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Theory of the inverse Rashba-Edelstein effect induced by thermal spin injection
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We theoretically consider a junction composed of a ferromagnetic insulator (FI) and a two-dimensional
electron gas (2DEG) with Rashba- and Dresselhaus-type spin-orbit interactions. Using the Boltzmann equation,
we calculate an electric current in 2DEG induced by the inverse Rashba-Edelstein effect when imposing
the temperature difference between the FI and 2DEG. We clarify how the induced current depends on the
magnetization direction of the FI, spin texture on the Fermi surface of 2DEG, and temperature. Our result
provides an important foundation for an accurate analysis of the inverse Rashba-Edelstein effect induced by
thermal spin injection.
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I. INTRODUCTION

Spin-charge conversion in two-dimensional electron gas
(2DEG) is one of the key ingredients in modern spintronics
technology. In a system without spatial inversion symme-
try, the spin polarization is generated by applying a charge
current. This phenomenon is called the Rashba-Edelstein ef-
fect (REE) [1–11] or the inverse spin-galvanic effect [12,13].
In contrast, its inverse effect, that is, the generation of
charge currents from spin polarization, is called the inverse
Rashba-Edelstein effect (IREE) [7,14,15] or the spin-galvanic
effect [6,16–21]. These spin-charge conversion phenomena in
2DEG are now becoming important in the field of semicon-
ductor spintronics [11,22–27].

In the past decade, spintronic devices that combine REE
or IREE with standard methods of spintronics have been un-
der intense investigation. For example, spin pumping [28–30]
caused by ferromagnetic resonance (FMR) has been used to
generate electron spins from a ferromagnet into an adjacent
system. This technique has been combined with IREE for
spin-charge conversion in various materials [14,31–58].

Recently, spin-charge conversion using IREE and thermal-
gradient-induced magnon spin current has been demonstrated
in 2DEG at the EuO-KTaO3 heterostructure [59]. In this ex-
periment, a large spin Seebeck coefficient was observed in
comparison to the standard setup, i.e., the Pt/YIG heterostruc-
ture with the same thickness for a magnetic layer, suggesting a
potential application to spintronics devices. The current gener-
ation in this system is governed by a spin-momentum locking
due to the strong Rashba spin-orbit interaction originating
from the 5d atomic orbit at the tantalum atom [26,27].

A similar spin-charge conversion due to thermal spin in-
jection is expected to occur in semiconductor junctions such
as the GaAs-Fe interface, in which two types of spin-orbit
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interactions, namely Rashba and Dresselhaus spin-orbit inter-
actions, coexist [10,60,61]. Several studies on REE and IREE
for 2DEG have been performed in semiconductor heterostruc-
tures [20,62–87], and IREE combined with spin pumping has
begun to be theoretically studied recently [88–91]. However,
a microscopic theory of IREE for thermal spin injection has
not been provided so far.

In this paper, we theoretically discuss IREE induced by
thermal spin injection. We consider a magnetic junction com-
posed of 2DEG and a ferromagnetic insulator (FI) as shown
in Fig. 1(a). In our work, we set the temperatures of 2DEG
and FI as T and T + �T and explain IREE in the case of
�T > 0, although our theory can also describe the opposite
case. We introduce the x-y coordinate in the plane of 2DEG
and denote the azimuth angle θ of the spin in the FI [see
Fig. 1(b)]. To clarify the effect of spin-momentum locking, we
consider two types of spin-orbit interactions, i.e., the Rashba
and Dresselhaus spin-orbit interactions. For simplicity, we
consider the case in which the strength of these spin-orbit
interactions is much larger than the temperature and energy
broadening of electron scattering and much smaller than the
Fermi energy. We note that the effect of the spin-momentum
locking is most effective in this condition. For describing
nonequilibrium steady states of 2DEG, we derive the Boltz-
mann equation, in which interfacial electron scattering at the
interface evolving spin flipping is taken into account in terms
of the collision term. For this magnetic junction, we clarify
how the induced current depends on the azimuth angle θ of
the spin in the FI, the temperature, and the ratio of the Rashba
and Dresselhaus interactions. This study provides an impor-
tant foundation for an accurate analysis of IREE induced by
thermal spin injection into 2DEG.

II. MODEL

The Hamiltonian for a 2D electron system coupled with a
ferromagnetic insulator is given by the following expression:

H = Hkin + Himp + HFI + Hint, (1)
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FIG. 1. (a) A magnetic junction composed of a ferromagnetic
insulator (FI) and two-dimensional electron gas (2DEG). (b) Coor-
dinate transformation between the laboratory frame (x, y, z) and the
frame (x′, y′, z′) fixed to the spin orientation in the FI. We define θ as
an angle between the spin orientation and the x axis.

where Hkin represents the kinetic energy and spin-orbit inter-
action of 2DEG, Himp accounts for impurities in 2DEG, HFI

describes the FI, and Hint characterizes the interface between
2DEG and FI. Detailed explanations for each term are pro-
vided in the subsequent sections. In the following, we use the
laboratory coordinate (x, y, z) so that the xy plane is parallel
to the 2DEG (see Fig. 1).

