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We present a comprehensive Fermi liquid description for thermoelectric transport and current noise, applicable
to multilevel quantum dots (QD) and magnetic alloys (MA) without electron-hole or time-reversal symmetry. Our
formulation for the low-energy transport is based on an Anderson model with N discrete impurity levels, and
is asymptotically exact at low energies, up to the next-leading order terms in power expansions with respect to
temperature T and bias voltage eV . The expansion coefficients can be expressed in terms of the Fermi liquid
parameters, which include the three-body correlation functions defined with respect to the equilibrium ground
state in addition to the linear susceptibilities and the occupation number Nd of impurity electrons. We apply
this formulation to the SU(N ) symmetric QD and MA, and calculate the correlation functions for N = 4 and 6,
using numerical renormalization group approach. The three-body correlations are shown to be determined by a
single parameter over a wide range of electron fillings 1 � Nd � N − 1 for strong Coulomb interactions U , and
they also exhibit the plateau structures due to the SU(N ) Kondo effects at integer values of Nd . We find that the
Lorenz number L = κ/(T σ ) for QD and MA, defined as the ratio of the thermal conductivity κ to the electrical
conductivity σ , deviates from the universal Wiedemann-Franz value π2/(3e2) as the temperature increases from
T = 0, showing the T 2 dependence, the coefficient for which depends on the three-body correlations away from
half filling. Furthermore, we find that the current noise for the SU(4) quantum dots and that for SU(6) show
a pronounced difference at the quarter Nd/N = 1/4 and 3/4 fillings. In particular, the linear noise for N = 4
exhibits a flat peak while the peak for N = 6 shows a round shape, reflecting the fact that, at these filling points,
the SU(N ) Kondo effects occur for N ≡ 0 (mod 4), whereas the intermediate-valence fluctuations occur for
N ≡ 2 (mod 4). We also demonstrate the role of three-body correlations on the nonlinear current noise and the
other transport coefficients.
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I. INTRODUCTION

The Kondo effect is a fascinating many-body effect [1,2],
taking place in dilute magnetic alloys (MA), quantum dots
(QD), and other novel quantum systems such as ultracold
atomic gases [3] and quark matter [4]. It was shown in the
1970s that the low-energy behavior of the Kondo systems
can be described by a quantum impurity version of the Fermi
liquid (FL) theory [5–9]. In particular, using the numerical
renormalization group (NRG) approach [10–12], Wilson et al.
demonstrated that the low-lying excited states of the Kondo
and the Anderson models exhibit a one-to-one correspondence
with the excitations of the renormalized quasiparticles.

The quasiparticles are asymptotically free in the equi-
librium ground state, where the perturbations from the
environment or reservoirs, which may depend on external
parameters such as frequency ω, temperature T , bias voltages
eV , etc., are absent. As these perturbations are adiabatically
switched on, the quasiparticles capture the damping rate of
order ω2, T 2, and (eV )2 through the residual interactions and
this significantly affects the transport properties [5–9,13,14].
When the electron-hole or time-reversal symmetry is broken

by a potential or external fields, the quasiparticles also capture
the energy shift of order ω2, T 2, and (eV )2, i.e., the corrections
in the same order as the ones due to the damping rate. The
contributions of these higher-order energy shifts, however,
had not been fully understood until very recently.

It has recently been clarified that these higher-order energy
shifts of the quasiparticles can be described exactly in terms of
the three-body correlations between impurity electrons. The
proof was given in two different ways, which complement
each other. One is given by Mora et al. and Filippone et al.
[15–18], extending Nozières’ description [5] that is based
on an invariance against the “floating of Kondo resonance
on the Fermi sea”. The other is based on the higher-order
Fermi liquid relations [19–21], which can be derived from the
Ward identities for the second derivatives of the self-energy,
extending Yamada-Yosida’s field-theoretical approach [6–9].
These proofs enabled one to express the next-leading order
terms of the transport coefficients in terms of three-body cor-
relation functions, and these formulations have been applied
to the nonlinear currents, current noise, and thermocurrent
through quantum impurities without electron-hole or time-
reversal symmetry [22–29].
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The purpose of this paper is twofold. The first one is to
extend the latest version of the FL theory for treating the
thermoelectric transport coefficients of multilevel quantum
dots and magnetic alloys described by the Anderson model
with N arbitrary impurity levels. The second one is to demon-
strate how the next-leading order terms of various transport
coefficients vary with the impurity level εd and Coulomb
interaction U . Specifically, for the second purpose, we con-
sider quantum dots and magnetic alloys having an SU(N )
symmetry, and calculate the three-body correlation functions
for N = 4 and 6 using the NRG approach. There have been
a number of intensive studies, which theoretically studied
low-energy transport: the nonlinear current [13,14,18,30–37],
nonlinear current noise [16,23,38–42], and thermoelectric
transport [15,21,43,44]. However, the parameter space for
quantum impurities is so huge that many parts are still left
unexplored. In this paper, we explore the whole region of the
electron fillings, 0 � Nd � N , in which the occupation num-
ber Nd of electrons in the impurity levels varies continuously
across the various SU(N ) Kondo and intermediate valence
regimes.

One of the advantages of the Kondo systems realized in
quantum dots is that the information about the many-body
quantum states can be probed in such a highly tunable way
[45–48]. For instance, recent experiments have succeeded in
directly probing the Kondo screening cloud [49]. Further-
more, low-energy Fermi liquid behaviors have experimentally
been confirmed for nonequilibrium currents [50,51], current
noise [52–56], and themocurrent [57,58]. Internal degrees
of freedoms of quantum impurities also bring an interesting
variety to the Kondo effect. The systems having the SU(4)
symmetry have been realized, for instance, in the multiorbital
semiconductor quantum dots and carbon nanotube (CNT)
quantum dots [59], and have intensively been investigated
theoretically [15,16,22,26,34,60–68] and experimentally
[55,69–73]. Realization of the SU(N ) Kondo effects for
various N > 2 has also been proposed by several authors,
using triple quantum dots [74,75] and CNT [76]. In this paper,
we provide a comprehensive FL view of the low-energy
transport for SU(4) and SU(6) symmetric QD and MA.

Our results reveal the fact that the three-body correlations
exhibit plateau structures, caused by the SU(N ) Kondo ef-
fects occurring at integer fillings Nd = 1, 2, . . . , N − 1. We
also calculate the Lorenz number L = κ/(T σ ) for QD and
MA, defined as the ratio of the thermal conductivity κ to
the electrical conductivity σ , and show how it deviates from
the universal Wiedemann-Franz value π2/(3e2) as the tem-
perature increases from T = 0. Furthermore, we demonstrate
how the three-body correlations affect the order T 2 electri-
cal conductivity, the order T 3 thermal conductivity, and the
order (eV )3 nonlinear current and current noise. At quar-
ter Nd/N = 1/4 and three-quarters Nd/N = 3/4 fillings, the
SU(N ) Kondo effects occur for N ≡ 0 (mod 4) while the in-
termediate valence fluctuations occur for N ≡ 2 (mod 4). We
show that this dependence on (mod 4) causes a pronounced
difference appearing in the peak structures of linear noise for
N = 4 and 6.

This paper is organized as follows. In Sec. II, we describe
the multilevel Anderson impurity model for quantum dots and
magnetic alloys. Sections III and IV are devoted to the FL

descriptions for the next-leading order terms of electrical and
thermoelectric transport coefficients for quantum dots, appli-
cable to arbitrary N impurity-level structures. In Sec. V, the
low-energy transport formulas for the SU(N ) quantum dots
are described in terms of the five FL parameters. We present
the NRG results for the three-body correlation functions in
Sec. VI. The results for nonlinear current, current noise, and
thermoelectric transport through quantum dots are discussed
in Secs. VII and VIII. Section IX is devoted to the FL descrip-
tion of the three-body correlations in thermoelectric transport
of dilute magnetic alloys. In Sec. X, we discuss the results for
the electrical and thermal resistivities of the SU(4) and SU(6)
magnetic alloys. Summary is given in Sec. XI. In Appendixes,
we provide details of the derivations for the transport formu-
las and additional NRG results for the FL parameters in the
SU(N ) cases for N = 2, 4, and 6, for comparison.

II. MODEL

We consider a multi-orbital Anderson impurity coupled
to two noninteracting leads on the left (L) and right (R),
H = Hd + Hc + HT,

Hd =
N∑

σ=1

εdσ ndσ + 1

2

∑
σ �=σ ′

Uσσ ′ ndσ ndσ ′ , (2.1)

Hc =
∑
j=L,R

N∑
σ=1

∫ D

−D
dε ε c†

ε jσ cε jσ , (2.2)

HT = −
∑
j=L,R

N∑
σ=1

v j (ψ
†
j,σ dσ + d†

σψ j,σ ). (2.3)

Here, the level index runs over σ = 1, 2, . . . , N . The inter-
electron interaction Uσσ ′ generally depends on σ and σ ′,
with the requirements Uσ ′σ = Uσσ ′ for σ ′ �= σ . For N = 2,
it describes the usual single-orbital Anderson model for spin
1/2 fermions. The operator d†

σ creates an impurity elec-
tron with spin σ in the impurity level of energy εdσ , and
ndσ ≡ d†

σ dσ . Conduction electrons in the two lead at j =
L and R obey the anticommutation relation {cε jσ , c†

ε′ j′σ ′ } =
δ j j′ δσσ ′δ(ε − ε′). The linear combination of the conduction
electrons, ψ j,σ ≡ ∫ D

−D dε
√

ρc cε jσ with ρc = 1/(2D), couples
to the impurity level. The bare level width due to the tun-
nel couplings is given by 
 ≡ �L + �R with � j = πρcv

2
j .

We consider the parameter region where the half band-
width D is much grater than the other energy scales, D �
max(Uσσ ′,
, |εdσ |, T, |eV |). We use a unit kB = 1 throughout
this paper.

Low-energy properties of the Anderson model can be de-
scribed in terms of a set of Fermi liquid parameters defined
with respect to the equilibrium ground state, i.e., the phase
shift δσ , the linear susceptibilities χσσ ′ and the three-body
correlation functions χ

[3]
σσ ′σ ′′ between impurity electrons; see

Appendix A for details. The phase shift is a primary parameter
that reflects the charge distribution of impurity levels, through

the Friedel sum rule: 〈ndσ 〉 T →0−−−→ δσ /π . In this paper, we ex-
plore the low-energy transport of quantum dots and magnetic
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alloys in the whole region of the electron fillings,

Nd ≡
N∑

σ=1

〈ndσ 〉. (2.4)

The current conservation, which follows from the Heisenberg
equation of motion for the occupation number ndσ ,

∂ndσ

∂t
+ ĴR,σ − ĴL,σ = 0 (2.5)

also plays an essential role in the Fermi liquid description,
through the Ward identities. Here, ĴL,σ represents the current
flowing from the left lead to the dot, and ĴR,σ the current from
the dot to the right lead,

ĴL,σ = −i vL(ψ†
Lσ dσ − d†

σψLσ ), (2.6)

ĴR,σ = +i vR(ψ†
Rσ dσ − d†

σ ψRσ ). (2.7)

In the next section, we will give a brief overview of the
low-energy expansion formulas for nonlinear current and cur-
rent noise, obtained previously in Refs. [27,29], to show how
the formulas can be expressed in terms of the FL parameters,
including the three-body correlations. This is for comparison
with the formulas for thermal electric transport coefficients,
which we extend to multilevel quantum dots and magnetic
alloys in this paper. Specifically, we will describe the deriva-
tion of the formulas for multilevel quantum dots and magnetic
alloys in Sec. IV and Appendix G, respectively.

III. FERMI LIQUID DESCRIPTION FOR NONLINEAR
CURRENT NOISE OF QD

We consider the nonequilibrium steady state under a finite
bias voltage eV ≡ μL − μR, applied between the two leads by
setting the chemical potentials of the left and right leads to be
μL and μR, respectively. The retarded Green’s function plays a
central role in the microscopic description of the Fermi liquid
transport,

Gr
σ (ω) = −i

∫ ∞

0
dt ei(ω+i0+ )t 〈{dσ (t ), d†

σ }〉V , (3.1)

Aσ (ω) ≡ − 1

π
Im Gr

σ (ω). (3.2)

Here, 〈· · · 〉V represents a nonequilibrium steady-state average
taken with the statistical density matrix, which is constructed
at finite bias voltages eV and temperatures T , using the
Keldysh formalism [13,33,77].

A. Differential conductance dJ/dV

The nonequilibrium current J through quantum dots can be
expressed in terms of the spectral function Aσ (ω) [13,33],

J = e

h

∑
σ

∫ ∞

−∞
dω [ fL(ω) − fR(ω)] Tσ (ω), (3.3)

Tσ (ω) = 4�L�R

�L + �R
πAσ (ω). (3.4)

Here, f j (ω)≡ f (ω−μ j ) for j =L, R, with f (ω)= [eω/T +1]−1

the Fermi function. Specifically, in this paper, we consider the

case where the chemical potentials are applied in a symmetric
way,

μL = −μR ≡ 1
2 eV, (3.5)

choosing the Fermi level at equilibrium to be the origin of
one-particle energies EF = 0. Note that the role of bias and
tunneling asymmetries, (μL + μR)/2 �= EF and �L �= �R, has
been precisely discussed in Refs. [28,29].

The nonlinear current J can be expanded up to the next-
leading order terms, using the low-energy asymptotic form
of the spectral function Aσ (ω), which has been obtained up
to terms of order ω2, (eV )2, and T 2 [27], as shown in Ap-
pendix B. In particular, for symmetric junctions with �L = �R

and μL = −μR = eV/2, the low-energy expansion of the dif-
ferential conductance takes the form

dJ

dV
= e2

h

N∑
σ=1

[
sin2 δσ − cT,σ (πT )2 − cV,σ (eV )2 + · · · ].

(3.6)

Here, the coefficients cT,σ and cV,σ of the next-leading order
terms can be expressed in terms of the phase shift δσ , the lin-
ear susceptibilities χσσ ′ , and the static three-body correlation
functions χ

[3]
σσ ′σ ′′ defined in Appendix A,

cT,σ = π2

3

[
−
(

χ2
σσ + 2

∑
σ ′( �=σ )

χ2
σσ ′

)
cos 2δσ

+
(

χ [3]
σσσ +

∑
σ ′( �=σ )

χ
[3]
σσ ′σ ′

)
sin 2δσ

2π

]
, (3.7)

cV,σ = π2

4

[
−
(

χ2
σσ + 5

∑
σ ′( �=σ )

χ2
σσ ′

)
cos 2δσ

+
(

χ [3]
σσσ + 3

∑
σ ′( �=σ )

χ
[3]
σσ ′σ ′

)
sin 2δσ

2π

]
. (3.8)

B. Nonlinear current noise SQD
noise

We also study the current noise [26,27,78], defined by

SQD
noise = e2

∑
σσ ′

∫ ∞

−∞
dt 〈δĴσ (t ) δĴσ ′ (0) + δĴσ ′ (0) δĴσ (t )〉V .

