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High-harmonic generation in graphene under the application of a DC electric current:
From perturbative to nonperturbative regime
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We theoretically investigate high-harmonic generation (HHG) in honeycomb-lattice graphene models when
subjected to a DC electric field. By integrating the quantum master equation with the Boltzmann equation,
we develop a numerical method to compute laser-driven dynamics in many-electron lattice systems under DC
electric current. The method enables us to treat both the weak-laser (perturbative) and intense-laser (nonpertur-
bative) regimes in a unified way, accounting for the experimentally inevitable dissipation effects. From it, we
obtain the HHG spectra and analyze their dependence on laser frequency, laser intensity, laser-field direction,
and DC current strength. We show that the dynamical and static symmetries are partially broken by a DC current
or staggered potential term, and such symmetry breakings drastically change the shape of the HHG spectra,
especially in terms of the presence or absence of (2n + 1)th-, 2nth-, or 3nth-order harmonics (n ∈ Z). The
laser intensity, frequency, and polarization are also shown to affect the shape of the HHG spectra. Our findings
indicate that HHG spectra in conducting electron systems can be quantitatively or qualitatively controlled by
tuning various external parameters, and DC electric current is used as such an efficient parameter.
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I. INTRODUCTION

In the past few decades, nonlinear optical responses in
solid-state electronic systems have seen remarkable growth
thanks to the development of laser techniques. Various
laser-driven nonequilibrium phenomena have been explored
including high-harmonic generation (HHG) [1–5], photorec-
tification effects [6–13], Floquet engineering [14–20], and
others. Among them, HHG is a simple phenomenon in which
a system subjected to intense light of frequency � emits
light with different frequencies n�, as shown in Fig. 1(a).
It is relatively easily detectable in experiments compared to
other nonlinear optical effects. Though the HHG research
had focused on atomic gas systems in the 1990s [21–26],
its targets have been expanded to solid-state systems since
the 2010s, such as semiconductors [27–36], superconduc-
tors [37], semimetals [38–41], strongly correlated electrons
[42–45], magnetic insulators [46–51], etc.

It is well known that even-order harmonics of n =
2, 4, 6, . . . are all generally suppressed in solid-state elec-
tronic systems with spatial inversion symmetry [52]. This fact
leads to an intriguing question: How can one observe/control
these suppressed responses? HHG also provides a means to
extract light of particular beneficial frequencies. Therefore,
addressing the above question becomes vital from both scien-
tific and application perspectives. One viable strategy is to use
inversion-asymmetric systems, like p-n junctions [53], per-
ovskite ferroelectrics [54], and Weyl semimetals [55–58]. The
inversion asymmetry in these systems generates even-order
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harmonics in general, and this research direction has long
been thriving. For instance, p-n junctions show potential for
solar energy conversion through the n = 0 light-induced elec-
tric potential [53]. Similarly, the nonlinear optical responses
in Weyl semimetals are subjects of intensive study [55–58].

On the other hand, even for inversion-symmetric materials,
some extrinsic means can be employed to break the inversion
symmetry. Applying a DC current is an effective way to
achieve the breakdown. Building on this idea, current-induced
second-harmonic generation has been investigated theoreti-
cally [59–63] and reported experimentally in materials like
Si [64], GaAs [65], graphene [66,67], superconducting NbN
[68], and others.

It is noteworthy that both DC current and laser light push
the system out of equilibrium. Namely, the application of
DC current generally increases complexity in laser-driven
systems, making computational predictions daunting. Con-
sequently, so far, only second-harmonic generation spectra
have been computed within perturbative ways in most of the
previous works for systems under the application of both laser
and DC current [59–63]. However, the perturbation theories
generally become less feasible when laser intensity grows.
Therefore, for HHG in DC-current-driven systems, it is sig-
nificant to develop a theoretical method that analyzes both
perturbative (weak laser) and nonperturbative (strong laser)
ranges.

In this paper, motivated by the above backgrounds, we
theoretically investigate HHG in honeycomb-lattice graphene
models when subjected to a DC electric field. Combining the
quantum master equation [48,49,69–72] with the Boltzmann
equation [73], we develop numerical methods to quantita-
tively compute the laser-driven time evolution of observables
in many-electron lattice systems under DC electric current,
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FIG. 1. (a) Schematic diagram of high-harmonic generation in
solids under the application of a DC current. (b) Top view of the
two-dimensional honeycomb lattice of graphene, whose unit cell
includes A- and B-sublattice sites (black and white circles). x and
y axes are defined, respectively, by the unit vectors êx and êy. Vectors
d1, d2, and d3 connect a site on A sublattice and one of the three
nearest-neighboring sites. (c) A typical electronic band structure
of graphene in the wave-vector space. Blue and red Dirac cones
represent, respectively, the valence and conduction bands, and they
are located at K = 2π

3
√

3a
(1,

√
3) and K ′ = 2π

3
√

3a
(−1,

√
3) points.

and we demonstrate the HHG spectra and their dependence
on laser frequency, laser intensity, and DC current strength
while accounting for the experimentally inevitable dissipa-
tion effects. Our findings indicate that the HHG spectra
undergo significant modifications due to dynamical symmetry
breaking induced by the applied DC current. Additionally,
we observe that nonperturbative effects become pronounced
when the laser is strong, leading to a marked alteration in the
laser frequency dependence of the HHG spectra.

The remaining part of the paper is organized as follows.
In Sec. II, we introduce the formalism of the combination
with the master equation and the Boltzmann equation, which
describes the time evolution of laser and DC-current induced
nonequilibrium states in many-electron systems. We comment
on some advantages of the master equation in Sec. II F. The
main numerical results based on the master equation are
in Sec. III. Section III A reveals that the HHG spectrum is
modulated by a DC current, leading to even-order harmonic
responses. The section also delves into the DC current de-
pendence of the HHG spectra. In Sec. III B, we explore the
influence of laser frequency on the HHG spectra, empha-
sizing the pronounced differences between the perturbative
and nonperturbative regimes. Furthermore, we underscore the
significant role of intraband dynamics in the nonperturbative
regime. Section III C examines the relationship between laser
intensity and the HHG spectra, showing that the crossover
between the perturbative and nonperturbative regimes occurs
depending on the chemical potential. Section III D discusses
the characteristics of the HHG spectrum in the presence of
a staggered potential (i.e., the effects of a finite band gap).

When the system is subjected to an intense laser, the interplay
between inter- and intraband dynamics in different polariza-
tion directions results in intricate shifts in the HHG spectra.
Section III E outlines the variations in the HHG spectra under
extremely high laser intensities. Finally, in Sec. IV, we sum-
marize our results and make concluding remarks. We discuss
some theoretical details associated with dynamical symmetry
and the master equation in the Appendixes.

II. MODEL AND METHOD

A. Model and observable

We focus on a model of single-layered graphene [74,75]
with A and B sublattices [black and white circles in Fig. 1(b)].
The tight-binding Hamiltonian is given by

Ĥ0 = − t0
∑

r

∑
j=1,2,3

(b̂†
r+d j

âr + â†
r b̂r+d j )

+ �
∑

r

(â†
r âr − b̂†

r+d1
b̂r+d1 ), (1)

where d j , the position vectors pointing to the three nearest-
neighbor sites from each A site of the hexagonal plaquette,
are given by

d1 = a(0, 1),

d2 = a
(

cos
(π

6

)
,− sin

(π

6

))
,

d3 = a
(
− cos

(π

6

)
,− sin

(π

6

))
, (2)

with a being a lattice constant. The vector r represents each
position of sublattice A. The fermionic operator âr (â†

r ) anni-
hilates (creates) an electron at position r for the sublattice A.
The fermionic one b̂r (b̂†

r ) is defined similarly for the sublat-
tice B. They satisfy the anticommutation relations {âr, âr′ } =
{b̂r, b̂r′ } = {âr, b̂r′ } = {âr, b̂†

r′ } = 0 and {âr, â†
r′ } = {b̂r, b̂†

r′ } =
δr,r′ . The first term in Ĥ0 describes the nearest-neighboring
electron hopping between two sublattices A and B with trans-
fer integral t0, and the second term represents an on-site
staggered potential with a band-gap energy �. For graphene,
transfer integral t0 is estimated as t0 = 2.7 eV [74,76] and �

is usually negligible.
By the Fourier transformation, âr = 1√

N

∑
k ãke−ik·r, b̂r =

1√
N

∑
k b̃ke−ik·r, where N is the total number of unit cells, the

Hamiltonian Ĥ0 is expressed in the following bilinear form:
Ĥ0 = ∑

k C†
kM(k)Ck, where Ck = (ãk b̃k)� and M(k) =

hx
kσx + hy

kσy + hz
kσz with (hx

k, hy
k, hz

k ) = ( − t0
∑3

j=1 cos(k ·
d j ), t0

∑3
j=1 sin(k · d j ),�) and σx,y,z being Pauli matrices.

