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Light drives offer a potential tool for the dynamical control of magnetic interactions in matter. We theoretically
investigate the indirect exchange coupling between two parallel chains of magnetic impurities on the surface of a
topological insulator, driven by a time-periodic circularly polarized light field in the high-frequency, off-resonant
regime. We derive a closed-form analytic expression for the spin susceptibility of the photon-dressed topological
insulator surface states and obtain the irradiation dependence of the Ising, Heisenberg, and Dzyaloshinskii-
Moriya exchange couplings between the impurity chains. Our results show a two-pronged modification of these
exchange couplings by periodic drives. First, the Ruderman-Kittel-Kasuya-Yosida (RKKY) oscillation period of
the exchange couplings can be extended by enhancing the driving strength. Second, increasing driving strength
enhances the envelope of RKKY oscillations of the Ising type while suppressing those of the Heisenberg type
and Dzyaloshinskii-Moriya type. Our work provides useful insights for realizing Floquet engineering of collinear
and noncollinear indirect exchange interactions in topological insulating systems.
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I. INTRODUCTION

Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
[1–3] is an indirect magnetic exchange coupling between
localized magnetic moments mediated by conduction
electrons. The study of RKKY interaction has attracted
significant interest because of its role as a long-range
exchange interaction in magnetically doped systems. For
host systems characterized by a parabolic band, the range
function of the RKKY oscillations decays as R−3 in three
dimensions and as R−2 in two dimensions [4]. Typically,
the RKKY interaction results in a parallel or antiparallel
Heisenberg and/or Ising coupling between two magnetic
impurities. However, the specific form of the RKKY
interaction depends on the properties and band structure
of the host materials [5,6]. In host materials characterized
by a lack of inversion symmetry and considerable spin-orbit
coupling, the Rashba effect plays an important role, inducing
a twisted interaction between impurity spins [7–9] known
as the Dzyaloshinskii-Moria (DM) interaction [10,11]. In
addition, Rashba spin-orbit coupling enables control over
the RKKY interaction through an external electric field
[12–14]. This presents a promising avenue for controlling
the RKKY interaction in various materials and systems,
enabling new opportunities for the development of advanced
materials and devices with tunable magnetic properties.
Furthermore, the relationship between the RKKY interaction,
Rashba spin-orbit coupling, and external fields awaits further
investigation to uncover the full extent of their interplay and
potential applications.

The prototypical class of materials with strong spin-orbit
coupling is the three-dimensional (3D) topological insula-
tors (TIs) predicted in materials such as Bi2Te3, Sb2Te3, and

Bi2Se3 [15]. The topological insulating state of a 3D TI con-
sists of an insulating bulk spectrum separated by a band gap,
where gapless surface states protected by time-reversal sym-
metry reside [16]. The RKKY interaction mediated by these
surface states between individual impurity spins has been
studied extensively [17–19]. In a TI dilutely doped with mag-
netic impurities on its surface, the RKKY interaction between
the impurities is ferromagnetic when the chemical potential
is at the Dirac point, favoring a ferromagnetic ordered state
among the magnetic atoms [20]. When the chemical potential
is away from the Dirac point, the RKKY interaction undergoes
the typical Friedel oscillations, changing sign between ferro-
magnetic and antiferromagnetic values [18,21]. Due to strong
Rashba spin-orbit coupling, the RKKY interaction in TIs cou-
ples not only the collinear components of the impurity spins
but also the noncollinear components [17,19]. The exchange
energy is characterized by collinear Heisenberg and Ising-like
interactions as well as a noncollinear DM interaction, with the
latter having a magnitude comparable to those of the former
two [17–19].

The interaction between topological matter and external
light drives has become a topic of vigorous research interest,
including the dynamical control and generation of topological
phases from trivial ones by utilizing light fields that are highly
tunable and controllable. For instance, the periodic driving of
matter can induce a Floquet topological insulator state with
chiral edge currents and other hallmark phenomena associated
with topological phases in otherwise topologically trivial ma-
terials [22–25]. Additionally, recent advancements in the field
revealed that periodic driving can also give rise to higher-order
Floquet topological phases. These phases are notable for their
surface states, which, while remaining gapped in one lower
dimension, exhibit unique wedge or corner modes localized at
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their lower-dimensional boundaries [26–28]. Light irradiation
also enables the realization of Floquet Chern insulator states
with both integer and fractional Chern numbers [29–32]. Be-
yond topological insulator states, it has been demonstrated
that circularly polarized light can transform 3D Dirac ma-
terials into Floquet-Weyl semimetals, further expanding the
scope of topological material states [33–35]. The spectrum of
Floquet topological materials has also been enriched by the
prediction of anomalous phases, such as anomalous Floquet-
Anderson insulators [36] and anomalous Floquet topological
crystalline insulators [37], showcasing the diverse potential of
periodic driving in manipulating material properties. The use
of light sources to control materials’ properties is not limited
to topological phenomena, as it also allows dynamical control
of effective electron-electron interactions, electronic hopping
amplitudes, and lattice structures, which gives rise to a range
of other phenomena such as light-induced superconductivity
and the metal-to-insulator phase transition [38]. Closely re-
lated in the same vein is the concept of Floquet engineering
of magnetic exchange interactions [39–46]. In particular, off-
resonant optical driving has been demonstrated to provide a
promising strategy for the dynamical coherent control of indi-
rect exchange interactions mediated by conduction electrons
in different irradiated materials such as graphene [47,48],
two-dimensional (2D) magnetic lateral heterostructures [49],
3D magnetic vertical heterostructures [50], and topological
crystalline insulators [51].