(3.9)

Here, δĴσ (t ) ≡ Ĵσ (t ) − 〈Ĵσ (0)〉V represents fluctuations of the
symmetrized current

Ĵσ ≡ �LĴR,σ + �RĴL,σ

�L + �R
. (3.10)

Behavior of the current noise in the low-energy Fermi liq-
uid regime has been studied by several authors, taking into
account the three-body correlations [16,17]. In a previous
study, we have derived a general formula for the current
noise through the multilevel Anderson impurity model up to
terms of order |eV |3 for symmetric junctions �L = �R and
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μL = −μR = eV/2 [26,27],

SQD
noise = 2e2

h
|eV |

N∑
σ=1

[
sin2 2δσ

4
+ cS,σ (eV )2 + · · ·

]
.

(3.11)

The coefficient cS,σ for the next-leading order term has been
calculated by taking into account all components of the
Keldysh vertex function together with the low-energy asymp-
totic form of Aσ (ω). It has been shown to be expressed in the
following form:

cS,σ = π2

12

[
cos 4δσ χ2

σσ + (2 + 3 cos 4δσ )
∑

σ ′( �=σ )

χ2
σσ ′

+ 4
∑

σ ′( �=σ )

cos 2δσ cos 2δσ ′ χ
2
σσ ′

+ 3
∑

σ ′( �=σ )

∑
σ ′′( �=σ,σ ′ )

sin 2δσ sin 2δσ ′χσσ ′′χσ ′σ ′′

−
(

χ [3]
σσσ + 3

∑
σ ′( �=σ )

χ
[3]
σσ ′σ ′

)
sin 4δσ

4π

]
. (3.12)

IV. FERMI LIQUID DESCRIPTION FOR
THERMOELECTRIC TRANSPORT OF QD

In this section, we discuss thermoelectric transport through
multilevel quantum dots in the linear-response regime, the
low-energy behaviors of which can be deduced from the
asymptotic form of the spectral function Aσ (ω) given in
Appendix B.

The linear conductance g, thermopower SQD and thermal
conductance κQD of a quantum dot can be expressed in the
form [22,79–82]

g ≡ dJ

dV

∣∣∣∣
eV =0

= e2

h

∑
σ

LQD
0,σ , (4.1)

SQD = −1

|e|T

∑
σ L

QD
1,σ∑

σ L
QD
0,σ

, (4.2)

κQD = 1

h T

⎡⎣∑
σ

LQD
2,σ −

(∑
σ L

QD
1,σ

)2∑
σ L

QD
0,σ

⎤⎦. (4.3)

Here, LQD
n,σ for n = 0, 1, and 2 is defined at eV = 0 with

respect to the thermal equilibrium, as

LQD
n,σ =

∫ ∞

−∞
dω ωn Tσ (ω)

(
−∂ f (ω)

∂ω

)
, (4.4)

with Tσ (ω), the transmission probability defined in Eq. (3.4).
Note that thermal conductance κQD is the linear-response co-
efficient of the heat current JQ = κQD δT , flowing from the
high-temperature side toward the low-temperature side, with
δT the temperature difference between the two sides.

The thermoelectric coefficients LQD
n,σ can be calculated, by

substituting the low-energy asymptotic form of Aσ (ω), given
in Eq. (B3) into Tσ (ω). At low temperatures, the component

LQD
0,σ for n = 0, which determines g, is given by

LQD
0,σ = sin2 δσ − cT,σ (πT )2 + O(T 4). (4.5)

Here, cT,σ is the coefficient that we have already described in

Eq. (3.7). The next component, LQD
1,σ for n = 1, takes the form

LQD
1,σ = π


3
ρ ′

dσ (πT )2 + O(T 4). (4.6)

Here, ρ ′
dσ is the derivative of the density of states with respect

to the frequency ω, which can also be written in terms of the
phase shift δσ and diagonal linear susceptibility χσσ , as shown
in Eq. (A6). Thus, the leading-order term of thermopower for
quantum dots is given by

SQD = −π2

3

∑
σ ρ ′

dσ∑
σ ρdσ

T

|e| + O(T 3). (4.7)

The thermal conductance κQD depends on the other compo-

nent LQD
2,σ for n = 2, the low-energy asymptotic form of which

is given by

LQD
2,σ = (πT )2

3

[
sin2 δσ + aQD

2,σ (πT )2 + O(T 4)
]
,

aQD
2,σ ≡ 7π2

5

[
cos 2δσ

(
χ2

σσ + 6

7

∑
σ ′( �=σ )

χ2
σσ ′

)

− sin 2δσ

2π

(
χ [3]

σσσ + 5

21

∑
σ ′( �=σ )

χ
[3]
σσ ′σ ′

)]
. (4.8)

Therefore, the thermal conductance can be calculated up to
terms of order T 3, by substituting these asymptotic forms into
Eq. (4.3),

κQD = π2 T

3 h

N∑
σ=1

[
sin2 δσ − cQD

κ,σ (πT )2 + · · · ], (4.9)

cQD
κ,σ = aQD

2,σ − π2

3

(
1
N

∑
σ ′′ χσ ′′σ ′′ sin 2δσ ′′

)2

(sin2 δ)AM

. (4.10)

Here, the arithmetic mean (AM) of the phase shifts is defined
by

(sin2 δ)AM ≡ 1

N

∑
σ

sin2 δσ . (4.11)

Furthermore, the Lorenz number LQD ≡ κQD/(gT ) can be
calculated up to terms of order T 2,

LQD = π2

3 e2

[
1 − cQD

L

(sin2 δ)AM

(πT )2 + O(T 4)

]
, (4.12)

cQD
L = 1

N

∑
σ

(
cQD
κ,σ − cT,σ

)
. (4.13)

The Wiedemann-Franz law holds between the leading-order
terms of the linear conductance g and the thermal conductance
κQD, such that the Lorenz number approaches the universal

value LQD
T →0−−→ π2/(3e2) in the low-temperature limit. The

Lorenz number deviates from this universal value as tempera-
ture increases, exhibiting the T 2 dependence.
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V. THREE-BODY CORRELATIONS IN THE SU(N)
SYMMETRIC FERMI LIQUID

This Hamiltonian H, defined in Sec. II, has an SU(N )
symmetry in the case at which the impurity states become
degenerate εdσ ≡ εd for all σ and the Coulomb interaction is
isotropic Uσσ ′ ≡ U for all σ and σ ′.

In the atomic limit v j → 0 of the SU(N ) symmetric case,
the total number of impurity electrons Nd takes an integer
value M and exhibits the Coulomb-staircase behavior as a
function of εd . It consists of a series of plateaus of the
width U and the height Nd = M for M = 1, 2, . . ., N − 1,
emerging at −MU < εd < −(M − 1)U around the midpoint
εmid

d,M ≡ −(M − 1
2 )U . We will use the following notation for

the shifted impurity level ξd , which includes the Hartree-Fock
energy shift defined with respect to the half filling in such a
way that

ξd ≡ εd + N − 1

2
U . (5.1)

The system has an electron-hole symmetry at ξd = 0. When
the tunneling couplings are switched on, the staircase structure
emerges for strong interactions U � 
.

In the SU(N ) symmetric case, the linear susceptibilities
have two linearly independent components, i.e., the diag-
onal one χσσ and the off-diagonal one χσσ ′ for σ �= σ ′.
These two components determine the essential properties of
quasiparticles,

T ∗ ≡ 1

4χσσ

, R ≡ 1 − χσσ ′

χσσ

. (5.2)

Here, T ∗ is a characteristic energy scale of the SU(N ) Fermi
liquid, by which the T -linear specific heat of impurity elec-
trons can be expressed in the form Cimp = Nπ2

12 T/T ∗ [6,8,9].
The Wilson ratio R corresponds to a dimensionless residual
interaction between quasiparticles [83]; we will also use the
rescaled ratio,

K̃ ≡ (N − 1)(R − 1), (5.3)

which is bounded in the range 0 � K̃ � 1.

A. Charge and spin susceptibilities

The charge susceptibility is given by a linear combination
of the two-body correlations,

χC ≡ − 1

N

∂2�

∂ε2
d

= 1

N

∑
σ1σ2

χσ1σ2
(5.4)

SU(N )−−−→ χσσ + (N − 1)χσσ ′ = 1 − K̃

4T ∗ . (5.5)

Here, � ≡ −T log[Tr e−H/T ] is the free energy.
Next, we consider the spin susceptibility for the SU(N )

symmetric case, using the notation in which the internal de-
grees freedom are separated into two parts σ = (m, s), where
m = 1, 2, . . . , N/2 and s = ↑,↓, assuming N to be even (ex-
tension to odd N is straightforward). The Zeeman splitting is
induced by an external field b, which couples to the impurity
spin s,

εd,m,↑ = εd − b, εd,m,↓ = εd + b. (5.6)

The magnetization M of the impurity spin is given by

M ≡ − 1

N

∂�

∂b
= 1

N

N
2∑

m=1

〈nd,m↑ − nd,m↓〉. (5.7)

Note that � is an even function of b. The spin susceptibility
χS ≡ −(1/N ) ∂2�

∂b2 |b=0 can be expressed in the following form:

χS = 1

N

N
2∑

m=1

N
2∑

m′=1

[χm↑,m′↑ + χm↓,m′↓ − χm↑,m′↓ − χm↓,m′↑]

(5.8)

SU(N )−−−→ χσσ − χσσ ′ = 1

4T ∗

(
1 + K̃

N − 1

)
, (5.9)

where σ �= σ ′.

B. Three-body correlation functions

Among N3 components of the three-body correlation
χ [3]

σ1σ2σ3
, only three components become linearly independent

in the SU(N ) symmetric case. They can be expressed in terms
of the derivatives of the linear susceptibilities, using Eqs. (C1),
(C2), and (C5) given in Appendix C,

χ [3]
σσσ = 1

N

∂χσσ

∂εd

− N − 1

N
χ

[3]
B , (5.10)

χ̃
[3]
σσ ′σ ′ = N − 1

N

∂χσσ

∂εd

+ N − 1

N
χ

[3]
B , (5.11)

χ̃
[3]
σσ ′σ ′′ = −N − 1

N

∂χσσ

∂εd

+ N − 1

2

∂χσσ ′

∂εd

− N − 1

N
χ

[3]
B ,

(5.12)

for σ �= σ ′ �= σ ′′ �= σ . Here,

χ
[3]
B ≡ ∂

∂b

(
χm↑,m↑ − χm↓,m↓

2

)∣∣∣∣
b=0

= −χ [3]
σσσ + χ

[3]
σσ ′σ ′,

(5.13)

and the scale factors (N − 1) and (N − 1)(N − 2)/2 have
been introduced for the off-diagonal three-body components
in such a way that

χ̃
[3]
σσ ′σ ′ ≡ (N − 1) χ

[3]
σσ ′σ ′, (5.14)

χ̃
[3]
σσ ′σ ′′ ≡ (N − 1)(N − 2)

2
χ

[3]
σσ ′σ ′′ . (5.15)

We will also use the dimensionless three-body correlations,
defined by

�I ≡ sin 2δ

2π

χ [3]
σσσ

χ2
σσ

, �̃II ≡ sin 2δ

2π

χ̃
[3]
σσ ′σ ′

χ2
σσ

, (5.16)

�̃III ≡ sin 2δ

2π

χ̃
[3]
σσ ′σ ′′

χ2
σσ

. (5.17)

In this paper, we calculate the right-hand side of Eqs. (5.10)–
(5.12) with the NRG to obtain the three-body correlations
for the SU(N ) case. Note that, for noninteracting electrons at
U = 0, only the diagonal components of the three-body cor-
relation �0

I and the susceptibility χ0
σσ remain finite due to the
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TABLE I. Low-energy expansion of transport coefficients
through SU(N ) quantum dots (QD) and magnetic alloys (MA),
described in Eqs. (5.19)–(5.22) and Eqs. (9.2)–(9.4). Here, T ∗ ≡
1/(4χσσ ) is a characteristic FL energy scale.

dJ
dV = Ne2

h

[
sin2 δ − CT

(
πT
T ∗
)2 − CV

(
eV
T ∗
)2 + · · · ]

SQD
noise = 2Ne2 |eV |

h

[
sin2 δ

(
1 − sin2 δ

) + CS

(
eV
T ∗
)2 + · · · ]

κQD = Nπ2T
3h

[
sin2 δ − CQD

κ

(
πT
T ∗
)2 + · · · ]

LQD ≡ κQD
gT = π2

3e2

[
1 − CQD

L
sin2 δ

(
πT
T ∗
)2 + · · · ]

�MA ≡ 1
σMA

= 1
σ unit

MA

[
sin2 δ − CMA

�

(
πT
T ∗
)2 + · · · ]

1
κMA

= 3 e2

π2 σ unit
MA T

[
sin2 δ − CMA

κ

(
πT
T ∗
)2 + · · · ]

LMA ≡ κMA
σMA T = π2

3 e2

[
1 − CMA

L
sin2 δ

(
πT
T ∗
)2 + · · · ]

Pauli exclusion principle,

�0
I = −2ε2

d

ε2
d + 
2

, χ0
σσ = 1

π




ε2
d + 
2

, (5.18)

and T ∗ U→0−−−→ π
[1 + (εd/
)2 ]/4.

C. Transport formulas for quantum dots
in SU(N) Fermi liquid regime

We next consider the low-energy expansion of transport
coefficients dJ/dV , SQD

noise, κQD, and the Lorenz number LQD.
Specifically, for the junctions having tunneling and bias
symmetries �L = �R and μL = −μR = eV/2, these transport
coefficients take the following form in the SU(N ) symmetric
case,

dJ

dV
= Ne2

h

[
sin2 δ − CT

(
πT

T ∗

)2

− CV

(
eV

T ∗

)2

+ · · ·
]
,

(5.19)

SQD
noise = 2Ne2|eV |

h

[
sin2 2δ

4
+ CS

(
eV

T ∗

)2

+ · · ·
]
, (5.20)

κQD = Nπ2T

3h

[
sin2 δ − CQD

κ

(
πT

T ∗

)2

+ · · ·
]
, (5.21)

LQD = π2

3e2

[
1 − CQD

L

sin2 δ

(
πT

T ∗

)2

+ · · ·
]
. (5.22)

The formulas for the coefficients CT , CV , CS , CQD
κ , and CQD

L
of the next-leading order terms are summarized in Tables I
and II. Each of these C’s can be decomposed into two parts,
denoted as W ’s and �’s. The W part, defined in the right
column of Table II, represents the two-body contributions
determined by K̃ and δ. The � part represents the three-body
contributions, which can be described in terms of the dimen-
sionless parameters defined in Eq. (5.16).

