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Magneto-optical Hall response in generic Weyl semimetals
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Weyl semimetals are predicted to host signature magneto-optical properties sourced by their peculiar Landau-
level structure, including the chiral level. Analytical studies are often leaving out the Hall component of the
conductivity due to its complicated nature, and even though the chiral anomaly requires Weyl nodes to come in
charge-conjugate pairs, toy models hosting only one node are considered almost exclusively; numerical studies
including several Weyl nodes are, on the other hand, often limited to high-field quantum limits or dc studies.
Here, we present a twofold purpose study, where we (a) analytically derive a closed-form expression also
for the Hall conductivity of a generic Weyl semimetal using linear response theory and (b) apply this general
framework to evaluate the transverse conductivity components for Weyl systems with two nodes. We study how
various model parameters, including the tilt, momentum separation, and energy location of the nodes, as well
as the chemical potential, affect the magneto-optical conductivity, and complement these studies by deriving an
analytical expression for the dc Hall conductivity, which is also evaluated in various systems. Including a chiral
pair of nodes results in two important differences compared to earlier studies: the contribution from the chiral
level is equal in size but opposite at the two nodes, making the net contribution disappear, and the energy scales
at which intraband transitions occur is smeared out and approaches that of interband transitions, strengthening
the hypothesis that intraband transitions mask signature optical features in materials. This general formalism can
be applied to a large family of generic Weyl semimetals, and comprise an important piece towards unravelling
the source of the mismatch between theoretical predictions and experimental observations in candidate materials.
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I. INTRODUCTION

Topological phases of matter have been extensively studied
both from a theoretical and experimental perspective since the
observation of the quantum Hall effect in the 1980s [1]. This
has resulted in the tenfold way classification [2], a thorough
framework for understanding gapped topological insulators
[3] and superconductors [4] as well as gapless systems as
the semimetallic state of graphene in two dimensions [5] and
Weyl semimetals in three dimensions [6]. Apart from proving
fruitful within condensed matter physics, these studies have
profound consequences in other areas of physics, where one
paramount example is the realization of Weyl fermions as
quasiparticle excitations in the vicinity of the pointlike band
intersections in Weyl semimetals [7–9]; these elusive particles
were originally theoretically predicted by Hermann Weyl in
1929 in the context of particle physics [10], and have yet to be
observed as actual fundamental particles. The intersections,
naturally known as Weyl points or Weyl nodes, appear in two
different types distinguished by the behavior of the dispersion
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in the vicinity of the degeneracy [6]. In type-I systems, the
valence and conduction bands merely touch the Fermi level,
forming a proper semimetallic state with a pointlike Fermi
surface [11–13], while type-II nodes come with a finite Fermi
surface as a consequence of the dispersion being overtilted
[14,15].

The existence of Weyl nodes have furthermore indicated
that Weyl semimetals ought to host unique transport proper-
ties related to electromagnetic response. Salient examples are
negative magnetoresistence [16–18] and the chiral anomaly
[11,19–29], but do also include signature magneto-optical
properties. The magneto-optical conductivity, for example,
is predicted to host a series of asymmetrically spaced peaks
caused by optical transitions between Landau levels [30–33],
something that initially was believed to work as an experimen-
tal signature identifying Weyl semimetals [6]. Nowadays, it is
known that theoretical predictions are at odds with experimen-
tal observations [34–36], something that has been suggested
is due to the existence of trivial Fermi pockets, i.e., regions
where the bands cross the Fermi level not in direct connection
to a Weyl node [32].

Studies on magneto-optical transport properties in Weyl
semimetals are usually carried out with two rather different
approaches. Either simplified pictures including systems with
only one Weyl node are studied analytically [30–33,37–40] or
the studies rely exclusively on numerical simulations of lattice
systems; see Ref. [41] for a recent study. Additional examples
include conductivity in Weyl semimetal sheets [42], high-field
quantum limits [43], and magneto-optical transport in the
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dc-limit [44–46]. All these works have provided fruitful in-
sights regarding transport phenomena and the quantum Hall
effect in three dimensions, but in one way or the other lack
either a realistic or generic setup. Therefore, in this paper, we
investigate the effects of having systems with a chiral pair
of Weyl nodes, including fourth-order momentum terms in
the dispersion. We investigate how the interplay between the
nodes, such as its tilts and position in energy and momentum
space, affect the transport properties, and also how these are
connected to the appearance of trivial and nontrivial Fermi
pockets. We go further beyond previous studies by expand-
ing the general analytical framework developed in Ref. [32],
where a closed-form expression for the dissipative compo-
nents of the conductivity tensor are derived, to also include
the reactive components. This allows us to not only study
transport in terms of the real part of σxx, but also the Hall
conductivity, the real part of σxy, at any frequencies. Through
the same technique, we also analytically derive the dc Hall
conductivity and display how these analytical expressions
serve as a tool for predicting physical features directly from
the band structure.

The paper shows that a charge-conjugate pair of Weyl
nodes causes the contribution from the chiral level to cancel,
and further indicates that the energy scales at which intra-
band transitions appear are smeared out, strengthening the
hypothesis that these are responsible for the disagreements
between theory and experiments. This analytical framework
thus comprises a natural step towards an agreement between
theory and experiment and can, in principle, work as a tool
to make transport predictions for material candidates as long
as the corresponding band structure is provided (e.g., using
DFT). It furthermore contributes to an increased and more
complete theoretical understanding of transport features in
three dimensions, including the three-dimensional quantum
Hall effect, thanks to the corresponding analytical expressions
for the respective quantity.

The rest of the paper is structured as follows. We set the
stage in Sec. II and combine a brief background of previ-
ous works and analytical techniques with unique calculations
and derivations. In particular, we show how the Landau-level
splitting works in generic Weyl systems and provide a sim-
plification of the expressions for the dissipative conductivity
components before we turn to deriving the closed-form ex-
pressions for the corresponding reactive components and the
dc Hall conductivity. In Sec. III, the formalism is applied to
various Weyl systems with two Weyl nodes. We investigate
how the tilt of the respective nodes, and hence the presence of
trivial and nontrivial Fermi pockets, is manifest in transport. In
particular, we study the different features present in the type-I
and type-II regimes to try to identify the interplay between
these two regimes. We discuss the results and their relevance
in Sec. IV and provide additional plots for when the two Weyl
nodes are at different energies and for the corresponding dc
conductivity. We summarize and conclude in Sec. V.

II. MAGNETO-OPTICAL CONDUCTIVITY FOR GENERIC
WEYL SEMIMETALS

We devote Secs. II A and II B to set the stage and de-
scribe how the Landau-level quantization works in a family

of generic Weyl semimetals, and recall the derivation of the
dissipative components of the conductivity tensor carried out
in Ref. [32] (which is also further simplified). In Sec. II C, we
also carry out the analytical derivation of a convenient closed-
form expression for the reactive components, including the
magneto-optical Hall conductivity, and apply these techniques
also in the dc-limit in Sec. II D.

A. Landau-level quantization

Take as starting point a generalized Weyl Hamiltonian,

H = h̄vF [h(kz )σ 0 + kxσ
x + kyσ

y + g(kz )σ z], (1)

where k = (kx, ky, kz ) is the lattice momentum, σ =
(σ x, σ y, σ z ) the Pauli matrices, σ 0 the 2 × 2 identity matrix,
vF the Fermi velocity, and h(kz ) and g(kz ) continuously dif-
ferentiable functions of kz only. The function h(kz ) introduces
a tilt in the kz direction and g(kz ) specifies the position of the
Weyl nodes in the spectrum.

