T K for different filling factors ν = tK−1t .
The signature of T K is

sgn(T K ) =

⎧⎪⎨
⎪⎩

(nR − 1, 1, nL ), for ν > 0

(nR − 1, 2, nL − 1), for ν = 0

(nR , 1, nL − 1), for ν < 0,

, (B1)

where (p, m, q) are numbers of positive, zero, and negative
eigenvalues, respectively. This statement played an important
role in the analysis of transport in the presence of incoherent
equilibration in Sec. IV. We have proven this statement at the
end of Sec. IV; here we provide an alternative proof based
on Sylvester’s inertia law. We also perform a related analysis
of properties of eigenvectors of T K , which will be used in
Appendix C.

Throughout, we assume that (i) K is not degenerate (in the
sense that det K 	= 0) since it describes a topological order;
(ii) T is symmetric, positive-semi-definite with a single zero
eigenvalue. A zero eigenvalue of T is a direct consequence of
charge conservation since T t = 0. We assume that no other
conserved quantities exist, implying that there is a single zero
eigenvalue.

We begin by considering the case ν 	= 0 when T K is di-
agonalizable. (The special case ν = 0 will be analyzed in the
end.) First, we prove Eq. (B1) for ν > 0, the ν < 0 case is
then immediately obtained by a substitution K → −K , which
implies nR ↔ nL.

From the charge conservation condition, tTT = 0, we
identify the right eigenvector v0 = K−1t and the left eigenvec-
tor uT

0 = tT /ν of T K corresponding to the zero eigenvalue.
Here the 1/ν factor in u0 is introduced to ensure the nor-
malization condition uT

0 v0 = 1. Then, the diagonalization
equation is written as

P−1(T K )P =
(

0 0
0 Dn

)
, (B2)

where P is a matrix with columns given by the right eigenvec-
tors v j of T K and P−1 is a matrix with the rows given by the
left eigenvectors uT

j of T K , with uT
j ∝ sgn(τ̃ j )vT

j K and the
normalization is chosen such that uT

i v j = δi j . Further, Dn is
a diagonal matrix of dimension d − 1. Physically, v0 and u0

represent the charge mode that is uniquely determined by the
charge conservation and satisfies

vT
0 Kv0 = ν, uT

j T u0 = 0. (B3)

The remaining eigenvectors, v j and u j with j 	= 0, represent
neutral modes that satisfy the charge neutrality conditions

tT v j = 0 → vT
j Kv0 = 0. (B4)

The left-hand side of Eq. (B2) can be written as a product
of two matrices T̃ and K̃ that are related to T and K by

transformations characteristic for quadratic forms:

P−1(T K )P = [P−1T (P−1)T ][PT KP] ≡ T̃ K̃, (B5)

From the properties (B3) and (B4), we find that T̃ and K̃ have
a block diagonal form, with the zero-mode decoupling from
the rest:

T̃ =
(

0 0
0 Tn

)
, K̃ =

(
ν 0
0 Kn

)
. (B6)

According to Sylvester’s inertia law, the signature of T̃ and
K̃ is fully inherited from T and K . Thus, Tn has to be
positive-definite, and Kn has nR − 1 positive eigenvalues and
nL negative eigenvalues (under our assumption that ν > 0).
Since Tn is positive-definite, this holds also for Dn = TnKn.
Therefore, D and hence T K has one zero, nR − 1 positive,
and nL negative eigenvalues, which completes the proof.