These transport formulas in the SU(N ) Fermi liquid regime
clarify the fact that the next-leading order terms for the sym-
metric tunnel junctions are completely determined by five
parameters: δ, T ∗, K̃ , �I, and �̃II. The three-body correlations
can be experimentally deduced through the measurements of
the coefficients C’s. The other three-body component �̃III
defined with respect to three different levels, couples to the
tunnel and bias asymmetries, i.e., �L �= �R and μL �= −μR,
and contributes to the nonlinear current [28,29]. The behavior
of C’s depend significantly on the electron filling Nd of the
impurity levels. For instance, in the noninteracting case at
U = 0, these coefficients vary with the level position εd as
shown in Fig. 1.

In the rest of this paper, we will demonstrate the behavior
of the next-leading order terms of the transport coefficients for
N = 4 and 6. To this end, we calculate the correlation func-
tions δ, χσ1σ2

, and χ [3]
σ1σ2σ3

using the NRG approach [26,84],
with parameter settings described in Appendix D. Specifically,
Eqs. (5.10)–(5.13) are used for obtaining the three-body cor-
relations. We have reported part of the results for coefficient
CV in a previous paper, studying the role of bias and tunneling
asymmetries on the nonlinear terms of dJ/dV at T = 0 [29].
In this paper, we provide a comprehensive view of the three-
body Fermi liquid effect through a systematic analysis of the
next-leading order terms CS , CT , and CQD

κ for quantum dots,
and through the related coefficients for magnetic alloys, CMA

� ,

TABLE II. Coefficients C’s for the next-leading order terms of SU(N ) quantum dots and magnetic alloys (MA), summarized in Table I. In
these formulas, W ’s represent the contributions determined by the phase shift δ and the rescaled Wilson ratio K̃ = (N − 1)(R − 1). Three-body

correlations enter through �I ≡ sin 2δ

2π

χ
[3]
σσσ

χ2
σσ

and �̃II ≡ sin 2δ

2π

χ̃
[3]
σσ ′σ ′
χ2

σσ
.

CT = π2

48 [WT + �I + �̃II ] WT ≡ −[1 + 2K̃2

N−1

]
cos 2δ

CV = π2

64 [WV + �I + 3 �̃II ] WV ≡ −[1 + 5K̃2

N−1

]
cos 2δ

CS = π2

192 [WS − cos 2δ {�I + 3�̃II}] WS ≡ cos 4δ + [
4 + 5 cos 4δ + 3

2

(
1 − cos 4δ

)
(N − 2)

]
K̃2

N−1

CQD
κ = 7π2

80

[
W QD

κ + �I + 5
21 �̃II

]
W QD

κ ≡ 10−11 cos 2δ

21 − 6
7

K̃2

N−1 cos 2δ

CQD
L = π2

240

[
W QD

L + 16 �I

] = CQD
κ − CT W QD

L ≡ 10 − 6 cos 2δ − 8K̃2

N−1 cos 2δ

CMA
� = π2

48

[
W MA

� + �I + �̃II

]
W MA

� ≡ 2 + cos 2δ − 2K̃2

N−1 cos 2δ = 4 cos2 δ + WT

CMA
κ = 7π2

80

[
W MA

κ + �I + 5
21 �̃II

]
W MA

κ ≡ 32+11 cos 2δ

21 − 6
7

K̃2

N−1 cos 2δ = 44
21 cos2 δ + W QD

κ

CMA
L = π2

240

[
W MA

L − 16 �I

] = CMA
� − CMA

κ W MA
L ≡ −22 − 6 cos 2δ + 8K̃2

N−1 cos 2δ = −24 cos2 δ − W QD
L
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FIG. 1. Coefficients CV , CT , CS , and CQD
κ for noninteracting

U = 0 quantum dots plotted vs εd .

and CMA
κ . In order to quickly grasp the underlying physics

derived from quasiparticle properties in the SU(4) and SU(6)
cases, we provide a brief review of the key characteristics of
the two-body correlation functions in Appendix E, extending
the interaction range up to U/(π
) = 6.0. Additionally, we
also include some new results for the renormalized impurity
level ε̃dσ there.

VI. THREE-BODY CORRELATIONS IN THE SU(4)
AND SU(6) ANDERSON IMPURITY

In this section, we discuss the behavior of charge and spin
susceptibilities defined in Eqs. (5.5) and (5.9). In particular,
we focus on the derivatives ∂χC/∂εd and ∂χS/∂εd , which
can also be expressed in terms of the three-body correlation
functions,

∂χC

∂εd

= χ [3]
σσσ + 3 χ̃

[3]
σσ ′σ ′ + 2 χ̃

[3]
σσ ′σ ′′ , (6.1)

∂χS

∂εd

= χ [3]
σσσ + N − 3

N − 1
χ̃

[3]
σσ ′σ ′ − 2

N − 1
χ̃

[3]
σσ ′σ ′′ . (6.2)

The NRG results reveal the fact that these derivatives in the
left-hand side are suppressed in the strong-coupling region
|ξd | � (N − 1)U/2 for large U . This implies that the linear
combinations of the three-body correlations in left-hand side
of Eqs. (6.1) and (6.2) approach zero, reducing the number of
independent components of the three-body correlation func-
tions χ [3]

σ1σ2σ3
, as demonstrated below.

A. Charge and spin susceptibilities: χC and χS

One of the most fundamental quantities that play a cen-
tral role in the low-energy physics of quantum impurities
is the characteristic energy scale T ∗ ≡ 1/(4χσσ ), defined in
Eq. (5.2) as an inverse of the diagonal susceptibility Nχσσ =
χC + (N − 1)χS . We will use, in the following discussions,
the Kondo temperature TK ≡ T ∗|ξd =0, defined as the value of
T ∗ at the electron-hole symmetric point ξd = 0.

The NRG results for 1/T ∗ in the SU(4) and SU(6) cases
are plotted vs ξd in Figs. 2(a) and 2(b), respectively, by

FIG. 2. Inverse-energy scale 1/T ∗, charge susceptibility χC and
spin χS susceptibilities are plotted vs ξd (= εd + U/2) for N = 4 and
6. Here, 4T ∗ (= 1/χσσ ), and TK ≡ T ∗|ξd =0. Interaction strengths are
chosen such that, for N = 4, U/(π
) = 2/3(�), 1(�), 2(�), 3(�),
4(�), 5(•), and 6(×), at which TK/(π
) = 0.20, 0.18, 0.13, 0.092,
0.063, 0.041, and 0.026, respectively. For N = 6, U/(π
) = 2/5(�),
1(�), 2(�), 3(�), 4(�), 5(•), and 6(×), at which TK/(π
) = 0.22,
0.19, 0.15, 0.13, 0.10, 0.085, and 0.068, respectively.

multiplying them by TK . We see that 1/T ∗ has N − 1 lo-
cal maxima for strong interactions, at integer-filling points,
i.e., ξd � 0,±U, . . . ,±(N − 2)U/2, reflecting the oscillatory
behavior of the wave function renormalization factor z (=
ρdσ /χσσ ) described in Appendix E. At |ξd | � (N − 1)U/2,
the energy scale T ∗ approaches the noninteracting value,

TK/T ∗ |ξd |�(N−1)U/2−−−−−−−−−→ 
2/ξ 2
d , as the electron filling of the im-

purity levels approaches Nd � 0 or N .
The charge susceptibilities for N = 4 and 6 are plotted in

Figs. 2(c) and 2(d), using T ∗ as a normalization factor, i.e.,
4T ∗χC = 1 − K̃ from Eq. (5.5). Therefore, the normalized
value 4T ∗χC is determined by the rescaled Wilson ratio K̃ ,
described in Appendix E. As U increases, 4T ∗χC decreases
in a wide region of the impurity level |ξd | � (N − 1)U/2,
where the impurity levels are partially filled 1�Nd�N − 1.
In this filling range, the charge susceptibility is signifi-
cantly suppressed by the Coulomb repulsion, and it vanishes

4T ∗χC
U�π
−−−−→ 0 in the strong interaction limit. Outside this

region, i.e., at |ξd | � (N − 1)U/2, the charge susceptibility

approaches the noninteracting value 4T ∗χC

|ξd |→∞−−−−→ 1 as the
filling of the impurity levels approaches Nd � 0 or N .

Figures 2(e) and 2(f) show the spin susceptibilities for
N = 4 and 6, which are normalized with the same scal-
ing factor, i.e., 4T ∗χS = 1 + K̃/(N − 1) [see Eq. (5.9)].
As the interaction U increases, 4T ∗χS increases from the
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FIG. 3. (4T ∗)2∂χC/∂εd , (4T ∗)2∂χ S/∂εd , and (4T ∗)2χ
[3]
B are

plotted vs ξd for N = 4 and 6. Interaction strengths are chosen such
that, for N = 4, U/(π
) = 2/3(�), 1(�), 2(�), 3(�), 4(�), 5(•),
and 6(×). For N = 6, U/(π
) = 2/5(�), 1(�), 2(�), 3(�), 4(�),
5(•), and 6(×).

noninteracting value 1. In the strong interaction limit, it ap-
proaches the value 4T ∗χS → N/(N − 1), i.e., 4/3 for N = 4
and 6/5 for N = 6, and exhibits a wide plateau structure in the
strong-coupling region |ξd | � (N − 1)U/2. At |ξd | � (N −
1)U/2, where the occupation number approaches Nd � 0 or
N , the spin susceptibility also approaches the noninteracting

value 4T ∗χS

|ξd |→∞−−−−→ 1.

B. Derivative of χC and χS with respect to εd

The three-body correlation functions can be obtained
from the derivatives of χσ1σ2

with respect to εd and b,
using Eqs. (5.10)–(5.12). In particular, ∂χσ1σ2

/∂εd can be
rewritten in terms of the derivatives of the charge and spin
susceptibilities, as

∂χσσ

∂εd

= 1

N

∂χC

∂εd

+ N − 1

N

∂χS

∂εd

, (6.3)

(N − 1)
∂χσσ ′

∂εd

= N − 1

N

∂χC

∂εd

− N − 1

N

∂χS

∂εd

, (6.4)

for σ �= σ ′. Figures 3(a) and 3(b) show the NRG results for
∂χC/∂εd for N = 4 and 6, respectively. Similarly, the deriva-
tives of the spin susceptibility ∂χS/∂εd for N = 4 and 6 are
plotted in Figs. 3(c) and 3(d). Note that in these figures, the
derivatives have been multiplied by a factor of (4T ∗)2 to
make them dimensionless. These derivatives are significantly
suppressed in the strong-coupling region |ξd | � (N − 1)U/2
for large U . More specifically, |∂χC/∂εd | � |∂χS/∂εd | �
1/(4T ∗)2: the derivative of spin susceptibility becomes much

FIG. 4. Dimensionless three-body corrections �I (�), −�̃II (�),
and �̃III (•) are plotted vs ξd , for interaction strengths U/(π
) = 2/3
(a), 2/5 (b), 2 (c), (d), and 6 (e), (f).

smaller than 1/(4T ∗)2 while it is still larger than the deriva-
tive of charge susceptibility. Therefore, both ∂χσσ /∂εd and
∂χσσ ′/∂εd are suppressed in a wide range of electron fillings
1 � Nd � N − 1 for large U .

We next consider χ
[3]
B , defined in Eq. (5.13) as a derivative

of a linear combination of the two different diagonal suscep-
tibilities with respect to the magnetic fields b. Figures 3(e)
and 3(f) show (4T ∗)2χ

[3]
B for N = 4 and 6, respectively. We

see that (4T ∗)2χ
[3]
B exhibits a staircase structure with a flat

plateau emerging around the integer filling points ξd = 0, ±U ,
±2U , . . ., (N − 2)U/2 for large U . The magnitude |χ [3]

B | be-
comes much larger than the derivative of the charge and spin
susceptibilities, |∂χC/∂εd | and |∂χS/∂εd |. Therefore, χ

[3]
B

dominates the terms in the right-hand side of Eqs. (5.10)–
(5.12) in the strong-coupling region |ξd | � (N − 1)U/2, and
the three independent components of three-body correlations
approach one another in such a way that

χ [3]
σσσ � − χ̃

[3]
σσ ′σ ′ � χ̃

[3]
σσ ′σ ′′ � −N − 1

N
χ

[3]
B . (6.5)

This means that the three-body correlations are described by a
single parameter χ

[3]
B in a wide filling range 1 � Nd � N − 1

for large U .

C. Three-body correlations for N = 4 and 6

We have calculated the three-body correlation func-
tions χ [3]

σσσ , χ̃
[3]
σσ ′σ ′ and χ̃

[3]
σσ ′σ ′′ for σ �= σ ′ �= σ ′′ �= σ , using

Eqs. (5.10)–(5.12). Figure 4 shows the dimensionless three-
body correlations �I, �̃II, and �̃III, defined in Eqs. (5.16) and
(5.17). The left and right panels describe the NRG results in
the SU(4) and SU(6) cases, respectively, and three different
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interaction strengths (from weak to strong) are chosen for the
top, middle, and bottom panels.

All components of the three-body correlation functions
vanish, �I = �̃II = �̃III = 0, at the electron-hole symmet-
ric point ξd = 0, and evolve as ξd deviates from this point.
Among the three independent components, the intralevel com-
ponent �I has the largest magnitude, and exhibits plateau
structures for large U at integer filling points Nd � 1, 2, . . .,
N − 1. The other components, �̃II and �̃III, involve inter-
level correlations and evolve as the Coulomb interaction U
increases. In particular, the correlation between the three dif-
ferent levels �̃III becomes the weakest. In the limit of |ξd | →
∞, the diagonal component �I approaches the noninteracting
value while the other two vanish,

�I

|ξd |→∞−−−−→ −2, �̃II

|ξd |→∞−−−−→ 0, �̃III

|ξd |→∞−−−−→ 0.