Through unitary transformation (ξk ζk) = U †
k Ck with new

fermion operators ξk and ζk, the Hamiltonian is diag-
onalized as Ĥ0 = ∑

k ε(k)(ξ †
k ξk − ζ

†
k ζk), with the energy

dispersion ε(k) =
√

(hx
k)2 + (hy

k)2 + (hz
k)2. This dispersion

has the Dirac cones at the K = 2π

3
√

3a
(1,

√
3) and K ′ =

2π

3
√

3a
(−1,

√
3) points when � = 0 as shown in Fig. 1(c). We

note that around the K (K ′) point, the energy dispersion is
approximated to EK(K ′ )+k ≈ ±h̄vF |k| with the Fermi velocity
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FIG. 2. (a) k-space schematic image of DC-current-induced
steady state and equilibrium state near a Dirac point on ky = 0 in
the case of zero temperature, μ > 0 and � = 0. DC electric field
Edc is parallel to the x axis. Yellow region means that electrons are
occupied. (b) The difference � f (k) = fss(k) − f0(k) in the momen-
tum space at zero temperature. Parameters are set to μ/t0 = 0.7,
δdca = 0.01, and � = 0.

vF = √
3at0/(2h̄) and Dirac’s constant h̄. We set h̄ = 1

throughout the paper.
The operators {ξk} and {ζk}, respectively, correspond to

fermionic annihilation operators on the conduction and va-
lence bands. When a chemical potential μ = 0 [see the left
panel of Fig. 2(a)], the ground state is given by |gs〉 = ⊗k|gk〉,
where |gk〉 = ζ

†
k |0k〉 = (−vkã†

k + ukb̃†
k)|0k〉, with (uk, vk) =

(
√

[1 + hz
k/ε(k)]/2,�k

√
[1 − hz

k/ε(k)]/2/|�k|), �k = hx
k −

ihy
k, and |0k〉 is the Fock vacuum for electrons (ζk, ξk). The

one-electron state occupying the conduction band at wave
vector k is given by |ek〉 = ξ

†
k |0k〉 = (ukã†

k + v∗
k b̃†

k)|0k〉. As
one will see later, we use (|ek〉, |gk〉) as the basis of time
evolution. In the present work, as we will explain in more
detail in Sec. II B, we focus on the optical response in a
low- or intermediate-energy regime with 0.2 � μ/t0 � 1.0,
in which “Dirac” electrons around K and K ′ are mainly
photoexcited.

We adopt the Peierls-phase formalism to consider the laser-
driven dynamics. The time-dependent Hamiltonian with light-
matter coupling is given by

Ĥ (t ) = −
∑
r, j

(
tr,r+d j (t )b̂†

r+d j
âr + tr+d j ,r(t )â†

r b̂r+d j

)

+ �
∑

r

(
â†

r âr − b̂†
r+d1

b̂r+d1

)
, (3)

where tr,r+d j (t ) is the hopping amplitude with Peierls
substitution

tr,r+d j (t ) = t0 exp

(
−ie

∫ r+d j

r
A(t ) · dr

)
. (4)

Here, e is the elementary charge, A(t ) is a vector poten-
tial, and the AC electric field of laser E(t ) in the Coulomb
gauge is related to A(t ) via the relation E(t ) = − ∂A(t )

∂t . The
Fourier-space representation of the Hamiltonian Ĥ (t ) is given
by Ĥ (t ) = ∑

k Ĥk(t ) = ∑
k C†

kM[k + eA(t )]Ck. We note that,
though under the irradiation of a laser, the Hamiltonian Ĥ (t ) is
still k-diagonal like Ĥ0. This is because we now simply apply
a spatially uniform laser to the graphene model. Therefore, as
we will discuss in Sec. II C, we can independently compute
the time evolution of the density matrix at each k space and
sum them up in the whole Brillouin zone to represent the time
evolution of the entire system.

In this paper, we focus on the HHG spectra driven by a
laser pulse (not a continuous wave) with angular frequency �

because intense laser pulses are usually used in experiments.
Hereafter, we simply refer to the angular frequency as fre-
quency unless otherwise noted. In the Coulomb gauge, the
vector potential of a laser pulse with frequency � is defined
as

A(t ) = Eac

�
√

1 + ε2
fenv(t )

(
cos(�t )
ε sin(�t )

)
, (5)

where Eac is the strength of the AC electric field of the
pulse, and fenv(t ) is a Gaussian envelope function fenv(t ) =
exp[−2(ln 2)(t2/t2

FWHM)] with full width at half-maximum
tFWHM. To fix the pulse width, we adopt the five-cycle pe-
riod of laser at � = 0.2t0 as the standard of tFWHM. The
dimensionless parameter for the field strength Eac is given
by eEaca/t0: For graphene, eEaca/t0 = 0.01 corresponds to
Eac ∼ 1.1 MV/cm. The laser ellipticity ε denotes the degree
of laser polarization: ε = 0 means a linear polarization along
the x-axis, while ε = ±1 denotes a circular one.

To analyze the nonlinear optical response, we consider the
electric current in the whole system,

Ĵ(t ) = ∂Ĥ (t )

∂A(t )
=

∑
k

∑
α,β

C†
α,kJ αβ[k + eA(t )]Cβ,k

=:
∑

k

Ĵk(t ), (6)

and the expectation value per unit cell, J(t ) = 1
N

∑
k Jk(t ) =

1
N

∑
k〈Ĵk(t )〉t , as an observable of interest. Here, N is

the system size, J αβ[k + eA(t )] = ∂
∂A Mαβ[k + eA(t )] =

jx
k+eA(t )(σx )αβ + jy

k+eA(t )(σy)αβ + jz
k+eA(t )(σz )αβ with ( jx

k,

jy
k, jz

k) = (et0
∑3

�=1 d� sin(k · d�), et0
∑3

�=1 d� cos(k · d�), 0),
and 〈· · · 〉t = Tr[ρ̂(t ) · · · ] denotes the expectation value for
a density matrix ρ̂(t ). Note that this paper concentrates
on laser application to nonequilibrium steady states with
a steady current in the graphene model. We are therefore
interested in the difference between the electric currents
of a laser-irradiated state and the initial steady one. When
J(t ) evolves in time, it becomes a source of electromagnetic
radiation. The radiation is known to be proportional to
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dJ(t )/dt within the dipole radiation approximation, and
the normalized radiation power spectrum of high-order
harmonics (i.e., HHG spectrum) at frequency ω is given by
[77]

Ix,y(ω) = |ωJx,y(ω)|2, (7)

where Jx(ω) and Jy(ω) are the Fourier components of J(t ) =
(Jx(t ), Jy(t )) in the temporal direction [see Fig. 1(b)]. To find
characteristic features of the HHG spectra, we will also esti-
mate the power spectrum of the nth-order harmonics, which is
defined as

Ĩx,y(n�) =
∫ (n+ 1

2 )�

(n− 1
2 )�

dωIx,y(ω). (8)

B. Current-induced steady state

To consider the current-induced steady state, we employ
the Boltzmann equation approach [73]. The Boltzmann equa-
tion under the application of a static electric field Edc is given
by

∂ f (k, t )

∂t
− eEdc · ∂ f (k, t )

∂k
=

(
∂ f

∂t

)
col

, (9)

where f (k, t ) is a nonequilibrium distribution function for
electrons, and ( ∂ f

∂t )col is a collision term. Using the relaxation-
time approximation and assumption of a system being steady
state (i.e., ∂ f

∂t = 0), the Boltzmann equation leads to the
steady-state distribution function

fss(k) = f0(k) + eτEdc · ∂ fss(k)

∂k
≈ f0(k + δdc), (10)

where f0(k) is the Fermi distribution function f0(k) =
(eβ(εk−μ) + 1)−1, with β being the inverse temperature, τ de-
notes the relaxation time of an electron, and δdc = eτEdc. The
schematic image of the steady-state distribution is given in
Fig. 2(a). Hereafter, we take the zero-temperature limit (i.e.,
β → ∞) and assume δdc ‖ êx for simplicity.

When we utilize the result of the relaxation-time approxi-
mation of Eq. (10), we should be careful about the following
two points. The first one is that we have assumed the condi-
tion of δdca � 1 with δdc = |δdc| in Eq. (10). For graphene,
τ is estimated as τ ∼ 1 ps [78], and therefore the condition
δdc = |δdc| holds if the DC electric field satisfies the inequality
Edc � 104 V/cm. If the DC conductivity of graphene near
μ = 0 can be estimated as the universal value e2/(4h̄) [75,79],
the relation Edc � 104 V/cm is equivalent to the condition
that DC electric current is much smaller than 1 A/cm. In
experiments, the maximum value of the observed DC current
in monolayer graphene approaches ∼30 A/cm [80], which is
clearly outside the condition of Edc � 104 V/cm. However,
the experimental result indicates that the condition of Edc �
104 V/cm is easily satisfied by applying a weak DC electric
field (i.e., weak voltage) to graphene. We have performed
all calculations in this weak-electric-field regime with the
relation of Eq. (10), in which the laser response is linearly
proportional to the DC field, as we will show in Sec. III A.

The second point is that the Boltzmann equation approach,
including Eq. (10), is valid only when the chemical potential
is sufficiently far from the Dirac point μ = 0 [62] and a

sufficiently large Fermi surface exists. The Boltzmann equa-
tion is a one-band effective theory that contains the intraband
dynamics while neglecting the interband one. When the chem-
ical potential is close to the Dirac point or the DC current
is strong, the interband transition is not negligible, and the
Boltzmann equation approximation breaks down. Therefore,
the minimum value |μ0| exists when we apply the Boltzmann
equation to graphene. The value is given by |μ0| ∼ |vF δdc| ∼
evF τEdc. For graphene, it is estimated as |μ0| ∼ 0.2 eV under
the application of a DC electric field Edc ∼ 100 V/cm.

Figure 2(b) shows the difference between the distribution
functions of nonequilibrium steady and equilibrium states,

� f (k) = fss(k) − f0(k), (11)

at δdca = 0.01, μ/t0 = 0.7, and � = 0 in k space. This is in-
duced by the application of a DC electric field. The red region
shows the DC-field driven change of electron occupation from
a valence-band one-particle state to a two-particle one at the
subspace with a wave vector k, while the blue region shows
the reverse change at k, i.e., the change from a two-particle
occupied state to a one-particle one. As we will discuss later in
Sec. III B, the even-order harmonics are generated only from
photoexcitations in the blue area of Fig. 2(b).