We now show that the eigenvectors v j have properties
reminiscent of special relativity if one views K as a metric
defining the scalar product by vT Kv. In this language, the
signature of K determines the number of spacelike (right-
moving) and timelike (left-moving) directions. We now prove
that the eigenmodes v j of T K can be normalized to obey

vT
i Kv j = 0, for i 	= j,

vT
i Kv j = δi j, for i, j � nR,

vT
i Kv j = −δi j, for i, j > nR, (B7)

where the sign is dictated by the sign of the eigenvalues τ̃ j

of T K . Specifically, we now order the eigenvectors v j as in
Sec. IV, such that τ̃ j > 0 for j = 1, . . . nR − 1, the zero mode
corresponds to j = nR, and τ̃ j < 0 for j = nR − 1, . . . , d . For
any pair of indices i and j, we have

vT
i KT Kv j = τ̃iv

T
i Kv j = τ̃ jv

T
i Kv j, (B8)

For i 	= j, and thus τ̃i 	= τ̃ j , this implies orthogonality of
modes in the sense that vT

i Kv j = 0. Further, using Eq. (B8)
for i = j 	= nR, we get

0 < vT
j KT Kv j = τ̃ j

[
vT

j Kv j
]
, (B9)

where we used the positive-definiteness uTT u � 0 for u =
Kv j . For the not normalized zero mode ṽnR ≡ K−1t , we have
ṽT

nR
K ṽnR = ν > 0. This shows that the eigenvectors v j can

indeed be normalized to obey Eq. (B7).
We now consider a special case ν = tT K−1t = 0 and prove

that T K has a two-dimensional Jordan block corresponding to
a zero eigenvalue. The eigenvector vnR = K−1t corresponds to
zero eigenvalue of T K . We now find u such that T Ku = vnR .
(Notice, that if ν 	= 0, then multiplying by tT we would arrive
at contraction 0 = tTT Ku = tvnR = ν.) From (ii), it follows
that eigenvectors r j of T form a complete basis. We choose
r0 = t corresponding to a single zero eigenvalue α0 = 0. We
can expand

u = a0K−1t +
d−1∑
j=1

a jK
−1r j, (B10)
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since K is not degenerate under assumption (i). We now act
with T K on the expansion and find

T Ku =
d−1∑
j=1

a jα jr j = vnR = K−1t . (B11)

The vector K−1t can always be expanded in the complete
basis r j . However, only for ν = 0, the coefficient of r0 ≡ t
is zero and Eq. (B11) have the solution a j>0 = α−1

j rT
j K−1t .

Finally, we verify that the Jordan block is two dimensional.
Let us assume that there is a solution w such that T Kw = u.
Multiplying both sides by tT ,

0 = tTT Kw = tT u =
∑
j=1

a2
jα j > 0, (B12)

we arrive at a contradiction, which proves that {u, vnR} form a
Jordan chain of length two. This concludes our proof that the
signature of T K is given by Eq.(B1).

APPENDIX C: “RELATIVISTIC” PROOF FOR THE
EQUILIBRATED VALUE OF INCOHERENT

CONDUCTANCE

In Sec. IV, we showed that, in the equilibrated regime, the
current is given by Eq. (47) so that the two-terminal conduc-
tance is given by Eq. (49). This was based on the fact that the
equation (46) has only the trivial solution Aj�nR = [χLCL] j =
0. (Here we use the definition AnR ≡ (μeq − μL )/2π , which
is shifted by a constant from that in the main text.) In this
Appendix, we provide a rigorous proof of this result.

The proof uses the idea reminiscent of the special-relativity
theory. As noted in Appendix B, the K matrix can be thought
of as a metric of the space with nR spacelike and nL timelike
directions, respectively. We recall that K matrix can be diago-
nalized as K = MT

K MK , see Sec. III A. Multiplying Eq. (46)
with U = OϒMK , we obtain

OϒV R ≡ Oϒ

⎡
⎣∑

j�nR

A jw j

⎤
⎦ = χLCL ≡ V L, (C1)

where w j = MKv j , and we introduced the notation V L for the
right-hand side and V R for the sum in square brackets on the
left-hand side. It is easy to see that w j are the eigenvectors of
the matrix T ′ with eigenvalues τ̃ j , where T ′ = MKT MT

K is
a symmetric matrix.