To study magneto-optical transport, we couple the Hamil-
tonian to an external magnetic field through minimal coupling.
For concreteness, the magnetic field is aligned with the di-
rection of the tilt, i.e., B = (0, 0, B), which in the Landau
gauge corresponds to introducing a vector potential of the
form A = (0, Bx, 0). The minimal coupling transforms the
momentum as h̄ki → �i = h̄ki − e

c Ai. By introducing cre-
ation and annihilation operators as a = lB√

2h̄
(�x − i�y) and

a† = lB√
2h̄

(�x + i�y), which satisfy [a, a†] = 1, the system
under the influence of a magnetic field can be effectively
described by

H = h̄vF

⎛
⎝h(kz ) + g(kz )

√
2

lB
a†

√
2

lB
a h(kz ) − g(kz )

⎞
⎠. (2)

The corresponding eigenvalues are

En,λ(kz, lB) = h̄vF

[
h(kz ) + λ

√
g2(kz ) + 2n

l2
B

]
, n � 1, (3)

E0(kz ) = h̄vF [h(kz ) + g(kz )], (4)

with λ = ±1, and the eigenstates cast the form ψn,λ(kz, lB) =
(
λun,λ(kz, lB)
vn,λ(kz, lB) ), with

un,λ(kz, łB) =
√√√√√1

2

[
1 + g(kz )

λ
√

g2(kz ) + 2n
l2
B

]
, n � 1, (5)

vn,λ(kz, łB) =
√√√√√1

2

[
1 − g(kz )√

g2(kz ) + 2n
l2
B

]
, n � 1, (6)

ψ0 =
(

1
0

)
. (7)

B. Dissipative components of the response function

The magneto-optical conductivity is, in the one-loop
approximation, calculated using linear response theory
and specifically expressed in terms of the response
function (in what follows, we will omit certain de-
pendencies of parameters, and reintroduce them when
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appropriate),

χμν (ω) = 1

2π l2
B

∑
n,n′

∑
λ,λ′

∫ +∞

−∞

dkz

2π

f [En,λ(kz )] − f [En′,λ′ (kz )]

h̄ω + En,λ(kz ) − En′,λ′ (kz ) + iε
〈ψn,λ(kz )| jμ|ψn′,λ′ (kz )〉〈ψn′,λ′ (kz )| jν |ψn,λ(kz )〉, (8)

with f (E ) = 1
1+eβ(E−μ) the Fermi-Dirac distribution, β−1 = kBT , T the temperature, and kB the Boltzmann constant. Small, but

finite, and positive ε regulates the integral, and can be thought of as an inverse impurity scattering lifetime τ via ε = h̄
2τ

. The
current operators jμ are given by

jμ = e

h̄

∂H

∂�μ

. (9)

In Ref. [32], analytical expressions for the dissipative parts of χxx(ω) and χxy(ω) for generic Weyl systems were derived. We
do not repeat this derivation here, but instead further simplify these expressions, with the final goal of also deriving a closed-form
analytical expression for the reactive parts of the response function. The final result of Ref. [32] can, after some straight-forward
algebra, be put in the form

Im[χxx(ω)] = − e2v2
F

16π l2
B

nmax∑
n=0

2m∑
i=1

⎧⎨
⎩A++

n (ki )

⎡
⎣ 2n+1

l2
B

− ω2

2v2
F

|g̃(ki )g′(ki )|

⎤
⎦θ

(
2v2

F

l2
B

− ω2

)
sgn(−ω)

+ A−−
n (ki )

⎡
⎣ 2n+1

l2
B

− ω2

2v2
F

|g̃(ki )g′(ki )|

⎤
⎦θ

(
2v2

F

l2
B

− ω2

)
sgn(ω) + A+−

n (ki )

⎡
⎣ ω2

2v2
F

− 2n+1
l2
B

|g̃(ki )g′(ki )|

⎤
⎦θ

(
ω2 − 2v2

F

l2
B

)
sgn(ω)

+ A−+
n (ki )

⎡
⎣ ω2

2v2
F

− 2n+1
l2
B

|g̃(ki )g′(ki )|

⎤
⎦θ

(
ω2 − 2v2

F

l2
B

)
sgn(−ω)

⎫⎬
⎭, (10)

Re[χxy(ω)] = − e2v2
F

16π l2
B

nmax∑
n=0

2m∑
i=1

⎧⎨
⎩A++

n (ki )

⎡
⎣ 2n+1

l2
B

− ω2

2v2
F

|g̃(ki )g′(ki )|

⎤
⎦θ

(
2v2

F

l2
B

− ω2

)

+ A−−
n (ki )

⎡
⎣ 2n+1

l2
B

− ω2

2v2
F

|g̃(ki )g′(ki )|

⎤
⎦θ

(
2v2

F

l2
B

− ω2

)
+ A+−

n (ki )

⎡
⎣ ω2

2v2
F

− 2n+1
l2
B

|g̃(ki )g′(ki )|

⎤
⎦θ

(
ω2 − 2v2

F

l2
B

)

+ A−+
n (ki )

⎡
⎣ ω2

2v2
F

− 2n+1
l2
B

|g̃(ki )g′(ki )|

⎤
⎦θ

(
ω2 − 2v2

F

l2
B

)⎫⎬
⎭, (11)

with

g(ki ) = ±
√

v2
F

ω2l4
B

− 2n + 1

l2
B

+ ω2

4v2
F

, (12)

g̃(ki ) =
∣∣∣∣ ω

vF

∣∣∣∣g(ki ), (13)

Aλλ′
n (ki ) = f [En,λ(ki )] − f [En+1,λ′ (ki )], (14)

nmax =
⌊(

2v2
F − ω2l2

B

)2

8v2
F ω2l2

B

⌋
, (15)

θ (x) the Heaviside step function, and ki the value of kz that
satisfies Eq. (12). We devote the Appendix to the calculational
details. Here it is important to keep in mind that g(ki ) and ki,
and hence also g′(ki ), are bound to be real, otherwise they
do not represent the physical problem we are considering;
they are forced to be real since g(kz ) appear in the energy
eigenvalues in Eqs. (3) and (4). This will be important later on.

Further note that h(kz ) enters through the factors Aλλ′
n , since

their definition includes the dispersion relation.
The Kramers-Kronig relations tells us that the reactive and

dissipative components of the response functions are given in
terms of each other as

Re[χμν (ω)] = PV
∫ +∞

−∞

dω′

π

Im[χμν (ω′)]
ω′ − ω

, (16)

Im[χμν (ω)] = −PV
∫ +∞

−∞

dω′

π

Re[χμν (ω′)]
ω′ − ω

, (17)

where PV denotes the Cauchy principal value of the cor-
responding integral. This means that to derive analytical
expressions for Re[χxx(ω)] and Im[χxy(ω)], respectively, we
need to evaluate the corresponding principal value integrals.
This will be the topic of the following subsection. Finally, the
conductivity tensor is given by the Kubo formula:

σμν (ω) = 1

iω
[χμν (ω) − χμν (0)]. (18)
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For generic Weyl systems, the Landau levels are com-
pletely nondegenerate, meaning that En,λ(kz ) �= En′,λ′ (kz ) for
every n �= n′, every λ and λ′, and all kz. Therefore, χμν (0)
will vanish in the clean limit, ε → 0, and for ω �= 0, the
conductivity components for clean Weyl systems can be put
in the form

σxx(ω) = 1

ω
{Im[χxx(ω)] − iRe[χxx(ω)]}

= 1

ω

{
Im[χxx(ω)] − iPV

∫ +∞

−∞

dω′

π

Im[χxx(ω′)]
ω′ − ω

}
,

(19)

σxy(ω) = 1

ω
{Im[χxy(ω)] − iRe[χxy(ω)]}

= − 1

ω

{
PV

∫ +∞

−∞

dω′

π

Re[χxy(ω′)]
ω′ − ω

+ iRe[χxy(ω)]

}
.

(20)

This makes it clear that to obtain the Hall conductiv-
ity, the principal value has to be computed, which is
the main motivation for finding a closed-form expression
for it.

C. Reactive components of the response function

The reactive components of the response functions are
directly related to the dissipative components through the
Kramers-Kronig relations, Eqs. (16) and (17). To eval-
uate the corresponding principal values, we first con-
sider the zero-temperature limit, where the factors Aλλ′

n (ki )
are

Aλλ′
n (ki )

T →0−−→ θ [μ − En,λ(ki )] − θ [μ − En+1,λ′ (ki )]. (21)

In this limit, the dissipative components of the response
functions will host singularities only when ω′ = ω when
g[ki(ω′, n)] = 0, or when g′[ki(ω′, n)] = 0. The singularity
at ω′ = ω is a simple pole located at the real axis, while
the remaining singularities are square-root branch points, the
location of which we need to identify. For this, we first recall
that for causality reasons, the response function is analytic in
the upper half complex ω-plane, meaning that for Im(ω′) > 0,
χμν (ω′) is analytic. Furthermore, the branch points related
to g[ki(ω′, n)] = 0 and g′[ki(ω′, n)] = 0 necessarily come in
respective complex conjugate pairs, since both g(ki ) and g′(ki )
are purely real [recall that g(kz ) defines the energy eigenval-
ues, which are bound to be real]. But since there are no poles
in the upper half complex ω′ plane, g = 0 and g′ = 0 cannot be
satisfied for any complex ω′. This means that all singularities,
both poles and branch cuts, are constrained to the real line.