C. Time evolution and photoexcitations

When we consider the laser-driven dynamics in graphene,
we set the initial state to the current-induced steady state of
fss(k). In this paper, we compute the time evolution of the
density matrix (not the quantum state) to describe such laser-
driven dynamics, taking dissipation effects into account.

As we mentioned in Sec. II A, since the time-dependent
Hamiltonian has a k-diagonal form, we can independently
solve the time evolution for each wave vector k under the
assumption that dissipation effects at k and k′ are simply
independent of each other. We thereby introduce the k-
decomposed master equation of the GKSL form [48,49,69–
72] as the equation of motion

dρ̂k(t )

dt
= − i[Ĥk(t ), ρ̂k(t )]

+ γ

(
L̂kρ̂k(t )L̂†

k − 1

2
{L̂†

kL̂k, ρ̂k(t )}
)

, (12)

where ρ̂k(t ) and L̂k are the density matrix and the jump
operator for the subspace with wave vector k, respectively.
The first and second terms on the right-hand side describe
the unitary and dissipative time evolutions, respectively. The
phenomenological relaxation rate γ represents the typical re-
laxation time of system τ ∼ 1/γ , where we simply neglect
the k dependence of γ in this paper. We set γ = 0.1t0, cor-
responding to τ ∼ 2.4 fs. The initial current-induced steady
state is described by ρ̂k(tini ) = ρ̂dc

k = |gk+δdc〉〈gk+δdc | at the
initial time t = tini. To calculate realistic HHG spectra under
the application of DC current, we set the jump operators at
each k to relax to the steady state fss(k). To this end, we
define the jump operator as L̂k = L̂dc

k = |gk+δdc〉〈ek+δdc |, which
induces an interband electron transition from the conduction
to the valence band. This jump operator satisfies the detailed
balance condition at zero temperature when we consider the
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equilibrium limit of δdc → 0, i.e., the absence of a DC electric
field.

We note that the master equation with the above jump oper-
ator can be mapped to a so-called optical Bloch equation (see
Appendix B). The jump operator induces both longitudinal
and transverse relaxation processes in the Bloch-equation
picture.

D. Reduction of the density matrix size

Here, we discuss how to combine the steady state of the
Boltzmann equation and the master equation in the compu-
tation of the density matrix. The main target of the present
study is the case with a finite μ, but first we briefly touch on
the case of μ = 0 and δdc = 0, in which the valence band is
completely occupied and the conducting band is empty in the
initial state, namely, each subspace with k has one electron.
Since both the graphene’s tight-binding Hamiltonian and the
light-matter coupling do not change the electron number, it is
enough to consider two basis states |gk〉 and |ek〉 at each k.
Therefore, the density matrix ρ̂k(t ) is given by a 2 × 2 form.

On the other hand, when we study the case with a Fermi
surface and μ �= 0 in the presence or absence of a DC elec-
tric field, the density matrix ρ̂k(t ) seems to be a 4 × 4 form
because two-electron or completely empty states exist in a cer-
tain regime of the k space in addition to the one-electron state.
For μ > 0, we have two-electron states, while empty states
appear for μ < 0 [see Fig. 2(a)]. A natural set of the bases
at each k is given by (|0k〉, |gk〉, |ek〉, |2k〉), in which |0k〉 is
the empty state and |2k〉 = ξ

†
k ζ

†
k |0k〉 is the two-electron state.

However, the Hamiltonian Ĥk(t ), the electric current Ĵk(t ),
and the jump operator L̂k are represented as a 2 × 2 matrix,
namely, Ĥk(t )|αk〉 = Ĵk(t )|αk〉 = L̂k|αk〉 = 0 with α = {0, 2}.
In other words, there is no unitary dynamics in the subspace
of |0k〉 and |2k〉. In the absence of a DC field, we thus obtain
Jk(t ) = 0 for the range of ε(k) < |μ|, and we can still use
the 2 × 2-form master equation for ε(k) > |μ|. Even if we
consider our main target of the case with a finite DC field
and a finite wave-vector shift k + δdc, a similar structure still
holds. Namely, we can use the 2 × 2 master equation for one-
electron states, while it is not necessary to the time evolution
for a subspace of |0k〉 and |2k〉.

The above discussion can easily be extended to the case
of finite temperatures. At finite temperatures, the distribution
function of electrons becomes smooth, and the states |0k〉 and
|2k〉 exist with a finite probability. However, there is no unitary
dynamics for |0k〉 and |2k〉, and it is still enough to consider
only the two bases (|gk〉, |ek〉). For the relaxation process, we
should use the two jump operators

L̂(1)
k = |gk+δdc〉〈ek+δdc |, (13)

L̂(2)
k = |ek+δdc〉〈gk+δdc |, (14)

to meet the detailed balance condition. In the absence of
lasers, the system should relax to the equilibrium state after
a sufficiently long time. One may hence determine the relax-
ation rates γ

(1,2)
k+δdc

for L̂(1,2)
k such that they satisfy the detailed

balance condition

γ
(1)

k+δdc
e−βEk+δdc = γ

(2)
k+δdc

eβEk+δdc . (15)

We note that for δdc = 0, Eq. (15) makes the system approach
a finite-temperature thermal state in the canonical ensemble
(not the grand-canonical ensemble). Even in many-electron
systems, if we focus on a subspace with a fixed electron num-
ber, it is enough to consider the canonical distribution. In fact,
as we mentioned, we may concentrate on only one-particle
states in the full Hilbert space at each k to analyze the time
evolution of our model.

E. Time evolution of the observable

Within the formalism of the Markovian master equation,
the expectation value of the electric current at time t is given
by

J(t ) = 1

N

∑
k

Jk(t ) = 1

N

∑
k

Tr[ρ̂k(t )Ĵk(t )]. (16)

In this paper, the computation is always done in k space,
and we take 1280 × 1280 points in an equally spaced fashion
in the full Brillouin zone, which corresponds to the system
size N = 1280 × 1280. The current J(t ) can be divided into
a contribution of an interband transition and an intraband
one as J(t ) = Jinter (t ) + Jintra (t ). The interband (intraband)
transition contribution arises from the time evolution of off-
diagonal (diagonal) density matrix elements.

F. Advantages of the master equation

Here, we comment on two important aspects of the nu-
merical method we use in the present study. A significant
advantage of the use of Eqs. (12) and (16) is that one can
directly obtain realistic HHG spectra from their solution with-
out any additional process because the master equation can
take an experimentally inevitable dissipation effect. On the
other hand, if we solve the standard Schrödinger equation for
laser-driven electron systems, an artificial procedure like the
use of a “window function” is often necessary to obtain proper
HHG spectra. This is because the energy injected by a laser
pulse always remains in the system within the Schrödinger
equation formalism, and such a setup of an isolated system
differs considerably from real experiments.

Another point is that the numerical analysis of the master
equation enables us to compute laser “pulse” driven HHG
spectra directly. This is in contrast with analytical compu-
tation methods of HHG spectra (e.g., linear and nonlinear
response theories), in which one usually considers the opti-
cal response to an ideal “continuous wave” (tFWHM → ∞).
Since a finite-width pulse is used in experiments, the ability
to directly compute pulse-driven dynamics could be another
advantage of the master equation approach.

III. COMPUTATION OF HHG SPECTRA

This section is the main content of the present study. We
show several numerical results and the essential properties of
HHG spectra, especially even-order harmonics.

A. HHG spectra and DC-electric-field dependence

First, we focus on the typical HHG spectra and the DC-
electric-field dependence of HHG in graphene. Figure 3 shows
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FIG. 3. Laser-pulse driven HHG spectra of the current along the (x, y)-directions in graphene models with/without DC electric field Edc at
μ = 0.4t0 = �. (a)–(h) Comparative plots of |Jx (ω)| (top row) and |Jy(ω)| (bottom row) at δdca = 0 and 0.005 for different conditions of the
staggered potential � and the laser ellipticity ε. Panels (a) and (b) show data for (�, ε) = (0, 0), (c) and (d) are for (�, ε) = (0.1t0, 0), (e) and
(f) are for (�, ε) = (0, 1), and (g) and (h) are for (�, ε) = (0.1t0, 1). Other parameters are eEaca/t0 = 0.05, γ = 0.1t0, and � = 0.

typical HHG spectra of the current along the x and y directions
|Jx,y(ω)| with or without DC current (δdca = 0 and 0.005).
The laser intensity is chosen to be moderate (eEaca/t0 =
0.005), and the frequency is equal to the chemical potential
(� = μ). Different panels correspond to different values of
the staggered potential � and the laser ellipticity ε. Fig-
ure 3 shows that 2nth- or 3nth-order harmonics (n ∈ Z) are
forbidden in the absence of DC current, depending on the
existence or absence of � and ε, except for the panel (b).
It also shows that a weak DC current with δdca = 0.005,
which breaks the inversion symmetry, is enough to obtain
2nth- or 3nth-order harmonics, whose intensity is compara-
ble with that of neighboring (2n + 1)th- or (3n + 1)th-order
harmonics.