When written in terms of w j , equations (B7) read

wT
i w j = 0, for i 	= j,

wT
i w j = δi j, for i, j � nR,

wT
i w j = −δi j, for i, j > nR. (C2)

Therefore, VR in Eq. (C1) satisfies V T
RV R � 0, i.e., it is a

“spacelike” vector. On the other hand, by construction, V L is
a “timelike” vector, i.e., V T

L V L � 0.
The boost Oϒ ∈ SO(nR, nL ) cannot transform the spacelike

vector V R into a timelike V L since

V T
R OT

ϒOϒV R = V T
RV R � 0. (C3)

FIG. 5. Lattice (N1,N2) for the ν = 2/3 spin-unpolarized state

given by K = (1 2
2 1) and t = (1

1). The quasiparticle spectrum is fully

characterized by a lattice consisting of blue and red dots; ê1 and ê2

are two basis vectors for this lattice. On the other hand, a sublattice
(consisting of only blue dots) represents electron excitations spanned
by K ê1 and K ê2. The unit cell of the electron sublattice depicted as
the black dashed parallelogram includes three lattice points, reflect-
ing the fact that an elementary electron excitation is made out of three
quasiparticles.

Thus, the only solution of Eq. (C1) is trivial, V L = 0 and
V R = 0. Finally, since the eigenvectors w j are linearly in-
dependent, the only solution to V R = 0 is Aj�nR = 0, which
completes the proof. In particular, AnR = 0 implies that the
chemical potential of the middle region μeq is given by the
chemical potential of the upstream-side contact, μeq = μL.

APPENDIX D: REDUCED THEORY AFTER
LOCALIZATION

In this Appendix, we provide a general framework for
determining the reduced theory (Kred, t red) of an edge that
undergoes localization transition, Sec. V A.

We begin with the effective edge theory of d = dim(K )
bosonic modes, described by the action

S0 = 1

4π

∫
dtdx

d∑
a,b=1

∂xφa(Kab∂tφb − Vab∂xφb), (D1)

with an integer-valued symmetric matrix K and a positive-
definite matrix V . We first introduce the particle density of
the modes, given by ρa = ∂xφa/(2π ). On the canonical quan-
tization, φa and ρa obey the commutation relations

[ρa(x), φb(x′)] = i(K−1)abδ(x − x′). (D2)

From those commutation relations, one identifies d electron
operators ψel

a (x) ∼ eiKabφb(x) and d elementary quasiparticle
operators with charge Qa = ∑

b(K−1)ab, ψ
qp
a ∼ eiφa (x). For a

closed edge with length L, we introduce the integer-valued
total charge operator N̂a for type-a quasiparticles, given by

N̂a ≡
∫ L

0
dxKabρb(x) = 1

2π
Kab[φb(L) − φb(0)]. (D3)

A set of the eigenvalues na of N̂a forms a d-dimensional
lattice  = {naea|na ∈ Z} [56]. An example of the lat-
tice is shown in Fig. 5 for the ν = 2/3 spin-unpolarized
state. The lattice fully characterizes all possible quasiparticle
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excitations

Vm(x) ∼ eimaφa(x), (D4)

which connects two lattice points separated by vector m.
The lattice is spanned by the standard unit vectors êa =
(0, . . . , 1, . . . , 0) with 1 for ath component and 0 otherwise.
Crucially, a set of different basis vectors ẽa = Wabêb yields
exactly the same lattice provided that the transformation
W belongs to SL(d,Z). Thus, the quasiparticle spectrum is
invariant under this SL(d,Z) transformation. Furthermore,
invariance of the first (topological) term of the action (D1)
under the SL(d,Z) transformation implies that the K matrix
in the new basis satisfies

(K̃−1)ab = (K−1)μν ẽμ
a ẽν

b ≡ ẽa · ẽb. (D5)