(6.6)

Figures 4(e) and 4(f) clearly demonstrate the relation
Eq. (6.5), which holds at |ξd | � (N − 1)U/2 for large U ,

�I � −�̃II � �̃III. (6.7)

It means that all the three-body components are determined by
a single parameter χ

[3]
B in the strong-coupling region for large

U , as mentioned. The dimensionless three-body correlation
functions clearly exhibit the plateau structure around the inte-
ger filling points ξd = 0, ±U , ±2U , . . ., ±(N − 2)U/2, where
the SU(N ) Kondo effect occurs. These structures reflect the
behavior of χ

[3]
B , described in Figs. 3(e) and 3(f), and evolve

as the interaction strength U increases. We see, in Figs. 4(e)
and 4(f), that the plateaus appear much clearer for N = 4 than
N = 6, for the same interaction strength U/(π
) = 6.0.

We will examine, in the subsequent sections, how these
three-body correlation functions affect the next-leading order
terms of the transport coefficients in the low-energy Fermi
liquid regime away from half filling.

VII. NONLINEAR CURRENT NOISE OF SU(4)
AND SU(6) QUANTUM DOTS

In this section, we discuss the nonlinear terms of the steady
current J and the current noise SQD

noise, specifically, the order
(eV )3 term for symmetric junctions, i.e., �L = �R and μL =
−μR = eV /2. To provide a comprehensive view of the low-
bias behavior of these terms, we begin with a brief review
on the previous results for the coefficient CV of the nonlinear
conductance [29], extending slightly the interaction range up
to U/(π
) = 6.0. We will then discuss the results for CS , i.e.,
the order |eV |3 term of nonlinear noise.

A. CV : order (eV )2 term of dJ/dV

The leading-order term of the conductance, at T = 0, is
determined by the transmission probability sin2 δ, i.e., the first
term in the right-hand side of Eq. (5.19). It exhibits the well-
known Kondo plateaus, which develop in the strong-coupling
region, as shown in Figs. 15(b) and 16(b) in Appendix E.

The next-leading order term CV of the nonlinear conduc-
tance can be decomposed into the two-body part WV , defined
in Table II, and the three-body part �V , as

CV = π2

64
(WV + �V ), �V ≡ �I + 3 �̃II. (7.1)

FIG. 5. ξd dependence of CV = (π 2/64)(WV + �V ), two-body
part WV , and three-body part �V ≡ �I + 3 �̃II. (Left panels) N = 4,
for U/(π
) = 2/3(�), 1(�), 2(�), 3(�), 4(�), 5(•), and 6(×).
(Right panels) N = 6, for U/(π
) = 2/5(�), 1(�), 2(�), 3(�),
4(�), 5(•), and 6(×).

These coefficients CV , WV , and �V are plotted vs ξd in
Figs. 5(a)–5(f) for N = 4 and 6.

The two-body part WV dominates the next-leading order
term near the electron-hole symmetric point ξd = 0, where
δ = π/2 and the three-body part �V vanishes,

WV

ξd =0−−→ 1 + 5K̃2

N − 1
, �V

ξd =0−−−→ 0. (7.2)

Therefore, in the strong interaction limit, the peak at ξd = 0

reaches (64/π2)CV

ξd =0 &U→∞−−−−−−−→ 8/3 and 2 for N = 4 and 6,
respectively. Note that the rescaled Wilson ratio approaches
K̃ � 1 in a wide region of |ξd | � (N − 1)U/2 for large U .
Outside this region, the two-body and three-body parts of CV
approach to the noninteracting values,

WV

|ξd |→∞−−−−→ −1, �V

|ξd |→∞−−−−→ −2, (7.3)

since cos 2δ
|ξd |→∞−−−−→ 1, K̃

|ξd |→∞−−−−→ 0, and the three-body con-
tributions approach the values given in Eq. (6.6).

The SU(N ) Kondo effect occurs in the strong-coupling
region |ξd | � (N − 1)U/2 at the integer filling points. The
plateau structure evolves as U increases, especially in the
three-body part �V , as seen in Figs. 5(e) and 5(f). In the
strong-coupling region, it can be expressed in the form �V �
−2�I due to Eq. (6.7). The two-body part WV , shown in
Figs. 5(c) and 5(d) for U/(π
) � 6.0, does not exhibit a clear
plateau other than the one appearing near half filling. For N =
4, this is because the factor cos 2δ for WV vanishes at δ = π/4
and 3π/4, i.e., at the quarter and three-quarters filling points.
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FIG. 6. Linear part, sin2 δ (1 − sin2 δ), of the noise SQD
noise. Inter-

action strengths are chosen for (a) N = 4 to be U/(π
) = 2/3(�),
1(�), 2(�), 3(�), 4(�), 5(•), and 6(×). For (b) N = 6, U/(π
) =
2/5(�), 1(�), 2(�), 3(�), 4(�), 5(•), and 6(×).

As a sum of WV and �V , the coefficient CV exhibits a wide
and rather flat structure in the region of |ξd | � (N − 1)U/2 for
large U , seen in Figs. 5(a) and 5(b). There also emerge some
weak local maxima in this flat structure at the integer filling
points ξd = 0, ±U , ±2U , . . ., ±(N − 2)U/2. In particular,
the peak is most pronounced at ξd � ±(N − 2)U/2, where
Nd � 1 or N − 1.

B. Order |eV | and order |eV |3 terms of SQD
noise

We next consider the current noise SQD
noise, the low-energy

asymptotic form of which is given in Eq. (5.20) and Table II.
The leading-order term, sin2 δ (1 − sin2 δ) = (1 − cos 4δ)/8,
corresponds to the linear-response noise, the NRG results for
which are shown as a function of ξd in Figs. 6(a) and 6(b), for
N = 4 and 6, respectively. The linear noise is maximized at
the points where the phase shift reaches δ = π/4 and 3π/4. It
occurs at the integer filling points Nd = 1 and 3 for N = 4, at
which the SU(4) Kondo effect makes the peaks wide and flat.
In contrast, for N = 6, the peak emerges at the half-integer
filling points Nd = 3/2 and 9/2. More generally, the peak of
the linear noise forms a flat plateau structure for N ≡ 0 (mod
4), whereas the peak becomes round for N ≡ 2 (mod 4) due to
the fluctuations occurring between two adjacent integer filling
states. For large U , the quarter and three-quarters fillings
occur near |ξd |/U � N/4, at which the ground state is highly
correlated for multilevel systems of N � 4. In contrast, these
fillings occur at ξd � ±U/2 for SU(2) quantum dots, where
the electron correlation becomes less important due to the
valence fluctuations (see Appendix F).

The coefficient CS for the order |eV |3 term of current noise
SQD

noise can also be decomposed into the two-body WS and three-
body �S parts, as shown in Table II,

CS = π2

192
(WS + �S ), �S ≡ −(�I + 3�̃II ) cos 2δ. (7.4)

The behavior of three-body part �S can be deduced from the
one for dJ/dV , i.e., �V = �I + 3�̃II shown in Figs. 5(e) and
5(f), by multiplying them by a factor of “− cos 2δ” which
induces the modulations. One of the most distinctive features
of CS , compared to the other coefficients C’s listed in Table II,
is that it depends upon the higher harmonics cos 4δ and sin 4δ

with respect to the phase shift, which enter through not only
through WS but �S: Note that �I and �̃II defined in Eq. (5.16)
are proportional to the factor sin 2δ. As ξd varies, these higher
harmonics evolve continuously in the range 0 � 4δ � 4π ,

FIG. 7. ξd dependence of CS = (π 2/192)(WS + �S ), two-body
part WS , and three-body part �S ≡ −(�I + 3 �̃II ) cos 2δ. (Left pan-
els) N = 4, for U/(π
) = 2/3(�), 1(�), 2(�), 3(�), 4(�), 5(•),
and 6(×). (Right panels) N = 6, for U/(π
) = 2/5(�), 1(�), 2(�),
3(�), 4(�), 5(•), and 6(×).

simultaneously with the electron filling 0 � Nd � N .
Figures 7(a)–7(f) show results for CS , WS , and �S for
N = 4 and 6.

Each curve for CS , shown in Figs. 7(a) and 7(b), exhibits
two valleys situated at the valence fluctuation regions ξd �
±(N − 1)U/2 for large U . These valleys rise all around as U
increases. Notably, for N = 4, the bottom value of CS turns
positive for large interactions U/(π
) � 5, while for N = 6,
it remains negative even for the largest interaction U/(π
) =
6 examined in this study.

Near the electron-hole symmetric point ξd = 0, where δ =
π/2 and Nd = N/2, the two-body part WS dominates the non-
linear noise coefficient CS since the three-body correlations
disappear around this point,

WS

ξd =0−−−→ 1 + 9K̃2

N − 1
, �S

ξd =0−−−→ 0. (7.5)

In particular, in the limit of U → ∞, the rescaled Wilson ratio
approaches the saturation value K̃ → 1. Hence, the coefficient

for the order |eV |3 term reaches (192/π2)CS

ξd =0 &U→∞−−−−−−−→ 4
for N = 4, and it reaches 14/5 for N = 6: The height of this
ridge decreases as N increases.

In contrast, in the opposite limit |ξd | → ∞, both the two-
body and the three-body parts approach the noninteracting
values

WS

|ξd |→∞−−−−→ 1, �S

|ξd |→∞−−−−→ 2, (7.6)
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since cos 2δ → 1, K̃ → 0, and �I → −2 in this limit. There-
fore, WS and �S contribute comparably to CS in the region
|ξd | � (N − 1)U/2, where the impurity levels are either al-
most empty Nd � 0 or fully occupied Nd � N . In particular,
as seen in Figs. 7(c) and 7(d), the two-body part approaches
the saturation value WS → 1 already at |ξd | � (N − 1)U/2 for
large interactions U/(π
) � 3.

In the strong-coupling region |ξd | � (N − 1)U/2 for large
U , the behavior of two-body part WS is determined by the
higher-harmonic cos 4δ term, as

WS � 1

2

(
3 + 5

N − 1

)
+ 1

2

(
13

N − 1
− 1

)
cos 4δ, (7.7)

since the Wilson ratio is locked at K̃ � 1.0 in this region. As
seen in Figs. 7(c) and 7(d), the two-body part WS has local
minima at quarter and three-quarters filling points, which
occur at δ = π/4 and 3π/4, or |ξd |/U � N/4 for large U .
At these local minima, WS take a positive value for N � 4,
as it can be deduced from Eq. (7.7). This is in contrast to
the SU(2) case where the local minima of WS take a negative
value, as shown in Appendix F. In the strong-coupling region
|ξd | � (N − 1)U/2, the three-body part takes the following
form, for large U ,

�S � χ [3]
σσσ

2π χ2
σσ

sin 4δ, (7.8)

due to the property described in Eq. (6.7). Equation (7.8)
clearly shows that the three-body part vanishes, �S = 0, at
quarter δ = π/4 and three-quarters δ = 3π/4 fillings. There-
fore, at these filling points, �S does not exhibit the plateau
structures for N = 4 in Fig. 7(e), despite the fact that �V
clearly exhibits the plateau structures as seen in Fig. 5(e).
In contrast, for N = 6, �S shows the clear plateau structures
in Fig. 7(f) at the fillings of Nd = 2 and 4. The three-body
parts �S for both N = 4 and 6 cases also have pronounced lo-
cal minima near the valence fluctuation regions ξd � ±(N −
1)U/2, which cause the valley structure appearing in CS . A
similar valley structure also emerges in CS for N = 2, as
shown in Appendix F. However, it stems from the two-body
correlations WS , instead of �S , in the SU(2) case.

VIII. THERMOELECTRIC TRANSPORT OF SU(4)
AND SU(6) QUANTUM DOTS

We next consider the order T 2 term of the linear con-
ductance g = dJ/dV |eV =0 and the order T 3 term of thermal
conductance κQD of SU(N ) quantum dots.

A. CT : order T 2 term of dJ/dV

The coefficient CT for the order T 2 conductance, defined
in Table II, also consists of two-body parts WT and three-body
part �T ,

CT = π2

48
(WT + �T ), �T ≡ �I + �̃II. (8.1)

In particular, the three-body part �T is solely determined by
the derivatives of the charge and spin susceptibilities, given in

FIG. 8. ξd dependence of CT = (π 2/48)(WT + �T ), two-body
part WT , and three-body part �T ≡ �I + 3 �̃II. (Left panels) N = 4,
for U/(π
) = 2/3(�), 1(�), 2(�), 3(�), 4(�), 5(•), and 6(×).
(Right panels) N = 6, for U/(π
) = 2/5(�), 1(�), 2(�), 3(�),
4(�), 5(•), and 6(×).

Eqs. (6.1) and (6.2), and does not depend on χ
[3]
B ,

�T = (4T ∗)2

N

[
∂χC

∂εd

+ (N − 1)
∂χS

∂εd

]
sin 2δ

2π
. (8.2)

This is a quite distinct characteristics of CT from the
next-leading order terms of the other transport coefficients.
Figures 8(a)–8(f) show the NRG results for CT , WT , and �T .

We see in Figs. 8(e) and 8(f) that the three-body contribu-
tion almost vanishes, �T � 0.0, in the wide strong-coupling
region |ξd | � (N − 1)U/2, in which the occupation num-
ber varies with ξd , in the range of 1 � Nd � N − 1. This
is because the magnitudes of the derivatives ∂χC/∂εd and
∂χS/∂εd , appearing in the right-hand side of Eq. (8.2), are
significantly suppressed by the Coulomb repulsion in this
region, as demonstrated in Figs. 3(a)–3(d).

Therefore, the two-body part WT dominates CT in the
strong-coupling region |ξd | � (N − 1)U/2, and it takes the
following form for large U :

WT �
[

1 + 2

N − 1

]
(2 sin2 δ − 1), �T � 0, (8.3)

as the rescaled Wilson ratio reaches the saturation value
K̃ → 1. Hence, the plateau structure of CT is determined by
the sin2 δ term of WT in Eq. (8.3). In particular, the plateau
around the half filling point |ξd | � U/2 reaches the height of

(48/π2)CT
U→∞−−−→ 5/3 and 7/5 for N = 4 and 6, respectively,

since δ � π/2 in this region. The order T 2 conductance, CT ,
vanishes at |ξd |/U � N/4, more specifically at the quarter and
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FIG. 9. ξd dependence of CQD
κ = (7π 2/80)(W QD

κ + �QD
κ ), two-

body part W QD
κ , and three-body part �QD

κ = �I + 5
21 �̃II. (Left

panels) N = 4, for U/(π
) = 2/3(�), 1(�), 2(�), 3(�), 4(�), 5(•),
and 6(×). (Right panels) N = 6, for U/(π
) = 2/5(�), 1(�), 2(�),
3(�), 4(�), 5(•), and 6(×).

the three-quarter fillings where the phase shift reaches δ =
π/4 or 3π/4. The zero points of CT emerge at integer fillings
in the case of N ≡ 0 (mod 4) at which the SU(N ) Kondo effect
is occurring, whereas for N ≡ 2 (mod 4) the zeros emerge at
half-integer filings in between the two adjacent Kondo states.
This explains the reason why the SU(4) Kondo state at quarter
filling exhibits universal T/T ∗-scaling behavior, which shows
the (T/T ∗)4 dependence at low temperatures instead of the
(T/T ∗)2 dependence [68].