These features, i.e., the appearance or absence of nth-order
harmonics, can be understood by finding a dynamical symme-
try [48,49,52,81–84] of the system. The dynamical symmetry
is a sort of symmetry including a time translation as well as
a usual symmetry operation in time-periodic systems like the
present system-laser complex (see Appendix A). It is defined
by the following relation:

Û †Ĥ (t + �t )Û = Ĥ (t ), (17)

where Ĥ (t ) = Ĥ (t + T ) is the time-periodic Hamiltonian of
the target system with a time period T , �t (0 < �t < T ) is a
time shift, and Û is a unitary (or antiunitary) operator. In laser-
driven systems, � is the laser frequency and T = 2π/� is the
period of the laser. For such a dynamical symmetric system, if
a vector operator Ô(t ) = (Ô1(t ), Ô2(t ), . . . ) satisfies a similar
relation

Û †Ô(t + �t )Û = RÔ(t ), (18)

then we can lead to a selection rule of O(m�) = 0 with a
certain integer m. Here, R is a matrix acting only on the
vector Ô, and the vector O(ω) is the Fourier transform of
the expectation value 〈Ô(t )〉t along the time direction. In the
above symmetry argument, we have assumed that Û †ρ̂(t +
�t )Û = ρ̂(t ) holds, namely, not only the Hamiltonian but also
the density matrix (quantum states) is dynamical symmetric
[48,49,83,84]. When we consider HHG spectra, the operator
Ô(t ) should be chosen to the current Ĵ(t ). For instance, if a
system has a dynamical symmetry with �t = T/2 and the

current satisfies Û †Ĵα (t + �t )Û = −Ĵα (t ) (α = x or y), one
can prove that Jα (2n�) = 0 with arbitrary integer n, i.e., even-
order harmonics all vanish.

Table I summarizes dynamical symmetries and the result-
ing selection rules that hold for some panels of Fig. 3 in
the absence of an extrinsic DC current. The pair (Û , t + �t )
represents the symmetry operation and the time translation
of dynamical symmetry we consider. An operation with-
out time translation, i.e., (Û , t ), corresponds to a standard
static symmetry. In the case of � = 0 and linear polarization
(ε = 0) as in Figs. 3(a) and 3(b), the dynamical symmetry
(Ûσyz , t + T/2) prohibits even-order harmonics of Jx(2n�)
(see Appendix A). Here, Ûσyz and Ûσzx are, respectively, the
mirror operations across the y-z plane (x → −x) and the z-x
plane (y → −y). In addition to this dynamical symmetry, the
system possesses the (static) mirror symmetry of Ûσzx . From
these dynamical and static symmetries, optical responses in
the y direction are all shown to be prohibited. A finite � �=
0 breaks a dynamical symmetry with in-plane C2 rotation,
(Û2, t + T/2), allowing even-order harmonics in the y direc-
tion as shown in Fig. 3(d). On the other hand, (Ûσyz , t + T/2)
is preserved regardless of the value of �, and as a result,
even-order harmonics in the x direction are all suppressed
even if � exists [see Figs. 3(a) and 3(c)].

In the case of circular polarization (ε = 1), we should note
the following two dynamical symmetries: (i) (Û2, t + T/2)
and (ii) (Û3, t + T/3), where Û3 is the in-plane C3 rotation.
For � = 0, both (i) and (ii) hold, and they prohibit even-order
and 3nth-order harmonics in both x and y directions (n ∈ Z).
On the other hand, for � �= 0, (i) is violated, and only 3nth-
order harmonics are prohibited.

The application of a DC current breaks all these dynamical
symmetries, allowing the appearance of all the harmonics.
However, the static mirror symmetry Ûσzx is not broken by the
DC current in the x direction, and therefore the response in the
y direction is suppressed.

These clear properties of HHG spectra are consistent with
our numerical results of Fig. 3. We emphasize that several
HHG signals can be activated and controlled by an external
DC current, as shown in Fig. 3. Hereafter, we mainly focus on
the linear polarized light of ε = 0, which has often been used
in experiments.
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TABLE I. Various selection rules for HHG in the graphene model of Eq. (3) without DC current. These rules are derived from the
(dynamical) symmetries. Each pair (Û , t + �t ) represents the static symmetry operation and the time translation t → t + �t of a dynamical
symmetry. We list four cases [(i)–(iv)] of � = 0 (e.g., graphene) and � �= 0 (e.g., transition-metal dichalcogenides; TMDC) with linear
polarized light (LPL) along the x direction or circularly polarized light (CPL). These dynamical symmetries are all broken by the application
of DC current, except for Ûσzx .

(i) LPL ‖ êx , � = 0 (ii) LPL ‖ êx , � �= 0 (iii) CPL, � = 0 (iv) CPL, � �= 0

(Dynamical) symmetry (Ûσyz , t + T/2) (Û2, t + T/2)
(Û2, t + T/2) (Ûσyz , t + T/2) (Û3, t + T/3) (Û3, t + T/3)

(Ûσzx , t )
Selection rule (n ∈ Z) Jx (2n�) = 0 Jx (2n�) = 0 J(2n�) = 0 J(3n�) = 0

Jy(t ) = 0 Jy((2n + 1)�) = 0 J(3n�) = 0

Before ending this subsection, we remark on two things.
First, as we discussed in Sec. II B, the current-induced steady
state obtained by the Boltzmann equation is valid only
when the current (or DC electric field) is sufficiently small,
i.e., δdca � 1. In this condition, the intensities of DC-field-
induced harmonics are expected to be proportional to the
DC-field power E2

dc because the DC-field-induced current
Jα (ω) would linearly respond to Edc. Figures 4(a) and 4(b)
show that intensities of the DC-field-induced second- and
fourth-order harmonic generations (SHG and FHG) are both
almost proportional to E2

dc in a moderate-Edc region. In a
sufficiently weak-field regime of δdca � 10−3, they deviate
from the E2

dc curves. This is because a small Edc causes a
very small � f (k), and the accurate numerical detection of the
effects of such a small � f (k) is beyond our resolution in k
space (N = 1280 × 1280). On the other hand, in the strong
Edc regime, SHG and FHG intensities again deviate from the
E2

dc line since their nonlinear Edc dependence is activated. We
therefore focus on the mid Edc region and set δdca = 0.005 in
the following sections unless otherwise noted.

The second point concerns the time periodicity in the above
argument of dynamical symmetry. When we argue the dy-
namical symmetry, we usually assume that the Hamiltonian
satisfies Ĥ (t ) = Ĥ (t + T ). Namely, we implicitly consider
a system irradiated by a “continuous wave.” On the other
hand, a short laser pulse is generally used in experiments.
Therefore, the argument based on dynamical symmetry does

FIG. 4. Edc dependence of (a) SHG [Ĩx (2�)] and (b) FHG
[Ĩx (4�)] spectra in pulse-driven graphene at μ = � = 0.4t0 and
μ = �/2 = 0.4t0. Each graph simultaneously displays the intraband
dynamics component (blue line), the interband dynamics component
(orange line), and the total spectra (green line). The gray dashed line
is the fitting line of the spectra ∝ E 2

dc. The other parameters are set to
eEaca/t0 = 0.01, γ = 0.1t0, and � = ε = 0.

not seem to be applicable to discussing pulse-induced HHG
spectra. However, empirically, selection rules based on dy-
namical symmetry work at least at a qualitative level, even
if the applied laser pulse contains only a few cycles. As we
discussed above, our results on laser pulses in Fig. 3 are
indeed explained by dynamical symmetries in Table I.

B. Laser-frequency dependence

Next, we show a laser-frequency dependence of HHG
spectra, especially SHG, FHG, and sixth-order harmonic gen-
eration (sixth HG). We show the characteristic resonance
structure and how the frequency dependence changes with the
growth of laser strength.

Figures 5(a) and 5(b), respectively, show the laser-
frequency � dependence of the SHG intensities Ĩx(2�) for
different chemical potentials μ in the application of weak
and strong laser pulses [eEaca/t0 = (0.001, 0.1)]. In the weak
pulse case of Fig. 5(a), we find a peak of SHG at � = μ, and
its intensity is proportional to �−2 as in Fig. 5(d). These re-
sults are consistent with the previous predictions based on the
analytical perturbation theory for a Dirac electron model [61],
which is valid in a weak AC-field limit. The divergent �−2

behavior in the low-frequency regime is due to the singular
Berry connection of the Dirac cone [61]. Figure 5(c) and the
green dashed line in Fig. 5(d) are the analytical results, which
correspond, respectively, to Fig. 5(a) and the blue circles in
Fig. 5(d). We note that in a large-� regime of Fig. 5(d),
the SHG peak intensity deviates from the �−2 line. This is
because higher-energy photoexcited electrons, which cannot
be described by the k-linear Dirac electron model, become
dominant in the large-� regime. The perturbation theory also
predicts J (2�) ∝ EdcE2

ac, and we confirm that this power-law
relation holds in our numerical result in the weak laser case
of eEaca/t0 = 0.001 (see Sec. III C). From these results, we
can conclude that our numerical method well reproduces the
previous analytical predictions.

