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First-principles studies of Schottky barriers and tunneling properties at Al(111)/Si(111)
and CoSi2(111)/Si(111) interfaces
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We present first-principles calculations of Schottky barrier heights at interfaces relevant for silicon-based
merged-element transmon qubit devices. Focusing on Al(111)/Si(111) and CoSi2(111)/Si(111), we consider
various possible interfacial structures, for which we study the relaxations of the atoms near the interface, calculate
the formation energies and Schottky barrier heights, and provide estimates of the Josephson critical currents
based on the Wentzel-Kramers-Brillouin (WKB) tunneling formalism as implemented in the Simmons/Tsu-
Esaki model. We find that the formation energies and SBHs are very similar for all Al(111)/Si(111) structures,
yet vary significantly for the CoSi2(111)/Si(111) structures. We attribute this to the more covalent character of
bonding at CoSi2/Si, which leads to configurations with distinct atomic and electronic structure. Our estimated
Josephson critical currents, which govern the behavior of merged-element transmons, provide insight into the
trends as a function of Schottky-barrier height. We show that desirable qubit frequencies of 4–5 GHz can be
obtained with a Si barrier thickness of about 5–10 nm, and demonstrate that the critical current density as a
function of Schottky barrier height can be modeled based on the tunneling probability for a rectangular barrier.
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I. INTRODUCTION

Al/Si interfaces have been studied since the 1970s for
applications in electronic devices [1–10] and to understand
and control structural properties of Al/Si cast alloys for
use in automotive and aerospace [11–13]. More recently,
there has been interest in Al/Si interfaces for applications
in quantum information science [14–17], including using
these interfaces in novel qubit devices called merged-element
transmons (MET) [18]. Transmons, the standard qubits for
quantum computing in superconducting circuits, are conven-
tionally based on metal/oxide/metal Josephson junctions and
paddle capacitors with a large footprint. It has been proposed
that scalability can be significantly improved by replacing the
large external shunt capacitor of a traditional transmon with
the intrinsic capacitance of the Josephson junction [19].

Replacing the oxide with a lower-band-gap material such
as Si allows for significantly thicker tunnel barriers in the
Josephson junction, leading to smaller variations in the
Josephson current densities than those observed in AlOx MET
devices [18,20,21]. While the first MET devices were based
on amorphous Si [19], use of float-zone crystalline Si should
additionally reduce dielectric losses and minimize the forma-
tion of two-level system spectral features. The significantly
smaller size compared to traditional transmons should allow
for scalable fabrication, especially when combined with fin
fabrication and atomic-layer or digital etching in the so-called
FinMETs [18].

*Contact author: nangoi@ucsb.edu

The enhanced control over the junction between the super-
conducting metal and the tunnel barrier, which is at the heart
of the performance improvements, prompts renewed scrutiny
of the properties of this interface. In the present work we focus
on interfaces between the metal and the Si(111) surfaces that
constitute the sides of the fins in a FinMET [18]. For the metal,
we consider Al, which is widely used in superconducting
qubits [21]. In addition to Al, CoSi2 could be an excellent
choice as the metal in a MET because CoSi2 is superconduct-
ing with a Tc of 1.26 K [22], is lattice-matched to Si within
∼ 2% [23,24], and has been demonstrated to grow epitaxially
on Si(111) [25–28].

In order to elucidate the atomic and electronic structure
of these metal/semiconductor interfaces we perform first-
principles calculations based on density-functional theory
(DFT) with a hybrid functional. A key quantity is the Schottky
barrier height (SBH), which determines the current flowing
from the metal to the semiconductor.