Here we have introduced a compact notation of a dot product,

m1 · m2 = mT
1 K−1m2, (D6)

with the K−1 matrix playing the role of a metric tensor.
Equivalently, this SL(d,Z) basis change leads to the trans-

formation of K matrix and t vector as K → W T KW and t →
W T t . Thus, two phases, characterized by (K, t ) and (K̃, t̃ ),
respectively, are topologically equivalent if one finds a W ma-
trix, W ∈ SL(d,Z), to satisfy K = W T K̃W and t = W T t̃ [12].
Comparison with the relation (D5) results in ẽμ

a = (W −1)aμ.
The edge may experience a localization transition by the

tunneling processes between edge modes, given by

Stun = −
∫

dtdx ξ (x) exp

[
i
∑

a

Maφa

]
+ H.c., (D7)

if integers Ma satisfy two conditions, (i) the charge neutrality
condition ta(K−1)abMb = 0 and (ii) the null-vector condition
Ma(K−1)abMb = 0 [38]. Equivalently, these conditions can be
written as (i) t · M = 0 and (ii) M · M = 0 by using the dot
product of two vectors defined in Eq. (D6). When the tunnel-
ing term (D7) is relevant in the renormalization group sense,
the mode

∑
a Maφa is pinned to a minimum of the action (D7)

so that it becomes massive and thus does not contribute to the
low-energy transport.

What determines the topological properties of the reduced
theory after the localization transition? The remaining modes∑

a vaφa should not be disturbed by the tunneling processes,
which means that they obey the following commutation rela-
tion: [∑

a

vaφa(x), ei
∑

b Mbφb(x′ )

]
= 0. (D8)

This implies that

va(K−1)abMb ≡ v · M = 0. (D9)

Note that the null vector M also satisfies this condition, in
view of M · M = 0. We, therefore, should subtract the sub-
space spanned by M to find the space ′ on which the
remaining propagating modes v reside. Therefore, the space
′ forms a d − 2-dimensional lattice

′ = 1/2, (D10)

where

1 = {v = vaea|va ∈ Z and v · M = 0}, (D11)

2 = {nM|n ∈ Z}, (D12)

cf. Ref. [51]. We now find a set of d − 2 basis vectors ered
a

to span the lattice ′, with an integer index a running over
1 � a � d − 2. From the obtained ered

a , we determine the K
matrix, Kred, for the reduced parts by using the covariant
formula (D5):

ered
a · ered

b = (
ered

a

)μ
(K−1)μν

(
ered

b

)ν = (
K−1

red

)
ab, (D13)

with 1 � a, b � d − 2. Note that Kred has rank d − 2. Further,
we determine the t vector t red of the reduced theory by using
the fact that the charge for excitations should be invariant un-
der a basis change. In particular, for the elementary excitation
ered

a , the corresponding charge Qa takes the form

Qa = ered
a · t = ered

a K−1t = (
K−1

red t red
)

a, (D14)

from which we find

t red = Kred(WredK−1t ), (D15)

with (d − 2) × d matrix Wred = (ered
1 , ...ered

d−2)T , d-
dimensional matrix K , and (d−2)-dimensional matrix Kred.
The original t vector can be decomposed into two parts,

t =
d−2∑
a=1

t a
redered

a + tlocM, (D16)

with the charge tloc of the localized modes.
To illustrate the above procedure for determining Kred and

t red, we consider a simple example of ν = 9/5 discussed ear-
lier in Refs. [39,40]. The K matrix and t vector for this edge
(before localization) are given by

K =
⎛
⎝1 0 0

0 1 0
0 0 −5

⎞
⎠, t =

⎛
⎝1

1
1

⎞
⎠. (D17)

The null vector is M = (1,−2,−5)T . (There is a second
null vector obtained by permuting the first two components,
with identical properties.) The original edge theory has three
modes, and hence the associate lattice is ∼ Z3. We next find
v vectors to satisfy the relation (D9), which span a lattice
1 ∼ Z2. This Z2 lattice is graphically shown in Fig. 6. As
discussed above, this Z2 lattice includes the M vector and
its multiples. To exclude those vectors from this lattice and
thus to find the sublattice space (here, the ∼ Z lattice) for
the remaining modes, we identify cosets v1 = {v + nM|n ∈
Z} that can be graphically understood by the vertical lines
of Fig. 6. Then, the remaining task is to find a set of unit
vectors ered