In this work, we theoretically study the RKKY interaction
between two parallel impurity spin chains on the surface of a
3D TI driven out of equilibrium by circularly polarized (CP)
light irradiation. We focus on the high-frequency, off-resonant
regime and first obtain the static effective Hamiltonian based
on the high-frequency expansion method [52,53]. The spin
susceptibility tensor of the irradiated TI surface states is then
derived analytically, which allows us to obtain the indirect
exchange interaction between the impurity spins mediated by
the irradiated TI surface.

The approximate analytical results for this exchange in-
teraction energy provide the period and decay rate of the
exchange interaction, which can be compared with the cor-
responding equilibrium results. Our numerical and analytical
results reveal that both the period and the magnitude of the
nonequilibrium RKKY oscillations are considerably modified
by the driving field, stemming from light-induced effects on
the electronic band structure and spin texture near the TI
Fermi surface. Our discussion sheds light on the complex
interplay between light-induced electronic perturbations and
the RKKY interaction and paves the way for further research
into the magnetic properties in topological insulator systems
under the influence of external driving fields.

This paper is organized as follows. First, in Sec. II, we
introduce our model for the TI surface states under CP light
irradiation and derive the corresponding Floquet Hamiltonian.
We then provide a review of the derivation of the static effec-
tive Hamiltonian of the driven system in Sec. III using the
standard high-frequency expansion method. In Sec. IV we de-
rive the spin susceptibility tensor of the irradiated topological
insulator surface states. Next, in Sec. V we derive approximate
analytical expressions for the RKKY exchange interaction
as a function of driving strength and the separation between

the two impurity spin chains. Finally, Sec. VI shows our nu-
merical results determined using the developed formalism on
the full effects of irradiation on the magnitude and period of
exchange coupling oscillations and a comparison to analytical
results; then we discuss the effects of CP light on the RKKY
exchange interaction based on our results. We conclude our
paper in Sec. VII with a summary of our findings.

II. FORMULATION

We consider two parallel chains of magnetic impurities
aligned in the x direction and separated in the y direction (see
Fig. 3 below). The electronic Hamiltonian of the topological
insulator surface states is given by the Dirac Hamiltonian
[54–56],

H = α0(σ × k) · ẑ, (1)

where α0 = 0.328 eV Å is the Fermi velocity for Bi2Se3 and
we denote the Fermi energy of the system as μ. A CP light
field is normally incident on the topological insulator surface
with a frequency � and a field amplitude E0, and the vector
potential is given by A = E0[sin (�t )x̂ − cos (�t )ŷ]/(

√
2�).

The CP light field couples to the Hamiltonian (1) via the
minimal coupling scheme, and the resulting time-dependent
Hamiltonian of the irradiated system becomes

H(t ) = α0(σxky − σykx )

−α0
e

h̄
A[σx cos (�t ) + σy sin (�t )], (2)

where A = E0/(
√

2�) is the magnitude of the vector poten-
tial. We also define A = eAα0/(h̄2�) as the dimensionless
driving strength.

As the Hamiltonian in Eq. (2) is time periodic, the Floquet-
Bloch theorem is satisfied. The time-periodic nature of the
Floquet states, |ul,k(t + T )〉 = |ul,k(t )〉, where T = 2π/� is
the driving period, allows for a Fourier series representation
of these states,

|ul,k(t )〉 =
∑

n

e−in�t
∣∣un

l,k

〉
(3)

and ∑
n

(Hmn − nh̄�δm,n)
∣∣un

l,k

〉 = εl,k

∣∣um
l,k

〉
, (4)

where HF,mn = Hmn − nh̄�δm,n is the Floquet Hamiltonian
[57,58] and

Hmn = 1

T

∫ T

0
dtei(m−n)�tH(t ) (5)

is the Floquet matrix. After we define

H0 = α0(σxky − σykx ), H1 = −α0
e

h̄
Aσ+,

H−1 = −α0
e

h̄
Aσ−, H|m|>1 = 0, (6)

with σ± = (σx ± iσy)/2, the explicit form of our Floquet ma-
trix can be written as

Hmn = H0δmn + H−1δm+1,n + H1δm−1,n. (7)
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III. EFFECTIVE HAMILTONIAN

In the regime of high-frequency, off-resonant light irradia-
tion we can use the Van Vleck perturbation theory to expand
the full Floquet Hamiltonian matrix in powers of 1/� into a
finite-dimensional effective Hamiltonian [52,53,59]. The Van
Vleck perturbation theory is effected by applying a unitary
transformation in order to construct an effective Hamiltonian
using the degenerate perturbation theory [52,60]. The effec-
tive Hamiltonian is written in the form of the following series:

Heff =
∞∑

n=0

H(n)
vv . (8)

The leading terms of the expansion are given by

H(0)
vv = 0, H(1)

vv = H0, H(2)
vv =

∑
m>0

[Hm,H−m]

|m|h̄�
,H(3)

vv

=
∑
m �=0

[H−m, [H0,Hm]]
2(|m|h̄�)2

+
∑

m′ �=0,m

[H−m′ , [Hm′−m,Hm]]
3mm′(h̄�)2

.