A. Two-dimensional electron gas

The kinetic term Hkin of 2DEG is expressed as follows:

Hkin =
∑

k

∑
σσ ′

c†
kσ

(ĥk)σσ ′ckσ ′ , (2)

ĥk = ξk Î + α(kyσx − kxσy) + β(kxσx − kyσy), (3)

where k = (kx, ky) is the two-dimensional wave number of
the electrons, σ, σ ′ (=↑,↓) indicates an electron spin, ξk =
h̄2k2/2m∗ − μ is the kinetic energy measured from the chem-
ical potential μ, m∗ is the effective mass, I is a 2 × 2
identity matrix, and σ = (σx, σy, σz ) denotes Pauli matrices.
The strengths of the Rashba-type and Dresselhaus-type spin-
orbit interactions are denoted by α and β, respectively. The
matrix ĥk is rewritten as

ĥk = ξk Î − heff (k) · σ, (4)

where heff (k) denotes an effective Zeeman field acting on the
electrons:

heff (k) = k

⎛
⎝−α sin ϕ − β cos ϕ

α cos ϕ + β sin ϕ

0

⎞
⎠, (5)

where we have introduced the polar representation k =
(k cos ϕ, k sin ϕ) for the electron wave number. By diagonal-
izing the matrix ĥk, the energy eigenvalue Ekγ and eigenvector
ukγ are obtained as

Ekγ = ξk + γ |heff (k)|, (6)

(ukγ )σ = C(ϕ)√
2

δσ,↑ + γ√
2
δσ,↓, (7)

where γ = ±1 assigns the spin-splitting band, C(ϕ) =
−ĥeff,x(ϕ) + iĥeff,y(ϕ), and ĥeff (ϕ) = heff (k)/|heff (k)| is a
unit vector pointing to the effective Zeeman field. We note

that the spin of the state γ = +1 (−1) points in the opposite
(the same) direction to ĥeff .

We consider impurities in 2DEG whose potential energy is
described by the δ function as v(r) = v0δ(r). The Hamiltonian
of the impurities is written as

Himp = v0

A
∑
k,q,σ

ρimp(q)c†
k+qσ

ckσ , (8)

where A is an area of 2DEG, ρimp(q) = ∑
i e−iq·Ri , and Ri

denotes the position of the impurity.

B. Ferromagnetic insulator

We assume that the spins in the FI are aligned in the in-
plane (xy) direction, as shown in Fig. 1. We define the azimuth
angle of the spin measured from the x axis as θ [see Fig. 1(b)].
Then, the average of the localized spin in the FI is given as
〈Si〉 = (S0 cos θ, S0 sin θ, 0), where S0 denotes the amplitude
of the localized spin. To apply the spin-wave approximation,
we introduce a new coordinate (x′, y′, z′) in which the x′ axis
is taken in the direction of the spin in the FI. Using this new
coordinate, the Hamiltonian of the FI is given as

HFI =
∑
〈i, j〉

J
(
Sx′

i Sx′
j + Sy′

i Sy′
j + Sz′

i Sz′
j

) − hdc

∑
i

Sx′
i , (9)

where Si = (Sx′
i , Sy′

i , Sz′
i ) is the spin operator of the FI, 〈i, j〉

indicates a pair of neighboring sites, J is the exchange in-
teraction, and hdc is an external magnetic field. Using the
Holstein-Primakoff transformation, the spin operators can be
expressed with annihilation and creation operators of the
magnon as

Sx′−
i 	

√
2S0b†

i , (10)

Sx′+
i 	

√
2S0bi, (11)

Sx′
i = S0 − b†

i bi. (12)

The Hamiltonian is rewritten in the leading term with respect
to 1/S0 as

HFI =
∑

q

h̄ωqb†
qbq, (13)

where bq is a Fourier transformation of bi, h̄ωq = hdc + Dq2

is a magnon dispersion, and D is a spin stiffness.

C. Interfacial exchange interaction

The Hamiltonian for the interfacial exchange interaction is
given as

Hint =
∑
q‖,qz

(
TqSx′+

q sx′−
q‖

+ T ∗
q Sx′−

q sx′+
q‖

)
, (14)

where q‖ = (qx, qy) is the in-plane component of the momen-
tum transfer q = (qx, qy, qz ) and Tq represents the strength of
the interfacial exchange coupling between the FI and 2DEG.
Here, we assumed conservation of the in-plane momentum,
which is expected to hold for a clean interface [92], and
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sx′±
q = sy′

±q ± isz′
±q is a Fourier transformation of spin ladder

operators for electrons of 2DEG in the coordinate (x′, y′, z′):

sx′
q = cos θsx

q + sin θsy
q, (15)

sy′
q = − sin θsx

q + cos θsy
q, (16)

sz′
q = sz

q. (17)

Here, sa
q is the spin operators in the laboratory coordinate:

sa
q = 1

2

∑
σσ ′

∑
k

c†
kσ

(σa)σσ ′ck+qσ ′ (a = x, y, z). (18)

Combining these equations, we obtain

sx′±
q = 1

2

∑
σσ ′

∑
k

c†
kσ

(σ̂ x′±)σσ ′ck±qσ ′ , (19)

σ̂ x′± = − sin θ σx + cos θ σy ± iσz. (20)

Therefore, the Hamiltonian for the interface is given as

Hint =
∑

k,q,qz

∑
σσ ′

(√
2S0Tq

2
bqc†

kσ
(σ̂ x′−)σσ ′ck−q‖σ ′ + H.c.

)
.