Using this along with the relations

PV
∫ +∞

−∞

dω′

π

Re[χμν (ω′)]
ω′ − ω

= 1

2

∫ +∞

−∞

dω′

π

{
Re[χμν (ω′)]
ω′ − ω − iε

+ Re[χμν (ω′)]
ω′ − ω + iε

}
, (22)

PV
∫ +∞

−∞

dω′

π

Im[χμν (ω′)]
ω′ − ω

= 1

2

∫ +∞

−∞

dω′

π

{
Im[χμν (ω′)]
ω′ − ω − iε

+ Im[χμν (ω′)]
ω′ − ω + iε

}
, (23)

the principal values can be evaluated using contour integration
techniques. To do this properly, we first need to specify what
branch cuts to use. This will depend on the value of ω. Denot-
ing the branch points as ωi, they form the set {ω j}2m

j=1 and are
ordered such that ω j < ω j+1 for all j. Then, we will have the
following two different cases:

(1) If ω < ω1, or ω2m < ω, or ω1 < ... < ω2a < ω <

ω2a+1 < ... < ω2m for some 1 < a < m − 1, the branch cuts
are formed between neighboring branch points, i.e., all branch
cuts are finite and made between ω2 j−1 and ω2 j for j =
1, ..., m.

(2) If ω1 < ... < ω2a−1 < ω < ω2a+1 < ... < ω2m for
some 1 < a < m − 1, we have infinite branch cuts on the
interval (−∞, ω1] and [ω2m,+∞), and finite branch cuts
between neighboring pairs ω2 j and ω2 j+1 for 1 < j < m − 1.

These are schematically depicted with the resulting inte-
gration contours in Fig. 1.

Knowing where the branch cuts are located, we can now
specify what contour to use. The first integral in Eqs. (22)
and (23) is evaluated by first surrounding the branch cuts with
semicircular arcs of radius r in the upper half plane, the pole
at ω′ = ω with a semicircular arc of radius r in the lower half
plane, and then closing the contour with a semicircular arc
of radius R in the lower half plane. Deforming this contour,
we end up with a series of dogbone or dumbell contours,
and potentially a pair of hairpin contours (if the branch cuts
to infinity are present) wrapping around the branch cuts, as
depicted in Figs. 1(c) and 1(f). The second integral in Eqs. (22)
and (23) is evaluated by first surrounding the branch points
with semicircular arcs of radius r in the upper half plane, the
pole at ω′ = ω with a semi circular arc of radius r in the upper
half plane, and then closing the contour with a semicircular arc
of radius R in the upper half plane. This contour will vanish
completely upon deformation. Using the Residue theorem and
the Estimation lemma method to show that the contribution
from all semicircular arcs around the branch points and from
the infinite arc vanish when r → 0, and R → ∞, respectively,
we finally arrive at

Re[χxx(ω)] = PV
∫ ∞

−∞

dω′

π

Im[χxx(ω′)]
ω′ − ω

=
⎧⎨
⎩
∑m

j=1

∫ ω2 j

ω2 j−1

dω′
π

Im[χxx (ω′ )]
ω′−ω

, ω has even number of poles to the left∫ ω1

−∞
dω′
π

Im[χxx (ω′ )]
ω′−ω

+ ∫ +∞
ω2m

dω′
π

Im[χxx (ω′ )]
ω′−ω

+∑m−1
j=1

∫ ω2 j+1

ω2 j

dω′
π

Im[χxx (ω′ )]
ω′−ω

, otherwise, (24)
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FIG. 1. Integration contours that schematically show how to evaluate the principal values in Eqs. (24) and (25), depending on the position
of the pole ω′ = ω. When the point ω′ = ω has an even number of poles to its left, a series of finite branch cuts are made between neighboring
branch points ω j , and the sum of the integration contours, and panels (a) and (b) become a series of dogbone contours around the corresponding
branch cuts, as depicted in panel (c). When ω instead has an odd number of poles to its left, the sum of the contours in (d) and (e) deform into
two hairpin contours between −∞ and the leftmost branch point, and the rightmost branch point to +∞, denoted ω1 and ω4 in (f), respectively,
and a sum of finite dogbone contours between the rest of neighboring branch points, as depicted in panel (f).

−Im[χxy(ω)] = PV
∫ ∞

−∞

dω′

π

Re[χxy(ω′)]
ω′ − ω

=
⎧⎨
⎩
∑m

j=1

∫ ω2 j

ω2 j−1

dω′
π

Re[χxy (ω′ )]
ω′−ω

, ω has even number of poles to the left∫ ω1

−∞
dω′
π

Re[χxy (ω′ )]
ω′−ω

+ ∫ +∞
ω2m

dω′
π

Re[χxy (ω′ )]
ω′−ω

+∑m−1
j=1

∫ ω2 j+1

ω2 j

dω′
π

Re[χxy (ω′ )]
ω′−ω

, otherwise. (25)

which is the central result of this section.

It should be strongly emphasized that the expressions
Eqs. (24) and (25) hold true for any continuously differen-
tiable functions h(kz ) and g(kz ). Due to the general nature of
these expressions, performing the integrals or the sums ex-
plicitly and arriving at a more compact final result will not be
possible unless the specific model under consideration is spec-
ified. In fact, leaving the expressions as they currently stand
actually makes it possible to predict the generic behavior of,
e.g., the magneto-optical Hall conductivity for Weyl semimet-
als. For example, the changes of branch cuts when sweeping
through ω space will manifest as an abrupt transition in the
conductivity spectrum, e.g., as sharply approaching a positive
(negative) value, suddenly transitioning to the correspond-
ing negative (positive) value, and then starting to increase
again; a behavior that could be intuitively thought of as a
mirroring in a straight line passing through the corresponding
branch point. Hence, these expressions will be left as they
stand.

D. dc limit

The expressions derived above are only valid for nonzero
frequencies, meaning that the dc limit (ω → 0) has to be
studied separately. In terms of the response function, this
has to be done with caution as the order of various lim-
its and integrations do not necessarily commute. Recalling
the Kubo formula, the conductivity reads in the dc limit

reads

σμν (0) = lim
ω→0

{
1

iω
[χμν (ω) − χμν (0)]

}
= 1

i

d

dω
χμν (ω) |ω=0

.

(26)
Instead of carrying out this derivative, we here choose to em-
ploy the Kramers-Kronig relations once again, and illustrate
how these can be used to arrive at an analytical closed-form
expression for the dc Hall conductivity. This reads

Re[σxy(0)] = lim
ω→0

1

ω
{Im[χxy(ω)] − Im[χxy(0)]}

= lim
ω→0

PV
∫ +∞

−∞

dω′

π

Re[χxy(ω′)]
ω′(ω′ − ω)

. (27)

Before formally taking the limit, we need to make sure this
can be done in a consistent way with respect to the choice
of branch cuts. For this, we assume that ω is very small, so
there exists no branch points between ω′ = 0 and ω′ = ω.
This corresponds to case 1 in Sec. II C, and thus the dc Hall
conductivity reads

Re[σxy(0)] = − lim
ω→0

m∑
j=1

∫ ω2 j

ω2 j−1

dω′

π

Re[χxy(ω′)]
ω′(ω′ − ω)

. (28)

If the limit ω → 0 is now naively taken before the integration
is performed, the pole at ω′ = 0 will become a pole of order
2 instead of order 1. Consequently, the integration along the
small semicircular contours around ω′ = 0 will not vanish, but
rather result in divergences which do not necessarily cancel
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FIG. 2. Real parts of σxx (ω) (a) and σxy(ω) (b) for parameter values α = 2, β = 1, γ = 2, η+ = η− = 0, μ = 0 eV, and B = 10 T. The band
structure in the absence of a magnetic field is shown in (c), while (d) and (e) show the Landau level structure at kz = ±α. The peak structure
in σxx is also kept when two nodes are considered and corresponds to interband transitions between Landau levels from the conduction to the
valence band, but the contribution from the transition between the chiral level and the first Landau level is canceled. This is because there will
be exactly opposite contributions from the two nodes, one from the chiral level to the first Landau level at one node, and the reversed transition
at the second node. Since there are no Fermi pockets, there are no allowed intraband transitions, causing σxy to be vanishing for all ω.

each other. Therefore, this is as far as the analytical simpli-
fications go, and we will use Eq. (28) to evaluate the Hall
conductivity in the dc-limit.