(9)

For our system one gets the following effective Hamiltonian
up to second order in the high-frequency approximation which
captures the effects of irradiation in the zero-photon regime
[61–63]:

Heff = α(σxky − σykx ) + �σz, (10)

where we have α = α0[1 − (eAα0/h̄2�)2] and � =
(α0eA/h̄)2/(h̄�). The above effective Hamiltonian takes
the form of a single gapped Dirac Hamiltonian, with
a light-induced band gap � and a renormalized Fermi
velocity α0 → α. Equation (10) yields the energy eigenvalues
Ek,η = η

√
α2k2 + �2 with the following eigenstates:

|k,+〉 =
[

i cos θk
2

sin θk
2 eiφ

]
, |k,−〉 =

[
i sin θk

2

− cos θk
2 eiφ

]
, (11)

where η = ± labels the conduction band and valence band
states, φ is the azimuthal angle of the momentum k, cos θk =
�/

√
α2k2 + �2, and sin θk = αk/

√
α2k2 + �2. Additional

insights into the effects of light illumination can be obtained
by calculating the expectation value of the electron spin asso-
ciated with the conduction band electrons,

〈σx〉 = sin θk sin φ, 〈σy〉 = − sin θk cos φ, 〈σz〉 = cos θk.

(12)

Figure 1 depicts the calculated spin texture of the light-driven
system as a function of momentum, and Fig. 2 shows the equi-
librium plot for comparison. It can be readily seen that near
the band edge the spin predominantly points in the z direction,
while it tilts farther and farther away from the z direction (i.e.,
lying closer and closer to the xy plane) as one moves away
from the band edge. This observation will be important for
understanding the behavior of the RKKY interaction between
impurity spins pointing in different directions, as we explain
in Sec. VI.

IV. SPIN SUSCEPTIBILITY

In this paper we investigate the exchange interaction be-
tween two chains of magnetic impurities on the surface of a

FIG. 1. Top: conduction band and spin textures of an irradiated
TI’s surface states. Bottom: projection of the spin texture on the xy
plane. The driving field is taken to have frequency h̄� = 4.6 eV and
strength A = 0.13.

topological insulator irradiated by CP light. Our setup of two
parallel impurity spin chains can be considered the 2D analog
of the magnetic multilayers consisting of two ferromagnetic
layers sandwiching a nonmagnetic spacer metal [64,65]. In
our system (Fig. 3), the two chains of magnetic impurities are
assumed to consist of localized spins with magnetic moment
Si located at position Ri on the surface of the topological
insulator. Each of the spins Si is coupled to the electrons of the
topological insulator surface states through the local potential
Vi = J0δ(r − Ri )S · Si. Here J0 is the coupling strength, and S
is the magnetic moment of the electron spin of the topological
insulator surface. Our purpose is to calculate the exchange

FIG. 2. Conduction band and spin textures of a TI’s surface states
in equilibrium.
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FIG. 3. Schematic of the system’s setup. The topological in-
sulator surface is deposited with two parallel chains of magnetic
impurities. The driving light field is illuminated normally onto the
topological insulator surface.

interaction energy between the two parallel chains of impu-
rities on the surface of the topological insulator. To this end,
we consider two impurities, one on the left chain (L) located
at the origin and one on the right chain (R) located at Rn.
The expectation value of the spin induced by the right-chain
impurity is

sa = J0

∑
b

χab(Rn)SR
b , (13)

where χab(Rn) is the spin susceptibility or the spin correlation
function, with the Matsubara spin susceptibility given by

χab(Rn, τ ) = −〈Tτ Sa(Rn, τ )Sb(0, 0)〉0, (14)

where τ is the imaginary time, Tτ is the imaginary time or-
dering operator, and 〈· · · 〉0 denotes the thermal average with
respect to the effective Hamiltonian in Eq. (10). The exchange
interaction energy between the two impurities is given by

En = J2
0

∑
ab

χab(Rn)SL
aS

R
b . (15)

In order to determine the exchange energy, we first pro-
ceed to calculate the spin susceptibility in this section. Using
Wick’s theorem, Eq. (14) can be written in terms of the

single-particle Green’s functions G as

χab(q, iqn)

= μ2
B

β

∑
ikn

∫
d2k

(2π )2
Tr{G(k + q, ikn + iqn)σaG(k, ikn)σb},

(16)

where μB is the Bohr magneton, β = 1/(kBT ), and the single-
particle Matsubara Green’s function is given by

G(k, ikn) = (ikn − Heff )−1 = (ikn + μ) + α(σ × k)z + �σz

(ikn + μ)2 − (α2k2 + �2)
.

(17)

The denominator of Eq. (16) can be shown to have the follow-
ing form using the Feynman parametrization [66]:

1[
(ikn + μ)2 − E2

k+q

][
(ikn + μ)2 − E2

k

]
=
∫ 1

0
dx

1

[α2(k + xq)2 + (kn − iμ) + �2 + δ2(x)]2
, (18)

where x is an auxiliary parameter to help in evaluating the
integral and δ(x) = x(1 − x)α2q2.

In the zero-temperature limit, the Matsubara sum in
Eq. (16) turns into an integral, and the susceptibility can be
written in the following form:

χab = μ2
B

∫ 1

0
dx
∫

dk0

(2π )

∫
d2k

(2π )2

× 1

[α2k2 + (k0 − iμ)2 + �2 + δ2(x)]2

× Tr([(ik0 + μ) + {α[k + (1 − x)q] × σ}z + �σz]σa

{ik0 + μ + [α(k − xq) × σ]z + �σz}σb), (19)

where k0 plays the role of kn after turning the Matsubara sum
into an integral.