(21)

Here, we have omitted the static term proportional to S0,
which stems from the first term on the right-hand side of
Eq. (12). Generally, this omitted term corresponds to the ex-
change bias at the interface and can alter the spin-dependent
energy dispersion of the 2DEG and its electronic states. How-
ever, such an effect can be ignored if the exchange coupling at
the interface is much weaker than the spin splitting energy.

III. FORMULATION

A. Boltzmann equation

We follow the method based on the Boltzmann equation in
Ref. [91]. We assume that the spin-orbit interactions are much
larger than the temperature and energy broadening due to
the impurity scattering rate, which is defined later. We also
assume that the spin-splitting energy is much smaller than
the chemical potential μ. Then, the electronic state of 2DEG
is described by a distribution function f (k, γ ) for a uniform
steady state [86] and the Boltzmann equation contains only
collision terms as

0 = ∂ f (k, γ )

∂t

∣∣∣∣
int

+ ∂ f (k, γ )

∂t

∣∣∣∣
imp

, (22)

where the first term on the right-hand side is an interfacial
collision term due to spin injection from the FI and the second
one is due to impurity scattering. The 2DEG and FI tempera-
tures are set as T and T + �T , respectively. Within the linear
response to the temperature difference �T , we consider the
modification of the distribution function in the form [93–95]

f (k, γ ) 	 f0(Ekγ ) + ∂ f0(Ekγ )

∂Ekγ

�(ϕ, γ ), (23)

where f0(ε) = [exp(ε/kBT ) + 1]−1 is the Fermi distribution
function and �(ϕ, γ ) denotes the shift of the chemical po-
tential in the direction of ϕ, which is proportional to the
temperature gradient �T .

B. Impurity scattering

The collision term due to impurity scattering is given as

∂ f (k, γ )

∂t

∣∣∣∣
imp

= �(k′γ ′ )→(kγ ) f (k′, γ ′)

− �(kγ )→(k′γ ′ ) f (k, γ ), (24)

where the transition rate �(kγ )→(k′γ ′ ) is given by Fermi’s
golden rule as

�(kγ )→(k′γ ′ ) = 2π

h̄
|〈k′γ ′|ĥimp|kγ 〉|2δ(Ek′γ ′ − Ekγ ). (25)

The matrix element 〈k′γ ′|ĥimp|kγ 〉 is given from the Hamilto-
nian (8) as

〈k′γ ′|himp|kγ 〉 = v0

A ρimp(k′ − k)Aγ ′γ , (26)

Aγ ′γ =
∑

σ

(uk′γ ′ )∗σ (ukγ )σ . (27)

We can proceed in calculation, using the relations

∣∣Aγ ′γ
∣∣2 = 1 + γ γ ′ĥeff (ϕ) · ĥeff (ϕ′)

2
(28)

and 〈|ρimp(k)|2〉imp/A = nimp, where nimp is an impurity den-
sity and 〈· · · 〉imp indicates an average with respect to the
impurity position Ri. Finally, we obtain

∂ f (k, γ )

∂t

∣∣∣∣
imp

= 2πv2
0nimp

h̄A
∑
k′γ ′

1 + γ γ ′ĥeff (ϕ) · ĥeff (ϕ′)
2

× [ f (k′, γ ′) − f (k, γ )]δ(Ek′γ ′ − Ekγ ).
(29)

C. Interfacial scattering

The collision term due to the interface scattering is a sum of
magnon absorption (λ = −) and emission (λ = +) processes:

∂ f (k, γ )

∂t

∣∣∣∣
int

=
∑
λ=±

[�λ
(k′γ ′ )→(kγ ) f (k′, γ ′)

− �λ
(kγ )→(k′γ ′ ) f (k, γ )]. (30)

Let us first consider the magnon absorption process. The tran-
sition rate is calculated by Fermi’s golden rule, after thermal
average with respect to the magnon, as

�−
(kγ )→(k′γ ′ ) = 2π

h̄
|〈k′γ ′|ĥ−

int|kγ 〉|2Nq

× δ(Ek′γ ′ − Ekγ − h̄ωq)δq‖,k
′−k, (31)

where Nq is the Bose distribution function. The matrix ele-
ment 〈k′γ ′|ĥ−

int|kγ 〉 is determined from the first term of the
Hamiltonian (21) as

〈k′γ ′|ĥint|kγ 〉 = Tq

√
2S0

2
δq‖,k−k′A−

γ ′γ , (32)

A−
γ ′γ =

∑
σ ′σ

(uk′γ ′ )∗σ ′ (σ̂ x′−)σ ′σ (ukγ )σ . (33)

Using Eq. (7), we obtain

|A−
γ ′γ |2 = [1 + γ ′ĥeff (ϕ′) · m̂][1 − γ ĥeff (ϕ) · m̂], (34)
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where m̂ = (cos θ, sin θ, 0) is a unit vector pointing to the
direction of the ordered spin in FI. Using this factor, the
transition rate is written as

�−
(kγ )→(k′γ ′ )

= πS0|Tq|2
h̄

|A−
γ ′γ |2Nqδq‖,k

′−kδ(Ek′γ ′ − Ekγ − h̄ωq). (35)

Here, we note that the transition rate takes a maximum when
γ ĥeff (ϕ) · m̂ = −γ ′ĥeff (ϕ′) · m̂ = 1. This is consistent with
the fact that the magnon absorption induces spin flipping to
2DEG electrons in the opposite direction to the ordered spin.
In a similar way, the transition rate for the magnon emission
process is calculated as