a (in this example, only one vector) that span the
resulting coset space. In general, it is a nontrivial task, but we
found an efficient numerical method to do this. Specifically,
we explicitly evaluate Kred for candidate basis vectors ered

a
by using the formula (D13). Since K can be always written
in a form of Eq. (55), W T KW = Kred ⊕ q1σz ⊕ · · · ⊕ qmσz,
|Det[K]| should be identical to |Det[Kred]|∏1� j�m q2

j for odd
integers q j . If candidate basis vectors do not span the 1/2

lattice, then the corresponding Kred is not an integer-valued
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FIG. 6. Geographic understanding of basis vectors after a lo-
calization transition by the null vector M = (1, −2, −5)T for the
ν = 9/5 state. Vectors v to satisfy M · v = 0 form the lattice 1 =
Z2. Then the cosets v1 = {v + nM|n ∈ Z} depicted by the red
circles form a sublattice ⊂ 1. Basis vector ered

1 of the sublattice
determines the topological properties of the remaining modes after
a localization.

matrix or |Det[Kred]|∏1� j�m q2
j 	= |Det[K]|. In the present

example, we find ered
1 = (0, 1, 2)T (up to addition of multiples

of M). By using the formula (D13) and (D14), we obtain
Kred = 5 and tred = 3. The W matrix can be determined in such
a way that Eq. (55) is satisfied. In the example of ν = 9/5, we
obtain the W matrix given by Eq. (77).

APPENDIX E: CONDUCTANCE OF AN EDGE WITH
LOCALIZATION

In this Appendix, we derive the general conductance for-
mula Eq. (70) of an edge where localization takes place; see
Fig. 3 for a schematic setup. We further show that the two-
terminal conductance simply becomes G = ν in the case when
all modes of the reduced theory (after localization) propagate
in the same direction.

We begin with Eqs. (66) supplemented by constraints (67)
and (68) from the localization conditions and the continuity
of the currents for nonlocalized modes, respectively. Plugging
Eqs. (67) and (68) into Eqs. (66), we arrive at a set of d =
nL + nR independent equations

μLχRUK−1t = χRUK−1

(
d−2m∑
a=1

μa
redered

a +
m∑

j=1

μL
j M j

)
,

(E1)

μRχLUK−1t = χLUK−1

(
d−2m∑
a=1

μa
redered

a +
m∑

j=1

μR
j M j

)
,

(E2)

with d unknown variables (μa
red for 1 � a � d − 2m and μs

j
for s = L, R and 1 � j � m). The addition of Eqs. (E1) and
(E2) leads to

1

2
[(μL + μR) + (μL − μR)]UK−1t

=
d−2m∑
a=1

μa
redUK−1ered

a

+ 1

2

m∑
j=1

[(
μL

j + μR
j

)+ (
μL

j − μR
j

)

]
UK−1M j, (E3)

with χR,L = (1 ± )/2. By using the representation (55) of
the t vector and the form (56) of the W −1 matrix, we obtain

t =
d−2m∑
a=1

ered
a ta

red +
m∑

j=1

t loc
j M j . (E4)

Inserting this into Eq. (E3) yields

d−2m∑
a=1

[
t a
red((μL + μR) + (μL − μR)) − 2μa

red

]
UK−1ered

a

=
m∑

j=1

[(
μL

j + μR
j

)+ (
μL

j − μR
j

)
 − t loc

j ((μL + μR)

+(μL − μR))
]
UK−1M j . (E5)

We now multiply Eq. (E5) on the left with t red
b (ered

b )T U −1 (no
summation over b) with b = 1, . . . , d − 2m, which results in
the following d − 2m equations:

(μL − μR)
d−2m∑
a=1

t b
red

(
ered

b

)T
Xered

a ta
red

+
m∑

j=1

[
(μL − μR)t loc

j − (
μL

j − μR
j

)]
t b
red

(
ered

b

)T
XM j

= 2t b
red

(
K−1

red μred

)
b − t b

red

(
K−1

red t red
)

b(μL + μR). (E6)

