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Tunneling spin Nernst effect for a single quantum dot
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We describe theoretically the spin Nernst effect for electrons tunneling to a quantum dot from a quantum
wire with the heat flowing along it. Such a tunneling spin Nernst effect is shown to take place due to the spin-
dependent electron tunneling produced by the spin-orbit coupling. The Coulomb interaction of electrons in the
quantum dot is taken into account using nonequilibrium Green’s functions and is shown to increase significantly
the accumulated spin in a single quantum dot. The largest possible degree of spin polarization is discussed.
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I. INTRODUCTION

The spin Nernst effect is a hybrid of the Nernst and spin
Hall effects. The former represents generation of the trans-
verse electric current under the longitudinal flow of heat. The
latter is the transverse spin current induced by the longitudinal
electric current. Thus the spin Nernst effect describes the
appearance of the transverse spin current in response to the
longitudinal heat flow [1].

This effect was first predicted in the external magnetic field
[2], but later it was realized that the magnetic field is not
necessary [3], as for the spin Hall effect [4]. These pioneering
works were followed by first-principles [5–7] and kinetic [8,9]
calculations for various systems. Despite early attempts to
observe the spin Nernst effect [10], conclusive experiments
were performed only recently [11–13].

This effect was never observed in semiconductors (to the
best of our knowledge) due to the weakness of spin-orbit cou-
pling [14]. So it is important to propose a setup that will help
to demonstrate the appearance of spin polarization without
electric current, only with the heat flow. The electron local-
ization in quantum dots (QDs), for example, can be exploited
to increase the spin relaxation time and the steady-state spin
polarization [15]. In addition, the electron spin accumulated
in a QD can be conveniently measured and manipulated by
various optical and electrical means [16].

The spin accumulation in localized states requires tunnel-
ing, that depends on the electron spin. Thus in this work we
will be concerned with the tunneling spin Nernst effect. The
spin-dependent tunneling was shown to take place due to the
Dresselhaus and Rashba spin-orbit interactions [17–19], so
the effect takes place in nonmagnetic structures. In recent
works, large current-induced spin accumulation was predicted
for the hopping conductivity regime [15,20] and for the tun-
neling of holes [21] and electrons [22] to a single QD. Thus a

*Contact author: smirnov@mail.ioffe.ru

large spin accumulation due to the tunneling spin Nernst effect
may be expected.

In this paper, we describe the tunneling spin Nernst effect
for a single QD side coupled to a ballistic quantum wire. The
system and the method of nonequilibrium Green’s functions
are described in Sec. II. The results of the calculation of the
spin accumulation induced by the heat current are presented
in Sec. III, where we show that the possible degree of spin
polarization can be large indeed. Section IV concludes the
paper.

II. MODEL

We study the spin accumulation in the quantum dot in-
duced by the heat flow in the quantum wire due to the
temperature gradient between its ends; see Fig. 1. The system
is assumed to be gate-defined in a two-dimensional electron
gas [23–25], but the other realizations are possible as well
[26]. The C2v symmetry group of the system allows for the
linear coupling between the temperature gradient along the
wire and the spin polarization in the QD along the structure
growth axis.

To describe this coupling microscopically, we use the fol-
lowing Anderson-like Hamiltonian [27]:

H = E0

∑
σ

nσ + Unσ n−σ +
∑
k,σ

Eknk,σ

+
∑
k,σ

(Vk,σ d†
σ ck,σ + H.c.). (1)

Here E0 is a single electron energy in the QD, nσ = d†
σ dσ

with σ = ± being the occupancies of the corresponding spin-
up/-down states expressed through the products of creation,
d†

σ , and annihilation, dσ , operators, and U is the on-cite
Coulomb repulsion energy. Ek describes the dispersion of
electrons in the quantum wire with the wave vector k along
it, nk,σ = c†

k,σ
ck,σ are the occupancies of the corresponding

spin states in the wire, and ck,σ are the annihilation operators
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FIG. 1. Scheme of the system under investigation. A heat cur-
rent flows along the quantum wire due to the temperature gradient
between the ends and leads to the spin accumulation in the QD.