�+
(kγ )→(k′γ ′ ) = πS0|Tq|2

h̄

∣∣A+
γ ′γ

∣∣2
(Nq + 1)δq‖,k−k′

× δ(Ek′γ ′ − Ekγ + h̄ωq), (36)

|A+
γ ′γ |2 = [1 − γ ′ĥeff (ϕ′) · m̂][1 + γ ĥeff (ϕ) · m̂]. (37)

Thus, we finally obtain the collision term due to the interfacial
scattering as

∂ f (k, γ )

∂t

∣∣∣∣
int

= πS0

h̄

∑
k′,q,γ ′

|Tq|2[|A+
γ γ ′ |2Fγ γ ′ (q, k, k′)

− |A+
γ ′γ |2Fγ ′γ (q, k′, k)], (38)

Fγ γ ′ (q, k, k′) = {(Nq + 1) f (k′, γ ′)[1 − f (k, γ )]

− Nq f (k, γ )[1 − f (k′, γ ′)]}
× δ(Ekγ − Ek′γ ′ + h̄ωq)δq‖,k

′−k, (39)

where we have used [A±
γ ′γ (ϕ′, ϕ)]∗ = A∓

γ γ ′ (ϕ, ϕ′).
These collision terms reflect the energy conservation law

through the δ function. We note that the typical magnon en-
ergy relevant to spin injection into 2DEG is given by kBT ,
which is assumed to be much smaller than the spin-splitting
energy. Therefore, we can safely neglect the factor h̄ωq in
the δ function. In the following, we employ this quasielastic
approximation.

D. Solution of the Boltzmann equation

We first rewrite the collision terms with integrals, using

1

A
∑

k′
(· · · ) → 1

2π

∫ 2π

0

dϕ

2π

∫
dk′(· · · ). (40)

Assuming that the spin-splitting energy is sufficiently smaller
than the Fermi energy, the δ function in the collision term is
rewritten as

δ(Ek′γ ′ − Ekγ ) = 1

h̄vF
δ(k′ − k(ϕ′, γ ′) − k + k(ϕ, γ )), (41)

where vF = h̄kF/m∗ is the Fermi velocity, kF is the Fermi wave
number in the absence of the spin-orbit interaction, and

k(ϕ, γ ) = kF − γ kF

h̄vF

√
α2 + β2 + 2αβ sin 2ϕ

= kF − 2πγ D(EF)
√

α2 + β2 + 2αβ sin 2ϕ (42)

is the wave number of the Fermi surface in the direction of ϕ

for the band γ . In the second equation of Eq. (42), we have
used the fact that the density of states per spin is given as
D(EF) = kF/2π h̄vF.

We note that the collision terms become zero for the ther-
mal equilibrium states (�T = 0). The collision term due to
impurities is calculated up to the first order of �T as

∂ f (k, γ )

∂t

∣∣∣∣
imp

= �

h̄

∑
γ ′

∫
dϕ′

2π

k − k(ϕ, γ ) + k(ϕ′, γ ′)
kF

× 1 + γ γ ′ĥeff (ϕ) · ĥeff (ϕ′)
2

× f0(k, γ )[1 − f0(k, γ )][�(ϕ′, γ ′)

− �(ϕ, γ )], (43)

where � = 2πv2
0nimpD(EF) is the energy broadening due to

impurity scattering. In a similar way, the collision term due to
interfacial scattering is calculated up to the first order of �T
as

∂ f (k, γ )

∂t

∣∣∣∣
int

= − �T

kBT 2

�int

h̄

∑
γ ′

∫
dϕ′

2π

k − k(ϕ, γ ) + k(ϕ′, γ ′)
kF

× −γ ĥeff (ϕ) · m̂ + γ ′ĥeff (ϕ′) · m̂
2

× I (ϕ − ϕ′) f0(k, γ )[1 − f0(k, γ )], (44)

where the tunnel matrix element is assumed to be constant
(Tq = T̄ ), the interfacial coupling strength is defined as �int =
2S0d|T̄ |2AD(EF)/a, and a and d denote the lattice spacing
and the thickness of the FI, respectively. The temperature-
dependent factor I (ϕ) is defined as

I (ϕ) =
∫ π

−π

d (qza) h̄ω(ϕ, qz )n(ϕ, qz ), (45)

h̄ω(ϕ, qz ) = hdc + 4Dk2
F sin2 ϕ

2
+ Dq2

z , (46)

n(ϕ, qz ) = 1

eh̄ω(ϕ,qz )/kBT − 1
. (47)

Combining Eqs. (22) with (43) and (44), we obtain analytic
solution for �(ϕ, γ ) as

�(ϕ, γ ) = �T

T

�int

�

[
2γ I1(T )ĥ

T
eff (ϕ)Mm̂

+ I2(T )

h̄vFkF
heff (ϕ) · m̂

]
, (48)

where the superscript T indicates vector transpose and M is a
2 × 2 matrix defined as

M = 1

1 − D2

(
1 −D

−D 1

)
, (49)

D = α2 + β2 − |α2 − β2|
2αβ

= min (β/α, α/β ), (50)
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and the temperature-dependent factors are defined as

I1(T ) =
∫ 2π

0

dϕ′

2π

∫ π

−π

d (qza) h̄ω(ϕ′, qz )n(ϕ′, qz ), (51)

I2(T ) =
∫ 2π

0

dϕ′

2π

∫ π

−π

d (qza) h̄ω(ϕ′, qz )n(ϕ′, qz ) cos ϕ′.