Here we have used the fact that basis vectors ea
red of the

reduced theory satisfy (ea
red)T K−1M j = 0, see Eq. (D9), and

introduced a matrix X ≡ U −1UK−1 = (U T U )−1. Further-
more, by acting with MT

j′U
−1 on Eq. (E5) instead, we obtain

additional m equations

(μL − μR)
d−2m∑
a=1

MT
j′Xered

a t red
a

=
m∑

j=1

[(
μL

j − μR
j

)− (μL − μR)t loc
j

]
MT

j′XM j, (E7)

with 1 � j′ � m. We have used here the null-vector condition
on M j , Eq. (54), as well as (D9). Collecting Eqs. (E6) with
(E7), we find d − m equations that can be presented in the
form

F p = q, F =
(

A B
BT C

)
, (E8)
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where F is (d − m) × (d − m) block matrix consisting
of (d − 2m) × (d − 2m) matrix A, (d − 2m) × m ma-
trix B, and m × m matrix C, with matrix elements
Aab = t red

a t red
b (ered

a )T Xered
b , Ba j = t red

a (ered
a )T XM j , and Cjk =

MT
j XMk . The (d − m)-component vectors p and q are decom-

posed into two parts, the reduced part and the localized part,
as

p = pred ⊕ ploc, q = qred ⊕ qloc, (E9)

with the components

pa
red = (μL − μR), pj

loc = t loc
j (μL − μR) − (

μL
j − μR

j

)
,

qa
red = 2t a

red

(
K−1

red μred

)
a − t a

red

(
K−1

red t red
)

a(μL + μR),

q j
loc = 0. (E10)

Applying the inverse of F on Eq. (E8), we find

pa
red =

d−2m∑
b=1

(F−1)abqb
red =

d−2m∑
b=1

(A − BC−1BT )−1
ab qb

red, (E11)

and hence

qred = (A − BC−1BT )pred, (E12)

from which we finally arrive at

tT
redK−1

red μred=
ν

2
(μL + μR) + μL − μR

2

d−2m∑
a,b=1

(A − BC−1BT )ab.

(E13)

From Eq. (64), the total charge current reads

Jtot = tT I = 1

2π
tT K−1μ

L/R
Con

=
[

d−2m∑
a=1

(
ered

a

)T
ta
red +

m∑
j=1

t loc
j MT

j

]
K−1

×
[ d−2m∑

a=1

ered
a μa

red +
m∑

j=1

μ
L/R
j M j

]

= 1

2π
tT

redK−1
red μred. (E14)

We have used the decomposition of t vector (E4), and the
decomposition of chemical potentials (67) in the third equality
of Eq. (E14), as well as the null-vector conditions Eqs. (54)
and (D9) in the fourth equality. By inserting Eq. (E13) and
using the definition of matrices A, B,C, we arrive at Eqs. (69)
and (70).

We now solve Eq. (E1) in a special case, i.e., the maximally
localized case with m = min(nR, nL ) where the modes, which
remain conducting after localization, propagate in the same
direction. In this case, Kred becomes positive-definite. For
definiteness, we assume that nR > nL and thus the remaining
modes flow left to right, which also means that ν > 0. Apply-
ing U to the first line of Eq. (65), we obtain

V L ≡ χLCL = U

[
K−1

2π

(
μL

Con − μLt
)] ≡ UV R. (E15)

We use now the same “relativistic” idea as in Appendix C.
Crucially, V L is a left-moving (timelike) vector with

V T
L V L � 0. (E16)

On the other hand, in view of V L = UV R ≡ OϒMKV R, we
find

V T
L V L = V T

R MT
K OT

ϒOϒMKV R = V T
R KV R

= 1

(2π )2

(
μL

Con − μLt
)T

K−1
(
μL

Con − μLt
)