While there are recent first-principles studies of Al/Si
interfaces [9,12], none of them considered Al(111)/Si(111),
the focus of the present work. Previous calculations of
Al(111)/Si(111) interfaces were limited by various approx-
imations and assumptions. An early study by Louie et al.
[1] treated the Si atomistically but approximated the Al layer
with a jellium potential. Another early study by Tejedor et al.
[2] incorporated some atomistic corrections to the jellium
potential. Zavodinsky and Kuyanov [8] used DFT with the
local-density approximation (LDA) and the pseudopotential
method to treat the Al(111)/Si(111) interface system atomisti-
cally, but they forced the in-plane periodicity of Al to match
that of the Si substrate, introducing an unrealistically large
in-plane strain of ∼35% to the Al layers. Information about
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the in-plane periodicity is actually available from experiment
[3,4,7,14,16,17], revealing that four Al repeat units match to
three Si repeat units. Finally, Refs. [10,13,16,29] considered
this realistic interfacial structure, but used molecular dynam-
ics with empirical interatomic potentials and did not calculate
the SBHs. Our present work uses realistic interfacial struc-
tures, as well as a state-of-the-art hybrid functional to produce
reliable electronic structure properties.

For CoSi2(111)/Si(111), six different structures have been
proposed by previous theoretical and experimental studies
[30–37] based on three different coordination numbers of the
Co atom at the interface (5, 7, or 8) and two types of the
stacking of the CoSi2 layers relative to the Si layers (A or B),
explained in more detail in Sec. IV A. Following the notation
used in Ref. [35], we call these structures A5, B5, A7, B7,
A8, and B8. For these structures, a number of first-principles
SBH calculations have been reported. Stadler et al. [35]
used a generalized-gradient approximation (GGA) functional
[38,39] and considered the A7, B7, A8, and B8 structures;
they acknowledged that the thicknesses of the CoSi2 layers in
their calculations were too small, resulting in an uncertainty of
∼0.2 eV in their calculated alignments. Zhao et al. [40] used
the LDA functional [41] and considered only the B8 structure.
Gao and Guo [42] also considered only the B8 structure,
and used LDA for optimizing the structure and the hybrid
functional of Heyd, Scuseria, and Ernzerhof (HSE) [43,44]
to calculate the SBHs. Finally, Wasey and Das [45] used
Perdew-Burke-Ernzerhof (PBE) [46] and considered the A7,
B7, A8, and B8 structures. None of these works considered the
A5 and B5 structures [31]. A5 was found by Hamann [32] to
have significantly higher formation energy than the structures
mentioned above; however, as also discussed in Ref. [35],
Ref. [32] did not relax the atoms, and therefore the calculated
formation energy could be overestimated.

We also note that Refs. [40,42,45] use the layer-projected
density-of-states approach to calculate the SBHs. As ex-
plained in Sec. II A, we consider this to be less accurate
than the potential-alignment method used in the present work
[35,47–50].

In all our calculations we assume the silicon layer to
be sufficiently thick to serve as the “substrate” with its
in-plane lattice parameter fixed to the equilibrium bulk
value. Any strain present to accommodate the lattice mis-
match is assumed to occur entirely within the metal layer.
We allow the atomic positions near the interface to relax.
For Al(111)/Si(111) we consider the structures suggested
by experiments [3–7,14,16,17]. For CoSi2(111)/Si(111), we
consider six different structures proposed by previous the-
oretical and experimental studies [30–37]. For all materials
and structures considered, we report the magnitude of the
relaxations of the atoms in the layers near the interface, the
interplanar distances of said layers, the interface formation
energies, and the SBHs.

Using the calculated SBHs, we also report estimates on
the Josephson critical current densities (which determine the
transmon qubit’s resonance frequency [19,51]) for various sil-
icon tunneling barrier thicknesses. The estimations are based
on (1) the relationship between the Josephson critical current
and the normal-state (nonsuperconducting) tunneling current
[52,53], (2) the formulation of the normal-state tunneling

current through a tunnel junction by both Simmons [54,55]
and also Tsu and Esaki [56,57], and (3) the WKB approxima-
tion to calculate the tunneling probability.