In the strong laser case of Fig. 5(b), on the other hand,
different features of SHG spectra are observed. We again find
a peak structure around � = μ, but its intensity is no longer
proportional to �−2 and it clearly increases with growing
�. Figure 5(d) shows that there are two scaling regimes of
the SHG peak intensity: It is proportional to �5 (i.e., non-
divergent) in the low-� regime, whereas it is proportional
to � in the high-� regime. These scaling laws Ĩx(2�) ∝ �5

and ∝ �1 are both nontrivial, and we cannot find any simple
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FIG. 5. (a),(b) � dependence of SHG [Ĩx (2�)] spectra of the
current along the x direction in graphene with DC current at vari-
ous conditions of chemical potentials μ/t0 = {0.3, 0.4, 0.5, 0.7, 0.9}
under the irradiation of a weak laser (a) (eEaca/t0 = 0.001) and a
strong laser (b) (eEaca/t0 = 0.1). The dashed lines show the positions
of � = μ. (c) DC-current driven SHG spectra computed by second-
order perturbation theory in Ref. [61]. Parameters are the same as
those of panel (b). (d) Scaling behavior of the SHG peak intensities
as a function of �. The points are numerically calculated for the cases
of weak (blue points) and strong (orange points) lasers. The dashed
line shows the result of the perturbation theory. (e) k-space image of
SHG photoexcitations in DC-current driven graphene with Edc ‖ êx

on ky = 0. Red arrows show the two-photon absorption processes,
where the laser frequency is chosen to be � = μ, and we temporally
revive h̄. The symbol × indicates the impossibility of the absorption
process. The contribution from the wave-vector pairs k and k′, which
should cancel each other in inversion-symmetric graphene, becomes
finite due to the DC-current driven shift of the Fermi distribution,
and it activates even-order harmonics. The other parameters are set
to δdca = 0.005, γ = 0.1t0, and � = ε = 0.

explanation for them. We stress that these properties in the
nonperturbative, strong-laser regime were first captured by the
present numerical method based on the master equation.

Let us consider these resonancelike structures in Fig. 5
from a microscopic viewpoint. Even-order optical responses
are generally prohibited in spatial-inversion symmetric elec-
tron systems, whereas (as mentioned in Sec. II B) a weak DC
electric field (i.e., a weak DC current) causes a shift of the
electron distribution and breaks the inversion symmetry. We
can prove that in C2 rotation-symmetric systems, the even-
order harmonics generated by electrons in the kα and −kα

FIG. 6. Numerically computed symmetrical pair of k-resolved
SHG intensity Ĩpair

x (k, 2�) of Eq. (20) at (a) μ = � = 0.4t0 and
(b) μ = � = 0.7t0. The region of a finite Ĩpair

x (k, 2�) coincides with
that of a finite deviation � fss(k) in Fig. 2(b). Parameters are set to
eEaca/t0 = 0.001, δdca = 0.01, γ = 0.1t0, and � = ε = 0.

points cancel each other out, and as a result, even-order ones
all vanish (see Appendix A 2). When a DC electric field Edc

is applied along the x axis in graphene, the electron distribu-
tion changes from a usual distribution with a Fermi surface
to an asymmetric one, as shown in Fig. 5(e). For such a
shifted distribution of Fig. 5(e), we have one-electron states
around k = (kx, ky), while we have two-electron states around
k′ = (−kx, ky). Therefore, when we tune the laser frequency
to � ∼ μ, two-photon absorption can take place around k,
whereas it cannot around k′, as shown in Fig. 5(e). As a result,
the cancellation between kx and −kx is broken and the SHG
peak appears at � ∼ μ. This scenario is easily extended to the
cases of generic 2nth-order HHG in DC-current-driven steady
states. In this way, the 2nth-order HHG spectra of DC-current-
driven graphene are predicted to have a peak when the laser
frequency satisfies the following inequality:

μ/n − vF δdc/(2n) � � � μ/n + vF δdc/(2n). (19)

To see the validity of the above argument about even-order
HHG, we define the following k-resolved SHG intensity:

Ĩpair
x (k, 2�) =

∫ (2+ 1
2 )�

(2− 1
2 )�

dω|ω[Jx,k(ω) + Jx,k′ (ω)]|2, (20)

where k = (kx, ky), k′ = (−kx, ky ), and this value is defined
in half of the Brillouin zone (kx > 0). If the k- and k′-point
SHG intensities perfectly cancel each other out, the value of
Ĩpair
x (k, 2�) becomes zero. However, it has a finite value when

the cancellation is broken. That is, Eq. (20) can detect the
degree of breakdown of the cancellation between k and k′

points. Figure 6 gives the numerically computed results of
Ĩpair
x (k, 2�) in half of the Brillouin zone (kx > 0) at � = μ.

It shows that Ĩpair
x (k, 2�) takes a finite value around K and K ′

Dirac points. Especially, comparing Fig. 6(b) with Fig. 2(b),
one sees that Ĩpair

x (k, 2�) is enhanced in the region where
the electron distribution is shifted [i.e., � fss(k) �= 0]. We thus
conclude that the argument in the above paragraph is indeed
correct.

We further discuss the higher even-order harmonics (FHG
and sixth-order HG) in graphene under the application of DC
current. As we will soon see, in these harmonics, multiple
resonance peaks appear, and the response driven by not only
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FIG. 7. Laser-frequency � dependence of even-order harmonics intensities (bottom row) and schematic images of the photon absorption
processes and intraband dynamics corresponding to the bottom row (top row). Each graph in the bottom row simultaneously displays the
intraband dynamics intensity (blue line), the interband dynamics one (orange line), and the total one (green line) at eEaca/t0 = 0.01 and 0.05.
Left panels (a)–(c) represent FHG, and right panels (d)–(f) represent sixth-order HG. In cartoons (a) and (d), we have revived the symbol h̄.
Other parameters are set as follows: μ = 0.5t0, δdca = 0.005, γ = 0.1t0, and � = ε = 0.

interband but also intraband dynamics becomes dominant for
a strong laser pulse.

Figure 7 shows the results of FHG spectra [panels (a)–(c)]
and sixth-order HG spectra [panels (d)–(f)] for weak and
strong laser pulses. In panels (b), (c), (e), and (f), orange
(blue) lines show the contributions from interband (intraband)
dynamics, and green lines show the full responses of interband
and intraband dynamics as a function of the laser frequency
�. One sees many peaks in the FHG and sixth-order HG
spectra of panels (b), (c), (e), and (f). Among them, the FHG
peak at � = μ/2 [(I) in panel (b)] and the sixth-order HG
one at � = μ/3 [(I) in panel (e)] can be understood by the
perturbation theory: the former and latter correspond, respec-
tively, to four- and six-photon absorption processes, described
in the cartoons (I) of Figs. 7(a) and 7(d). In the strong pulse
cases corresponding to panels (c) and (f), other peaks be-
come grown at � = 2μ/3 for the FHG and at � = 2μ/5
and μ/2 for the sixth-order HG. For instance, the additional
peak of FHG at � = 2μ/3 can be governed by the four-
photon process with an interband three-photon absorption and
an intraband one-photon dynamics, as shown in the process
(II) of Fig. 7(a). In fact, we can observe an enhancement of
intraband contribution at � = 2μ/3 with laser intensity in-
creasing, by comparing Figs. 7(b) and 7(c). Hereafter, we refer
to a photoexcited process with interband m-photon absorption
and intraband n-photon dynamics as an “m + n process.” For
the sixth-order HG, the peaks of � = 2μ/5 and � = μ/2
correspond to the 5 + 1 process [process (II) of Fig. 7(d)] and
the 4 + 2 process [process (III) of Fig. 7(d)], respectively. We
stress that these additional peaks in FHG and sixth-order HG
are stronger than the typical perturbative peaks when the laser
intensity is large enough (eEaca/t0 = 0.05).

At the end of this subsection, we briefly compare our
numerical method with the analytic perturbation theory. As
discussed in Ref. [85], the perturbative calculations make it
possible to classify several laser-driven optical processes in
a clear, analytic manner. On the other hand, as we explained
in this subsection, our numerical analysis classifies different
laser-driven processes from the computed spectral peaks of
the density matrix and physical quantities, and hence it is gen-
erally difficult to classify the optical processes in more detail
than the perturbation theory, especially when both interband
and intraband processes are intertwined. However, our numer-
ical approach has some advantages: The classification based
on perturbative analytical approaches is limited to lower-order
perturbation terms, whereas our numerical analysis can cap-
ture higher-order nonperturbative contributions. Therefore,
these two strategies are complementary to each other. In
the present study, we utilize the numerical method based
on the GKSL equation to describe the overall characteristics
of the spectrum, including higher-order harmonics.

C. Laser-intensity dependence

Next, we show a laser-intensity dependence of HHG
spectra, focusing on SHG Ĩx(2�) and FHG Ĩx(4�), which
appear only when DC current is applied. Figure 8(a) shows
the laser-intensity Eac dependence of Ĩx(2�) for different
chemical potential μ under the condition of � = μ, in
which the 2 + 0 process is dominant as in Fig. 2(a). The
SHG spectra are proportional to E4

ac for every μ for a weak
enough laser pulse eEaca/t0 � 10−2. This feature is consistent
with the second-order perturbation theory [61,62]. However,
when the laser pulse becomes strong, the SHG intensity is
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FIG. 8. The Eac dependence of (a) second-order harmonic gen-
eration (SHG) [Ĩx (2�)] and (b) fourth-order harmonic generation
(FHG) [Ĩx (4�)] spectra in pulse-driven graphene. The gray dashed
line represents the fitted line as a guide to the eye: the line of panel
(a) is ∝ E 4

ac and that of (b) is ∝ E 8
ac. (a) SHG spectra at differ-

ent values of chemical potentials μ/t0 = {0.2, 0.3, 0.4, 0.5, 0.7, 0.9}
under the condition of the laser frequency � = μ. (b) FHG at
μ = {2�, 3�/2} = 0.6t0. The other parameters are set as follows:
δdca = 0.005, γ = 0.1t0, and � = ε = 0.

no longer proportional to E4
ac, indicating the appearance of

the nonperturbative region. Furthermore, we can find that
the laser intensity of the crossover from the perturbative to
the nonperturbative regime is dependent on the chemical
potential μ and laser frequency � = μ. The laser intensity
for the crossover is smaller with μ (and laser frequency
�) decreasing. The laser-intensity dependence of the SHG
spectra is consistent with the result of Figs. 5(a) and 5(b).