In the valence fluctuation and empty (or fully occu-
pied) orbital regimes, which spread over the regions of
|ξd | � (N − 1)U/2, the three-body part �T becomes compa-
rable to the two-body part WT . Both of these parts approach
the noninteracting values in the limit of |ξd | → ∞,

WT

|ξd |→∞−−−−→ −1, �T

|ξd |→∞−−−−→ −2. (8.4)

B. CQD
κ : order T 3 term of κQD

The coefficient CQD
κ for the order T 3 term of the thermal

conductance κQD can also be decomposed into two parts, W QD
κ

and �QD
κ , as shown in Table II,

CQD
κ = 7π2

80

(
W QD

κ + �QD
κ

)
, �QD

κ ≡ �I + 5

21
�̃II. (8.5)

In contrast to �T of the conductance given in Eq. (8.2), the
three-body part �QD

κ of the thermal conductance depends on
χ

[3]
B as well as ∂χC/∂εd and ∂χS/∂εd . The contribution of

χ
[3]
B enters through χ [3]

σσσ and χ̃
[3]
σσ ′σ ′ , described in Eqs. (5.10)

and (5.11). This component χ
[3]
B yields the plateau structure in

�QD
κ , which reflects the staircase behavior seen in Figs. 3(e)

and 3(f). Figure 9 shows the NRG results for CQD
κ , W QD

κ , and
�QD

κ in the SU(4) and SU(6) cases.
Near half filling in the region of |ξd | � U/2, the two-

body part W QD
κ dominates CQD

κ as the three-body part �QD
κ

FIG. 10. Order T 2 term CQD
L = CQD

κ − CT of Lorenz number
LQD is plotted vs ξd . (Left panel) N = 4, for U/(π
) = 2/3(�),
1(�), 2(�), 3(�), 4(�), 5(•), and 6(×). (Right panel) N = 6, for
U/(π
) = 2/5(�), 1(�), 2(�), 3(�), 4(�), 5(•), and 6(×).

disappears near half filling ξd = 0, i.e., δ = π/2,

W QD
κ

ξd =0−−−→ 1 + 6K̃2

7(N − 1)
, �QD

κ

ξd =0−−−→ 0. (8.6)

In particular, in the strong interaction limit U → ∞, the
coefficient CQD

κ for N = 4 and 6 approach the values of

[80/(7π2)]CQD
κ

ξd =0 &U→∞−−−−−−−−→ 9/7 and 41/35, respectively.
The rescaled Wilson ratio takes the values very close to

the saturation value K̃ → 1 for large U in the strong-coupling
region of |ξd | � (N − 1)U/2, as described in Appendix E.
Similarly, in this region, the three-body correlations show the
property described in Eq. (6.7), and thus W QD

κ and �QD
κ take

the form

W QD
κ � 1

21

[
10 +

(
11 + 18

N − 1

)
(2 sin2 δ − 1)

]
,

�QD
κ � 16

21
�I. (8.7)

Therefore, the plateau structure of W QD
κ is determined by the

sin2 δ term appearing in the right-hand side, while the struc-
ture of �QD

κ reflects the behavior of �I shown in Figs. 4(e) and
4(f). The coefficient CQD

κ changes sign in the strong-coupling
region at two points of ξd , which are incommensurate with the
occupation number Nd in contrast to CT that changes sign at
1/4 and 3/4 fillings.

In the opposite limit |ξd | → ∞, both the two-body and
three-body parts approach the noninteracting values,

W QD
κ

|ξd |→∞−−−−→ − 1

21
, �QD

κ

|ξd |→∞−−−−→ −2. (8.8)

C. CQD
L : order T 2 term of LQD

The Lorenz number LQD ≡ κQD/(gT ) for quantum dots is
defined as the ratio of the thermal conductance κQD/T to the
electrical conductance g. It takes the universal Wiedemann-

Franz value at zero temperature LQD
T →0−−→ π2/(3e2). How-

ever, as the temperature rises, it deviates from the universal
value, showing the T 2 dependence described in Tables I and
II. The coefficient for the order T 2 term is given by CQD

L =
CQD

κ − CT , as a difference between the next-leading order
terms of κQD/T and g.

Figures 10(a) and 10(b) show the NRG results for CQD
L

in the SU(4) and SU(6) cases, respectively. Near half fill-
ing |ξd | � U/2, the coefficient CQD

L is determined by the
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two-body part W QD
L as the three-body part �

QD
L ≡ 16 �I van-

ishes at ξd = 0, as seen in Figs. 4(e) and 4(f),

CQD
L

ξd =0−−−→ π2

30

(
2 + K̃2

N − 1

)
> 0. (8.9)

It takes a positive value and reaches CQD
L

ξd =0 &U=∞−−−−−−−→
0, 767 · · · for N = 4, and 0.723 · · · for N = 6, in the limit
of U → ∞ where K̃ → 1.

In the strong-coupling region |ξd | � (N − 1)U/2, the co-
efficient CQD

L exhibits the plateau structures for large U ,
reflecting the corresponding structures of CT and CQD

κ . The
coefficient CQD

L changes sign at the points where the order T 2

terms of κQD/T and g coincide, i.e., CQD
κ = CT .

In the other regions at |ξd | � (N − 1)U/2, the impurity
levels approach the empty state Nd � 0 or fully occupied
Nd � N state. In particular, in the limit of |ξd | → ∞, both the
two-body and three-body parts approach the noninteracting

values, W QD
L

|ξd |→∞−−−−→ 4 and 16�I

|ξd |→∞−−−−→ −32, and thus

CQD
L

|ξd |→∞−−−−→ −7π2

60
= −1.151 · · · < 0. (8.10)

IX. FERMI LIQUID DESCRIPTION FOR SU(N)
SYMMETRIC MAGNETIC ALLOYS

We have discussed, in the previous sections, low-energy
transport properties of SU(N ) quantum dots, by extending
the Fermi liquid description to the next-leading order terms,
which contribute to the transport at finite temperatures or at
finite bias voltages. Our formulation is applicable to a wide
class of Kondo systems other than quantum dots, particularly
to dilute magnetic alloys (MA) composed of 3d , 4 f , or 5 f
electrons [2]. In this and the next sections, we apply this
formulation to dilute magnetic alloys away from half filling,
taking into account exactly the order ω2 and T 2 energy shifts
of quasiparticles that enter through the real part of the self-
energy �r

σ (ω) given in Appendix B.
The thermoelectric transport coefficients of magnetic al-

loys in the linear-response regime can be derived from the
function LMA

n,σ for n = 0, 1, and 2, defined by [43]

LMA
n,σ =

∫ ∞

−∞
dω

ωn

π
Aσ (ω)

(
−∂ f (ω)

∂ω

)
. (9.1)

Here, the inverse spectral function 1/Aσ (ω) in the integrand
represents the relaxation time of conduction electrons, which
depends on T as well as ω. The low-temperature expansion
of LMA

n,σ can be deduced from the exact low-energy asymptotic
of 1/Aσ (ω), given in Appendix B. We have presented the ex-
pansion formulas for the standard N = 2 Anderson impurity
model in a previous paper [21]. In this paper, we extend the
formulation to multi-level impurities in a general form without
assuming the SU(N ) symmetry. Details of the derivation are
given in Appendix G.

In the following, we consider the behavior of the next-
leading order terms of electrical conductivity σMA and thermal
conductivity κMA of magnetic alloys in the SU(N ) symmetric
case, where εdσ ≡ εd for all σ , and Uσσ ′ ≡ U for all σ and σ ′.
In this case, the formulas given in Appendix G are simplified,

and as a result, the electrical resistivity �MA = 1/σMA, the
thermal resistivity 1/κMA, and the Lorenz number LMA =
κMA/(σMA T ) can be expressed in the form

�MA = 1

σ unit
MA

[
sin2 δ − CMA

�

(
πT

T ∗

)2

+ · · ·
]
, (9.2)

1

κMA

= 3 e2

π2 σ unit
MA

1

T

[
sin2 δ − CMA

κ

(
πT

T ∗

)2

+ · · ·
]
, (9.3)

LMA = π2

3 e2

[
1 − CMA

L

sin2 δ

(
πT

T ∗

)2

+ · · ·
]
. (9.4)

Here, σ unit
MA is the unitary-limit value of electrical conductiv-

ity. The explicit expressions of the dimensionless coefficients
CMA

� , CMA
κ , and CMA

L are listed in Table II. These coefficients
C’s for magnetic alloys can also be decomposed into the
two-body W part and the three-body � part, as those for
quantum dots. Note that the following relations hold between
the coefficients for magnetic alloys and quantum dots:

CMA
� = π2

12
cos2 δ + CT , (9.5)

CMA
κ = 11π2

60
cos2 δ + CQD

κ , (9.6)

CMA
L = −π2

10
cos2 δ − CQD

L . (9.7)

In particular, the cos2 δ term appearing in the right-hand side
vanishes at half filling, i.e., δ = π/2. In this case the co-
efficients for magnetic alloys in the left-hand side coincide
with their quantum-dot counterparts in the right-hand side,
except for the signs of CMA

L and CQD
L . The behavior of these

coefficients for magnetic alloys also reflects the properties
of low-lying energy states and significantly depends on the
occupation number Nd and the interaction strength U .

X. THERMOELECTRIC TRANSPORT OF SU(4)
AND SU(6) MAGNETIC ALLOYS

We consider here the next-leading order terms of the elec-
trical resistivity �MA and thermal resistivity 1/κMA of SU(N )
symmetric magnetic alloys for N = 4 and 6. For compar-
ison, we also provide the NRG results for these transport
coefficients in the SU(2) case in Appendix F, and the ana-
lytic expressions of C’s for noninteracting magnetic alloys in
Appendix H.

A. CMA
� : Order T 2 term of �MA

The coefficient CMA
� for the order T 2 resistivity, is defined

in Table II. It consists of two-body part W MA
� and three-body

part �MA
� ,

CMA
� = π2

48

(
W MA

� + �MA
�

)
, �MA

� ≡ �I + �̃II. (10.1)

Note that �MA
� ≡ �T , i.e., the three-body part for the T 2

resistivity of magnetic alloys is identical to the one for the
T 2 conductance of quantum dots. Therefore, �MA

� does not
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FIG. 11. ξd dependence of CMA
� = (π 2/48)(W MA

� + �MA
� ), two-

body part W MA
� , and three-body part �MA

� = �I + �̃II. (Left panels)
N = 4, for U/(π
) = 2/3(�), 1(�), 2(�), 3(�), 4(�), 5(•), and
6(×). (Right panels) N = 6, for U/(π
) = 2/5(�), 1(�), 2(�),
3(�), 4(�), 5(•), and 6(×).

depend on χ
[3]
B and is determined by the derivative of

the charge and spin susceptibilities through Eq. (8.2).
Figures 11(a)–11(d) show the NRG results for CMA

� , W MA
� ,

and �MA
� for both the SU(4) and SU(6) symmetric cases.

The coefficient CMA
� is positive and is less sensitive to the

impurity level position ξd as compared to the quantum-dot
counterpart CT shown in Fig. 8. This difference is caused
by the first term, (π2/12) cos2 δ, appearing in the right-hand
side of Eq. (9.5). In particular, in the noninteracting case,

it becomes a constant, (48/π2)CMA
�

U=0−−→ 1, independent of
the level position, as all effects due to εd are absorbed into
the characteristic energy T ∗ for U = 0 (see Appendix H).
Therefore, it is the strong electron correlation that makes CMA

� ,
shown in Figs. 11(a) and 11(b), deviates from the constant
value.

The three-body part almost vanishes, �MA
� � 0, for large

U in the strong-coupling region |ξd | � (N − 1)U/2, as men-
tioned for �T in Eq. (8.2). This is caused by the fact that
the magnitudes of the derivatives, ∂χC/∂εd and ∂χS/∂εd , are
significantly suppressed by the Coulomb repulsion in the wide
range of electron filling 1 � Nd � N − 1, as demonstrated in
Figs. 3(a)–3(d). Therefore, in this region |ξd | � (N − 1)U/2,
the coefficient CMA

� is determined solely by the two-body part
W MA

� , which takes the form

CMA
� � π2

48

[
2 +

(
1 − 2

N − 1

)
(1 − 2 sin2 δ)

]
> 0,

(10.2)

as the rescaled Wilson ratio is saturated to K̃ � 1. Hence,
the plateaus emerging around the integer filling points δ/π =
1, 2, . . ., N − 1, reflect the structures of the Kondo ridge
occurring for the transmission probability sin2 δ, seen in
Figs. 15(b) and 16(b) in Appendix E. Among these plateaus,
the one at half filling, where δ = π/2, takes the small-

est value: (48/π2)CMA
�

ξd =0 &U→∞−−−−−−−−→ 5/3 and 7/5 for N = 4

FIG. 12. ξd dependence of CMA
κ = (7π 2/80)(W MA

κ + �MA
κ ),

two-body part W MA
κ , and three-body part �MA

κ = �I + 5
21 �̃II. (Left

panels) N = 4, for U/(π
) = 2/3(�), 1(�), 2(�), 3(�), 4(�), 5(•),
and 6(×). (Right panels) N = 6, for U/(π
) = 2/5(�), 1(�), 2(�),
3(�), 4(�), 5(•), and 6(×).

and 6, respectively. As ξd moves away from half filling,
the coefficient CMA

� increases in the region of |ξd | � (N −
1)U/2. Equation (10.2) also indicates that the plateau be-
comes highest at the electron fillings of Nd � 1 and N − 1:

(48/π2)CMA
�

U→∞, δ=π/N−−−−−−−−→ 2 and 23/10 for N = 4 and 6, re-
spectively. The NRG results for CMA

� , shown in Figs. 11(a)
and 11(b), clearly demonstrate these behaviors, which are
quite different form the behaviors of CT of quantum dots.
Equation (10.2) also shows that, in the SU(2) symmetric case
where N = 2, the coefficient CMA

� takes the maximum value
at half filling, as demonstrated also in Appendix F.