(52)

For a detailed derivation, see Appendix A.

IV. INDUCED CURRENT

In this section, we calculate the current induced by IREE
and thermal spin injection. For reference, we describe the
result for spin accumulation and heat current in Appendixes
B and C, respectively.

A. Analytic result

The current in 2DEG induced by thermal spin injection is
written with the distribution function as

j = e

A
∑
k,γ

v(k, γ ) f (k, γ ), (53)

where v(k, γ ) is a velocity defined as

v(k, γ ) ≡ 1

h̄

∂Ekγ

∂k
= h̄k

m∗ + γ

h̄

∂heff (k)

∂k
. (54)

Replacing the sum with an integral and using
−∂ f0(k, γ )/∂Ekγ 	 δ(k − k(ϕ, γ ))/h̄vF, the current is
rewritten with �(ϕ, γ ) as

j = ekF

2π h̄vF

∑
γ

∫
dϕ

2π

k(ϕ, γ )

kF
v(k(ϕ, γ ), ϕ, γ )�(ϕ, γ ),

(55)

v(k(ϕ, γ ), ϕ, γ ) = vF k̂ + γ

h̄

2αβ cos 2ϕ√
α2 + β2 + 2αβ sin 2ϕ

ϕ̂,

(56)

where k̂ = (cos ϕ, sin ϕ) and ϕ̂ = (− sin ϕ, cos ϕ) are unit di-
rection vectors. Substituting Eq. (48), the current is calculated
up to the first order of the spin-orbit interaction as

j = 2ekF

2π h̄2vF

�T

T

�int

�

(
I1(T ) − I2(T )

2

)(
β −α

α −β

)
m̂. (57)

This is a main result of our work. For a detailed derivation,
see Appendix D.

Let us discuss the qualitative features of the induced cur-
rent. The current depends on the temperature only through the
factor I1(T ) − I2(T )/2 (>0) in Eq. (57), while it depends on
the direction of the ordered spin, m̂ = (cos θ, sin θ ), in the FI
through the last part of Eq. (57). The latter relation is rewritten
as

j ‖
(

β −α

α −β

)
m̂ = α

(
sin θ

cos θ

)
+ β

(− cos θ

sin θ

)
. (58)

It is remarkable that this relation between the magnetization
m̂ and the current j holds even for � � kFα, kFβ, which is
the opposite condition to our calculation [96]. We also note
that the current j(α, β ) has a symmetry relation

jx(α, β ) = jy(β, α). (59)

This indicates that the induced current for a certain value of
the ratio α/β can be related to that of its inverse, that is, β/α.

B. Spin-orientation dependence

Next, we discuss how the induced current j = ( jx, jy)
depends on the orientation of the ordered spin m =
(cos θ, sin θ ). Figures 2(a) and 2(b), respectively, show jx and
jy as a function of the ratio α/β and the azimuth angle θ of m.
The current is normalized by j′0 = j0�T/T , where

j0 = 8|e|D(EF)Dk2
F

√
α2 + β2

h̄

�int

�
. (60)

As indicated from Eq. (58), the x- and y-component of the
current is proportional to a trigonometric function of θ and
takes a maximum (a minimum) at a specific value of θ . The
position of the maximum (minimum) changes as the ratio α/β

increases.
We first consider the case in which only the Dresselhaus

spin-orbit interaction exists (α/β = 0). For θ = 0 (indicated
by A in the contour plot) the current flows in the −x direction,
while for θ = π/2 (indicated by B) it flows in the y direction.
To explain the physical mechanism of current generation at
the points A and B, we show schematic pictures of the cor-
responding electron distribution functions in the upper two
right panels of Fig. 2. We first note that the magnon absorp-
tion process always becomes predominant over the magnon
emission process, since the temperature of FI is assumed to
be higher than that of 2DEG. Because the magnon carries
spin in the direction opposite to S, the temperature gradi-
ent across the junction induces spin injection into 2DEG by
flipping conduction electron spins in the direction opposite
to the ordered spin in FI, 〈S〉. This spin flipping changes
the distribution function of electrons, depending on the spin
polarization of 2DEG electrons, which is depicted by arrows
on the Fermi surface. When the spin in the FI, 〈S〉, points to
the +x direction (θ = 0, panel A), spin flipping toward the −x
direction occurs for 2DEG electrons by magnon absorption at
the interface. As a result, the distribution of electrons in the
momentum space is modified as indicated by the red (blue)
region at which the distribution function increases (decreases).
Since the shifts of the Fermi surface are opposite for the two
spin-splitting bands, they are almost canceled. However, the
cancellation is not complete since the density of states is larger
for the outer Fermi surface. Therefore, the electrons flow in
the +x direction, resulting in the charge current in the −x
direction. In the same way, we can explain the direction of the
current when 〈S〉 points to the +y direction (θ = π/2, panel
B); magnon absorption causes spin flipping of 2DEG in the
−y direction, leading to the Fermi surface modification shown
by the red and blue regions in panel B. This Fermi-surface
modification produces the current in the y direction. We note
that the direction of the current changes clockwise when the
direction of 〈S〉 rotates counterclockwise.