III. MAGNETO-OPTICAL CONDUCTIVITY
FOR SYMMETRICALLY SPACED WEYL NODES

We now turn to apply the techniques developed above for
concrete setups. We will use a model whose dispersion is
given by

g(kz ) := γ
(
k2

z − α2
)(

k2
z + β2

)
, (29)

h(kz ) := ak4
z + bk3

z + ck2
z + dkz + e, (30)

where all the constants are real. Such a system has a pair of
Weyl nodes symmetrically separated in momentum at kz =
±α. Both g(kz ) and h(kz ) are taken to be fourth order, and
the parameters can be tuned such that potential Fermi pockets
in connection to the nodes will be kept finite in size. The
coefficients of h(kz ) will be defined through

h(±α) = EW± , h′(±α) = η±, (31)

where EW± denote the energy at the Weyl node at kz = ±α,
and η± controls the tilt at kz = ±α. Manually setting a to
assure finite Fermi pockets, and EW± = 0, the coefficients of
h(kz ) are defined as

a = 0.01, (32)

b = η+ + η−
4α2

, (33)

c = −2bα2 − 4α3 + η+
2α

, (34)

d = −bα2, (35)

e = −dα − cα2 − bα3 − aα4. (36)

Initially, we will investigate how the conductivity behaves
when varying the tilt parameters. For the sake of clarity, we
will treat different kinds of systems in separate subsections.
We will focus on the real parts of σxx and σxy for the results,
i.e., we will display one dissipative and one reactive compo-
nent of the response function.

A. Untilted and tilted type I

Let us start with a system where both nodes are untilted,
i.e., where η+ = η− = 0. The real parts of σxx and σxy are
displayed in Figs. 2(a) and 2(b), respectively, where the xx
component displays the characteristic peak structure, cor-
responding to optical interband Landau-level transitions of
neighboring indices, i.e., the nth Landau level with λ = −1
transition to the (n + 1)th Landau level with λ = +1, as
thoroughly explained in Refs. [30–33]. The position of the
peaks correspond exactly to the difference in energy between
respective Landau-level pairs, which agrees with previous
studies where typically systems hosting only one Weyl node
are studied. An important difference here, however, is that
the contribution from the transition from the chiral level is
absent. This is seen as a small bump located at the energy
corresponding to the difference between the chiral level and
the first Landau level at the Weyl node, cf. Refs. [30–33].
Here, however, we have matching, but opposite, contributions
from the two nodes, which makes the net contribution vanish.
As μ = 0 in Fig. 2, the Hall conductivity vanishes for all ω

and provides nothing interesting at this stage.
In Fig. 3, the dispersion around one of the nodes have been

tilted slightly, while the other is kept untilted. As the tilt is
weak enough to ensure that neither the valence band nor the
conduction band cross, but merely touch, the Fermi level at the
Weyl nodes, there are no additional transitions that can occur.
Therefore, the result in this case very much resembles that of
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FIG. 3. Real parts of σxx (ω) (a) and σxy(ω) (b) for parameter values α = 2, β = 1, γ = 2, η+ = 10, η− = 0, μ = 0 eV, and B = 10 T. The
band structure in the absence of a magnetic field is shown in (c), while (d) and (e) show the Landau-level structure at kz = ±α. The weak tilting
of the node at kz = 2 leaves the behavior of both σxx and σxy unchanged, which is a consequence from there still being no allowed intraband
transitions.

two untilted nodes; the xx component still has its characteristic
peaks, while the xy component remains vanishing.

B. Tilted type II

When the tilt is increased further, the valence and/or
conduction band may fully cross the Fermi level, and the
Weyl semimetal enters the type-II-phase. This phase is dis-
tinguished from the type-I phase by that the Fermi surface
becomes finite and thus is no longer pointlike. In the con-
text of conductivity, this allows for intraband transitions, i.e.,
transitions between neighboring Landau levels with the same

value of λ. Just as for the interband transitions, they appear at
energies corresponding exactly to the energy difference of the
respective Landau level pairs, which in this case are spaced
much closer together. This can be seen in Fig. 4, where one of
the nodes is kept untilted and the other is tilted such that the
Fermi pockets are formed, cf. Figs. 4(c)–4(e). In addition to
the interband peaks, the intraband peaks are located close to
h̄ω = 0. Notably, the type-II phase also hosts a nontrivial Hall
conductivity σxy, which can be seen in Fig. 4(b).

When just slightly tilting the previously untilted node,
nothing interesting initially happens (cf. Fig. 5), but when the
second node is eventually overtilted as well, the behavior of

FIG. 4. Real parts of σxx (ω) (a) and σxy(ω) (b) for parameter values α = 2, β = 1, γ = 2, η+ = 0, η− = 60, μ = 0eV and B = 10T.
The band structure in the absence of a magnetic field is shown in (c), while (d) and (e) show the Landau level structure at kz = ±α. As a
consequence of the existence of Fermi pockets, intraband transitions are allowed, which gives a response at smaller frequencies. Additionally,
there are interband transitions happening at non-zero kz, which can be seen as the small steps between the peaks in panel (a). These transitions
do not happen in a symmetric fashion, since the Fermi pockets are only present in direct connection to the tilted node. This gives a response
also in the Hall conductivity, which is seen as sharp transitions in panel (b). Mathematically, these correspond exactly to at what frequencies
the choices of branch cuts, and hence integration contours, are changed, making it possible to interpret the Hall response as a branch point
transition, agreeing with the interpretation of Eqs. (24) and (25).
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FIG. 5. Real parts of σxx (ω) (a) and σxy(ω) (b) for parameter values α = 2, β = 1, γ = 2, η+ = 10, η− = 60, μ = 0 eV and B = 10 T. The
band structure in the absence of a magnetic field is shown in (c), while (d) and (e) show the Landau level structure at kz = ±α. The weak tilting
of the node located at kz = 2 does not affect the result significantly from the case where this node is untilted (cf. Fig. 4).The peak structure
in (a) behaves similarly, and we see essentially equivalent behavior of the Hall conductivity in (b), even though it seems as if the strength of
the response is more even throughout the considered energy spectrum. This could, however, just be a consequence of the evaluation of the
principal value—the size of the peaks are not to be taken literal.

the conductivity changes significantly. Notably, the Hall con-
ductivity becomes highly oscillating along all energies shown
in Fig. 6, while the xx component is left somewhat unchanged,
with the important exception being a slight deviation from 0 at
the same frequencies as the oscillatory behavior of σxy begins.
This behavior is caused by the existence of two particle-hole
pairs of Fermi pockets, vastly increasing the number of al-
lowed Landau-level transitions.

C. Trivial pockets

Another interesting phenomena that might be present in
Weyl semimetals is trivial Fermi pockets. These are formed
when either the valence or conduction band cross the Fermi
energy away from a Weyl node. Consequently, the boundary
of a trivial Fermi pocket does not contain the Weyl node,
cf. Fig. 7(c), where the trivial Fermi pocket can be seen as
the region where the red band attain positive energy values.
The existence of trivial Fermi pockets also allows for intra-
band transitions, and these systems are therefore very much
reminiscent of a type-II-system. In Fig. 7 we display the
conductivity for such a system, which is created by tilting
one of the nodes slightly, but not into the type-II regime. As
a consequence of the existence of trivial Fermi pockets and
the allowed intraband transitions, the conductivity very much
behaves like that in a type-II system.

IV. DISCUSSION AND EXPERIMENTAL RELEVANCE
OF RESULTS

The results in Sec. III show that studying systems with
a chiral pair of Weyl nodes gives two important differences
compared to those including only one node; the contribution
from the transition to (from) the chiral level at the Weyl
nodes exactly cancel each other, and the frequencies at which
intraband transitions occur are smeared out. This claim is

supported by comparing the systems studied in Sec. III to
those studied in, e.g., Ref. [32], which display intraband con-
tributions at significantly higher frequencies at similar field
strengths. This serves as an indicator that additional nodes
smear out the energy scale at which the intraband transitions
are allowed, and that considering even more nodes could be
a way to understand why the distinct peak structure sourced
by interband transitions is not visible in experiments; if intra-
band and interband transitions occur at similar energy scales,
the response from the intraband transitions will, due to their
significantly larger response signal, mask that of the inter-
band transitions and provide a possible explanation for the
mismatch between theory and experiments. The absence of
a clear chiral contribution is due to the fact that the energy
splittings between the chiral level and the first Landau level
are equal exactly at the Weyl nodes. It is important to note
that this does not completely eliminate the contribution from
the chiral level, since transitions away from the Weyl nodes
may very well occur, but the strength of these are highly sup-
pressed by competing transitions (cf. Fig. 6). The individual
signatures from both intraband and interband transitions, how-
ever, remain intact when higher-order terms of momentum
and additional Weyl nodes are considered, which indicate that
to study these phenomena separately, systems hosting only
one Weyl node will suffice. What studies beyond single-node
systems contribute is the important interplay between these
signatures, which could serve as an explanation for the mis-
match between theory and experiment. This is, of course, not
the only such possible source, and we now turn to discuss
some of them separately.