We use these calculated critical current densities to esti-
mate qubit resonance frequencies for FinMETs, and show that
qubit frequencies of 4–5 GHz can be obtained with achievable
Si barrier thicknesses. We also fit the critical current results
to a model based on the WKB tunneling probability for a
rectangular barrier, thus allowing straightforward estimates of
the impact of changes in thickness and barrier height on qubit
frequencies.

II. FIRST-PRINCIPLES APPROACH

All calculations in this work employ the plane-wave
density-functional theory framework with projector-
augmented wave pseudopotentials [58,59] as implemented
in the Vienna Ab initio Simulation Package ( VASP ) [60,61]
with a plane-wave cutoff of 500 eV. Bulk calculations aimed
at obtaining accurate electronic energy levels use the hybrid
functional of HSE [43,44], while calculations for interfacial
structure and potential alignment use the PBE functional
[46]; tests of the accuracy are described below. Structural
optimizations are performed until the forces are less than 0.01
eV/Å.

A. Schottky barrier heights

To calculate the SBHs, we use the potential alignment
method [47,48,50]:

φp = �V̄ + EF − EVBM, (1)

φn = Eg − φp, (2)

where φp and φn are the p- and n-type SBH, respectively. All
quantities are illustrated in Fig. 1. �V̄ is the average elec-
trostatic potential difference across the interface (positive if
the metal has higher average potential), EF is the metal Fermi
level referenced to the average electrostatic potential of the
metal, EVBM is the valence-band maximum (VBM) referenced
to the averaged electrostatic potential of the semiconductor,
and Eg is the band gap. Note that the quantities labeled as
“potentials” are actually potential energies for electrons (in
units of eV), as is conventional in band diagrams. EF , EVBM,
and Eg are obtained from bulk calculations, and �V̄ from a
calculation of the interface.

To calculate �V̄ , we use the macroscopic averaging
method [62]. First, the electrostatic potential of the interface is
averaged over the interface plane, yielding the dashed curve in
Fig. 1. Then, the planar-averaged electrostatic potential 〈V 〉xy

is averaged along the perpendicular direction z according to

V̄ (z) =
∫ z+L/2

z−L/2
〈V 〉xy(z′) dz′, (3)

where L equals the oscillation period along z at the center of
the metal (semiconductor) slab for z inside the metal (semi-
conductor). The resulting V̄ (z) is illustrated by the solid curve
in Fig. 1.

We regard the potential alignment method for calcu-
lating the SBH as more accurate than the layer-projected
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FIG. 1. Derivation of SBH values at the Al(111)/Si(111) in-
terface with type-A orientation. Shown are the planar-averaged
electrostatic potential as a function of distance z along the [111]
direction (dashed curve), the macroscopic average of the electrostatic
potential (solid curve), the resulting average potential difference
between Al and Si �V̄ , the Fermi level EF of Al, the valence-band
maximum EVBM and band gap Eg of Si, and the resulting Schottky
barrier heights φp and φn.

density-of-states approach [40,42,45]. In the latter, the de-
termination of the VBM and the conduction-band minimum
(CBM) is prone to errors due to the low densities of
states near the band edges, as shown in Fig. S1 in the
Supplemental Material [63]. A key advantage of potential
alignment is that the electrostatic potential converges to its
bulk value within about two atomic layers from the inter-
face, confirming that the SBH is truly a property of the
interface, and can be used as a boundary condition in cal-
culations that would include, e.g., band bending on longer
length scales. Similar comments about the potential align-
ment method being more accurate than the layer-projected
density-of-states approach were included in Ref. [49].