In contrast, at |ξd | � (N − 1)U/2, the occupation number
approaches the empty Nd � 0 or the fully occupied Nd � N
states as the impurity level moves further away from the Fermi
level. In this region, both the two-body W MA

� and three-body
�MA

� parts give comparable contributions to CMA
� , and ap-

proach the noninteracting values,

W MA
�

|ξd |→∞−−−−→ 3, �MA
�

|ξd |→∞−−−−→ −2, (10.3)

and thus (48/π2)CMA
�

|ξd |→∞−−−−→ 1.

B. CMA
κ : Order T 3 term of κMA

We next consider the order T 3 term of thermal conductivity
κMA of the SU(N ) symmetric magnetic alloys. The coefficient
CMA

κ , defined in Tables I and II, consists of two-body W MA
κ

and three-body �MA
κ parts,

CMA
κ = 7π2

80

(
W MA

κ + �MA
κ

)
, �MA

κ ≡ �I + 5

21
�̃II.

(10.4)

Note that �MA
κ ≡ �QD

κ , i.e., the three-body part for CMA
κ of

magnetic alloys is identical to the one for the T 3 thermal
conductance of quantum dots. The NRG results for these coef-
ficients CMA

κ , W MA
κ , and �MA

κ are shown in Figs. 12(a)–12(d)
for N = 4 and 6.
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The coefficient CMA
κ for magnetic alloys is less sensitive to

ξd as compared to CQD
κ for for quantum dots. This difference is

caused by the contribution of the first term, (11π2/60) cos2 δ,
in the right-hand side of Eq. (9.6). The coefficient CMA

κ is
positive and has a broad peak at ξd = 0, the height of which is
determined by the two-body contribution W MA

κ as three-body
part �MA

κ vanishes in the electron-hole symmetric case,

W MA
κ

ξd =0−−→ 1 + 6K̃2

7(N − 1)
, �MA

κ

ξd =0−−−→ 0. (10.5)

In the limit of U → ∞, it reaches the maximum possible

value, [80/(7π2)]CMA
κ

ξd =0 &U→∞−−−−−−−−→ 9/7 and 41/35 for N = 4
and 6, respectively.

In the strong-coupling region |ξd | � (N − 1)U/2, the co-
efficient CMA

κ takes the following form for large U :

CMA
κ � π2

240

[
32 +

(
11 − 18

N − 1

)
cos 2δ + 16 �I

]
.

(10.6)

This is because, in this region, the rescaled Wilson ratio is
almost saturated K̃ � 1 (see Appendix E) and the three-body
part is parameterized by a single component, �MA

κ � 16
21 �I,

due to the property described in Eq. (6.7). The plateau struc-
tures of CMA

κ , appearing in Figs. 12(a) and 12(b) around the
integer filling points Nd = 1, 2, . . ., N − 1, are determined by
both the cos 2δ term in W MA

κ and the plateaus occurring in
�MA

κ seen in Figs. 12(c) and 12(d).
In contrast, at |ξd | � (N − 1)U/2, the electron filling ap-

proaches the empty Nd � 0 or the fully occupied Nd � N
states as the impurity level goes very far away from the half
filled point. Therefore, the order T 3 thermal conductivity for
magnetic alloys also approaches the noninteracting value in
this limit,

W MA
κ

|ξd |→∞−−−−→ 43

21
, �MA

κ

|ξd |→∞−−−−→ −2, (10.7)

and thus [80/(7π2)]CMA
κ

|ξd |→∞−−−−→ 1/21.

C. CMA
L : Order T 2 term of LMA

The Lorenz number LMA ≡ κMA/(σMA T ) for magnetic
alloys is defined as the ratio of the thermal conductivity
κMA/T to electrical conductivity σMA. It takes the univer-

sal Wiedemann-Franz value at zero temperature: LMA
T →0−−→

π2/(3e2). However, it deviates from this value as the tem-
perature increases, showing the T 2 dependence as described
in Eq. (9.4). The precise expansion formula for the coeffi-
cient CMA

L for the order T 2 term is shown in Table II. It
is given by the difference, CMA

L = CMA
� − CMA

κ , between the
order T 2 term of the resistivities, 1/σMA and T/κMA, defined
in Eqs. (9.2) and (9.4). The coefficient CMA

L for magnetic
alloys and the quantum-dot counterpart CQM

L are related to
each other through Eq. (9.7): these two coefficients tend to
have opposite signs. In Appendix H, we have also provide
an analytic formula for CMA

L in the noninteraction case, for
comparison.

The NRG results for CMA
L are shown in Figs. 13(a)

and 13(b) for N = 4 and 6, respectively. Near half filling

FIG. 13. Order T 2 term CMA
L = CMA

� − CMA
κ of Lorenz number

LMA is plotted vs ξd . (Left panel) N = 4, for U/(π
) = 2/3(�),
1(�), 2(�), 3(�), 4(�), 5(•), and 6(×). (Right panel) N = 6, for
U/(π
) = 2/5(�), 1(�), 2(�), 3(�), 4(�), 5(•), and 6(×).

|ξd | � U/2, the coefficient CMA
L is determined by the two-

body part W MA
L as the three-body part, given by −16�I,

vanishes at ξd = 0,

CMA
L

ξd =0−−→ −π2

30

(
2 + K̃2

N − 1

)
< 0. (10.8)

This coefficient attains its greatest possible negative value

in the limit of U → ∞ where K̃ → 1: CMA
L

ξd =0 &U→∞−−−−−−−→
−0, 767 · · · for N = 4, and −0.723 · · · for N = 6.

In the strong-coupling region |ξd | � (N − 1)U/2, the CMA
L

also exhibits the plateau structures around the integer filling
points ξd/U = 0, ±1, . . ., ±(N − 2)/2 for large U , reflecting
the structures that appear for both CMA

� and CMA
κ . In partic-

ular, the plateaus at Nd � N
2 ± 1 fillings, seen in Figs. 13(a)

and 13(b) for U/(π
) � 3, take a negative value for both
N = 4 and N = 6, whereas the other plateaus become positive
for N = 6 as the electrical resistivity dominates, i.e., CMA

� >

CMA
κ .

As the impurity level goes far away from the Fermi level
in the region |ξd | � (N − 1)U/2, the occupation number ap-
proaches Nd � 0 or Nd � N . In the limit of |ξd | → ∞, the
two-body and three-body parts take the noninteracting values,

W MA
L

|ξd |→∞−−−−→ −28 and −16�I

|ξd |→∞−−−−→ 32, and the coefficient
CMA

L converges to the positive value,

CMA
L

|ξd |→∞−−−−→ π2

60
= 0.164 · · · > 0. (10.9)

XI. SUMMARY

We have presented a comprehensive Fermi liquid descrip-
tion for nonlinear current and thermoelectric transport through
quantum dots and magnetic alloys, which is asymptotically
exact at low energies up to the next-leading order terms.
Our formulation is based on the multilevel Anderson model
and is applicable to arbitrary impurity-level structures εdσ for
σ = 1, 2, . . ., N , including the spin degrees of freedom. The
coefficients for the next-leading order terms have been shown
to be expressed in terms of a set of the correlation functions
defined with respect to the equilibrium ground state: the phase
shift δσ , the static susceptibilities χσ1,σ2

, and the three-body
correlations χ [3]

σ1,σ2,σ3
, which emerge when the system does not

have both the electron-hole and time-reversal symmetries.
Extending Yamada-Yosida’s field-theoretical approach, we

have obtained the formulas for the differential conductance
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dI/dV , current noise SQD
noise and thermal conductance κQD

of quantum dots, and also the electrical resistivity �MA
and thermal conductivity κMA of dilute magnetic alloys. In
the SU(N ) symmetric case, these transport coefficients take
simplified forms, as listed in Tables I and II, and the three-
body correlations can be deduced from the derivatives of
the susceptibilities: ∂χC/∂εd , ∂χS/∂εd , and χ

[3]
B through

Eqs. (5.10)–(5.13).
We have also calculated the correlation functions for the

SU(4) and SU(6) cases, using the NRG approach over the
whole region of impurity-electron fillings Nd , which in-
cludes the Kondo and the valence-fluctuation regimes. In the
SU(N ) case, the three-body correlations have three linearly
independent components that approach each other closely
as the Coulomb interaction U increases: χ [3]

σσσ � −(N −
1)χ [3]

σσ ′σ ′ � (N−1)(N−2)
2 χ

[3]
σσ ′σ ′′ for σ �= σ ′ �= σ ′′ �= σ , in a wide

filling range 1 � Nd � N − 1. This is caused by the suppres-
sion of the derivatives of the charge and spin susceptibilities,
occurring at large U : |∂χC/∂εd | � (T ∗)−2 and |∂χS/∂εd | �
(T ∗)−2, with T ∗ ≡ 1/(4χσσ ) the characteristic energy scale
of the SU(N ) Fermi liquid. This property of three-body
correlations is also related to a similar property of linear
susceptibilities, χσσ � −(N − 1)χσσ ′ , which reflects the sup-
pression of charge fluctuations, χC � 0, occurring at large U .

The coefficients C’s for the next-leading order terms can
be decomposed into the two-body part W ’s and the three-body
part �’s, as listed in Table II. The NRG results show that the
three-body part �V of the coefficient CV for the order (eV )2

term of dI/dV exhibits Kondo plateau structures at integer
filling points Nd = 1, 2, . . ., N − 1 for large U . These plateaus
of �V complement the two body part WV , which decreases
away from half filling, to form a wide ridge structure in CV
that spreads over the region of 1 � Nd � N − 1.

The linear-response term of current noise SQD
noise is maxi-

mized at quarter filling Nd/N = 1/4 and three-quarters 3/4
filling, and the peaks exhibit flat structures for N = 4, while
they are round for N = 6. This difference is caused by the
fact that, at these fillings, the SU(N ) Kondo effects occur for
N ≡ 0 (mod 4), while the intermediate valence fluctuations
occur for N ≡ 2 (mod 4). The coefficient CS for the order
|eV |3 nonlinear term of SQD

noise has a peak at half filling, which
evolves into a plateau as U increases. As the impurity level
ξd deviates from the half filling point, CS decreases rapidly
for N = 4, whereas it varies more modestly for N = 6. This
is mainly due to the higher-harmonic “sin 4δ” dependence of
the three-body part �S , which vanishes at the quarter and
three-quarters filling points. As |ξd | increases further, �S has
a pronounced negative minimum in the valence fluctuation
regions at ξd � ±(N − 1)U/2 for both N = 4 and 6, which
yield the valley structures appearing in CS . This is in marked
contrast to the SU(2) case, where the valley structure emerg-
ing in CS is caused by the two-body contributions WS , instead
of �S .

We have also studied the coefficient CT for the order T 2

term of the linear conductance g ≡ dJ/dV |eV =0 and the co-
efficient CQD

κ for the order T 3 term of thermal conductance
κQD, for SU(N ) quantum dots. The three-body part �T of CT
is determined solely by the derivatives of charge and spin sus-
ceptibilities, i.e., ∂χC/∂εd and ∂χS/∂εd , and is independent

of χ
[3]
B . Therefore, �T is significantly suppressed and almost

vanishes for strong interactions U in a wide range of the
electron filling 1 � Nd � N − 1. In contrast, the three-body
part �QD

κ for thermal conductance involves χ
[3]
B and becomes

comparable to the two-body part W QD
κ , except for the plateau

region near half filling. The Lorenz number LQD ≡ κQD/(gT )
for quantum dots takes the universal Wiedemann-Franz value
π2/(3e2) at T = 0 and shows a T 2 dependence at low tem-
peratures. The coefficient for the order T 2 term of LQD is
given by CQD

L = CQD
κ − CT , i.e., the difference between the

next-leading order terms of κQD and g. This coefficient CQD
L

also exhibits the Kondo plateau structures at integer filling
points Nd = 1, 2, . . ., N − 1.

The three-body correlations also play a significant role in
the low-energy transport of magnetic alloys. We have inves-
tigated the behaviors of the coefficient CMA

� for the order T 2

resistivity �MA and CMA
κ for the order T 3 thermal conductivity

κMA. In the SU(N ) symmetric case, the three-body parts of
these coefficients become identical to the related ones for
quantum dots, i.e., �MA

� ≡ �T and �MA
κ ≡ �QD

κ . Therefore,
the difference between the coefficients for MA and that for
the QD counterparts arises from the two-body parts, more
specifically, from the additional cos2 δ terms appearing in the
right-hand side of Eqs. (9.5) and (9.6). The additional cos2 δ

terms make the coefficients CMA
� and CMA

κ positive definite
and less sensitive to the impurity level position ξd , compared
to the QD counterparts CT and CQD

κ . The coefficient CMA
� takes

the maximum value at the electron fillings of Nd � 1 and
N − 1 for N � 4, while in the SU(2) case CMA

� has a single
peak at half filling. The coefficient CMA

L = CMA
� − CMA

κ for
the order T 2 term of the Lorenz number LMA ≡ κMA/(σMA T )
for magnetic alloys also becomes less sensitive to the electron
filling Nd compared to CQD

L for quantum dots.
The three-body correlation functions can be determined

experimentally by measuring the coefficients C’s for the next-
leading order terms. These experimental values can then be
used to infer the behaviors of other unmeasured transport
coefficients.
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APPENDIX A: FERMI LIQUID PARAMETERS

1. Linear and nonlinear static susceptibilities

The ground-state properties and the leading Fermi liquid
corrections due to the low-lying excitations can be described
in terms of the occupation number and the linear suscepti-
bilities of the impurity level, derived from the free energy
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� ≡ −(1/β ) log [Tr e−βH ],

〈ndσ 〉 = ∂�

∂εdσ

, (A1)

χσσ ′ ≡ − ∂2�

∂εdσ
∂εdσ ′

=
∫ β

0
dτ 〈δndσ (τ ) δndσ ′ 〉. (A2)

Here, δndσ ≡ ndσ − 〈ndσ 〉, and thermal-equilibrium averages
are defined as 〈O〉 = Tr [e−βH O ]/Tr e−βH, with β = 1/T
the inverse temperature.

In addition to the linear susceptibilities, the nonlinear sus-
ceptibilities χ [3]

σ1σ2σ3
play an essential role in the next-leading

order terms of the transport coefficients when the system does
not have both the electron-hole and time-reversal symmetries,

χ [3]
σ1σ2σ3

≡ − ∂3�

∂εdσ1
∂εdσ2

∂εdσ3

= ∂χσ1σ2

∂εdσ3

= −
∫ β

0
dτ1

∫ β

0
dτ2

〈
Tτ δndσ1

(τ1) δndσ2
(τ2) δndσ3

〉
.