A. Beyond the clean limit

All the results presented in Sec. III display a very sharp
peak structure, something that is not seen in experiments
[34–36]. This structure is (theoretically) present regardless of
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FIG. 6. Real parts of σxx (ω) (a) and σxy(ω) (b) for parameter values α = 2, β = 1, γ = 2, η+ = 50, η− = 60, μ = 0 eV, and B = 10 T.
The band structure in the absence of a magnetic field is shown in (c), while (d) and (e) show the Landau-level structure at kz = ±α. The
behavior of σxx seems to remain the same as in Fig. 5, but the response of the Hall conductivity has become highly oscillatory. Taking a closer
look, σxx actually deviates slightly from 0 starting at the same frequency as the oscillations of σxy. These two features indicate that the number
of allowed transitions vastly increases in this regime, which can be explained by the existence of two particle-hole pairs of Fermi pockets in
the band structure (a).

if the approximation of the studied Weyl systems is linear
[30,31], considers only one node [32,33], or, as shown in this
paper, if a pair of nodes is considered. This particular mis-
match is most likely a consequence of the theoretical studies
being carried out in the clean limit, i.e., the regulator ε in
Eq. (8) is taken to zero. A finite regulator can be thought of
as assigning impurities or, more concretely, a finite scatter-
ing lifetime in the system [30]. This will slightly smear out
the peaks and make the overall structure of the conductivity
smoother, and hence it should be emphasized that the impact
of a finite impurity scattering lifetime is well understood as
a concept on its own. Consequently, we do not expect any
remarkable differences in the conductivity spectrum going
beyond the clean limit, which is why the features observed

and conclusions made in the current paper will hold also
when including impurity scattering, which in turn increases
the credibility of the results. Numerical simulations beyond
the clean limit are therefore beyond the current scope and the
exact impact of impurity scattering is left for future studies.

B. Symmetry-breaking and nodes at different energies

In this paper, we have restricted ourselves to present plots
of systems where the Weyl nodes are spaced symmetrically
in momentum space and where they both appear at zero en-
ergy. It should be noted that the general reasoning, and hence
the expressions for the linear response function, is applica-
ble to any general polynomials g(kz ) and h(kz ), and that the

FIG. 7. Real parts of σxx (ω) (a) and σxy(ω) (b) for parameter values α = 2, β = 1, γ = 2, η+ = 0, η− = 20, μ = 0 eV, and B = 10 T. The
band structure in the absence of a magnetic field is shown in (c), while (d) and (e) show the Landau-level structure at kz = ±α. The presence of
trivial Fermi pockets results in a response similar to those features observed in type-II systems, which is a consequence of intraband transitions
being allowed. This results in a Hall response (b) and a sharp contribution for very low frequencies for the xx component (a).
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FIG. 8. Real parts of σxx (ω) (a) and σxy(ω) (b) for parameter
values α = 2, β = 1, γ = 2, η+ = 0, η− = 20, μ = 0.03 eV, and
B = 10 T for different locations in energy of the Weyl node at
kz = −α. Blue, red, green, black, magenta, and yellow correspond
to E (−α) = 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 eV, respectively.
The results for such different energies are shifted in steps of 10−5

in (a) and 2 × 10−4 in (b) to allow reasonable visibility. The con-
ductivity properties change qualitatively with the energy difference
between the nodes, as it allows for some additional transitions, and
forbids some that were previously allowed. For instance, the first
interband transition for E (−α) = 0.06 eV is not the same as for the
other values of E (−α), which can be seen in (a) as the first peak of
the yellow curve coincides with the second peak of the other curves.
Having a nonzero energy difference between the nodes also gives a
Hall response, seen in (b), but this time as a consequence of allowed
intraband and interband transitions. The former further gives a sharp
response at lower frequencies in (a).

restriction is only in terms of the displayed plots. However,
as the behavior of both σxx and σxy can be thoroughly under-
stood in terms of Landau-level transitions, this restriction can
be made almost without loss of any generality. This can be
understood as follows.

Consider first the case where the nodes are symmetrically
spaced in momentum. Regardless of at what momenta they are
located, the Landau levels at the Weyl nodes will be equally
split in energy—this splitting does not depend on the position
of the nodes in momentum space but rather by the magnetic
field [recall that they appear exactly when g(kz ) = 0]. The
position of the nodes might, however, affect the Landau-level
splitting at the points where the intraband transition occurs, as
these generically happen at momenta where g(kz ) is nonzero.
But this is also the case for symmetrically spaced nodes, as the
tilt at the respective nodes will source similar features in the
Landau-level splitting. Hence, breaking this symmetry is not
expected to give rise to any new physics but rather will change
the location of the intraband transitions in a way similar to
what the tilting at the respective nodes does.

Now, what would happen if the nodes appear at different
energies? Again, this will not change the Landau-level split-
ting at the nodes, but it will change the allowed transitions and
break the symmetry between the transitions among the nodes.
This would allow for contributions from interband transitions
to the Hall conductivity, illustrated in Fig. 8, along with the
more conventional contributions from intraband transitions.
Thus, it can be concluded that the location of the nodes in
energy space is reflected in the optical response.

C. dc limit

Albeit the analytical tools used in this paper are not ideal in
terms of stability for investigating the dc limit, we will devote

this subsection to understanding the dc Hall conductivity as a
function of various system parameters. But before evaluating
Eq. (28) explicitly, let us think about what conclusions can
be made from the expression itself, highlighting the strength
of analytical frameworks when it comes to phenomenological
understanding. We know that optical Landau level transitions
are what contributes to the optical Hall conductivity, which
due to the Kramers-Kronig relations, Eqs. (22) and (23), are
also what will contribute in the dc limit. This means that
we should observe a stepwise change in the dc conductivity
when changing the chemical potential, since this will control
the number of allowed transitions. When μ sweeps through
an additional Landau level, the curve will change shapes.
However, it does not necessarily mean that we expect a clean
plateau structure, not even in the T → 0-limit, even though
the Fermi functions become step functions. Instead, the ef-
fect is that the integration domain is extended, and therefore
the dc Hall conductivity should consist of a series of glued,
piecewise smooth functions. This is exactly what is observed
in Ref. [41]. Interestingly enough, the authors of Ref. [41] un-
derstood this behavior in terms of the density of states, while
our reasoning connects the same phenomena to Landau-level
transitions and choices of branch cuts. We include a plot of the
dc Hall conductivity as a function of μ in Fig. 9(a), obtained
from evaluating Eq. (28).

The chemical potential is not alone responsible for con-
trolling which intraband transitions are allowed. The tilts at
the different nodes have a similar effect, meaning that the
piecewise structure should also be observed as a function of
η+ and η− in Eqs. (32) and (33). This is indeed what we see
in Fig. 9(b). That the tilt has significant impact on the Hall
conductivity is something that is also mentioned in Ref. [41],
even though they merely considered a couple of different
tilting values.

Another feature of the Hall conductivity is its relation to
the spacing between the Weyl nodes. From field theoreti-
cal techniques, it is predicted that the current related to the
Hall conductivity is proportional to this distance (in momen-
tum space) in the presence of an electric field [13]. On a
similar note, we here investigate how the distance in mo-
mentum space between the nodes affect the dc Hall response
in Weyl semimetals when subject to a constant magnetic
field. This is shown in Fig. 9(c), from which we can con-
clude that the distance plays a significant role in the Hall
response, but the scaling between the two quantities is not
very direct. In fact, it takes a rational polynomial in the
form σ dc

xy (α) = c1
α3+c2α2+c3α+c4

, with (c1, c2, c3, c4) = 103 ×
(0.0224, 0.2516, 1.7408,−1.9876) to fit the data reasonably,
cf. Fig. 9(c).

D. Finite temperature

As all the general and illustrated results are carried out
in the limit of zero temperature, the effect of going to finite
temperature must be mentioned. We will exclusively focus
on the temperature dependence of the Hall conductivity, as
it has previously been noted that the peak structure in the
σxx component is not notably affected at finite temperatures
[32]. For the Hall conductivity, going to finite temperature will
result in additional Matsubara poles in the lower half complex
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FIG. 9. dc Hall conductivity as a function of chemical potential μ (a), tilting at the node at kz = α (b), and the splitting between the
nodes (c) for α = 2 (a), (b); β = 1, γ = 2, η+ = 0, η− = 20 (a), (c); μ = 0.03 eV (b), (c); and B = 10 T. Albeit being an unstable expression,
Eq. (28) captures the gluing features predicted for (a) and (b), i.e., that the Hall conductivity should consist of piecewise smooth functions
of chemical momentum or tilt. In (c), it becomes apparent that the distance between the Weyl nodes is highly relevant for the strength of the
response signal. As a function of the location of the respective Weyl nodes, the conductivity can be approximated as σ dc

xy (α) = c1
α3+c2α2+c3α+c4

,

with (c1, c2, c3, c4) = 103 × (0.0224, 0.2516, 1.7408, −1.9876).