B. Bulk calculations

All bulk calculations are performed with the HSE hybrid
functional [43,44]. For Si we use a Brillouin-zone sampling
mesh of 15 × 15 × 15. We adjust the HSE mixing parameter
to reproduce the silicon experimental gap at zero temperature

(Eg = 1.17 eV [64]), yielding a value of 0.256. The corre-
sponding lattice parameter is 5.432 Å, in agreement with the
experimental value of 5.431 Å [23]. The resulting EVBM value
(shown in Fig. 1) is 5.45 eV, which we use in all our subse-
quent calculations of SBHs. We note that this quantity, taken
in isolation, is not physically meaningful, since it depends on
the specific pseudopotentials used in the calculations.

We optimize the structures of bulk Al and CoSi2 with the
same HSE mixing parameter, a Brillouin-zone sampling mesh
of 16 × 16 × 16, and the second-order Methfessel-Paxton
scheme with a smearing width of 0.2 eV to aid numerical
convergence. For Al, which has the face-centered cubic (fcc)
structure, we calculate an equilibrium lattice parameter of
4.024 Å, 0.6% smaller than the experimental value of 4.049
Å [65]. CoSi2 has the CaF2 structure [35] (cubic Fm3̄m space
group), which can be regarded as a zinc-blende structure
with additional Si atoms on all tetrahedral interstitial sites,
resulting in a fourfold coordination for Si and an eightfold
coordination for Co. The calculated equilibrium lattice param-
eter is 5.293 Å, 1.3% smaller than the experimental value of
5.365 Å [24].

In the actual interfaces, because Si(111) is the substrate,
Al and CoSi2 are strained in the (111) plane to match silicon
as discussed in Secs. III A and IV A. To facilitate application
of this strain we describe Al and CoSi2 in a hexagonal unit
cell in which the c axis is oriented along the [111] direction
of the interface. This unit cell contains three atoms for Al,
and three Co atoms and six Si atoms for CoSi2. Then, fixing
the in-plane lattice parameters to their strained values, we
optimize the perpendicular lattice parameter of each metal.
When we do this fully consistently within HSE, we obtain
the the following Fermi levels EF (referenced to the averaged
electrostatic potential) of the resulting optimized structures:
8.02 eV for Al and 9.69 eV for CoSi2. These values are used in
conjunction with our calculations of SBHs based on full HSE
interface calculations. Because of the high computational cost
of HSE calculations for interfaces, we also perform interface
calculations using the PBE functional. To consistently calcu-
late the SBHs for such interfaces, we use HSE to optimize the
perpendicular lattice parameter and calculate the Fermi levels
EF of Al and CoSi2 with in-plane strain values corresponding
to those calculated for PBE lattice constants. For this case we
obtain 7.98 eV for Al and 9.81 eV for CoSi2.

C. Interface calculations

To obtain the average potential difference �V̄ , we calculate
the electrostatic potentials in explicit interface calculations for
Al(111)/Si(111) and CoSi2(111)/Si(111). Periodic boundary
conditions require such calculations to be performed for a
superlattice; if the layers are sufficiently thick, properties of
a single interface can be obtained. In addition, the Al/Si
interface requires use of large in-plane unit cells due to the
lattice mismatch between Al and Si. The resulting large su-
percells (containing 424 atoms as seen in Table S1 in the
Supplemental Material [63]) render the calculations extremely
expensive when performed with a hybrid functional. To make
the calculations tractable we use the PBE functional [46] for
all our Al/Si interface calculations. As shown in Ref. [50],
the error in �V̄ from using the PBE functional as opposed
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to the HSE functional is less than ∼ 0.05 eV. Our own test
calculations comparing �V̄ from PBE and HSE calculations
produced a similar result, an uncertainty of ∼ 0.06 eV. For
CoSi2(111)/Si(111), we do not need to consider large in-
plane unit cells because CoSi2(111) is nearly lattice-matched
to Si(111)), and hence the superlattices used for interface
calculations contain significantly fewer atoms compared to
Al(111)/Si(111). The resulting lower computational expense
allowed us to also perform full HSE calculations for a few of
the lowest-energy structures of CoSi2(111)/Si(111).