Figure 8(a) also indicates that the � and Eac dependences
of Ĩx(2�) are complicated and correlated in the nonperturba-
tive regime of eEaca/t0 � 10−1. For instance, in Figs. 5(b)
and 5(d), we have observed the monotonically increasing �

dependence for an intense laser eEaca/t0 = 10−1, but Fig. 8(a)
tells us that the � dependence further changes if we consider
a more intense laser such as eEaca/t0 = 100.

The FHG spectra exhibit a similar feature to that shown in
Fig. 8(b). Panel (b) shows the laser-intensity Eac dependence
of Ĩx(4�) for the condition of (I) � = μ/2 and (II) � = 2μ/3,
which corresponds to the processes (I) and (II) of Fig. 7(a),
respectively. In the weak laser pulse regime eEaca/t0 � 10−2,
the FHG intensities are proportional to E8

ac, which is consistent
with the fourth-order perturbation viewpoint. We also observe
that the perturbative-nonperturbative crossover for condition
(II) takes place at a higher laser intensity than for condition
(I). This feature explains the peak heights at � = μ/2 and
� = 2μ/3 in Figs. 7(b) and 7(c).

D. Effect of a finite mass gap

We have mainly focused on the graphene model with zero
staggered potential � = 0 so far. This subsection is devoted
to a discussion on the effects of a staggered potential � under
the application of a DC current. Note that a finite � induces a
mass gap at Dirac points K and K ′, and we focus on the situ-
ation with a Fermi surface, i.e., the chemical potential is sig-
nificantly larger than the mass gap. In this subsection, we fix

(μ,�) = (0.4t0, 0.1t0) and then mainly see the � dependence
of the HHG. As we discussed in Sec. III A, when the electric
field of linear polarized light is along the x axis, the presence
or absence of � affects the laser-driven current along the y
direction, especially the even-order harmonics. Applying a
DC current further induces odd-order harmonics of the current
along the y axis. We therefore investigate the behavior of the
fundamental frequency response (i.e., the first-order harmon-
ics) Ĩy(�) among the DC-current driven odd-order harmonics.

Figures 9(b) and 9(c), respectively, show the � dependence
of Ĩy(�) induced by weak and strong laser pulses. The orange
(blue) line shows the contribution from the interband transi-
tion (intraband dynamics), and the green line shows overall
intensities. In Fig. 9(b), there is a sharp peak of Ĩy(�) at
� = 2μ for a weak pulse. This peak is explained by the
perturbation argument, in which a one-photon absorption as
in the process (I) of Fig. 9(a) is dominant. For a strong laser
pulse, additional peaks emerge around � = μ, � = 2μ/3,
� = μ/2, etc., as shown in Fig. 9(c). These peak structures
can be understood by the nonlinear optical responses, such as
two-photon absorption, three-photon absorption, and others,
whose images are given in processes (II) and (III) of Fig. 9(a).
Figures 9(d) and 9(e) show that these interband transition
(photon absorption) processes for Ĩy(�) accompany the intra-
band dynamics for Ĩx(�). Two panels (d) and (e) represent the
difference �Ĩx(�) between Ĩx(�) under a finite DC current
and that under zero DC current. Since the first-order response
Ĩx(�) of the x-direction current exists even in the case without
DC current, we introduce �Ĩx(�). Figure 9(d) shows that for
a weak laser pulse, a single peak of �Ĩx(�) appears around
� = 2μ like Ĩy(�) of Fig. 9(b). On the other hand, Fig. 9(e)
tells us that when the laser pulse becomes strong, multiple
peaks of �Ĩx(�) appear, corresponding to those of Ĩy(�) in
panel (c), and the contributions of not only interband but also
intraband dynamics increase in �Ĩx(�). These results indicate
that in the strong-laser regime, Ĩy(�) exhibits a complex �

dependence accompanied by the intraband dynamics of Ĩx(�).
Figure 9(f) represents the laser intensity dependence of

Ĩy(�) at peak positions corresponding to conditions (I), (II),
and (III) of panels (a) and (c). Considering the laser frequency
values at these peak positions and the fact that the intraband
contribution of Ĩy(�) vanishes in panels (b) and (c), we can
predict that the peaks (I), (II), and (III) are viewed, respec-
tively, as linear, third-order, and fifth-order nonlinear optical
responses. Namely, their intensities Ĩy(�) are expected to be
proportional to E2

ac, E6
ac, and E10

ac [remember that Ĩy(�) ∝
|Jy(�)|2]. Figure 9(f) indeed shows that the intensities of
Ĩy(�) at conditions (I), (II), and (III) follow the expected
power laws in the region of the weak laser pulse. There-
fore, our predictions about the perturbative picture of each
peak (I), (II), and (III) are consistent with the numerical re-
sults for the weak-laser regime. Moreover, Fig. 9(f) illustrates
the crossover from the perturbative to the nonperturbative
regimes, demonstrating that our numerical method can cap-
ture a broad range from weak to strong lasers.

E. Extremely strong laser fields

In this final subsection, we focus on the case of extremely
strong laser fields. We show the HHG spectra |Jx(ω)| at
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FIG. 9. Several properties of linearly polarized light driven Ĩy(�)
in the gapped graphene model with a finite � under the applica-
tion of a DC current. Directions of both the DC current and the
electric field of the laser are parallel to the x axis. (a) Schematic
images of the one-photon absorption process (I) and multiphoton
processes (II) and (III) with both interband and intraband dynamics
in Ĩx,y(�). In the panels, we have revived the symbol h̄. (b),(c) The �

dependence of Ĩy(�) spectra in gapped graphene model at chemical
potential μ/t0 = 0.4 under the irradiation of (b) a weak laser pulse
with eEaca/t0 = 0.001 and (c) a strong one with eEaca/t0 = 0.05.
(d),(e) The difference �Ĩx (�) between Ĩx (�) under the condition of
a finite DC current (δdca = 0.005) and that under zero DC current
(δdca = 0). Panel (d) is the result of a weak laser pulse, while panel
(e) is a strong pulse. (f) The Eac dependence of the peak intensities of
Ĩy(�) in the gapped graphene model. Blue (I), orange (II), and green
(III) points, respectively, correspond to the peaks at positions (I), (II),
and (III) of panel (c). Fitting dashed lines are a guide for the eye: lines
for the conditions (I), (II), and (III), respectively, are proportional
to E 2

ac, E 6
ac, and E 10

ac . Due to the limitations of the accuracy of the
numerical computation, intensities below 10−12 are not displayed.
Other parameters are γ = 0.1t0, � = 0.1t0, and ε = 0.

δdca = 0 and 0.005 under the irradiation of the strong laser
pulses eEaca/t0 = (0.1, 0.3, 0.5) in Figs. 10(a)–10(c). The
effect of DC current clearly appears in Fig. 10(a), which
is shown as an activation of the even-order harmonics at
Edc �= 0. In the case of much stronger laser pulses of panels
(b) and (c), we can find the plateau structure of |Jx(ω)|, and
it does not depend well on the existence of DC current. Here,
“plateau” [86] means the frequency domain, in which the

FIG. 10. HHG spectra |Jx (ω)| in laser-pulse driven graphene
with/without a DC electric field Edc at the chemical potential μ =
0.4t0 and the laser frequency � = μ = 0.4t0. Panels (a), (b), and
(c), respectively, correspond to |Jx (ω)| under the irradiation of laser
strength eEaca/t0 = 0.1, eEaca/t0 = 0.3, and eEaca/t0 = 0.5. Blue
dotted and orange curves are, respectively, the results of δdca = 0
(zero DC current) and 0.005 (a finite DC current). The other param-
eters are chosen to be γ = 0.1t0 and � = ε = 0.

HHG intensity is roughly independent of the frequency ω. In
the present setup, the plateau seems to continue up to 10th-
order harmonics (i.e., ω < 10�) for both cases (b) and (c).

On the other hand, we also find that for strong laser cases
of (b) and (c), the even-order harmonics driven by DC current
are quite small compared to odd-order harmonics or almost
invisible. This is probably because the large linewidth of
each odd-order harmonics covers the peak of neighboring
even-order harmonics. Namely, this result indicates that we
should apply a strong enough DC current to observe the
DC-current-driven even-order harmonics in the case of the
application of an extremely intense laser. However, as we
mentioned in Sec. II B, we note that such a case with a large
DC current is beyond the scope of the Boltzmann equation and
the relaxation-time approximation.

IV. CONCLUSIONS

In this final section, we summarize and discuss the results
of the present work. This paper theoretically investigates HHG
spectra in the graphene model subjected to a DC electric field.
Through the combination of the quantum master and Boltz-
mann equations, we numerically compute the HHG spectra
with high accuracy and reveal their dependence on laser
frequency, laser intensity, and DC current strength while ac-
counting for the experimentally inevitable dissipation effects.
The DC current induces an asymmetric shift of the Fermi
surface, as shown in Fig. 2. Our numerical method provides
a generic way of computing the HHG spectra of DC-current-
driven electron systems from weak laser (perturbative) to
strong laser (nonperturbative) regimes. The methodology is

035303-11



MINORU KANEGA AND MASAHIRO SATO PHYSICAL REVIEW B 110, 035303 (2024)

explained in Sec. II. Compared with the previous studies
for HHG in current-driven systems, our method makes it
possible to observe higher-order (more than third-order) har-
monic generations and HHG spectra in the nonperturbative
regime.