We calculate the components of the susceptibility tensor
using the above equation (details of the calculation are rele-
gated to Appendix A). The susceptibility tensor is then found
to be

χ = μ2
B

⎡
⎢⎣

g1 cos2 φ 1
2 g1 sin 2φ −ig2 cos φ

1
2 g1 sin 2φ g1 sin2 φ −ig2 sin φ

ig2 cos φ ig2 sin φ g3

⎤
⎥⎦, (20)

where we have defined the following piecewise functions with
γ =

√
1 − 4μ2/(α2q2 + 4�2):

g1 =
⎧⎨
⎩

1
4πα2 Re

[√
1 − 4 μ2−�2

α2q2 |μ| + 1
2

(
αq − 4�2

αq

)
sin−1 γ

]
if |μ| > �,

1
2πα2

[
1
2� + αq tan−1 αq

2�
− 1

8

(
3αq + 4�2

αq

)
(π − sin−1 γ )

]
if |μ| < �,

(21)

g2 =

⎧⎪⎨
⎪⎩

− q
4πα

{
1 − Re

[√
1 − 4 μ2−�2

α2q2

]}
if |μ| > �,

0 if |μ| < �,

(22)

g3 =
⎧⎨
⎩

1
2πα2 Re

[
|μ| − 2� + 1

2

(
αq + 4�2

αq

)
sin−1 γ

]
if |μ| > �,

αq+ 4�2

αq

4πα2 	[sin−1 γ ] if |μ| < �.

(23)
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It is worthwhile to note that the general angular dependence
of each term in Eq. (20) can also be deduced from symmetry
arguments [67].

V. EXCHANGE INTERACTION BETWEEN MAGNETIC
IMPURITY CHAINS

We now consider the exchange interaction energy per unit
length of the two parallel chains of impurities along the x
direction of the topological insulator plane separated by dis-
tance y. We use Eqs. (15) and (20) to derive the exchange
interaction energy between the two impurity chains in the
momentum space representation. This representation is con-
venient because it simplifies the sum over the impurities along
the impurity chain. In our set up we assume the impurities of a
chain on the surface are located on the lattice sites of Bi atoms
with each of the neighboring impurities separated by two Se
atoms, and then the distance between two adjacent impurities
on one chain is 2A0/c, where A0 is the area of the unit cell and
c = 4.19 Å is the distance between Bi atoms on the surface.
We first calculate the interaction between the two impurity
chains and then divide by the length of the chain to get the
averaged exchange interaction per unit length of the impurity
chains. Then the exchange coupling per unit length is given
by [19]

I =
∑
a,b

J2
0 c

(2π )22A0
SL

aS
R
b

∫
dqχab(q)

∑
n

eiq·Rn , (24)

where in the last sum we sum over all the impurities along one
chain. With the periodic boundary condition in the x direction
the sum

∑
eiqxx is nonzero only for qx = 0, and thus, the

exchange coupling can be written as

I (y) =
∑
a,b

J2
0 c2

2π (2A0)2
SL

aS
R
b

∫
dqyχab(qx = 0, qy)eiqyy, (25)

where we used the length of the one-dimensional Brillouin
zone (2πc)/A0. In our case, we have qx = 0 and φ = ±π/2,
so the spin susceptibility tensor reduces to

χ = μ2
B

⎡
⎢⎣

0 0 0

0 g1 −ig2sgn(qy)

0 ig2sgn(qy) g3

⎤
⎥⎦. (26)

Thus, we have

I (y) = A(y)SL
y S

R
y + B(y)SL

z S
R
z + D(y)(SL × SR) · x̂, (27)

where the A, B, and D terms determine the real-space depen-
dence of the Heisenberg, Ising, and Dzyaloshinskii-Moriya
exchange interactions, respectively. Among the three terms
the antisymmetric DM exchange interaction is attributed to
the effect of the Rashba spin-orbit coupling characterizing the
TI’s surface states [68–70]. Therefore we, need to calculate
the following integrals:

A(y) = 1

8π

(
J0c

A0

)2 ∫ ∞

−∞
dqyeiqyyχyy(qy),

B(y) = 1

8π

(
J0c

A0

)2 ∫ ∞

−∞
dqyeiqyyχzz(qy),

D(y) = 1

8π

(
J0c

A0

)2 ∫ ∞

−∞
dqyeiqyyχyz(qy). (28)

In this work, we are interested in the case of a finite Fermi
level away from the light-induced gap. These integrals can
be evaluated analytically for |μ| > � by approximating the
integral around the Kohn anomaly (i.e., a Fermi surface
singularity) [71].

We evaluate the integral around a small neighborhood
of the Kohn anomaly at q0 = 2

√
μ2 − �2/α and assume

that the change in the integrand is dominated by the q − q0

term, treating the other terms as constants evaluated at q =
q0. Within this approximation we arrive at the following
asymptotic forms for the interaction energy in Eq. (27) as
I = IA + IB + ID:

IA(y) ≈ − IA,02
√

π

√
c

α0

1

|μ|
(√

μ2 − �2

1 − �
h̄�

) 3
2

×
(

c

y

) 3
2

cos
(

q0y − π

4

)
, (29)

IB(y) ≈ − IB,02
√

π

√
c

α0

|μ|
μ2 − �2

(√
μ2 − �2

1 − �
h̄�

) 3
2

×
(

c

y

) 3
2

cos
(

q0y − π

4

)
(30)

ID(y) ≈ −ID,02
√

π

√
c

α0

1√
μ2 − �2

(√
μ2 − �2

1 − �
h̄�

) 3
2

×
(

c

y

) 3
2

cos

(
q0y − 3π

4

)
, (31)

where we have used IA,0 = ISL
y S

R
y , IB,0 = ISL

z S
R
z ,

ID,0 = I (SL × SR)x, and I = [μBJ0/(4
√

2α0πA0)]2. Like
Eqs. (21)–(23), Eqs. (29)–(31) are independent of the signs of
μ due to the particle-hole symmetry of the Dirac Hamiltonian.
In equilibrium, the interaction for impurity spins along the
z direction IA and that along the y direction IB are precisely
identical to each other. However, with irradiation it can be
seen that the two terms become distinct. In Appendix B,
we provide an alternative derivation of Eqs. (29)–(31) using
semiclassical real-space Green’s functions obtained using the
method of stationary phase approximation.