Next, we consider the case in which the two spin-orbit
interactions compete (α/β = 1). For θ = π/4 (the point C in
the contour plot), the spin polarization on the Fermi surface of
2DEG is always perpendicular to S, leading to the vanishing
current (see panel C in Fig. 2). On the other hand, for θ =
3π/4 (the point D), spin flipping of the conduction electrons
toward the −S direction induces Fermi surface modification as
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FIG. 2. Contour plots of the current density j = ( jx, jy ) of 2DEG induced by thermal spin injection as a function of the azimuth angle θ of
the spin in FI and α/β: (a) jx and (b) jy. The temperatures of FI and 2DEG are taken as T + �T and T , respectively. We set kBT/4Dk2

F = 1
and hdc = 0. The current density is normalized by j′0 = j0�T/T , where j0 is defined in Eq. (60). The four right panels show schematic pictures
of the Fermi surface modification by thermal spin injection at the four points, A, B, C, and D, in the contour plots.

indicated by the red and blue regions in the panel D in Fig. 2,
resulting in the charge current in the direction of the azimuth
angle π/4.

Thus, the current generation due to the temperature gradi-
ent can be explained intuitively in terms of the Fermi surface
modification depending on its spin polarization.

C. Other dependence

The temperature dependence of the current is determined
only by the factor I1(T ) − I2(T )/2, as seen in Eq. (57). By
changing the integral variable from qz to x = h̄ω(ϕ, qz )/kBT
in Eqs. (51) and (52), we can show that both I1(T ) and I2(T )
are proportional to T 3/2. Therefore, when the temperature dif-
ference �T is fixed, the current becomes proportional to T 1/2.
The exponent of the temperature dependence depends on the
dimension of the FI through the density of states of magnons.
For example, the current becomes independent of the temper-
ature for a fixed �T if we consider a two-dimensional FI.

Regarding the dependence on α/β, it is notable that the
maximum of the induced current is always proportional to
α2 + β2. This means that the current is independent of the
ratio α/β while keeping the amplitude (α2 + β2)1/2 constant.
This behavior is in contrast with the spin accumulation
of 2DEG, which shows divergence at α/β = 1 (see
Appendix B).

V. EXPERIMENTAL RELEVANCE

In comparison with experiments, we should be care-
ful about how the temperature gradient is generated in a
sample. In particular, thermal conductivity due to phonons,
which is not explicitly considered in our work, largely af-
fects the current generation in 2DEG through the change of
temperature distribution in a sample, which is difficult to mea-

sure. Therefore, it will be difficult to experimentally observe
the temperature dependence predicted in our work. However,
the prediction on the spin-orientation dependence will be
tested experimentally since it is not affected by a detail of the
temperature gradient. We also mention that more information
can be obtained by simultaneous measurement of the present
phenomenon and IREE induced by spin pumping [91].

To clarify the experimental relevance, we roughly es-
timate the current induced by thermal spin injection. We
first consider a junction composed of EuO and KTaO3

[59]. Using the electron density n 	 1014 cm−2, the mo-
bility μe = 102 cm2/V s, the effective mass m∗ = 0.52me

(me is the electron mass), and the lattice spacing a = 4 Å
[59,97], we obtain � = 22 meV. When the interfacial ex-
change coupling is roughly estimated as 10 meV, we obtain
�int = 3 × 10−2 meV. Using the Rashba spin-orbit interac-
tion α = 320 meV Å [97], S0 = 7/2, and D = 10 meV Å2

[98,99], we obtain j0 = 60 µA/mm. Setting �T = 1 K
and kBT = 4Dk2

F = 2.5 meV, we finally obtain the current
j = 0.2 nA/mm, which is comparable to the experimental
value j ∼ 1 nA/mm [59].

As another example, we consider a GaAs-Fe junction
in which the ratio between the Rashba and Dresselhaus
spin-orbit interactions can be controlled. Using n = 1.1 ×
1017 cm−3, μe = 3.5 × 103 cm2/V s [100], m∗ = 0.067me,
S0 ∼ 2 [101], and D = 230 meV Å2 [102], we obtain � =
5 meV and �int = 1.2 µeV, assuming the interfacial exchange
coupling of J = 10 meV. When we set α = 100 meV Å [57],
β = 0, �T = 1 K, and kBT = 4Dk2

F = 0.2 meV as a rough
estimate, we obtain j = 1.4 pA/mm, which is expected to be
in a detectable range.

In this work, the spin-splitting energy determined by kFα

and kFβ is assumed to be much larger than the temperature
(kBT ), the energy broadening due to impurities (�), and the
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scattering rate at the interface (�int), while it is assumed to
be much smaller than the chemical potential μ. The features
of the induced current obtained in this work are expected to
be observed most clearly under these conditions, for which
the spin-momentum locking is most effective. On the other
hand, we expect the current to be induced even if some of the
conditions are not well satisfied. In fact, the theoretical de-
scription for the ordinary direct and inverse Rashba-Edelstein
effects does not require such conditions. We leave a detailed
calculation that covers a wide range of parameters as a future
problem.