We first repeated the structural optimization procedures
for bulk Si, Al, and CoSi2 described in Sec. II B using the
PBE functional, and then used these optimized bulk struc-
tures to construct Al(111)/Si(111) and CoSi2(111)/Si(111)
interfaces using a hexagonal-symmetry supercell with the per-
pendicular lattice parameter along the [111] direction. Due
to periodic boundary conditions, each supercell contains two
metal/semiconductor interfaces. Fortunately the symmetry of
the underlying materials allows us to choose the numbers of
layers in such a way that the superlattice has inversion sym-
metry, and therefore the two interfaces in each supercell have
the same properties and identical Schottky barrier heights.

We optimized the interfacial structure by allowing a few
layers near each interface (two Al layers, two Si-Si bilayers,
and two CoSi2 trilayers) to relax their atomic positions and
their interlayer spacings, while also allowing the perpendic-
ular lattice parameter of the supercell to relax. The in-plane
lattice parameters, as well as the interlayer spacings closer to
the centers of the Si and metal layers in the supercell were kept
fixed. Using the resulting optimized structure, we calculate
the average electrostatic potential, and subsequently �V̄ , as
described in Refs. [47,48,50]. For all results presented in this
work, the layer thicknesses and the number of relaxed layers
are sufficient to converge �V̄ within 0.015 eV, as documented
in Tables S1– S3 in the Supplemental Material [63]. Differ-
ences in SBHs between different structures are expected to be
even more accurate.

For Al(111)/Si(111), we choose a supercell containing 13
Al layers and 12 Si-Si bilayers. This is based on the analysis
of the dependence of �V̄ on layer thickness presented in
Table S2 in the Supplemental Material [63]: we see that the
�V̄ for this supercell is within 0.015 eV from the �V̄ for a
thicker supercell containing 16 Al layers and 15 Si-Si bilayers.
Similarly, for each CoSi2(111)/Si(111) structure, we choose a
supercell size for which the �V̄ is within 0.015 eV from the
�V̄ for a thicker supercell we considered, as shown in Table
S3. The chosen supercell sizes depend on the structure and
are shown in Table S1. We make sure that our thinnest CoSi2

slab (10 CoSi2 trilayers) is still thicker than the thickest CoSi2

slab of Ref. [35] (6 CoSi2 trilayers) to avoid the uncertainty
reported in Ref. [35].

D. Interface formation energies

The interface formation energy can be expressed as [32,48]

γ f = 1

2A

[
E tot − NSiE

tot
Si − NmetalE

tot
metal

]
, (4)

where γ f is the formation energy of a single interface per
unit area, A is the in-plane area of the supercell, E tot is the

total energy of the supercell (which contains two interfaces),
NSi is the number of Si atoms in the Si layers, and E tot

Si is
the total energy per Si atom in bulk Si. For Al(111)/Si(111),
Nmetal is the number of Al atoms in the supercell, and E tot

metal
is the total energy per Al atom in bulk strained Al. For
CoSi2(111)/Si(111), NM is the number of CoSi2 units in the
CoSi2 layers, and E tot

metal is the total energy per CoSi2 unit in
bulk strained CoSi2. Choosing strained metal as the reference
ensures that there is no dependence on the thickness of the
metal layers.

E. Josephson critical current estimations

In this section we describe our methodology to derive
Josephson critical current densities. We use a number of ap-
proximations, justified by the fact that our goal is not to obtain
values with the highest accuracy but rather to examine trends.

To estimate the critical current density Jc of a Josephson
junction, we use the formulation of Jc by Ambegaokar and
Baratoff [52,53],

Jc(s, T ) = π/e

Rn(s, T )Aeff

�(T )

2
tanh

(
�(T )

2kBT

)
, (5)

where s is the thickness of the tunnel barrier, T is the tem-
perature, e is the elementary charge, Rn is the normal-state
(nonsuperconducting) resistance of the junction, Aeff is the
effective cross-sectional area of the junction, � is the super-
conducting gap parameter (which depends on temperature),
and kB is the Boltzmann constant.