ω plane. These will be at values of ω, satisfying

En,λ(ki ) − μ

kBT
= iπ (2m − 1), (37)

where m � 0 to maintain the analytical properties of the re-
sponse function in the upper half complex ω plane. Thus, in
addition to retaining the original prefactors Aλλ′

n (ki ) in terms
of the Fermi distribution functions, there will be contributions
on the form

2π i
∑

j

Res{Re[χxy(ω)], ω j}, (38)

where ω j solves Eq. (37). These corrections are not treatable
using the analytical tools developed in this paper, and hence
lie beyond the current scope. Their complete contribution
amounts to an infinite sum, the convergence and decay of
which has to be properly investigated to assert a termination
of the sum to a finite one to be motivated. In the dc limit, and
assuming a convergent thermal contribution, one could guess
the impact of these corrections. As a function of chemical
potential, or tilting parameters, the piecewise gluing of curves
is expected to be smoothed out when the Fermi functions
are reintroduced. For low temperatures, the impact of the
Matsubara poles can be further understood, in general, from
the results of Ref. [32]. Comparing the small stairlike steps
located in between the sharp peaks in Figs. 5(a), 6(a), and
7(a), which is sourced by intraband transitions exclusively
related to the existence of Fermi pockets, with those appearing
at finite temperature in similar systems in, e.g., Fig. 3(a) of
Ref. [32], those at finite temperature are smoother compared
to those at zero temperature. In terms of the Hall response,
this will smooth out the sharp transition structure seen in
Figs. 5(b), 6(b), and 7(b). However, since the temperature
studied in Ref. [32] (which was set to 5 K) shows a minor
impact on the final result, and that this impact is further well
understood, we do not expect any significant changes as long
as the temperatures are kept low. For increasing temperatures,
however, these might have a more profound effect that should
be investigated in future works.

It should lastly be emphasized that the Kramers-Kronig
relations rely on causality, which is what causes the re-
sponse function to be analytical in the upper half complex
ω-plane. When considering systems at finite temperature, thus

going beyond the zero-temperature limit, the very notion of
causality becomes affected, which in turn alters the Kramers-
Kronig relations. Since the general method calculating the
Hall conductivity developed in this paper is based exactly
on the Kramers-Kronig relations, it is not unexpected that
things become complicated when thermal effects are taken
into account. Exactly how complicated this becomes, and how
profound the effects are, is left as an open question to be
answered in subsequent studies.

V. SUMMARY OF RESULTS AND OUTLOOK

In this paper, we have expanded on the analytical and
general theory calculating magneto-optical conductivity in
Weyl semimetals. To complement previous works where the
dissipative components of the linear response function have
been computed, we here also provide analytical closed-form
expressions for the reactive components in terms of a sum
of finite integrals (and potentially semi-infinite integrals).
This allows for the analytical calculation of the optical Hall
conductivity beyond the high-field quantum- or dc limit for
generic Weyl semimetals, and for understanding physical fea-
tures directly by studying the corresponding band structure in
combination with the analytical expressions. The theoretical
and abstract calculations are then applied to a Weyl system
hosting two nodes with potential tilts, which further extends
previous works where systems hosting only one node are typi-
cally considered. Importantly, the simulation includes systems
where fourth-order momentum terms are taken into account to
make sure that potential Fermi pockets are finite in size. This
allows us to study magneto-optical transport, in principle,
including contributions from all Landau levels as a function of
tilting at both nodes, Weyl node splitting in momentum space,
and chemical potential, without the need of unphysical cutoffs
in momentum or energy. Apart from the ac optical conduc-
tivity, a closed-form expression for the dc limit of the Hall
conductivity is also derived, from which phenomenological
conclusions matching with existing literature are made.

Our paper has further verified that neither higher-order
corrections in momentum nor the existence of additional Weyl
nodes changes individual signatures of the magneto-optical
spectrum significantly—the individual features linked to in-
terband and intraband transitions seen in the simulations in
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this paper can also be studied in simpler systems hosting only
one node. There are, however, two important deviations, the
first being the absence of a contribution from a transition
involving the chiral Landau level, as opposite transitions oc-
cur at charge-conjugate Weyl nodes. The second, and more
important, deviation, is that the relative energy range at which
the intraband transition occurs seems to be significantly larger
in systems with two nodes than in those with only one node.
This further strengthens the hypothesis that these transitions,
which come with a significantly larger response signal, are
the main reason for the predicted sharp peak structure sourced
by interband transitions to be masked in experiments; if in-
traband transitions are allowed at the same energy scales as
interband transitions, the signal from the intraband transition
will dominate. The general tools developed in this and previ-
ous works [32,33] can, in principle, be used to scan through
various models and continue the search for the source of this
mismatch.

In summary, our key findings are:
(1) the derivation of an analytical closed-form expres-

sion for the reactive components of the conductivity tensor,
which allows for qualitative predictions of the magneto-
optical response to be done directly from the band structure
of candidate materials;

(2) the discovery that the contribution from the chiral level
cancels between the different nodes; and

(3) the conclusion that considering a chiral pair of nodes
smears out the energy range allowing for intraband transitions,
strengthening the hypothesis that these are the source to the
mismatch between theoretical predictions and experimental
observations.

A natural extension of this paper would be to generalize
the calculational tools to include higher-order Weyl nodes,
which in recent works have shown to impact the tilt structure
in the optical response [33]. Additional straightforward, yet
involved, continuations include the finite-temperature picture,
the impact of the Matsubara poles in Weyl systems, and the
corresponding Hall conductivity. Lastly, a concrete direction
towards finding the source of the mismatch between theory
and experiment would be to use the developed analytical tech-
niques for more realistic band structures of actual materials
and to include interaction effects beyond linear response. This
would require a combination of experimental measurement
techniques, such as ARPES, and first-principles calculations,
such as DFT, and comprising a promising path towards unify-
ing experimental observations and theoretical predictions.
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APPENDIX: RESPONSE FUNCTION FOR WEYL
SEMIMETALS

1. Simplifications in the T → 0 limit

Take as a starting point Eqs. (A26) and (A27) in Ref. [32],
which state that

Im[χxx(ω)] = − e2v2
F
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B
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ω2 − 2v2

F

l2
B

)
− B−

n (ki )B
−
n+1(ki )C

+−
n+1,n(ki )θ (ω)θ

(
ω2 − 2v2

F

l2
B

)]}
,

(A1)

Re[χxy(ω)] = − e2v2
F

16π l2
B

nmax∑
n=0

2m∑
i=1

×
{

A++
n (ki )

[
B+

n (ki )B
−
n+1(ki )C

++
n,n+1(ki )θ (−ω)θ

(
2v2

F

l2
B

− ω2

)
+ B+

n (ki )B
−
n+1(ki )C

++
n+1,n(ki )θ (ω)θ

(
2v2

F

l2
B

− ω2

)]

+ A−−
n (ki )

[
B−

n (ki )B
+
n+1(ki )C

−−
n,n+1(ki )θ (ω)θ

(
2v2

F

l2
B

− ω2

)
+ B−

n (ki )B
+
n+1(ki )C

−−
n+1,n(ki )θ (−ω)θ

(
2v2

F

l2
B

− ω2

)]
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+ A+−
n (ki )

[
B+

n (ki )B
+
n+1(ki )C

+−
n,n+1(ki )θ (ω)θ

(
ω2 − 2v2

F

l2
B

)
+ B+

n (ki )B
+
n+1(ki )C

−+
n+1,n(ki )θ (−ω)θ

(
ω2 − 2v2

F

l2
B

)]

+A−+
n (ki )

[
B−

n (ki )B
−
n+1(ki )C

−+
n,n+1(ki )θ (−ω)θ

(
ω2 − 2v2

F

l2
B

)
+ B−

n (ki )B
−
n+1(ki )C

+−
n+1,n(ki )θ (ω)θ

(
ω2 − 2v2

F

l2
B

)]}
,

(A2)

with

A±±
n (ki ) := f [En,±(ki )] − f [En+1,±(ki )] = sinh En+1,±(ki )−En,±(ki )

2kBT

cosh En+1,±(ki )+En,±(ki )−2μ

2kBT + cosh En+1,±(ki )−En,±(ki )
2kBT

, (A3)