VI. SUMMARY

We theoretically examined current generation by the
thermal spin injection into 2DEG with the Rashba and
Dresselhaus spin-orbit interactions. For a magnetic junction
composed of 2DEG and FI, we formulated the electric current
in 2DEG caused by the inverse Rashba-Edelstein effect under
a temperature gradient between 2DEG and FI, employing
the method of the Boltzmann equation. In our formulation, a
nonequilibrium steady state of 2DEG is realized by balancing
impurity scattering and interfacial electron scattering accom-
panying spin flipping due to magnon absorption/emission. In
our work, we focused on the case in which the strength of
spin-orbit interactions is much larger than temperature and
energy broadening due to electron scattering. In this situa-
tion, the spin-momentum locking is most effective, and the
direction of the generated current is largely affected by the
spin texture on the Fermi surface, which can be controlled
by the ratio between Rashba and Dresselhaus spin-orbit in-
teractions. We obtained an analytic formula for the current
that can clarify the dependence of the magnetization of FI,
temperature, and spin texture on the Fermi surface. We also
showed numerical results for the current as a function of the
azimuth angle of the ordered spin in FI and the ratio between
the two spin-orbit interactions. We found that the direction of
the generated current is consistent with an intuitive explana-
tion by spin flipping of the conduction electrons due to the
magnon absorption (emission).

Our work will be helpful for an accurate analysis of
the inverse Rashba-Edelstein effect induced by the tem-
perature gradient of the sample. Although we considered
a simple 2DEG system with a circular Fermi surface and
small spin-orbit interactions, it can be extended to more
complex systems, including effective models obtained from
first-principles calculations. Details of such an extension will
be discussed in subsequent papers.
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APPENDIX A: DETAILED DERIVATION OF EQ. (48)

We first define the part in the Boltzmann equation, which
is independent of �(ϕ, γ ), as

F (ϕ, γ ) = −�T

T

�int

�

∑
γ ′

∫
dϕ′

2π

k(ϕ′, γ ′)
kF

× −γ ĥeff (ϕ) · m̂ + γ ′ĥeff (ϕ′) · m̂
2

× I (ϕ − ϕ′). (A1)

We note that this function satisfies the following symmetry
relation:

F (ϕ + π, γ ) = −F (ϕ, γ ). (A2)

The Boltzmann equation is rewritten in the integral equa-
tion with F (ϕ, γ ) as

�(ϕ, γ ) = F (ϕ, γ )

+
∑
γ ′

∫
dϕ′

2π

k(ϕ′, γ ′)
kF

1 + γ γ ′ĥeff (ϕ) · ĥeff (ϕ′)
2

�(ϕ′, γ ′).

(A3)

By iterative substitution of �(ϕ, γ ) into the integral of the
left-hand side of Eq. (A3), we can obtain �(ϕ′, γ ′) as a series
including multiple angle integrals of F (ϕ, γ ), which consti-
tute a functional of F (ϕ, γ ). To simplify this functional, we
rewrite F (ϕ, γ ) as F (ϕ, γ ) = γ F1(ϕ) + F2(ϕ), where

F1(ϕ) = �T

T

�int

�
ĥeff (ϕ) · m̂

×
∫

dϕ′

2π
I (ϕ − ϕ′), (A4)

F2(ϕ) = �T

T

�int

�

∫
dϕ′

2π
g(ϕ)ĥeff (ϕ′) · m̂

× I (ϕ − ϕ′), (A5)

where

g(ϕ) = 1

h̄vF

√
α2 + β2 + 2αβ sin 2ϕ. (A6)

Then, �(ϕ, γ ) can be expressed as

�(ϕ, γ ) = �[γ F1(ϕ)] + �[F2(ϕ)]

≡ �1(ϕ, γ ) + �2(ϕ, γ ). (A7)

In the following, we separately calculate �1(ϕ, γ ) and
�2(ϕ, γ ). By careful calculation for a series solution of
Eq. (A3), we obtain

�1(ϕ, γ ) = γ F1(ϕ) + γ

∞∑
n=0

∫
dϕ′

2π
ĥ

T
eff (ϕ)Anĥeff (ϕ′)F1(ϕ′),

(A8)

�2(ϕ, γ ) = F2(ϕ)

+ γ

∞∑
n=0

∫
dϕ′

2π
ĥ

T
eff (ϕ)Anĥeff (ϕ′)g(ϕ′)F2(ϕ′).

(A9)
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Here, �2(ϕ, γ ) can be approximated as F2(ϕ) up to the first
order of the spin-orbit interaction since the second term on the
right-hand side of Eq. (A9) is of higher order. The matrix Â is
defined as

Â =
∫ 2π

0

dϕ

2π
ĥeff (ϕ)ĥ

T
eff (ϕ), (A10)

where

a aT =
(

a1

a2

)
(a1 a2) =

(
a2

1 a1a2

a1a1 a2
2

)
. (A11)

Straightforward calculation of Â gives

Â =
(

1/2 −D/2
−D/2 1/2

)
, (A12)

where D is defined by Eq. (50). Using

∞∑
n=0

Ân = (Î − Â)−1 = 2

1 − D2

(
1 −D

−D 1

)
. (A13)

Combining Eqs. (A8) and (A9) with Eqs. (A4) and (A5), we
obtain Eq. (48).