(A3)

Here, Tτ is the imaginary-time ordering operator. This cor-
relation function has the permutation symmetry: χ [3]

σ1σ2σ3
=

χ [3]
σ2σ1σ3

= χ [3]
σ3σ2σ1

= χ [3]
σ1σ3σ2

= · · · . Specifically, in our formu-
lation we are using the ground-state values for 〈ndσ 〉, χσσ ′ and
χ [3]

σ1σ2σ3
, determined at T = 0.

The occupation number can be related to the phase shift δσ

through the Friedel sum rule: 〈ndσ 〉 T →0−−−→ δσ /π . The phase
shift corresponds to the argument of the Green’s function,
given by Gr

σ (0) = −|Gr
σ (0)|eiδσ , at ω = T = eV = 0 [8], and

determines the value of the spectral function ρdσ (ω) at ω = 0,

ρdσ (ω) ≡ Aσ (ω)
∣∣
T =eV =0, (A4)

ρdσ ≡ ρdσ (0) = sin2 δσ

π

, (A5)

where Aσ (ω) is the nonequilibrium spectral function defined
in Eq. (3.2). The derivative of ρdσ (ω) also contributes to the
next-leading order terms and can be expressed in terms of the
diagonal susceptibility χσσ , using Eq. (A11),

ρ ′
dσ ≡ ∂ρdσ (ω)

∂ω

∣∣∣∣
ω=0

= −∂ρdσ

∂εdσ

= χσσ



sin 2δσ . (A6)

One of the most typical Fermi liquid corrections due to
many-body scatterings arises in the T -linear specific heat Cheat

imp
of impurity electrons,

Cheat
imp = γimp T, γimp ≡ π2

3

∑
σ

χσσ . (A7)

The coefficient γimp can be expressed in terms of the diagonal
components of the linear susceptibility χσσ using the Ward
identities [6,8,9], i.e., Eqs. (A11) and (A12), which follow
from a relationship between the derivative of the self-energy
with respect to ω and the derivative with respect to εdσ .

2. Ward identities

The local Fermi liquid state of quantum impurity systems
can be microscopically described using the retarded Green’s

function, defined in Eq. (3.1), which can also be written in the
form,

Gr
σ (ω) = 1

ω − εdσ
+ i
 − �r

σ (ω)
. (A8)

The information about the low-lying energy states can
be extracted from the equilibrium self-energy �r

eq,σ (ω) ≡
�r

σ (ω)|T =eV =0, by expanding it, step by step, around the Fermi
energy ω = 0. The expansion up to linear terms in ω describes
the renormalized resonance state of the form,

Gr
σ (ω) � zσ

ω − ε̃dσ
+ i
̃σ

. (A9)

Here, the renormalized parameters are defined by

ε̃dσ ≡ zσ

[
εdσ + �r

eq,σ (0)
] = 
̃σ cot δσ ,


̃σ ≡ zσ
,
1

zσ

≡ 1 − ∂�r
eq,σ (ω)

∂ω

∣∣∣∣
ω=0

. (A10)

The wavefunction renormalization factor zσ can be related to
the derivative of �r

eq,σ (0) with respect to the impurity level
εdσ ′ , using the Ward identity [6,8,9],

1

zσ

= χ̃σσ , χ̃σσ ′ ≡ δσσ ′ +
∂�r

eq,σ (0)

∂εdσ ′
. (A11)

The coefficient χ̃σσ ′ determines the extent to which the sus-
ceptibility is enhanced at T = 0,

χσσ ′ = −∂〈ndσ 〉
∂εdσ ′

T →0−−−→ ρdσ χ̃σσ ′ . (A12)

Recently studies have been clarified that the order ω2 real
part of the self-energy can be expressed in terms of the the
diagonal component of the three-body correlation function
χ [3]

σσσ , as [18–21]

∂2

∂ω2
Re �r

eq,σ (ω)
∣∣
ω→0 = ∂2�r

eq,σ (0)

∂ε2
dσ

= ∂χ̃σσ

∂εdσ

. (A13)

Physically, this coefficient determines the energy shifts of
quasiparticles of order ω2, T 2, and (eV )2, which affect the
low-energy transport of the next-leading order.

APPENDIX B: LOW-ENERGY ASYMPTOTIC
FORM OF SPECTRAL FUNCTION

The low-energy asymptotic form of the retarded self-
energy �r

σ (ω) for multilevel Anderson impurity model has
been derived up to terms of order ω2, T 2, and (eV )2 in
the previous studies [27,29]. For symmetric tunnel junctions
with �L = �R (= 
/2) and μL = −μR (= eV/2), it takes the
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form

Im �r
σ (ω) = −π

2

1

ρdσ

∑
σ ′( �=σ )

χ2
σσ ′

[
ω2 + 3

4
(eV )2 + (πT )2

]
+ · · · , (B1)

εdσ + Re �r
σ (ω) = 
 cot δσ + (1 − χ̃σσ ) ω + 1

2

∂χ̃σσ

∂εdσ

ω2 + 1

6

1

ρdσ

∑
σ ′( �=σ )

χ
[3]
σσ ′σ ′

[
3

4
(eV )2 + (πT )2

]
+ · · · . (B2)

Substituting these expansion results into Eq. (A8), we obtain the asymptotic form spectral function,

π
 Aσ (ω) = sin2 δσ + π2

3

⎛⎝3

2
cos 2δσ

∑
σ ′( �=σ )

χ2
σσ ′ − sin 2δσ

2π

∑
σ ′( �=σ )

χ
[3]
σσ ′σ ′

⎞⎠[3

4
(eV )2 + (πT )2

]

+ π sin 2δσ χσσ ω + π2

⎡⎣cos 2δσ

⎛⎝χ2
σσ + 1

2

∑
σ ′( �=σ )

χ2
σσ ′

⎞⎠− sin 2δσ

2π
χ [3]

σσσ

⎤⎦ω2 + · · · . (B3)

Correspondingly, the inverse of the spectral function that determines the thermoelectric transport of magnetic alloys takes the
following form, up to terms order ω2 and T 2 at eV = 0,

1

π
Aσ (ω)
� 1

π
ρdσ

[
1 − 1

6
ρdσ

(
3π cos 2δσ

∑
σ ′( �=σ )

χ2
σσ ′ − sin 2δσ

∑
σ ′( �=σ )

χ
[3]
σσ ′σ ′

)
(πT )2 − sin 2δσ χσσ


ρdσ

ω

+ π


ρdσ

{
(cos 2δσ + 2) χ2

σσ − 1

2
cos 2δσ

∑
σ ′( �=σ )

χ2
σσ ′ + sin 2δσ

2π
χ [3]

σσσ

}
ω2

]
+ · · · . (B4)

APPENDIX C: PROPERTIES OF χ[3]
σ1σ2σ3

IN SU(N) CASE

We briefly describe here some relations between the three-
body correlation functions and the derivative of the linear
susceptibilities with respect to the center of mass coordinate
of the impurity levels, εd ≡ (1/N )

∑
σ εdσ .

The derivative of the diagonal susceptibility χσσ can be
written as

∂χσσ

∂εd

= ∂χσσ

∂εdσ

+
∑

σ ′( �=σ )

∂χσσ

∂εdσ ′

SU(N )−−−→ χ [3]
σσσ + (N − 1) χ

[3]
σσ ′σ ′ , (C1)

where σ �= σ ′. Note that χ
[3]
σσσ ′ = χ

[3]
σσ ′σ ′ in the SU(N ) sym-

metric case. Similarly, the derivative of the off-diagonal
susceptibility χσσ ′ for σ �= σ ′ takes the form

∂χσσ ′

∂εd

= ∂χσσ ′

∂εdσ

+ ∂χσσ ′

∂εdσ ′
+
∑
σ ′′ ( �=σ

�=σ ′ )

∂χσσ ′

∂εdσ ′′

SU(N )−−−→ 2 χ
[3]
σσ ′σ ′ + (N − 2) χ

[3]
σσ ′σ ′′ , (C2)

for σ �= σ ′ �= σ ′′ �= σ . In the SU(2) symmetric case, Eqs. (C1)
and (C2) provide enough information to determine the two
independent components χ [3]

σσσ and χ
[3]
σσ ′σ ′ from the two dif-

ferential coefficients ∂χσσ /∂εd and ∂χσσ ′/∂εd . However, for
N � 3, there are three independent three-body components,
i.e., χ [3]

σσσ , χ [3]
σσ ′σ ′ , and χ

[3]
σσ ′σ ′′ , so that we need additional infor-

mation to determine all these components.
In order to obtain another independent relation, we con-

sider the derivative of the susceptibilities with respect to the
magnetic field b, which induces the level splitting in impurity

levels εdσ in a such way that εd,m,↑ = εd − b and εd,m,↓ =
εd + b, with σ = (m, s) for m = 1, 2, . . . , N/2 and s = ↑,↓,

∂χm1s1,m2s2

∂b
=

N/2∑
m3=1

∑
s3=↑,↓

∂εd,m3,s3

∂b

∂χm1s1,m2s2

∂εd,m3,s3

= −
N/2∑

m3=1

χ
[3]
m1s1,m2s2,m3↑ +

N/2∑
m3=1

χ
[3]
m1s1,m2s2,m3↓.

(C3)

From this derivative, we obtain the following relation, taking
m1 = m2 (≡ m),

∂

∂b

(
χm↑,m↑ − χm↓,m↓

2

)

= −
N/2∑

m′=1

1

2

(
χ

[3]
m↑,m↑,m′↑ − χ

[3]
m↑,m↑,m′↓

+ χ
[3]
m↓,m↓,m′↓ − χ

[3]
m↓,m↓,m′↑

)
b→0−−−→ −

N/2∑
m3=1

[
χ

[3]
m↑,m↑,m3↑ − χ

[3]
m↑,m↑,m3↓

]
= −(χ [3]

m↑,m↑,m↑ − χ
[3]
m↑,m↑,m↓

)
. (C4)

Here, we set the magnetic field to be zero, b = 0, in the last
two lines. This relation can also be rewritten into the following
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FIG. 14. Comparison of (•) NRG and (—) exact results of sin2 δ

for U = 0. The NRG calculation was performed for N = 6, taking
� = 20 and keeping Ntrunc = 40 000 low-energy states.

form at b = 0, using the original label σ = (m, s),

χ
[3]
B ≡ ∂

∂b

(
χm↑,m↑ − χm↓,m↓

2

)
b=0

= −χ [3]
σσσ + χ

[3]
σσ ′σ ′,

(C5)

for σ ′ �= σ .

APPENDIX D: NRG PROCEDURES

We have carried out NRG calculations, dividing the N
conduction channels into N/2 pairs and using the SU(2)
spin and U(1) charge symmetries for each of the pairs,

i.e.,
∏ N

2
k=1{SU(2) ⊗ U(1)}k symmetries. The discretization

parameter � and the number of retained low-lying excited
states Ntrunc are chosen to be (�, Ntrunc) = (6, 10000) for N =
4. Note that the SU(4) symmetry is preserved in our iteration
scheme since the truncation of higher energy states has been
carried out after adding all new states from the N/2 pairs.

For N = 6, we have also exploited the method of Stadler
et al. [85]. In this case, the truncation procedure is carried
out at each of the steps (k = 1, 2, . . ., N/2) after adding the
states constructed with one of the channel pairs, by using
Oliveira’s Z trick [86], choosing different Z values for each
of the N/2 steps: Zk = 1/2 + k/N for the kth pair. We have
carried out calculations for N = 6, taking rather large values
for the NRG parameters, such that (�, Ntrunc) = (20, 40000)
for small interactions U/(π
) = 2/5 and 1, and (20,30000)
for large interactions U/(π
) = 2, 3, 4, 5, and 6. This method
significantly reduces the computational cost for obtaining
low-lying energy states and enables us to calculate the three-
body correlation functions for 6, although it does not faithfully
preserve the SU(6) symmetry. We have checked whether this
method reproduces the noninteracting results. Figure 14 com-
pares the NRG result for sin2 δ with the exact one for U = 0;
the results show reasonable agreement. It indicates that this
truncation procedure works effectively for deducing the SU(6)
FL parameters.

In order to calculate χ
[3]
B defined in Eq. (5.13), we have also

introduced a small external potential εsp,k , which depends on
the channel index k = 1, 2, . . ., N/2 and shifts the impurity
level from εd . Specifically, for N = 4, it is applied in a way
equivalent to the local Zeeman field: εsp,1 = −b and εsp,2 = b.

FIG. 15. Fermi liquid parameters for the SU(4) symmetric
Anderson model are plotted vs ξd : (a) Nd , (b) sin2 δ, (c) renor-
malization factor z, (d) K̃ = (N − 1)(R − 1). (e) renormalized level
ε̃d , and (f) enlarged view of ε̃d , Interaction strengths are chosen to
be U/(π
) = 2/3(�), 1(�), 2(�), 3(�), 4(�), 5(•), and 6(×). The
dashed line in (a) represents Nd in the atomic limit 
 → 0.

For N = 6, we have extended the potential such that εsp,1 =
−b, εsp,2 = 0, and εsp,3 = b, and have deduced χ

[3]
B from the

derivatives of the channel susceptibilities with respect to b.

APPENDIX E: TWO-BODY FL PARAMETERS FOR SU(4)
AND SU(6) SYMMETRIC CASES

We provide a quick overview of the behavior of the renor-
malized parameters in the SU(4) and SU(6) cases, which can
be derived from the phase shift and the linear susceptibilities
[87–90]. Our discussion here is based on the NRG results,
plotted in Figs. 15 and 16 as functions of the impurity level
position ξd , for several different interaction strengths: from
weak to strong interactions up to U/(π
) = 6.0.

The SU(N ) Kondo effect occurs for strong interactions
when the impurity levels are filled by an integer number of
electrons, i.e., at the fillings of Nd = 1, 2, . . ., N − 1. It takes
place at ξd � 0, ±U, . . . ,±N−2

2 U , and gives an interesting
variety in the low-energy properties. As N increases, a greater
interaction strength is required to clearly observe the Kondo
behavior. This is because the quantum fluctuations caused by
the Coulomb interaction are suppressed for large N . In partic-
ular, the mean-field theory becomes exact in the limit N → ∞
that is taken keeping the scaled interaction U ∗ ≡ (N − 1)U
constant [90].