for these electrons. We assume the wire to be ballistic, and we
neglect the interactions in it. The coefficients Vk,σ describe the
spin-dependent tunneling between the quantum wire and the
QD. Note that the spin dependence in the form Vk,+ �= Vk,− is
allowed for any crystal structure of the host semiconductors,
so the current-induced spin accumulation is possible for a
wide class of structures, including GaAs, Si, and Ge-based
heterostructures. The time-reversal symmetry imposes the re-
lation Vk,+ = V ∗

−k,−.
This Hamiltonian is similar to the case of a QD coupled

to the two leads, but here the two reservoirs are represented
by the electrons moving from the left to the right and from
the right to the left along the ballistic quantum wire [26,28–
30]. This is mathematically equivalent to the standard config-
uration of a QD coupled independently to the two leads with
the different temperatures by the spin-dependent tunneling.
Consideration of only one size quantized electron level in the
QD is the simplest approximation that allows us to describe
the spin Nernst effect.

The Hamiltonian is diagonal in the spin space. Since
tunneling of the electrons with the opposite spins from the
quantum wire to the QD leads to the opposite final spin states,
this form of the Hamiltonian can always be achieved by ap-
propriate choice of the spin basis at the QD. We neglect the
spin flips inside the QD and the quantum wire, assuming them
to be slower than the tunneling rate. We also stress that we
consider a nonmagnetic structure, where the spin dependence
is produced by the spin-orbit coupling. If the crystal structure
supports a vertical reflection plane that contains the quantum
wire, then this reflection does not change the direction of the
heat current but flips the spins along the vertical axis. As
a result, if the QD were placed at the opposite side of the
quantum wire, the heat current would produce spin polariza-
tion in it in the opposite direction. This behavior qualitatively
distinguishes our system from the structures with magnetic
leads, and for this reason the spin polarization induced by the
heat flow can be called the tunneling spin Nernst effect.

A. Formalism

For the calculation of the current-induced spin accumula-
tion in the QD as a function of temperature gradient in the
quantum wire and the Fermi level, we use the nonequilibrium
Green’s functions formalism [31–33]. The occupancies of the

spin states in the QD are given by

〈nσ 〉 = −i
∫

dω

2π
G<

σ (ω), (2)

where G<
σ (ω) are the lesser Green’s functions of the QD (we

set h̄ = 1). They can be expressed through the corresponding
lesser self-energies �<

σ (ω) and retarded Green’s functions
GR

σ (ω) in the standard way:

G<
σ (ω) = GR

σ (ω)�<
σ (ω)GA

σ (ω). (3)

To calculate it, we consider the bare Hubbard Green’s
function of a QD [34,35],

GR
0,σ (ω) = 1 − 〈n−σ 〉

ω − E0 + iδ
+ 〈n−σ 〉

ω − E0 − U + iδ
, (4)

where δ → +0. To simplify the following, we focus on the
limit of strong Coulomb interaction, U → ∞, and we obtain
[36,37]

GR
0,σ (ω) = 1 − 〈n−σ 〉

ω − E0 + iδ
. (5)

Then in the standard way using the wide flat band ap-
proximation [31–33], we find from the Dyson equation the
self-energy �R

σ (ω) = −i� [33,38], where � = �L,σ + �R,σ is
the spin-independent total tunneling rate, which is related to
the interaction with the electrons moving in the directions
from the left and right leads, �L,σ and �R,σ , respectively. They
are related to the electrons with k > 0 and k < 0 and can be
expressed as �L/R,σ = πD(E0)|V 2

±k0,σ
|/4, where D(E0) is the

total density of states in the quantum wire at the QD energy,
and k0 > 0 is the resonant wave vector defined by Ek0 = E0.
This gives the retarded Green’s function

GR
σ (ω) = 1 − 〈n−σ 〉

ω − E0 + i(1 − 〈n−σ 〉)�
. (6)

The factor 1 − 〈n−σ 〉 here describes the suppression of tun-
neling of electrons with the opposite spin to the QD by the
Coulomb interaction.

In the same approximation we find the lesser self-energy
(note that we denote with �’s amplitude decay rates)

�<
σ (ω) = 2i[�L,σ fL(ω) + �R,σ fR(ω)], (7)

where the distribution function of the electrons moving from
the left and right leads is

fL/R(E ) = 1

1 + exp[(E − EF )/TL/R]
, (8)

with EF being the Fermi energy and TL/R being the tempera-
tures of the left/right lead (kB = 1). Substituting Eqs. (6) and
(7) in Eqs. (2) and (3), we obtain a closed set of two integral
equations that determine occupation numbers 〈nσ 〉 for spin-up
and spin-down states in the QD.