Although our primary interest in this work is in spin chains,
for completeness and the purpose of comparison, we have
also calculated the long-range asymptotes of the RKKY in-
teraction energy between two isolated impurity spins on an
illuminated TI surface (see Appendix B). This allows us to
clearly delineate the qualitative effects due to irradiation from
those due to the spin chains. Comparing the long-range behav-
iors for the two cases [Eqs. (B6)–(B8) and (29)–(31)] reveals
three key observations. In going from isolated impurities to
spin chains, (1) the power-law decay becomes slower, chang-
ing from y−2 to y−3/2; (2) the oscillation phase acquires an
additional π/4; and (3) the oscillation amplitudes remain the
same up to an overall multiplicative factor that depends on,
among other parameters, both � and �.

VI. DISCUSSION

A comparison of the approximate analytical results in
Eqs. (29)–(31) with the numerical results directly calculated
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FIG. 4. The yy component of the exchange coupling IA(y)/IA,0

for different driving strengths A as a function of the interchain
separation. Numerical results are obtained from Eq. (28), and the
approximated analytical result is from Eq. (29). Here c = 4.19 Å,
the Fermi energy μ = 0.092 eV, and the driving field is taken to have
frequency h̄� = 4.6 eV.

from Eq. (28) is shown in Figs. 4–6 for the three components
and for different driving strengths. The agreement between
the numerics and the analytical approximation is already very
close at distances around y = 20c–30c, and the two results
overlap at larger distances.

Decay power law. Equations (29)–(31) show that irradia-
tion does not change the decay power law, and the envelope
still decays like y−3/2 as in equilibrium. This follows from
the fact that the decay power law depends on only the energy
spectrum of the conduction electrons mediating the RKKY
interaction, the dimensionality of the spacer material, and the
dimensionality of the impurity spin configuration.

FIG. 5. The zz exchange coupling component of IB(y)/IB,0 as a
function of the interchain separation for different driving strengths
A. The numerical integration of Eq. (28) results in the displayed
numerical results, while Eq. (29) gives the approximated analytical
results. The values of c, μ, and h̄� are given in Fig. 4.

FIG. 6. The noncollinear, yz and zy, components of the exchange
coupling ID(y)/ID,0 for different values of A as a function of y, the
interchain separation, for the values of μ, h̄�, and c used in Fig. 4.
The approximate analytical results are obtained from Eq. (29), and
the numerical ones are from Eq. (28).

Phase constant. Equations (29)–(31) demonstrate that the
phase relationship among the three components remains un-
altered by light irradiation, suggesting that light irradiation
(at least in the off-resonant, high-frequency regime considered
in this work) does not induce an additional phase that would
otherwise modify the relative strength of each term at a fixed
distance.

Oscillation period. The Heisenberg (yy), Ising (zz), and
DM (yz and zy) exchange interactions are characterized by
the same oscillation period, given by the long-range analytic
results (29)–(31) as 2π/q0. Since the Kohn anomaly wave
vector q0 for a fixed Fermi level is determined by the band
edge of the light-induced gap, one can expect the oscillation
period to vary with the light intensity. Figures 4–6 show that
all three exchange interaction terms oscillate more slowly with
distance at a larger value of driving strength A. When the
driving field is increased, the band edge is pushed closer to
the Fermi level, resulting in a smaller q0, leading to a longer
oscillation period.

Oscillation envelope. We now examine the amplitude of the
oscillations. Figure 7 shows the envelopes of IA, IB, and ID as
a function of the driving strength A. We first notice that the
envelopes of IA, IB, and ID are all equal in equilibrium, as can
be seen by taking � = 0 and α = α0 in Eqs. (29)–(31). When
the driving field is turned on, the three exchange coupling
terms are modified differently. As seen in Fig. 7, increasing
the driving strength A decreases the oscillation envelopes
for the yy and yz terms but increases the envelope for the zz
term. This can also be seen by expanding the oscillation en-
velopes in the long-range analytic results (29)–(31) in powers
of the driving strength A = eAα0/(h̄2�):

IA ∝ IA,0

√
π |μ|c

α0

(
c

y

) 3
2
[
2 + 3A2− 3

4

(
2

h̄2�2

μ2
− 5

)
A4 · · ·

]
,
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FIG. 7. Plot of the oscillation envelope of the exchange coupling
I/I0 as a function of the driving strength A, obtained from the
analytical results, Eqs. (29), (30), and (31). The driving field is taken
to have frequency h̄� = 4.6 eV, the interchain separation is fixed at
y = 10c, and the Fermi energy is μ = 0.092 eV.

IB ∝ IB,0

√
π |μ|c

α0

(
c

y

) 3
2
[
2 + 3A2+ 1

4

(
2

h̄2�2

μ2
+ 15

)
A4 · · ·

]
,

ID ∝ ID,0

√
π |μ|c

α0

(
c

y

) 3
2
[
2 + 3A2− 3

4

(
2

h̄2�2

μ2
− 15

)
A4 · · ·

]
.

(32)

Equation (32) shows that while the leading zeroth-order and
second-order terms are the same for all three components
of the exchange energy, the dominant fourth-order term is
positive for the zz component and negative for the yy and yz
components.