Section III gives the numerical results of the present study.
Throughout this section, we mainly consider the setup in
which DC current is applied along the x axis, and the ex-
ternal laser is linearly polarized along the same x direction.
In Sec. III A, we first show the shape of HHG spectra in
a wide frequency regime in Fig. 3. The spectra, especially
the presence or absence of nth-order harmonics, drastically
change by tuning DC current, the laser ellipticity ε, and the
staggered potential �. We find that this characteristic feature
can be proved by the argument based on dynamical symmetry
(see Table I). These results clearly indicate that HHG spectra
can be moderately controlled with external tuning parameters
such as DC current and the laser ellipticity.

In Sec. III B, we discuss the laser-frequency dependence of
HHG spectra. The SHG peak displays a divergent behavior
when the chemical potential and laser frequency approach
zero, � = μ → 0, in the weak-laser (perturbative) regime.
However, in the strong-laser regime, the intensity tends to
become stronger when � = μ increases, as shown in Fig. 5.
This behavior in the nonperturbative regime was first observed
through our numerical method. We also argue that photoex-
citations at the wave vectors around the DC-current-driven
shifted Fermi surface are essential when we consider DC-
current-driven harmonics (see Fig. 6).

Furthermore, when observing the fourth- and sixth-order
harmonics for strong laser pulses (see Fig. 7), we find that the
spectra cannot be explained by taking only interband optical
transition processes, and the influence of intraband dynamics
becomes more pronounced as the laser intensity increases.

In Sec. III D, we discuss the HHG spectra Ĩy(�) generated
by the laser-driven current along the y axis, which appears
only in the case of a finite staggered potential �. We find
that as the laser intensity increases, multiple peak structures
appear like other HHG spectra for a strong laser. In Sec. III E,
we consider the case of extremely strong laser pulses. We
observe a plateau regime in the HHG spectra, and we discuss
the possibility that the DC current effect in HHG spectra
becomes invisible as the laser intensity is extremely strong.

The present and recent works [48,49,72] indicate that the
theoretical analysis based on the quantum master (GKSL)
equation offers a powerful tool to compute optical nonlin-
ear responses of many-body systems in a broad parameter
regime.

Finally, we again comment on the limitations of our present
approach. As discussed in Sec. II B, there are two important
limitations. First, the chemical potential must be sufficiently
far from the Dirac point energy, meaning a sufficiently large
Fermi surface should exist. Secondly, our resultant HHG spec-
tra are reliable only when they exhibit a linear behavior with
respect to the DC electric field. These two conditions stem
from the fact that the current-driven nonequilibrium steady
state before the laser application is prepared by using the
Boltzmann equation in our approach. However, we note that
many experiments of HHG in current-driven electron systems

satisfy these conditions, and hence our approach is applicable
to most such experiments.
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APPENDIX A: SELECTION RULES FOR HHG

Here, we derive the selection rules for HHG from dynam-
ical symmetries. These symmetries exactly hold in the case
of a continuous-wave laser, i.e., tFWHM → ∞, whereas it is
known that the selection rules derived from dynamical sym-
metries are often applicable even in laser-pulse cases of real
experiments. In fact, our numerical results for laser pulses are
consistent with such selection rules (see Fig. 3 and Table I).
The selection rules below are all realized only in the case of
the absence of the DC current, i.e., δdc = 0.

1. LPL and x-direction inversion

First, we consider the irradiation of linearly polarized light
(LPL) whose electric field is along the x direction. Since
graphene has the symmetry of mirror operation for the x direc-
tion (x → −x), the Hamiltonian Ĥ (t ) satisfies the following
dynamical symmetry:

Ûσyz Ĥ (t + T/2)Û †
σyz

= Ĥ (t ), (A1)

where Ûσyz is the unitary operator of mirror operation for the x
direction. Similarly, the current operator Ĵ(t ) satisfies

Ûσyz Ĵ(t + T/2)Û †
σyz

=
(

−Ĵx(t )

Ĵy(t )

)
. (A2)

As we will show soon later, these conditions are equivalent to

Jx(2n�) = 0, (A3)

Jy[(2n + 1)�] = 0, (A4)

where n is an arbitrary integer. That is, in graphene illumi-
nated by the LPL, the x-direction mirror symmetry results in
the prohibition of even-order (odd-order) harmonics of Jx (Jy).
Below, we prove Eqs. (A3) and (A4).

Through the Fourier transformation, the Hamiltonian and
the current operator are represented as

Ĥ (t ) =
∑

k

Ĥk(t ), (A5)

Ĵ(t ) =
∑

k

Ĵk(t ). (A6)
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These Fourier components with each wave vector k satisfy

Ûσyz Ĥk(t + T/2)Û †
σyz

= Ĥk′ (t ), (A7)

Ûσyz Ĵx,k(t + T/2)Û †
σyz

= −Ĵx,k′ (t ), (A8)

Ûσyz Ĵy,k(t + T/2)Û †
σyz

= Ĵy,k′ (t ), (A9)

where k′ = (−kx, ky). Next, we consider the density matrix.
Expressing the quantum master equation [Eq. (12)] symboli-
cally using the Liouvillian superoperator Lk(t ), we have

d

dt
ρ̂k(t ) = Lk(t )ρ̂k(t ). (A10)

Since the jump operators in our setup satisfy

Ûσyz L̂kÛ †
σyz

= L̂k′ , (A11)

we obtain

d

dt
ρ̂k′ (t ) = Lk′ (t )ρ̂k′ (t )

= ÛσyzLk(t + T/2)Û †
σyz

ρ̂k′ (t ). (A12)

Therefore, we arrive at

d

dt
Û †

σyz
ρ̂k′ (t )Ûσyz = Lk(t + T/2)Û †

σyz
ρ̂k′ (t )Ûσyz . (A13)

By comparing Eq. (A13) with the original quantum master
equation, we find the equality

Ûσyz ρ̂k(t + T/2)Û †
σyz

= ρ̂k′ (t ). (A14)

This relation may be referred to as dynamical symmetry
for the density matrix. From this dynamical symmetry, the
Fourier component of the x-direction current satisfies the fol-
lowing relation:

Jx,k′ (t ) = 〈Ĵx,k′ (t )〉t

= Tr[ρ̂k′ (t )Ĵx,k′ (t )]

= −Tr[ρ̂k(t + T/2)Ĵx,k(t + T/2)]

= −Jx,k(t + T/2). (A15)

Through a similar process for the y component of current, we
obtain

Jy,k′ (t ) = Jy,k(t + T/2). (A16)

Here, from the pair of Jα,k(t ) and Jα,k′ (t ), we define

J̃x,k(t ) := Jx,k(t ) + Jx,k′ (t ), (A17)

J̃y,k(t ) := Jy,k(t ) + Jy,k′ (t ). (A18)

We then find that they satisfy

J̃x,k(t ) = −J̃x,k(t + T/2), (A19)

J̃y,k(t ) = J̃y,k(t + T/2). (A20)

These results directly lead to the selection rules for the
HHG spectrum as follows. The x component of the current,

J̃x,k(n�), is transformed as

J̃x,k(n�) =
∫ T

0

dt

T
J̃x,k(t )ein�t

=
∫ T/2

−T/2

dt

T
J̃x,k(t + T/2)ein�(t+T/2)

= −ein� T
2

∫ T/2

−T/2

dt

T
J̃x,k(t )ein�t

= −einπ J̃x,k(n�). (A21)

Therefore, we have

J̃x,k(2m�) = 0 (m ∈ Z). (A22)

Similarly, for J̃y(n�), we obtain

J̃y,k(n�) = einπ J̃y,k(n�) (A23)

and

J̃y,k[(2m + 1)�] = 0 (m ∈ Z). (A24)

Taking the summation
∑

kx>0 J̃α,k(n�) in the positive-kx re-
gion of the Brillouin zone, we finally arrive at Eqs. (A3) and
(A4).

2. CPL and n-fold rotation in the x-y plane

Next, we consider the case of the application of circularly
polarized light (CPL) to a two-dimensional (2D) electron sys-
tem on the x-y plane. Here, the electric field of CPL is in the
same x-y plane. We assume that a CPL-driven 2D system in
the x-y plane satisfies the following symmetry relations:

Ĥk(t ) = ÛnĤRnk(t + T/n)Û †
n , (A25)

Ĵk(t ) = ÛnRnĴRnk(t + T/n)Û †
n , (A26)

where Ûn is the unitary operator of 2π/n-degree rotation in the
x-y plane, and Rn is the 2 × 2 matrix for an in-plane rotation
by 2π/n, which acts on vector quantities. In graphene models,
as mentioned in Table I of the main text, the above relations
hold for n = 2 and 3. We note that when 2D electron systems
are irradiated by the CPL, its electric field rotates by 2π/n
during the time interval T/n.