APPENDIX B: SPIN ACCUMULATION

In this Appendix, we derive the analytic formula for the
spin accumulation in 2DEG induced by thermal spin injection.
The spin density in 2DEG is defined as

s = h̄

2A
∑
k,γ

〈kγ |σ|kγ 〉 f (k, γ )

	 −h̄D(EF)
∫

dϕ

2π
ĥeff (ϕ)�1(ϕ), (B1)

where we have used 〈kγ |σ|kγ 〉 = −γ ĥeff (ϕ) and D(EF) =
kF/(2π h̄vF). In the second equation, the spin density is ap-
proximated up to the first order of the spin-orbit interaction.
Using the result given in Appendix A and

Â(I − Â)−1 = 1

1 − D2

(
1 + D2 −2D
−2D 1 + D2

)
, (B2)

the spin density is calculated as

s = −h̄D(EF)
�T

T

�int

�

I1(T )

1 − D2

(
1 + D2 −2D
−2D 1 + D2

)
m̂(θ ).

(B3)

This is a general formula for the spin density in 2DEG. We
note that the spin density has the following symmetry relation:

s(α, β ) = s(β, α). (B4)

Figure 3 shows the spin density of 2DEG induced by
thermal spin injection as a function of θ and α/β, where the
azimuth angle of the spin in FI is defined as m̂ = (cos θ, sin θ )
and the spin density is normalized by

sD ≡ s0�T

T

√
1 + 6D2 + D4

1 − D2
, (B5)

s0 ≡ h̄D(EF)h̄ω0
�int

�
. (B6)

FIG. 3. Contour plots of the spin density s = (sx, sy ) of 2DEG
induced by thermal spin injection as a function of the azimuth angle
θ of the spin in FI and α/β: (a) sx and (b) sy. The temperatures
of FI and 2DEG are taken as T + �T and T , respectively. We set
kBT/4Dk2

F = 1 and hdc = 0. The spin density is normalized by sD

defined in Eq. (B5).

For α/β = 0, the direction of the accumulated spin becomes
opposite to that of the spin in FI. The same result is also
obtained for α/β = ∞ [see also Eq. (B4)]. This result is
consistent with an intuitive explanation that the magnon ab-
sorption at the interface induces spin flipping of electrons in
2DEG in the direction opposite to m (see also Sec. IV B).
On the other hand, for α/β 	 1, the spin density points to
the direction of ϕ = 7π/4 when π/4 < θ < 5π/4 while it
points to that of ϕ = 3π/4 otherwise. This reflects the fact
that the spin polarization on the Fermi surface aligns in the
same direction as shown in panels C and D in Fig. 2. In this
situation, the electrons in 2DEG can receive the spin only in
the direction of this spin polarization.

Finally, let us discuss the dependence of α/β. The spin
density depends on α/β through the factor sD given in
Eq. (B5). It is notable that sD diverges at α/β = 1. This
is because spin relaxation is never caused by nonmagnetic
impurities when the spin polarization on the Fermi surface
aligns in one direction. This behavior is in contrast to that
of the current; the current does not show any singularity at
α/β = 1. This difference in behavior near α/β = 1 comes
from the fact that the current is induced after a delicate cancel-
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lation between contributions from the inner and outer Fermi
surfaces.

APPENDIX C: HEAT CURRENT

In our formalism, the heat current from the FI into the
2DEG across the junction can be expressed as

Ih =
∑
k,γ

∑
k′,γ ′

(Ek′γ ′ − Ekγ )�(k,γ )→(k′,γ ′ )

× f (k, γ )[1 − f (k′, γ ′)]

= 2π

h̄

S0

2
|T̄ |2

∑
k,γ ,k′,γ ′,q

(−h̄ωq)|A+
γ γ ′ |2Fγ γ ′ (q, k, k′). (C1)

Within the linear response to the temperature difference �T ,
the heat current is calculated as

Ih = �intAD(EF)

h̄

�T

T
I3(T ), (C2)

I3(T ) =
∫ 2π

0

dϕ

2π

∫ π

−π

d (qza) [h̄ω(ϕ, qz )]2n(ϕ, qz ). (C3)

We note that Ih is always positive for �T > 0 and is indepen-
dent of the azimuth angle of m̂.

APPENDIX D: DETAILED DERIVATION OF EQ. (57)

As expected from Eq. (55), the current is expressed by a
sum of two contributions as j = j1 + j2, where j1 and j2
depend on �1(ϕ, γ ) and �2(ϕ, γ ), respectively. Using the

result given in Appendix A, the current j2 is easily calculated
as

j2 = 2ekF

2π h̄

∫
dϕ

2π
�2(ϕ)k̂(ϕ)

= 2ekF

2π h̄2vF

�T

T

�int

�

I2(T )

2

(−β α

−α β

)
m̂(θ ), (D1)

where we have used∫ 2π

0

dϕ

2π

k̂(ϕ)hT
eff (ϕ)

kF
= 1

2

(−β α

−α β

)
. (D2)

On the other hand, j1 is calculated as

j1 = 2ekF

2π h̄

∫
dϕ

2π

[
−g(ϕ)k̂(ϕ)

+ 1

h̄vF

2αβ cos 2ϕ√
α2 + β2 + 2αβ sin 2ϕ

ϕ̂(ϕ)

]
�1(ϕ)

= 2ekF

2π h̄2vF

�T

T

�int

�
I1(T )

(
β −α

α −β

)
m̂(θ ), (D3)

where we have used Eq. (D2) and∫
dϕ

2π

2αβ cos 2ϕ

α2 + β2 + 2αβ sin 2ϕ

ϕ̂(ϕ)hT
eff (ϕ)

kF
= D

2

(−α β

−β α

)
.

(D4)

By summing up Eqs. (D1) and (D3), we obtain Eq. (57).
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