One can understand the above observation from the light-
induced spin texture change in the topological insulator
surface states shown in Figs. 1 and 2. The indirect exchange
interaction is dominated by the intraband contribution of the
susceptibility in the conduction band where the Fermi level
is located and is thus governed by the spin states of the
electrons near the Fermi surface. As discussed in Sec. III,
unlike the equilibrium spin texture which always lies on the xy
plane (Fig. 2), the electronic spin texture under illumination
acquires an additional spin component along the z direction
(Fig. 1). When the Fermi surface is near the bottom of the
band, the electrons at the Fermi surface have spins that are pre-
dominantly polarized along the z direction, so the induced spin
polarization that mediates the indirect exchange interaction
is also predominantly z polarized. Therefore, the exchange
interaction of the electron spins with SL,R

z is strengthened,
while that with SL,R

y is weakened. This causes the zz com-
ponent of the exchange coupling to be enhanced and the other
components yy and yz to be suppressed. When we increase
the Fermi energy away from the band edge, the spin texture
at the Fermi surface becomes less polarized along the z axis,
and the aforementioned effects become weaker. This is re-
flected in the smaller changes in the envelopes of IA, IB, and
ID from their equilibrium values, as depicted in Fig. 8. In the

FIG. 8. The oscillation envelope of the exchange coupling mea-
sured from its equilibrium value, �I = I − I (A = 0), as a function
of the driving strength A, obtained from Eqs. (29), (30), and (31).
The driving field is taken to have frequency h̄� = 4.6 eV, and the
interchain separation is fixed at y = 10c. Results for several different
Fermi energies, μ = 0.092, 0.115, 0.138 eV, are shown.

absence of irradiation, Eqs. (29), (30), and (31) show that
the RKKY interaction energies are identical among the yy,
zz, and yz components, except for a π/2 phase difference in
the yz exchange oscillation relative to the yy and zz exchange
oscillations. The total RKKY interaction is the sum of the
contributions that we evaluated in Figs. 4–6. As the driving
strength increases, we notice a stark contrast between the ir-
radiated and equilibrium RKKY interactions. With increasing
light strengths, the Ising (zz) component of the exchange inter-
action dominates the total exchange. This can be understood
again from the electronic spin texture, which becomes more
aligned along the z direction as the driving field is increased.
Hence, the impurity spins in the spin chains will tend to align
out of plane in the parallel or antiparallel direction, while in
the absence of light, these spins tend to align in the plane.

Finally, we conduct a detailed comparison of our results
with the RKKY interaction in other topological materials
both in equilibrium and under an external drive. In equilib-
rium, our results are consistent with the previously reported
results for the RKKY interaction between parallel impurity
spin chains on the surface of a 3D topological insulator [19].
We now compare our results with the RKKY interaction be-
tween defect lines in gapless graphene at equilibrium [72].
Equation (19) in Ref. [72] reported a similar y−3/2 power-law
decay. However, that result is limited to the Heisenberg ex-
change interaction because graphene has negligible spin-orbit
coupling. Our present findings go further to elucidate that
the Dzyaloshinskii-Moriya interaction also exhibits a y−3/2

dependence. Second, as Ref. [72] employed a tight-binding
description of graphene, not all quantities were explicitly re-
ported in the RKKY coupling in Ref. [72], e.g., Q(E ) and
Al in their Eq. (19). In contrast, our low-energy continuum
description makes it possible for us to obtain explicit an-
alytic results (29)–(31) for the long-range behavior of the
RKKY interaction. Our analytic results for both the spin chain

035307-7



KE, ASMAR, AND TSE PHYSICAL REVIEW B 110, 035307 (2024)

case and the isolated impurities case [Eqs. (B6)–(B8)] also
clarify that the oscillation phase difference between the two
cases is π/4, which was not reported in Ref. [72]. Next,
we compare our results with the recently reported results for
topological crystalline insulators (TCIs) driven under similar
conditions [51]. In contrast to the single Dirac cone in our
case, the energy spectrum of TCIs features two low-energy
Dirac cones. The presence of these two valleys causes addi-
tional intervalley oscillations, with a period determined by the
distance between the two Dirac points, to be superimposed
on the usual intravalley oscillations that are governed by the
Fermi level. This phenomenon is reminiscent of the RKKY
oscillations in graphene in equilibrium [73–75] and under
periodic driving [47]. Unlike the graphene case, however, the
momentum space separation between the two Dirac cones in
TCIs is only a fraction of the Brillouin zone size, resulting in a
much longer period of the intervalley oscillations. This period
is comparable to the period of the intravalley oscillations,
leading to strong interference between the two types of oscil-
lations. The resulting beating pattern obscures the intravalley
oscillations and, consequently, presents additional difficulties
in practice in deciphering the irradiation effects on the RKKY
interaction, which arise predominantly through the intravalley
mechanisms of photon-dressed bands and light-induced spin
texture changes. Hence, optically driven RKKY interaction
should be more readily achievable in the surface states of
strong TIs as presented in this work than in TCIs.

VII. CONCLUSION

We presented a theory for the indirect exchange interaction
energy between two parallel chains of magnetic impurities
on the surface of a 3D topological insulator, irradiated under
off-resonant circularly polarized light. Our theory is based
on the high-frequency expansion of the effective Floquet
Hamiltonian, which captures the light-induced gap at the
Dirac point and renormalized Fermi velocity of the topolog-
ical insulator surface states. An exact closed-form analytic
expression of the spin susceptibility tensor of the irradiated
topological insulator surface states was obtained. Our an-
alytical and numerical results for the exchange couplings
revealed that increasing the driving strength of light ex-
tends the oscillation period due to an increasing light-induced
dynamical gap. Moreover, we found that light irradiation
generates distinct oscillation envelopes of the Heisenberg,

FIG. 9. The contour of the integral used in the calculation of the
xz, zx yz, and zy cases.