B±
n (ki ) := 1 ± g(ki )√

g2(ki ) + 2n
l2
B

, (A4)

C±±
n,m (ki ) :=

∣∣∣∣∣∣∣
h̄vF

√
g2(ki ) + 2n

l2
B

√
g2(ki ) + 2m

l2
B

g(ki )g′(ki )(En,±(ki ) − Em,±(ki ))

∣∣∣∣∣∣∣. (A5)

Let us simplify this expression in the limit where T → 0. In this limit, the Ans become

Aλλ′
n (ki )

T →0−−→ θ [μ − En,λ(kz )] − θ [μ − En+1,λ′ (ki )], (A6)

which yield the following:

A++
n (ki ) = θ

⎧⎨
⎩μ − h̄vF

⎡
⎣h(ki ) +

√(
ω

2vF
− vF

ωl2
B

)2
⎤
⎦
⎫⎬
⎭− θ

⎧⎨
⎩μ − h̄vF

⎡
⎣h(ki ) +

√(
ω

2vF
+ vF

ωl2
B

)2
⎤
⎦
⎫⎬
⎭, (A7)

A−−
n (ki ) = θ

⎧⎨
⎩μ − h̄vF

⎡
⎣h(ki ) −

√(
ω

2vF
− vF

ωl2
B

)2
⎤
⎦
⎫⎬
⎭− θ

⎧⎨
⎩μ − h̄vF

⎡
⎣h(ki ) −

√(
ω

2vF
+ vF

ωl2
B

)2
⎤
⎦
⎫⎬
⎭, (A8)

A+−
n (ki ) = θ

⎧⎨
⎩μ − h̄vF

⎡
⎣h(ki ) +

√(
ω

2vF
− vF

ωl2
B

)2
⎤
⎦
⎫⎬
⎭− θ

⎧⎨
⎩μ − h̄vF

⎡
⎣h(ki ) −

√(
ω

2vF
+ vF

ωl2
B

)2
⎤
⎦
⎫⎬
⎭, (A9)

A−+
n (ki ) = θ

⎧⎨
⎩μ − h̄vF

⎡
⎣h(ki ) −

√(
ω

2vF
− vF

ωl2
B

)2
⎤
⎦
⎫⎬
⎭− θ

⎧⎨
⎩μ − h̄vF

⎡
⎣h(ki ) +

√(
ω

2vF
+ vF

ωl2
B

)2
⎤
⎦
⎫⎬
⎭. (A10)

This means that these factors evaluate to

A++
n (ki ) =

{
1, h̄vF

∣∣ vF

ωl2
B

− ω
2vF

∣∣ < μ − h̄vF h(ki ) < h̄vF

∣∣ vF

ωl2
B

+ ω
2vF

∣∣
0, otherwise,

(A11)

A−−
n (ki ) =

{
−1, −h̄vF

∣∣ vF

ωl2
B

+ ω
2vF

∣∣ < μ − h̄vF h(ki ) < −h̄vF

∣∣ vF

ωl2
B

− ω
2vF

∣∣
0, otherwise,

(A12)

A+−
n (ki ) =

{
−1, h̄vF

∣∣ vF

ωl2
B

− ω
2vF

∣∣ < μ − h̄vF h(ki ) < −h̄vF

∣∣ vF

ωl2
B

+ ω
2vF

∣∣
0, otherwise,

(A13)

A−+
n (ki ) =

{
1, −h̄vF

∣∣ vF

ωl2
B

− ω
2vF

∣∣ < μ − h̄vF h(ki ) < h̄vF

∣∣ vF

ωl2
B

+ ω
2vF

∣∣
0, otherwise.

(A14)

Also, the following simplifications can be done to the remaining factors of the response functions:

B+
n (ki )B

−
n+1(ki )Cn,n+1(ki )θ

(
2v2

F

l2
B

− ω2

)

=
⎧⎨
⎩1 − g2(ki )

v2
F

ω2l4
B

− ω2

4v2
F

+ g(ki )

⎛
⎝ 1∣∣ vF

ωl2
B

− ω
2vF

∣∣ − 1∣∣ vF

ωl2
B

+ ω
2vF

∣∣
⎞
⎠
⎫⎬
⎭
∣∣∣∣∣∣

ω2

4v2
F

− v2
F

ω2l4
B

g(ki )g′(ki ) ω
vF

∣∣∣∣∣∣θ
(

2v2
F

l2
B

− ω2

)

=
2n+1

l2
B

− ω2

2v2
F

+ g̃(ki )

v2
F

ω2l4
B

− ω2

4v2
F

∣∣∣∣∣∣
ω2

4v2
F

− v2
F

ω2l4
B

g(ki )g′(ki ) ω
vF

∣∣∣∣∣∣θ
(

2v2
F

l2
B

− ω2

)
=

2n+1
l2
B

− ω2

2v2
F

+ g̃(ki )

|g̃(ki )g′(ki )| θ

(
2v2

F

l2
B

− ω2

)
, (A15)
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B−
n (ki )B

+
n+1(ki )Cn,n+1(ki )θ

(
2v2

F

l2
B

− ω2

)

=
⎧⎨
⎩1 − g2(ki )

v2
F

ω2l4
B

− ω2

4v2
F

+ g(ki )

⎛
⎝ 1∣∣ vF

ωl2
B

+ ω
2vF

∣∣ − 1∣∣ vF

ωl2
B

− ω
2vF

∣∣
⎞
⎠
⎫⎬
⎭
∣∣∣∣∣∣

ω2

4v2
F

− v2
F

ω2l4
B

g(ki )g′(ki ) ω
vF

∣∣∣∣∣∣θ
(

2v2
F

l2
B

− ω2

)

=
2n+1

l2
B

− ω2

2v2
F

− g̃(ki )

v2
F

ω2l4
B

− ω2

4v2
F

∣∣∣∣∣∣
ω2

4v2
F

− v2
F

ω2l4
B

g(ki )g′(ki ) ω
vF

∣∣∣∣∣∣θ
(

2v2
F

l2
B

− ω2

)
=

2n+1
l2
B

− ω2

2v2
F

− g̃(ki )

|g̃(ki )g′(ki )| θ

(
2v2

F

l2
B

− ω2

)
, (A16)

B+
n (ki )B

+
n+1(ki )Cn,n+1(ki )θ

(
ω2 − 2v2

F

l2
B

)

=
⎧⎨
⎩1 + g2(ki )

ω2

4v2
F

− v2
F

ω2l4
B

+ g(ki )

⎛
⎝ 1∣∣ vF

ωl2
B

+ ω
2vF

∣∣ + 1∣∣ vF

ωl2
B

− ω
2vF

∣∣
⎞
⎠
⎫⎬
⎭
∣∣∣∣∣∣

ω2

4v2
F

− v2
F

ω2l4
B

g(ki )g′(ki ) ω
vF

∣∣∣∣∣∣θ
(

ω2 − 2v2
F

l2
B

)

=
ω2

2v2
F

− 2n+1
l2
B

+ g̃(ki )

ω2

4v2
F

− v2
F

ω2l4
B

∣∣∣∣∣∣
ω2

4v2
F

− v2
F

ω2l4
B

g(ki )g′(ki ) ω
vF

∣∣∣∣∣∣θ
(

ω2 − 2v2
F

l2
B

)
=

ω2

2v2
F

− 2n+1
l2
B

+ g̃(ki )

|g̃(ki )g′(ki )| θ

(
ω2 − 2v2

F

l2
B

)
, (A17)

B−
n (ki )B

−
n+1(ki )Cn,n+1(ki )θ

(
ω2 − 2v2

F

l2
B

)

=
⎧⎨
⎩1 + g2(ki )

ω2

4v2
F

− v2
F

ω2l4
B

− g(ki )

⎛
⎝ 1∣∣ vF

ωl2
B

+ ω
2vF

∣∣ + 1∣∣ vF

ωl2
B

− ω
2vF

∣∣
⎞
⎠
⎫⎬
⎭
∣∣∣∣∣∣

ω2

4v2
F

− v2
F

ω2l4
B

g(ki )g′(ki ) ω
vF

∣∣∣∣∣∣θ
(

ω2 − 2v2
F

l2
B

)

=
ω2

2v2
F

− 2n+1
l2
B

− g̃(ki )