This corresponds to the Hartree-Fock approximation
[21,39–42], which neglects correlations between electrons in
the quantum wire, or to the method of equations of mo-
tion [35,36,43,44]. Thus the applicability of this approach
is limited to the temperatures above the Kondo temperature
[22,36,45]. Also small-sized QDs are required, so that only
the lowest level of size quantization can be considered, and
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temperature should be smaller than the energy spacings be-
tween the levels in order to neglect thermal population of the
excited states in the system.

The spin-orbit interactions give rise to a small difference
of the tunneling matrix elements and a corresponding

difference of the tunneling rates, which we present
as �L,+ = �R,− = �/2 + γ and �R,+ = �L,− = �/2 −
γ , with γ � � being a phenomenological spin-
dependent contribution. Then the equations for the
occupancies read

〈nσ 〉 = 1

π

∫
(1 − 〈n−σ 〉)2

(ω − E0)2 + �2(1 − 〈n−σ 〉)2

[(
�

2
+ σγ

)
1

1 + e
ω−EF

TL

+
(

�

2
− σγ

)
1

1 + e
ω−EF

TR

]
dω. (9)

We are looking for the bilinear response of the spin in the QD
S = (〈n+〉 − 〈n−〉)/2 to γ and the temperature gradient. So
we consider 〈nσ 〉 = 〈n〉 + σS and TL/R = T ± δT/2, where
〈n〉 and T are average occupancy and temperature, respec-
tively, and δT is the difference of the temperatures between
the left and right leads. The average occupancy 〈n〉 can be
found neglecting spin-orbit contribution γ , temperature dif-
ference δT , and spin polarization S in Eq. (9):

〈n〉 = �

π
(1 − 〈n〉)2

∫ [
1 + e

ω−EF
T

]−1

(ω − E0)2 + �2(1 − 〈n〉)2
dω. (10)

Then we calculate the accumulated spin using Eq. (9). In the
right-hand side we substitute the above expressions for 〈nσ 〉

and TL,R, and then we keep only the contributions linear in S
or in δT . This gives

S = 2S

π

∫
�(1 − 〈n〉)(ω − E0)2dω

[(ω − E0)2 + �2(1 − 〈n〉)2]2
(
1 + e

ω−EF
T

)
+ γ δT

4πT 2

∫
(1 − 〈n〉)2(ω − EF )dω

[(ω − E0)2 + �2(1 − 〈n〉)2] cosh2
(

ω−EF
2T

) .

(11)

So the electron spin can be calculated as

S = γ δT

4πT 2

∫
(1 − 〈n〉)2(ω − EF )dω

[(ω − E0)2 + �2(1 − 〈n〉)2] cosh2
(

ω−EF
2T

)
/{

1 − 2

π

∫
�(1 − 〈n〉)(ω − E0)2dω

[(ω − E0)2 + �2(1 − 〈n〉)2]2
(
1 + e

ω−EF
T

)
}

. (12)

The denominator here describes the enhancement of spin po-
larization in the QD by the Coulomb interaction. Physically,
this happens because a spin-up electron in the QD forbids
tunneling of a spin-down electron to it for the large Coulomb
interaction. Also, one can see that the spin polarization van-
ishes at EF = E0 because of the symmetry of the Fermi
distribution functions in this case. Generally, the integrals here
cannot be solved analytically.

It is useful to consider an expression for the electric current
along the quantum wire,

I = e

π

∫
[ fL(ω) − fR(ω)]dω, (13)

where e is the electron charge. Substituting here the distribu-
tions functions (8), we obtain in the first order in δT

I = eδT

4πT 2

∫
ω − EF

cosh2
(

ω−EF
2T

)dω. (14)

Now from the comparison with Eq. (12) one can see that
the spin polarization induced by the heat flow is qualitatively
proportional to the electric current at the energy of the QD,
E0. In particular, it vanishes at E0 = EF . We note also that in
Eq. (14) there is no total electric current, as required for the
spin Nernst effect.