Figures 15(a) and 16(a) show the occupation number Nd
for N = 4 and 6, respectively. As U increases, the Coulomb
staircase structure emerges: Nd varies steeply at ξd � ±U/2,
±3U/2, . . ., ±(N − 1)U/2. Correspondingly, as U increases,
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FIG. 16. Fermi liquid parameters for the SU(6) symmetric
Anderson model are plotted vs ξd : (a) Nd , (b) sin2 δ, (c) renor-
malization factor z, (d) K̃ = (N − 1)(R − 1). (e) renormalized level
ε̃d , and (f) enlarged view of ε̃d , Interaction strengths are chosen to
be U/(π
) = 2/5(�), 1(�), 2(�), 3(�), 4(�), 5(•), and 6(×). The
dashed line in (a) represents Nd in the atomic limit 
 → 0.

the transmission probability sin2 δ, shown in Figs. 15(b)
and 16(b), exhibits a plateau structure that develops around
ξd � 0, ±U , . . ., ±(N − 2)U/2. In particular, the plateau at
the half-filling point ξd � 0 reaches the unitary limit value
sin2 δ = 1.0.

The renormalization factor z, shown in Figs. 15(c) and
16(c) for N = 4 and 6, exhibits a broad valley structure at
|ξd | � (N − 1)U/2, where 1 � Nd � N − 1. The valley be-
comes deeper as U increases, and the local minima emerge
for U/(π
) � 3.0 at the integer-filling points, reflecting the
occurrence of the SU(N ) Kondo effects. The renormalization
factor also has local maxima at intermediate valence states in
between two adjacent local minima. Note that z is significantly
suppressed by the strong electron correlations even at these
local maxima. Figures 15(d) and 16(d) show the rescaled
Wilson ratio K̃ ≡ (N − 1)(R − 1). For large interactions, K̃
exhibits a wide flat structure at |ξd | � (N − 1)U/2, the height
of which approaches the saturation value K̃ � 1.0, especially
for U/(π
) � 3.0, reflecting the suppression of charge fluc-
tuations in this region of ξd .

Figures 15(e) and 16(e) show the renormalized resonance-
level position ε̃d ≡ z
 cot δ for N = 4 and 6, respectively, as a
function of ξd . For strong interactions, the renormalized level
is almost locked at the Fermi level, ε̃d � 0.0, in the strong-
coupling region |ξd | � (N − 1)U/2, which corresponds to the
filling range of 1 � Nd � N − 1. Figures 15(f) and 16(f) show
an enlarged view of ε̃d in the vicinity of the Fermi level. We
see that ε̃d exhibits a fine structure, which reflects the staircase

behavior of the phase shift δ and the oscillatory behavior of the
renormalization factor z. Outside the strong-coupling region,
ε̃d approaches the bare value ε̃d � εd at ξd � (N − 1)U/2, or
the Hartree-Fock value ε̃d � εd + (N − 1)U at ξd � −(N −
1)U/2: these asymptotic forms of ε̃d are shown as the dashed
lines in Figs. 15(e) and 16(e).

APPENDIX F: CURRENT NOISE AND
THERMOELECTRIC TRANSPORT

FOR SU(2) SYMMETRIC CASE

We have discussed the behavior of the current noise and
thermoelectric transport of the SU(4) and SU(6) Anderson
model in Secs. VII, VIII, and X. For comparison, here we
briefly describe the corresponding results in the SU(2) case,
specifically, the current noise and the thermoelectric transport
coefficients are plotted in Figs. 17 and 18, respectively.

We can see in Fig. 17(b) that the linear noise is suppressed
in the strong-coupling region |ξd | � U/2 for large U , where
the transmission probability exhibits a wide Kondo plateau in
Fig. 17(a). However, the linear noise increases and has the
peaks, the width of which is of the order of 
 at valence
fluctuation regions near the quarter and three-quarters filling
points where the phase reaches δ = π/4 or 3π/4. At these
filling points, the coefficient CS for the order |eV |3 nonlinear
current noise has the negative minima, as seen in Fig. 17(c).
We see in Fig. 17(d) that the three-body part �S of CS , is also
suppressed over a wide region |ξd | � U/2. Therefore, in this
strong-coupling region, the nonlinear noise CS is determined
solely by the two-body part WS in the SU(2) case,

WS = 4(R − 1)2 + [1 + 5(R − 1)2] cos 4δ, (F1)

where R is the Wilson ratio. In particular, the dip structures of
CS at the quarter and three-quarters fillings reflect the minima
of cos 4δ in WS . In contrast, at |ξd | � U/2, the three-body part
�S becomes comparable to WS , and contributes to CS .

FIG. 17. Current noise for SU(2) symmetric quantum dots vs
ξd : (a) sin2 δ, (b) linear noise sin2 δ (1 − sin2 δ), (c) (192/π 2)CS =
WS + �S , (d) �S = −(�I + 3 �̃II ) cos 2δ (see Table II). Interaction
strengths are chosen to be U/(π
) = 1(�), 2(�), 3(�), 4(�),
and 5(•).
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FIG. 18. Next-leading order terms of transport coefficients
for an SU(2) symmetric Anderson impurity: (a) (48/π2)CT ,
(b) [80/(7π 2)]CQD

κ , (c) (48/π 2)CMA
� , and (b) [80/(7π 2)]CMA

κ , de-
fined in Table II. Interaction strengths are chosen to be U/(π
) =
1(�), 2(�), 3(�), 4(�), and 5(•).

Figure 18 shows the results for the next-leading order
terms of the thermoelectric transport coefficients for the
SU(2) quantum dots (a) CT and (b) CQD

κ , and for SU(2)
magnetic alloys (c) CMA

� and (d) CMA
κ . All these coef-

ficients exhibit the plateau structures due to the Kondo
effect in the strong-coupling region |ξd | � U/2 for large
U , where the phase shit is locked at δ � π/2. In this
region, the three-body contributions, �I and �̃II, almost
vanish (see Ref. [28] for more details), and the height of
these plateaus approach the saturation values for U → ∞,
i.e., (48/π2)CT → 3, (48/π2)CMA

� → 3, [80/(7π2)]CQD
κ →

13/7, and [80/(7π2)]CMA
κ → 13/7. The coefficients CT and

CMA
� for charge transport show a similar behavior in the

strong-coupling region. Furthermore, in this region, the co-
efficients for thermal conductivities, CQD

κ and CMA
κ , also show

a similar behavior. In contrast, at |ξd | � U/2, the coefficients
CT and CQD

κ for quantum dots change sign and become neg-
ative as the occupation number approaches Nd � 0.0 or 2.0,
whereas the coefficients CMA

� and CMA
κ for magnetic alloys

remain positive definite.

APPENDIX G: THREE-BODY FERMI LIQUID
CORRECTIONS TO THERMOELECTRIC

TRANSPORT OF MAGNETIC ALLOYS

In this Appendix, we describe the low-energy asymptotic
form of the electrical resistivity �MA = 1/σMA, the ther-
mopower SMA, and the thermal conductivity κMA of magnetic
alloys,

σMA = σ unit
MA

1

N

∑
σ

LMA
0,σ , (G1)

SMA = −1

|e|T

∑
σ LMA

1,σ∑
σ LMA

0,σ

, (G2)

κMA = σ unit
MA

e2T

1

N

[∑
σ

LMA
2,σ −

(∑
σ LMA

1,σ

)2∑
σ LMA

0,σ

]
. (G3)

For magnetic alloys, the response functions LMA
n,σ for n = 0, 1,

and 2 are given by

LMA
n,σ =

∫ ∞

−∞
dω

ωn

π
Aσ (ω)

(
−∂ f (ω)

∂ω

)
. (G4)

Equation (G1) defines the electrical conductivity relative to
its unitary-limit value σ unit

MA . Correspondingly, the prefactor
for κMA is defined in such a way that the T -linear thermal
conductivity should take the form

lim
T →0

κMA

T
= π2

3 e2
σ unit

MA . (G5)

The asymptotic form of LMA
n,σ can be calculated, using

the low-energy expansion of the inverse spectral function
1/Aσ (ω) given in Eq. (B4),

LMA
0,σ = 1

sin2 δσ

[
1 + aMA

0,σ

sin2 δσ

(πT )2

]
+ · · · , (G6)

LMA
1,σ = −1

3

ρ ′
dσ

π
ρ2
dσ

(πT )2 + · · · , (G7)

LMA
2,σ = (πT )2

3 sin2 δσ

[
1 + aMA

2,σ

sin2 δσ

(πT )2

]
+ · · · . (G8)

Here, the coefficients aMA
0,σ and aMA

2,σ are given by

aMA
0,σ = π2

3

⎡⎣(cos 2δσ + 2)χ2
σσ − 2 cos 2δσ

∑
σ ′( �=σ )

χ2
σσ ′

+ sin 2δσ

2π

⎛⎝χ [3]
σσσ +

∑
σ ′( �=σ )

χ
[3]
σσ ′σ ′

⎞⎠⎤⎦, (G9)

aMA
2,σ = 7π2

5

⎡⎣(cos 2δσ + 2)χ2
σσ − 6

7
cos 2δσ

∑
σ ′( �=σ )

χ2
σσ ′

+ sin 2δσ

2π

⎛⎝χ [3]
σσσ + 5

21

∑
σ ′( �=σ )

χ
[3]
σσ ′σ ′

⎞⎠⎤⎦.

(G10)

We obtain the low-temperature expressions of �MA =
1/σMA, SMA and 1/κMA, substituting Eqs. (G6)–(G8) into
Eqs. (G1)–(G3),

�MA = 1

σ unit
MA

[
(sin2 δ)HM − cMA

� (πT )2 + · · ·
]
, (G11)

SMA = π2

3

∑
σ ρ ′

dσ∑
σ ρdσ

T

|e| + · · · , (G12)

1

κMA
= 3 e2

π2 σ unit
MA

1

T

[
(sin2 δ)HM − cMA

κ (πT )2 + · · ·
]
.

(G13)

Here, (sin2 δ)HM is the harmonic mean (HM) of sin2 δσ ,
defined by

(sin2 δ)HM ≡ 1
1
N

∑
σ

1
sin2 δσ

. (G14)

035308-21



YOSHIMICHI TERATANI et al. PHYSICAL REVIEW B 110, 035308 (2024)

The coefficients cMA
� and cMA

κ of the next-leading order terms
are given by

cMA
� =

{
(sin2 δ)HM

}2 1

N

∑
σ

aMA
0,σ

sin4 δσ

, (G15)

cMA
κ =

{
(sin2 δ)HM

}2
[

1

N

∑
σ

aMA
2,σ

sin4 δσ

−π2

3
(sin2 δ)HM

{
1

N

∑
σ

sin 2δσ

sin4 δσ

χσσ

}2]
. (G16)

Correspondingly, the electrical conductivity and the ther-
mal conductivity take the following form:

σMA = σ unit
MA

(sin2 δ)HM

[
1 + cMA

�

(sin2 δ)HM

(πT )2 + · · ·
]
, (G17)

κMA = π2 σ unit
MA

3 e2

T

(sin2 δ)HM

×
[

1 + cMA
κ

(sin2 δ)HM

(πT )2 + · · ·
]
. (G18)

Furthermore, the Lorenz number LMA ≡ κMA/(σMAT ) can
also be deduced up to terms of order T 2, as

LMA = π2

3 e2

[
1 − cMA

L

(sin2 δ)HM

(πT )2 + · · ·
]
, (G19)

cMA
L = cMA

� − cMA
κ . (G20)

In the limit of zero temperature, the Lorenz number takes a

constant value LMA
T →0−−−→ π2

3 e2 , and the Wiedemann-Franz law
holds. However, it deviates as temperature increases, showing
the T 2 dependence.

APPENDIX H: THERMOELECTRIC TRANSPORT
COEFFICIENTS FOR NONINTERACTING

MAGNETIC ALLOYS

We provide here the noninteracting results for the thermo-
electric transport coefficients of magnetic alloys. For U = 0,
the response functions LMA

n,σ for n = 0, 1, 2 can be calcu-
lated, substituting the explicit form of the spectral function

πAσ (ω)
U=0−−−→ 
/[(ω − εdσ )2 + 
2] into Eq. (G4),

LMA
0,σ

U=0−−−→
[

1 +
(εdσ




)2
]

+ 1

3

(
πT




)2

, (H1)

LMA
1,σ

U=0−−−→ −2 εdσ

3

(
πT




)2

, (H2)

LMA
2,σ

U=0−−−→ 
2

3

[
1 +

(εdσ




)2
](

πT




)2

+ 7
2

15

(
πT




)4

.

(H3)

The transport coefficients, defined in Eqs. (G1)–(G3), can
be deduced from these analytic expressions for LMA

n,σ . In par-
ticular, in the SU(N ) symmetric case where εdσ ≡ εd , the

FIG. 19. Coefficients CMA(0)
� , CMA(0)

κ , and CMA(0)
L for noninteract-

ing U = 0 magnetic alloys plotted vs εd .

electrical resistivity �
(0)
MA for U = 0 is given by

�
(0)
MA = 1

σ unit
MA

[
sin2 δ0 − CMA(0)

�

(
πT

T ∗
0

)2
]
, (H4)

sin2 δ0 = 1

1 + (εd/
)2
, CMA(0)

� = π2

48
. (H5)

Here, T ∗
0 ≡ π
/(4 sin2 δ0) is the characteristic energy scale

in the noninteracting case. The coefficient CMA(0)
� for the T 2

resistivity is given by a constant π2/48 (= 0.205 · · · ) as the
εd dependence is absorbed into T ∗

0 .
The thermopower S0

MA and thermal resistivity 1/κ
(0)
MA for

U = 0 are given by

S (0)
MA = 1

|e|
2π2

3

εd

ε2
d + 
2

T, (H6)

1

κ
(0)
MA

= 3 e2

π2 σ unit
MA

1

T

[
sin2 δ0 − CMA(0)

κ

(
πT

T ∗
0

)2
]
, (H7)

CMA(0)
κ = 7π2

80

1 + 20 sin2 δ0

21
. (H8)

Furthermore, the dimensionless coefficient for the order T 2

term of the Lorenz number LMA is given by CMA(0)
L ≡

CMA(0)
� − CMA(0)

κ and it takes the form

CMA(0)
L = π2

60
(1 − 5 sin2 δ0). (H9)

These results for the next-leading order terms in the non-
interacting case are plotted as functions of εd in Fig. 19. The
coefficient CMA(0)

κ takes a Lorentzian form with an offset value

of CMA(0)
κ

|εd |→∞−−−−→ π2/240 (= 0.041 · · · ). Correspondingly,
CMA(0)

L has a dip at εd = 0, and vanishes at the points εd =
±2
 where CMA(0)

κ and CMA(0)
� give equal contributions to

the Lorenz number LMA. As the impurity level moves further
away from the Fermi level |εd | � 
, it approaches the value

of CMA(0)
L

|εd |→∞−−−−→ π2/60 (= 0.164 · · · ).
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