For the above discrete-rotation symmetric system, we then
consider the time evolution of the density matrix. Similarly
to Appendix A 1, the quantum master equation [Eq. (12)] is
expressed as

d

dt
ρ̂k(t ) = Lk(t )ρ̂k(t ). (A27)

Assuming the jump operators satisfy

L̂k = ÛnL̂RnkÛ †
n , (A28)

we obtain
d

dt
ρ̂k(t ) = Lk(t )ρ̂k(t )

= ÛnLRnk(t + T/n)Û †
n ρ̂k(t ). (A29)

Therefore, we find
d

dt
Û †

n ρ̂k(t )Ûn = LRnk(t + T/n)Û †
n ρ̂k(t )Ûn. (A30)
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Comparing this result with the original quantum master equa-
tion, we obtain

ρ̂k(t ) = Ûnρ̂Rnk(t + T/n)Û †
n . (A31)

Through this dynamical symmetry of the density matrix, the
k component of the current is computed as follows:

Jk(t ) = 〈Ĵk(t )〉t = Tr[ρ̂k(t )Ĵk(t )]

= RnTr[ρ̂Rnk(t + T/n)ĴRnk(t + T/n)]

= RnJRnk(t + T/n). (A32)

Considering this relation about the rotating operations, we
introduce a new quantity

J̃k(t ) :=
n−1∑
�=0

J (Rn )�k(t ). (A33)

Then, we find that it satisfies

J̃k(t ) = RnJ̃k(t + T/n) = (Rn)2J̃k(t + 2T/n)

= · · · = (Rn)n−1J̃k[t + (n − 1)T/n]. (A34)

Equation (A34) enables us to derive the selection rules for the
HHG spectrum. From the equation, the Fourier component of
the current in time direction, J(m�), is given by

J̃k(m�) = Rnei2mπ/nJ̃k(m�) = (Rn)2ei4mπ/nJ̃k(m�)

= · · · = (Rn)n−1ei2(n−1)mπ/nJ̃k(m�). (A35)

If we consider the case of m = n� (� ∈ Z), we obtain

J̃k(n��)

= 1

n
(1 + Rn + (Rn)2 + · · · + (Rn)n−1)J̃k(n��). (A36)

Thus we have J̃k(n��) = 0. Taking the proper summation of
J̃k(n��) over the Brillouin zone, we finally obtain

J(n��) = 0. (A37)

This means that the n�th order harmonics with n = 2 and 3
disappear in graphene models under the irradiation of circu-
larly polarized light.

3. Breakdown of dynamical symmetry by applying DC current

The dynamical symmetry of the density matrix is broken
by applying a DC current, and it usually accompanies the
appearance of the harmonics forbidden by the dynamical sym-
metry. In the case of Appendix A 1, the breakdown of the
dynamical symmetry means the following inequality:

ρ̂k(t ) �= Ûσyz ρ̂k′ (t + T/2)Û †
σyz

. (A38)

In this section, we discuss why this inequality is generally
realized in the case of applying a DC current.

When we have a finite DC current, the initial state before
the application of a laser is given by ρ̂k = |gk+δdc〉〈gk+δdc |.
This density matrix of the NESS clearly breaks the mirror
symmetry of Ûσyz , as shown in Fig. 2(a). This could be a
simple answer to why the inequality of Eq. (A38) holds.

We also try to construct a more serious argument for
Eq. (A38). We first assume that the density matrix at the initial

time t = t0 is given by ρ̂k = |gk+δdc〉〈gk+δdc | (|gk〉〈gk|) for the
case of a finite (zero) DC current. Then, a continuous-wave
laser (tFWHM → ∞) is assumed to be adiabatically introduced.
Under this setup, let us first consider the case without DC
current. As discussed in Appendix A 1, when δdc = 0,

Lk(t ) = ÛσyzLk′ (t + T/2)Û †
σyz

(A39)

holds. Therefore, we can expect that the time-evolution super-
operator Vk(t, t0) = T exp (

∫ t
t0
Lk(s)ds) satisfies

Vk(t, t0) = ÛσyzVk′ (t + T/2, t0)Û †
σyz

(A40)

if t is sufficiently far from t0. Here, T represents the time-
ordered product. This relation directly leads to Eq. (A14) as
follows:

Ûσyz ρ̂k′ (t + T/2)Û †
σyz

= ÛσyzVk′ (t + T/2, t0)Û †
σyz

Ûσyz ρ̂k′Û †
σyz

= Vk(t, t0)ρ̂k

= ρ̂k(t ). (A41)

Here, ρ̂k := ρ̂k(t0) = |gk〉〈gk|, and we have used Ûσyz ρ̂k′Û †
σyz

=
Ûσyz |gk′ 〉〈gk′ |Û †

σyz
= |gk〉〈gk| = ρ̂k.

Next, we consider the case of δdc �= 0, in which the den-
sity matrix at t = t0 is given by ρ̂k = |gk+δdc〉〈gk+δdc |. As we
mentioned, this density matrix follows

Ûσyz ρ̂k′Û †
σyz

= Ûσyz |gk′+δdc
〉〈gk′+δdc

|Û †
σyz

= |gk+δ′
dc
〉〈gk+δ′

dc
|

�= ρ̂k, (A42)

where we have introduced the new symbol δ′
dc = (−δx

dc, δ
y
dc).

In addition, for δdc �= 0, we have

Ûσyz L̂kÛ †
σyz

�= L̂k′ . (A43)

This leads to

Vk(t, t0) �= ÛσyzVk′ (t + T/2, t0)Û †
σyz

. (A44)

From these two inequalities of Eqs. (A42) and (A44), we can
say that Eq. (A38) generally holds when we apply a DC cur-
rent. In discrete-rotation symmetric systems in Appendix A 2,
we can also make an argument in a similar way that the
dynamical symmetry is generally broken by a DC current.

APPENDIX B: RELATIONSHIP BETWEEN THE MASTER
EQUATION AND THE BLOCH EQUATION

This Appendix briefly shows the relationship between the
quantum master equation and the optical Bloch equation [87].

We start from the master equation we have adopted:

dρ̂k(t )

dt
= − i[Ĥk(t ), ρ̂k(t )]

+ γ

(
L̂kρ̂k(t )L̂†

k − 1

2
{L̂†

kL̂k, ρ̂k(t )}
)

. (B1)

This is the equation for a k-diagonal two-band system, in-
cluding a simple relaxation process by the jump operator
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L̂k = |gk〉〈ek|. In two-level systems, any Hermitian operator Â
can be expressed using identity operator Î and Pauli operators
σ̂ = (σ̂ x, σ̂ y, σ̂ z ) as

Â = A0 Î + A · σ̂, (B2)

where A = (Ax, Ay, Az ) is a three-dimensional vector and
A0,x,y,z ∈ R. Hence, the product of two Hermitian operators
is given by

ÂB̂ = (A0B0 + A · B)Î + (A0B + B0A + iA × B) · σ̂. (B3)

Since the Hamiltonian Ĥk(t ) and the density matrix ρ̂k(t ) are
both Hermitian, they may be expressed as Ĥk(t ) = hk(t ) · σ̂

and ρ̂k(t ) = τ 0
k (t )Î + τk(t ) · σ̂. Here, we have introduced real

vector quantities hk(t ) and τk(t ) and a real scalar quantity
τ 0

k (t ). The jump operator is not generally a Hermitian oper-
ator, but in the present model it can also be written by using
Pauli matrices as follows:

L̂k = Lk · σ̂, (B4)

with the complex coefficients Lk = (Lx
k, Ly

k, Lz
k). Since the

jump operator we used is L̂k = |gk〉〈ek| = (σ̂ x − iσ̂ y)/2, the
coefficient is given by Lk = (1/2,−i/2, 0).

Substituting the 2 × 2 forms of the Hamiltonian, the den-
sity matrix, and the jump operator into Eq. (B1) and then using
Eq. (B3), we obtain

dτ 0
k

dt
Î +

(
dτk

dt
− 2hk × τk − 2γ [Re[(Lk · τk)L∗

k]

− |Lk|2τk + iτ 0
k Lk × L∗

k]

)
· σ̂ = 0. (B5)

This can be viewed as coupled differential equations for τ 0
k

and τk. Focusing on the coefficient of Î , we have dτ 0
k

dt = 0, and
its solution is given by τ 0

k (t ) = 1 because of the normalization
of the density matrix. The remaining vector τk(t ) satisfies

dτk

dt
= 2hk × τk

+ 2γ [Re[(Lk · τk)L∗
k] − |Lk|2τk + iLk × L∗

k]. (B6)

Substituting Lk = (1/2,−i/2, 0), we arrive at

d

dt
τk(t ) = 2hk(t ) × τk(t ) −

⎛
⎜⎝

γ

2 τx,k(t )
γ

2 τy,k(t )

γ (τz,k(t ) − 〈τz,k〉)

⎞
⎟⎠, (B7)

where 〈τz,k〉 = −1. This is nothing but a Bloch equa-
tion whose longitudinal and transverse relaxation times, T1

and T2, are given by

T1 = 1

γ
, T2 = 2

γ
. (B8)

Namely, our simple setup of the jump operator includes both
longitudinal and transverse relaxation processes, satisfying
the detailed balance condition at T = 0.

In the present study, we have adopted a simple but real-
istic relaxation (jump) operator, while in general, the GKSL
equation can describe wider sorts of dissipation processes
rather than the Bloch equation [71,87,88]. Namely, in the
mathematical sense, the Bloch equation is included within the
framework of the GKSL equation.

We note that theoretical studies beyond the above
relaxation-time approximation have also progressed [89–91].
For instance, the quantum kinetic equation approach based on
the Green’s functions [87,92] can describe the effects of var-
ious scattering processes, in principle, from the microscopic
viewpoint. However, it is generally difficult to simultaneously
treat light-matter couplings, interactions, and impurity scat-
terings within the analytic quantum kinetic approach. In fact,
most of the previous quantum kinetic approaches for HHG
take these effects into account in a perturbative manner, where
only lower-order harmonics can be computed [93,94]. On the
other hand, our numerical approach using the GKSL equa-
tion with a phenomenological relaxation time can analyze
weak-to-strong light-induced nonequilibrium phenomena, es-
pecially the intense-laser-driven nonperturbative effects. As
discussed in Sec. III B, the analytic, perturbative approach and
our numerical one are complementary with each other.
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