B. Illustrative example

We stress that the heat-induced spin polarization appears
due to the spin-orbit interaction, which does not require
breaking of the time-reversal symmetry. As a result, the spin
polarization is an odd function of the temperature bias, and
also of the distance between the QD and the quantum wire, if
there is a vertical mirror reflection along the quantum wire.

This can be illustrated considering a specific Hamiltonian
of a quantum wire with Rashba spin-orbit interaction:

HQW = k2

2m
− U2δ(y) + α(σxky − σykx ). (15)

Here k = −i∇ is the electron momentum operator, m is its
effective mass, α is the spin-orbit interaction constant, σ

are the Pauli matrices, and U2 is the strength of the attrac-
tive δ-potential of the quantum wire. The eigenstates of this
Hamiltonian are found in Appendix. For the given energy E
there are four degenerate states corresponding to the electrons
moving to the right and to the left with the spin along the y
axis and in the opposite direction.

Let us consider the given energy and the two states of an
electron moving to the right 
↑(x, y) and left 
↓(x, y). Then
we calculate the average spin polarization along the z direction
as a function of distance from the quantum wire:

Pz(y) = 〈
↑|σz|
↑〉 + 〈
↓|σz|
↓〉
〈
↑|
↑〉 + 〈
↓|
↓〉 . (16)

035306-3



V. N. MANTSEVICH AND D. S. SMIRNOV PHYSICAL REVIEW B 110, 035306 (2024)

FIG. 2. Average spin polarization of electrons tunneling with
the energy E and kx > 0 to the distance y from the quantum wire
calculated for the Hamiltonian (15) with α/U2 = 0.1. Blue and red
correspond to Pz = ±1.

It does not depend on x since the wave functions are the plane
waves along this direction. The spin polarization is shown
in Fig. 2. It is an odd function of y in agreement with the
symmetry of the Hamiltonian (15). This underlines that the
spin polarization appears due to the spin Nernst effect and is
not related to the spin injection from the contacts. For small
distances and weak spin-orbit coupling, the spin polarization
is proportional to α2, but at large distances from the quantum
wire it can reach ±1.

We note that other examples of calculations of the spin-
dependent tunneling rates can be found, for example, in
Refs. [15,18,21].

III. RESULTS AND DISCUSSION

The electron spin in the QD induced by the heat flow
along the quantum wire is shown in Fig. 3. The calcula-
tions are performed by numerical solution of Eqs. (10) and
(12), which describe the limit of strong Coulomb interac-
tion. Panel (a) shows that the spin vanishes for zero, large

positive, and large negative Fermi energies and changes sign
at EF = E0. Generally, it reaches the largest absolute values at
|EF − E0| ∼ � with the coefficient increasing with the growth
of temperature.

The temperature dependence is shown in more detail in
Fig. 3(b) for a few different Fermi energies. One can see
that the spin vanishes in the limits of small and large tem-
peratures, and reaches the largest absolute value at T ∼ �.
The overall dependence of spin on the Fermi energy and the
temperature is shown in the color map in Fig. 3(c). Here the
magenta star shows the maximum (at γ δT > 0) spin S =
0.212γ δT/�2, which is reached at EF − E0 = −0.6� and
T = 0.3�. Similarly, the cyan star shows the minimum of spin
S = −0.397γ δT/�2, which is reached at EF − E0 = 1.5�

and T = 0.6�. Thus, the largest spin is generally reached at
|EF − E0|, T ∼ �.

This can also be seen from analytical expressions for a few
limiting cases. For example, at the low temperatures T � �

and large Fermi energies EF − E0 � �, the occupancy of the
QD equals one half, 〈n〉 = 1/2, so Eq. (12) gives

S = − π2γ T δT

6�(EF − E0)2
. (17)

In the opposite limit of low Fermi energy, E0 − EF � �, the
QD occupancy is very low, 〈n〉 � 1, so we obtain

S = 2πγ T δT

3(E0 − EF )3
. (18)

From these two limits one can see that the spin has opposite
signs for EF > E0 and EF < E0, and that it vanishes for |EF −
E0| � �. The spin polarization in Eqs. (17) and (18) linearly
increases with an increase of the temperature. The limit |E0 −
EF | � T � � is described by these expressions as well.