Ising, and Dzyaloshinskii-Moriya contributions to the in-
direct exchange energy, suppressing the Heisenberg and
Dzyaloshinskii-Moriya contributions but strengthening the
Ising contribution. The light-induced spin texture provides a
clear physical picture to understand these distinct behaviors.
Our work clarifies the interplay between light-induced effects
and dimensionality of the spin configuration on the RKKY
interaction in topological materials. Since the Dzyaloshinskii-
Moriya interaction plays a crucial role in the emergence and
stabilization of topological spin textures, our findings suggest
that further investigations into optically driven exchange in-
teractions may offer a useful strategy for realizing tunable
magnetic patterns in topological materials.
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APPENDIX A: CALCULATION OF SPIN SUSCEPTIBILITY

1. zz case

A linear ultraviolet divergence occurs in the calculation of
the zz component of the susceptibility. In order to avoid the
divergence encountered in the integral, we derive the renor-
malized susceptibility χ zz

ren(q), which is given by subtracting
the bare susceptibility χ zz(q) from the intrinsic susceptibility
at zero momentum χ zz(q = 0, μ = 0) [19,76]. After the k
integral is carried out, Eq. (19) reduces to

χ zz
ren(q) = 2μ2

B

(2πα)2

∫ 1

0
dx{2π (

√
δ2(x) + �2 − �)�[δ2(x) + �2 − μ2] + π (|μ| − �)�[μ2 − δ2(x) − �2]

− π��[μ2 − δ2(x) − �2]}, (A1)

where �(x) is the Heaviside step function.
The integration range of this integral where the theta functions are nonzero is given by x1 = 1/2 −√

1 − 4(μ2 − �2)/(α2q2)/2 and x2 = 1/2 +
√

1 − 4(μ2 − �2)/(α2q2)/2. Carrying out the integral, we obtain

χ zz
ren(q) =

⎧⎪⎨
⎪⎩

μ2
B

2πα2 Re
[|μ| − 2� + 1

2

(
αq + 4�2

αq

)
sin−1 γ

]
if |μ| > �,

μ2
B

αq+ 4�2

αq

4πα2 Re[sin−1 γ ] if |μ| < �.

(A2)
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2. xx and yy cases

Similarly, to avoid the divergence, we renormalize the susceptibility by χ xx
ren(q) = χ xx(q) − χ xx(q = 0, μ = 0). After the k

integral is carried out, Eq. (19) reduces to

χ xx
ren(q) = 2μ2

B

(2πα)2

∫ 1

0
dx

[
πδ2(x) cos2 φ√

δ2(x) + �2
�(δ2(x) + �2 − μ2)

]
. (A3)

Carrying out this integral in the range of nonzero values of the θ function. we get

χ xx
ren(q) =

⎧⎨
⎩

μ2
B

4πα2 Re
[√

1 − 4 μ2−�2

α2q2 |μ| + 1
2

(
αq − 4�2

αq

)
sin−1 γ

]
cos2 φ if |μ| > �,

μ2
B

2πα2 cos2 φ
[

1
2� + αq tan−1 αq

2�
− 1

8

(
3αq + 4�2

αq

)
(π − sin−1 γ )

]
if |μ| < �.

(A4)

The integral of the yy component can be deduced very similarly.

3. xy and yx cases

The integral of the xy and yx components of the susceptibility does not diverge, and the renormalization does not change the
result as χ xy(q = 0, μ = 0) = χ yx(q = 0, μ = 0) = 0 in this case. The result of the k integral gives

χ xy(q) = χ yx(q) = 2μ2
B

(2πα)2

∫ 1

0
dx
∫

dk0
δ2(x) sin 2φ

δ2(x) + �2 + (k0 − iμ)2
. (A5)

This integral takes the same form as in the xx and yy cases; thus, we can make use our previous result and obtain the following
result:

χ xy(q) = χ yx(q) =
⎧⎨
⎩

μ2
B

4πα2 Re
[√

1 − 4 μ2−�2

α2q2 + 1
2

(
αq − 4�2

αq

)
sin−1 γ

]
sin 2φ if |μ| > �,

μ2
B

2πα2 sin 2φ
[

1
2� + αq tan−1 αq

2�
− 1

8

(
3αq + 4�2

αq

)
(π − sin−1 γ )

]
if |μ| < �.

(A6)

4. xz, zx, yz, and zy cases

Here we show the derivation for the xz case as an example, and the other three cases follow the same procedure.

χ xz(q) = μ2
B

q

(2π )2α

∫ 1

0
dx
∫

dk0
(k0 − iμ) cos φ + �(2x − 1) sin φ

(k0 − iμ)2 + δ2(x) + �2
. (A7)

We consider a rectangular contour in the complex plane of k0 enclosed by the real line and a straight line with distance iμ above
the real line, as shown in Fig. 9, and use the residue theorem to evaluate the integral. The singular point of the integrand is at
k0 = iμ − i

√
δ2(x) + �2. The contour consists of the upper and lower infinite integrals with the narrow-range integral on both

sides. It can be shown that the two side integrals are zero by evaluating the side integrals at a finite position ±λ on the real axis
and taking the limit of λ → ∞. The upper integral is

I =
∫ 1

0

dx

(2π )2

πq

α

�(2x − 1) sin φ√
δ2(x) + �2

. (A8)

Subtracting this term from the residue and then carrying out the x integral, we get the susceptibility we need:

χ xz(q) =
{

iq
4πα

μ2
B

{
1 − Re

[√
1 − 4 μ2−�2

α2q2

]}
cos φ if |μ| > �,

0 if |μ| < �.
(A9)

Note that for some of the cases the integral contour needs to
be set below the real axis, but the procedures are the same.