ω2

4v2
F

− v2
F

ω2l4
B

∣∣∣∣∣∣
ω2

4v2
F

− v2
F

ω2l4
B

g(ki )g′(ki ) ω
vF

∣∣∣∣∣∣θ
(

ω2 − 2v2
F

l2
B

)
=

ω2

2v2
F

− 2n+1
l2
B

− g̃(ki )

|g̃(ki )g′(ki )| θ

(
ω2 − 2v2

F

l2
B

)
, (A18)

with g̃(ki ) := | ω
vF

|g(ki ). Then, we arrive at

Im[χxx(ω)] = − e2v2
F

16π l2
B

nmax∑
n=0

2m∑
i=1

⎧⎨
⎩A++

n (ki )

⎡
⎣ 2n+1

l2
B

− ω2

2v2
F

+ g̃(ki )

|g̃(ki )g′(ki )|

⎤
⎦θ

(
2v2

F

l2
B

− ω2

)
sgn(−ω)

+ A−−
n (ki )

⎡
⎣ 2n+1

l2
B

− ω2

2v2
F

− g̃(ki )

|g̃(ki )g′(ki )|

⎤
⎦θ

(
2v2

F

l2
B

− ω2

)
sgn(ω) + A+−

n (ki )

⎡
⎣ ω2

2v2
F

− 2n+1
l2
B

+ g̃(ki )

|g̃(ki )g′(ki )|

⎤
⎦θ

(
ω2 − 2v2

F

l2
B

)
sgn(ω)

+ A−+
n (ki )

⎡
⎣ ω2

2v2
F

− 2n+1
l2
B

− g̃(ki )

|g̃(ki )g′(ki )|

⎤
⎦θ

(
ω2 − 2v2

F

l2
B

)
sgn(−ω)

⎫⎬
⎭, (A19)

Re[χxy(ω)] = − e2v2
F

16π l2
B

nmax∑
n=0

2m∑
i=1

⎧⎨
⎩A++

n (ki )

⎡
⎣ 2n+1

l2
B

− ω2

2v2
F

+ g̃(ki )

|g̃(ki )g′(ki )|

⎤
⎦θ

(
2v2

F

l2
B

− ω2

)

+ A−−
n (ki )

⎡
⎣ 2n+1

l2
B

− ω2

2v2
F

− g̃(ki )

|g̃(ki )g′(ki )|

⎤
⎦θ

(
2v2

F

l2
B

− ω2

)
+ A+−

n (ki )

⎡
⎣ ω2

2v2
F

− 2n+1
l2
B

+ g̃(ki )

|g̃(ki )g′(ki )|

⎤
⎦θ

(
ω2 − 2v2

F

l2
B

)

+ A−+
n (ki )

⎡
⎣ ω2

2v2
F

− 2n+1
l2
B

− g̃(ki )

|g̃(ki )g′(ki )|

⎤
⎦θ

(
ω2 − 2v2

F

l2
B

)⎫⎬
⎭. (A20)
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2. Contribution from the chiral level

Even though the contribution from the chiral level is, at least schematically, covered by the reasoning above, it serves a
purpose to spell it out explicitly. Initially, this reads

Im
[
χ0

xx(ω)
] = − e2v2

F

8π l2
B

∫
dkz

⎛
⎜⎝{θ [μ − E0(kz )] − θ [μ − E1,+(kz )]}

⎡
⎢⎣1 − g(kz )√

g2(kz ) + 2
l2
B

⎤
⎥⎦δ

{
h̄ω − h̄vF

[
g(kz )−

√
g2(kz ) + 2

l2
B

]}

+ {θ [μ − E0(kz )] − θ [μ − E1,−(kz )]}

⎡
⎢⎣1 + g(kz )√

g2(kz ) + 2
l2
B

⎤
⎥⎦δ

{
h̄ω − h̄vF

[
g(kz ) +

√
g2(kz ) + 2

l2
B

]}

+ {θ [μ − E1,+(kz )] − θ [μ − E0(kz )]}

⎡
⎢⎣1 − g(kz )√

g2(kz ) + 2
l2
B

⎤
⎥⎦δ

{
h̄ω − h̄vF

[√
g2(kz ) + 2

l2
B

− g(kz )

]}

+ {θ [μ − E1,−(kz )] − θ [μ − E0(kz )]}

⎡
⎢⎣1 + g(kz )√

g2(kz ) + 2
l2
B

⎤
⎥⎦δ

{
h̄ω − h̄vF

[
−
√

g2(kz ) + 2

l2
B

− g(kz )

]}⎞⎟⎠, (A21)

Re
[
χ0

xy(ω)
] = − e2v2

F

8π l2
B

∫
dkz

⎛
⎜⎝{θ [μ − E0(kz )] − θ [μ − E1,+(kz )]}

⎡
⎢⎣1− g(kz )√

g2(kz ) + 2
l2
B

⎤
⎥⎦δ

{
h̄ω − h̄vF

[
g(kz )−

√
g2(kz ) + 2

l2
B

]}

+ {θ [μ − E0(kz )] − θ [μ − E1,−(kz )]}

⎡
⎢⎣1 + g(kz )√

g2(kz ) + 2
l2
B

⎤
⎥⎦δ

{
h̄ω − h̄vF

[
g(kz ) +

√
g2(kz ) + 2

l2
B

]}

− {θ [μ − E1,+(kz )] − θ [μ − E0(kz )]}

⎡
⎢⎣1 − g(kz )√

g2(kz ) + 2
l2
B

⎤
⎥⎦δ

{
h̄ω − h̄vF

[√
g2(kz ) + 2

l2
B

− g(kz )

]}

− {θ [μ − E1,−(kz )] − θ [μ − E0(kz )]}

⎡
⎢⎣1 + g(kz )√

g2(kz ) + 2
l2
B

⎤
⎥⎦δ

{
h̄ω − h̄vF

[
−
√

g2(kz ) + 2

l2
B

− g(kz )

]}⎞⎟⎠. (A22)

The integrals are again carried out by solving the expressions inside the Dirac δ distributions, which yields

h̄ω − h̄vF

[
g(kz ) −

√
g2(kz ) + 2

l2
B

]
= 0 ⇒ g(kz ) = ω2l2

B − 2v2
F

2l2
BvF ω

θ (−ω), (A23)

h̄ω − h̄vF

[
g(kz ) +

√
g2(kz ) + 2

l2
B

]
= 0 ⇒ g(kz ) = ω2l2

B − 2v2
F

2l2
BvF ω

θ (ω), (A24)

h̄ω − h̄vF

[√
g2(kz ) + 2

l2
B

− g(kz )

]
= 0 ⇒ g(kz ) = 2v2

F − ω2l2
B

2l2
BvF ω

θ (ω), (A25)

h̄ω − h̄vF

[
−
√

g2(kz ) + 2

l2
B

− g(kz )

]
= 0 ⇒ g(kz ) = 2v2

F − ω2l2
B

2l2
BvF ω

θ (−ω). (A26)

Plugging these solutions back into the expression for the chiral contribution, we arrive at

Im
[
χ0

xx(ω)
] = − e2v2

F

8π l2
B

m∑
i=1

({
θ
[
μ − E0

(
ki

1

)]− θ
[
μ − E1,+

(
ki

1

)]} θ (−ω)

h̄vF

∣∣g′(ki
1

)∣∣+{θ[μ − E0
(
ki

1

)]−θ
[
μ − E1,−(ki

1)
]} θ (ω)

h̄vF

∣∣g′(ki
1

)∣∣
+ {

θ
[
μ − E1,+

(
ki

2

)]− θ
[
μ − E0

(
ki

2

)]} θ (ω)

h̄vF

∣∣g′(ki
2

)∣∣ + {
θ
[
μ − E1,−

(
ki

2

)]− θ
[
μ − E0

(
ki

2

)]} θ (−ω)

h̄vF |g′(ki
2)|

)
,

(A27)
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Re
[
χ0

xy(ω)
] = − e2v2

F

8π l2
B

m∑
i=1

({
θ
[
μ − E0

(
ki

1

)]− θ
[
μ − E1,+

(
ki

1

)]} 1

h̄vF

∣∣g′(ki
1

)∣∣ + {
θ
[
μ−E0

(
ki

1

)]−θ
[
μ−E1,−

(
ki

1

)]} 1

h̄vF

∣∣g′(ki
1

)∣∣
+ {

θ
[
μ − E1,+

(
ki

2

)]− θ
[
μ − E0

(
ki

2

)]} 1

h̄vF

∣∣g′(ki
2

)∣∣ + {
θ
[
μ − E1,−

(
ki

2

)]− θ
[
μ − E0

(
ki

2

)]} 1

h̄vF

∣∣g′(ki
2

)∣∣
)

,

(A28)

where ki
1,2 denotes the solutions obtained when solving Eqs. (A23)–(A26) for kz.
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