In the limit of high temperatures T � �, |EF − E0|,
Eq. (10) gives the occupancy of the QD 〈n〉 = 1/3. Using it,
we obtain from Eq. (12) the spin

S = γ (E0 − EF )δT

3�T 2
. (19)

It again changes sign at EF = E0, but it also shows a decrease
at large temperatures ∝ 1/T 2. So the maximum and minimum
at |EF − E0|, T ∼ � can be seen indeed.

FIG. 3. Electron spin in the QD induced by the heat flow along the quantum wire calculated after Eqs. (10) and (12) as a function of Fermi
energy for the temperatures given in the legend (a), as a function of temperature for the Fermi energies given in the legend (b), and as a function
of both parameters (c). The cyan and red magenta stars show the minimum and maximum, respectively.
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FIG. 4. (a) Maximum (red solid curve) and minimum (blue dash-
dotted curve) of spin as a function of Fermi energy for the given
temperature. (b) Maximum (red solid curve) and minimum (blue
dash-dotted curve) of spin as a function of temperature for the given
Fermi energy.

We also find it useful to show the maximum and minimum
of spin as functions of Fermi energy for a given temperature
in Fig. 4(a). Similarly, the extrema of spin as functions of
temperature for the given Fermi energy are shown in Fig. 4(b).
The cyan and magenta stars in this figure show the same
extrema as in Fig. 3(c).

Generally, the spin in the QD induced by the heat flow
is of the order of γ δT/�2, so in the framework of our the-
ory it is always small. However, in realistic structures with
� ∼ 10 μeV, the temperatures difference in the left and right
leads can be of the same order for δT ∼ 0.1 K. So the linear
response theory may be insufficient, and one can expect that
for the large δT spin will be of the order of γ /�. Moreover,
Fig. 2 shows that at significant distances from the quantum
wire, the spin dependence of the tunneling rate can be very
strong. This again violates our assumption of γ /� � 1, but
we speculate that the heat flow induced spin accumulation in
this case would be large. In principle, it can be of the order of
100% as there is no small parameter in the system anymore.

Note that the typical tunneling rates are much faster than
the spin relaxation of localized electrons, so the latter does not
play a role. The spin polarization can then be measured opti-
cally, using polarized luminescence or spin-induced Faraday
rotation, and electrically, using magnetic point contacts.

IV. CONCLUSION

We have shown that the spin-orbit interaction produces the
spin Nernst effect in a gate defined heterostructure consisting
of a QD side coupled to a quantum wire without magnetic
elements. The heat current produces spin polarization of a
localized electron in this system due to the spin-dependent
tunneling. The spin polarization is enhanced by the Coulomb
interaction in the QD. It is a nonmonotonous function of Fermi
energy and temperature, and it reaches the largest values when
both are of the order of the tunneling rate between the QD and
the quantum wire. The spin accumulation in the framework
of our model is parametrically weak, but continuation of the
theory to large temperature bias allows one to expect macro-
scopically large spin polarization.
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APPENDIX: EIGENFUNCTION OF EQ. (15)

The Hamiltonian (15) is translationally invariant along the
x axis, so its eigenfunctions are proportional to eikx. Moreover,
due to the assumption of the δ-potential of the quantum wire,
the wave function away from it (at y �= 0) can be written as


 =
(

χ↑
χ↓

)
eikx−κ|y|. (A1)

Substituting this form into Eq. (15), we obtain

Eχ↑ = k2 − κ2

2m
χ↑ + iαkχ↓ + iακχ↓,

(A2)

Eχ↓ = k2 − κ2

2m
χ↓ − iαkxχ↑ + iακχ↑

for y > 0, while for y < 0 the sign of κ should be reversed.
Here E < 0 is the electron energy. These equations have two
solutions with the two inverse decay lengths κ±, which are
determined by

κ2
± − κ

2 − k2 = ∓2iβ
√

κ2± − k2, (A3)

with κ = √−2Em and β = αm. Also from Eq. (A2) we find
the corresponding ratios of the spinor components

χ↑/χ↓ = ∓ξ±, (A4a)

χ↓/χ↑ = ±ξ±, (A4b)
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at y > 0 and y < 0, respectively, with ξ± =√
(κ± + k)/(κ± − k).
The eigenfunctions have the form of linear combinations

of these solutions:


 =
∑
±

[
A±

(∓ξ±
1

)
e−κ±yθ (y) + B±

(
1

±ξ±

)
eκ±yθ (−y)

]
eikx.