APPENDIX B: A STATIONARY PHASE APPROXIMATION
APPROACH TO THE RKKY INTERACTION

In this Appendix, we present an alternative derivation of
the long-range asymptotic behavior of the RKKY interaction
between two impurity spin chains on an irradiated TI surface,
making use of the stationary phase approximation (SPA) of
the real-space Green’s functions. To this end, we first obtain
the RKKY interaction between two isolated impurities.

In momentum space, we can write the Green’s function in
the form of a spectral decomposition,

GR
0 (k, E )=GR

+(k, E ) |+, k〉 〈k,+| + GR
−(k, E ) |−, k〉 〈k,−| ,

(B1)

where GR
±(k, E ) = (E + iη − Ek,±)−1 is the retarded Green’s

function for the conduction (+) and valence (−) bands and
Ek,± = ±√

α2k2 + �2 are their band energies. The real-space
Green’s function then follows from Eq. (B1) as

GR
0 (R, E ) =

∫
dk

(2π )2
eik·R

∫ ∞

0

dt

ih̄
ei(E+iη)t/h̄

× [
e−iEk,+t/h̄ |+, k〉 〈k,+| + e−iEk,−t/h̄ |−, k〉 〈k,−|]. (B2)

035307-9



KE, ASMAR, AND TSE PHYSICAL REVIEW B 110, 035307 (2024)

Following the standard procedures of SPA [77], we find the
stationary point of the phase function for each of the ex-
ponentials in Eq. (B2), make a Taylor expansion of those
phases around their respective stationary points, and evaluate
the resulting integrals. The real-space Green’s function within
SPA is then obtained as

GR
0 (R, E ) = − �(E2 − �2)

i|E |√
2πRα

3
2 (E2 − �2)

1
4

G̃

× exp

[
isgn(E )

(√
E2 − �2R

α
− π

4

)]
, (B3)

where �(x) denotes the Heaviside step function and

G̃ =
⎡
⎣ 1

2

(
1 + �

E

)
i
2

√
1 − �2

E2 e−iφR

i
2

√
1 − �2

E2 eiφR 1
2

(
1 − �

E

)
⎤
⎦, (B4)

with φR being the azimuthal angle of R. With the SPA Green’s
function, we next proceed to calculate the RKKY interaction
between two single impurities. The exchange interaction en-
ergy can be obtained from the real-space Green’s function as
follows [8,12,78]:

Ĩ = − 1

π
(μBJ0)2Im

{∫ μ

−∞
dETr

[
(σ · SR)GR

0 (R, E )

× (σ · SL)GR
0 (−R, E )

]}
. (B5)

Plugging in Eq. (B3) and performing integration by parts
to obtain the dominant asymptotic behavior, we arrive at
the following leading-order contributions to the exchange
interaction:

ĨA(R) ≈ −ĨA,0
c

α0

1

|μ|
μ2 − �2(
1 − �

h̄�

)2

( c

R

)2
cos

(
q0R − π

2

)
,

(B6)

ĨB(R) ≈ −ĨB,0
c|μ|
α0

1(
1 − �

h̄�

)2

( c

R

)2
cos

(
q0R − π

2

)
, (B7)

ĨD(R) ≈ −ĨD,0

[
c

α0

√
μ2 − �2(

1 − �
h̄�

)2

( c

R

)2
cos (q0R − π )

]
, (B8)

where ĨA,0 = ĨSL
y S

R
y , ĨB,0 = ĨSL

z S
R
z , ĨD,0 = Ĩ (SL × SR)x,

and Ĩ = [μBJ0/(2πc
√

α0c)]2. We note that the explicit form

of the asymptotic behavior of the RKKY interaction between
isolated impurities on a magnetically gapped TI surface states
has not been previously reported in the literature [17]. We
have also checked that the above results [Eqs. (B6)–(B8)]
can be obtained using the approximation method described
in the main text that is based on the spin susceptibilities
[Eqs. (20)–(23)].

With the above results for the single-impurity case, we
can proceed to calculate the exchange interaction between
two parallel impurity spin chains, each with N impurities and
length L. As in our setup discussed in the main text, the chains
are infinitely extended along the x direction and separated
in the y direction; therefore, N, L → ∞, while the impurity
density N/L is finite. By summing the contributions from each
pair of impurity spins, the total interaction energy between the
two spin chains is given by

I tot =
∞∑

m,n=−∞
Ĩ (|Rn − Rm|), (B9)

where Ĩ = ĨA + ĨB + ĨD is the interaction energy between the
mth impurity in chain L and the nth impurity in chain R
and Rm and Rn are the position vectors of impurity m ∈ L
and impurity n ∈ R, respectively. Due to discrete translational
symmetry along the x direction, the total interaction energy
I tot is the same as N times the interaction energy between a
single impurity in chain L and all impurities in chain R:

I tot = N
∞∑

n=−∞
Ĩ (Rn), (B10)

where Rn =
√

(n�x)2 + y2, with �x = 2A0/c being the dis-
tance between two adjacent impurities on one chain. The
interaction energy per unit length I is then given by I tot/L.
To obtain the leading asymptotic behavior, we first use the
Euler-Maclaurin formula to approximate the sum in Eq. (B10)
as an integral,

I = N

L

∞∑
n=−∞

Ĩ (Rn) ≈
(

N

L

)2 ∫ ∞

−∞
duĨ (

√
u2 + y2), (B11)

and evaluate the resulting integral within the SPA. We then
recover the same results up to the leading order in 1/y,
Eqs. (29)–(31), obtained through the spin susceptibilities in
the main text.
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