= 1

(2π )2
(μLt red − μred)T K−1

red (μLt red − μred)

� 0, (E17)

with a positive-definite matrix Kred. We have used Oϒ ∈
SO(nL, nR) and K = MT

K MK in the second equality of
Eq. (E17), as well as Eqs. (55) and (67) in the fourth equality.
The inequalities (E16) and (E17) imply that V L = 0, and
Eq. (E15) gives then V R = 0. This leads to

μa
red = μLta

red, μs
j = μLt loc

j . (E18)

Therefore, the total charge current Jtot = tT I reads

Jtot = μL

2π
tT

redK−1
red t red = νμL

2π
, (E19)

resulting in the two-terminal conductance G = ν. This shows
that G becomes universal (in particular, does not depend on
details of coupling to contacts) in this class of theories with
localization. This universality of G was illustrated on exam-
ples of the ν = 9/5 and ν = 8/3 edges in Sec. VI A and VI B,
respectively.

APPENDIX F: TOPOLOGICAL INSTABILITY WITH
MAJORANA MODES

In this Appendix, we outline how the presence of Majorana
modes can make an FQH edge topologically unstable and thus
drive the localization transition.

In many non-Abelian cases, in addition to the boson
modes, the edge contains an odd number of chiral Majorana
modes. They can be described by the action

SM = i
|�|∑

k=1

∫
dtdx γk[∂t − sgn(�)vk∂x]γk, (F1)

where depending on the sign of �, Majorana modes move
to the right or left. The particularly well-known non-Abelian
state with Majorana modes on edges is the ν = 5/2 state; see
the candidate topological orders of the ν = 5/2 [57–60] and
also Refs. [61–69] for discussion on the thermal conductance
and other transport signatures of those candidate edge states.
Aside from the ν = 5/2, other non-Abelian states involving
Majorana edge modes have been proposed, such as, e.g.,
Bonderson-Slingerland state in Ref. [70].

The Majorana modes do not carry charge. In the absence of
localization or equilibration, each Majorana mode gives only a
contribution 1/2 to the central charge (and thus to the dimen-
sionless thermal conductance), without affecting the electric
conductance. Nevertheless, Majorana modes can be respon-
sible for topological instability, leading to the localization
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of counterpropagating modes. Remarkably, in certain cases,
the Majorana-assisted localization can change the charge con-
ductance. In particular, that was leveraged in a proposal of
Ref. [71] for an approach of experimentally determining the
topological order of the ν = 5

2 .
We consider only the cases of � = ±1, since two co-

propagating Majoranas γ1,2 can always be written as a
single complex fermions ψ = γ1 + iγ2 and further bosonized
ψ ∼ eiφ . Thus, an edge with [K0, t0] and � = ±(2m +
1) Majoranas can be equivalently represented as an edge
with [K = diag(K0,±1m), t = (t0, 0, . . . , 0)] and � = ±1
Majorana.

The property of bosonizing two Majoranas can be ex-
ploited to assess the topological stability analogously to the
Abelian case. Consider an edge described by (K0, t ) and � =
±1 Majorana mode γ . We assume that [K0, t0] is topologi-

cally stable without Majoranas. Then, we add a pair of two
counterpropagating Majorana modes ηR and ηL and bosonize
γ with one of them. Thus, the edge is now given by [K =
diag(K0,±1), t = (t0, 0)] and � = ∓1 remaining η Majorana
mode.

If the resulting [K, t] theory is unstable according to the
criteria of stability of an Abelian theory (see Sec. II E), then
the localization will become operative, reducing the number
of modes by two: dim(Kred) = dim(K ) − 2. Then, the full
reduced theory (including the remaining Majorana mode) is
given by [Kred, t red] and � = ∓1 Majorana mode. Notice that
in this case, the right- and left-moving central charges (i.e.,
the number of left- and right-moving modes, with Majorana
counted as one-half) are reduced by 1/2, which is precisely
what is expected after the localization of a pair of Majorana
modes.
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