(A5)
The coefficients A± and B± can be found from the boundary
conditions at y = 0. First, the wave function should be contin-
uous, which can be written as


|+0
−0 = 0. (A6a)

And integrating the Schrödinger equation around y = 0, we
obtain the boundary condition for the wave-function deriva-
tive:

d


dy

∣∣∣∣
+0

−0

= −2mU2
 (A6b)

(the wave function should be taken at y = 0 and it is con-
tinuous at it). Substitution of the wave function (A5) to the
boundary conditions yields four linear equations for the coef-
ficients A± and B±:

−ξ+A+ + ξ−A− = B+ + B−, (A7a)

A+ + A− = ξ+B+ − ξ−B−,

(A7b)

−κ+ξ+A+ + κ−ξ−A− + κ+B+ + κ−B− = 2p(B+ + B−),

(A7c)

κ+A+ + κ−A− + κ+ξ+B+ − κ−ξ−B− = 2p(A+ + A−),

(A7d)

where p = mU2. The determinant of this system should equal
zero,

[−ξ 2
+(κ+ + κ−) − 2ξ+ξ−κ+ + κ+ − κ− + 2pξ 2

+ + 2pξ+ξ−]

× [ξ+κ− + ξ−κ− + ξ 2
−ξ+κ+ + ξ+κ+ − ξ 2

−ξ+κ−

+ ξ−κ− − 2pξ+ − 2pξ−] − [ξ 2
−(κ+ + κ−) + 2ξ+ξ−κ−

+ κ+ − κ− − 2pξ 2
− − 2pξ+ξ−] × [ξ+κ+ + ξ−κ+ − ξ 2

+ξ−κ+

+ ξ+κ+ + ξ 2
+ξ−κ− + ξ−κ− − 2pξ+ − 2pξ−] = 0, (A8)

which gives the relation between the wave vector k and energy
E . Generally, there are two solutions of this equation, and they
give the two wave functions 
↑ and 
↓.

For example, for k = 0 we obtain ξ+ = ξ− = 1 and

κ± = p ∓ iβ. (A9)

The determinant (A8) equals zero when κ+ + κ− = 2p. This
condition directly determines the energy of the ground state

E = −m(U 2
2 + α2)/2. It is twofold degenerate, so there are

two linearly independent solutions of Eqs. (A7). Taking into
account the normalization, they can be chosen in the form

A+ = −A− = −
√

p

4L
,

B+ = B− =
√

p

4L
, (A10)

and

A+ = A− =
√

p

4L
,

B+ = −B− =
√

p

4L
, (A11)

where L is the normalization length along the quantum wire.
Substituting these coefficients into Eqs. (A5), we get an ex-
plicit expressions for spin-up and spin-down wave functions:


↑ =
√

p

L
e−p|y|

(
cos(βy)

−i sin(βy)

)
, (A12a)


↓ =
√

p

L
e−p|y|

(−i sin(βy)

cos(βy)

)
. (A12b)

One can see that the spin polarization in these states
depends on the distance from the quantum wire as Sz ∝
± cos(2βy), Sy ∝ ∓ sin(2βy), Sx = 0. The spin precession is
directly related to the spin-orbit coupling in Eq. (15). At the
same time, there is no spin polarization on average in the states
with k = 0.

Generally, in the first order in the spin-orbit coupling we
obtain from Eq. (A8) for the given energy the two posi-
tive wave vectors k =

√
p2 − κ

2 + β and
√

p2 − κ
2 − β. For

these states we obtain

κ± = p ∓ i
κ

p
β +

√
1 − κ

2

p2
β, (A13a)

κ± = p ∓ i
κ

p
β −

√
1 − κ

2

p2
β, (A13b)

respectively. One can see from the last term that the two
contributions to the wave function decay at slightly different
lengths. This difference appears in the first order in β, and the
spin rotation is also proportional to β, so the spin polariza-
tion [Eq. (16)] appears in the second order in the spin-orbit
interaction.

Note that the definition of spin polarization in Eq. (16)
assumes equal occupancies of the states 
↑ and 
↓ due to the
coincidence of their energies. This results in a weak current
of spin along the y axis in the direction of the quantum wire.
But this effect appears in higher orders in β, and its exclusion
does not change, e.g., Fig. 2.
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