From Ohm’s Law,

Rn(s, T )Aeff = V
J (s,V, T )

, (6)

where V is the magnitude of the applied voltage across the
junction, and J is the resulting normal-state current density.
We use the tunneling model developed by both Simmons
[54,55] and Tsu and Esaki [56,57] to calculate Je, the con-
tribution to J (s,V, T ) due to tunneling of electrons through
the barrier below the CBM:

Je(s,V, T ) = 4πe

h3
m∗

M

∫ Emax
z

0
Te(s,V, Ez )Ne(T,V, Ez ) dEz,

(7)

where Ez is the longitudinal energy along the tunneling direc-
tion z, h is Planck’s constant, Te is the electron transmission
coefficient through the barrier, and Ne is the electron “supply
function” of the junction, a function indicating how many
electrons participate in the tunneling, which we describe in
more detail later below. The electrons in the metal electrodes
are assumed to have parabolic dispersion and a density of
states corresponding to a free-electron gas with an effective
mass m∗

M. The integration over longitudinal energy Ez is car-
ried out over the relevant range Ez < Emax

z , as detailed below.
When a voltage V is applied to the junction, the potential

energy across the barrier will vary as a function of the distance
z, as illustrated in Fig. 2. The right electrode is at a higher
voltage than the left, and therefore the electrons will tunnel
through the barrier from left to right. The dashed lines in Fig. 2
show the variation of the CBM (�C) and VBM (�V) in the
absence of an image charge correction, and the solid lines
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FIG. 2. Potential energy landscape across a
metal/semiconductor/metal junction where the right metal
electrode is at a voltage V higher than the left metal electrode.
Shown are the metal Fermi levels (EF,1, EF,2), positions of CBM
and VBM at the metal contacts, n- and p-type SBHs (φn, φp), and
semiconductor thickness s. The variation of the CBM �C and VBM
�V across the junction is shown for the case with (solid curves) and
without (dashed lines) image charge correction. The maximum of
�C, E1, and the minimum of �V, E2, are also indicated.

include this correction, as described below. The maximum
longitudinal energy Emax

z of the tunneling electrons equals
E1, the maximum of �C, which corresponds to the top of the
barrier.

The potential energies �C(s,V, z) and �V(s,V, z) are
given by

�C(s,V, z) = EF,1 + φn − (eV/s)z + Eimag(s, z), (8)

�V(s,V, z) = EF,1 − φp − (eV/s)z − Eimag(s, z), (9)

where EF,1 is the Fermi level of the left metal electrode, φn is
the n-type SBH, and Eimag is the image charge correction term
for metal/semiconductor/metal junctions [57,66]:

Eimag(s, z) = e2

16πεrε0

∞∑
j=0

[
− 1

js + z
− 1

( j + 1)s − z

+ 2

( j + 1)s

]
. (10)

Here, εr is the dielectric constant of the semiconductor (11.7
for Si [67]) and ε0 is the vacuum permittivity. Without the
image charge correction, both �C(s,V, z) and �V(s,V, z)
become triangular barriers shown by the dashed lines in Fig. 2.

To evaluate the integrand in Eq. (7), we opt to use the
WKB approximation to calculate Te and use the Fermi-Dirac

distributions of the electrons in the metal electrodes to calcu-
late Ne [57]:

Te(s,V, Ez ) = exp

[
−2

h̄

∫ z2C

z1C

√
2m∗

e (�C(s,V, z) − Ez )dz

]
,

(11)

Ne(T,V, Ez ) = kBT ln

{
1 + exp[−(Ez − EF,1)/(kBT )]

1 + exp[−(Ez − EF,2)/(kBT )]

}
,

(12)

where EF,2 = EF,1 − eV is the Fermi level of the right metal
electrode, m∗

e is the tunneling effective mass for electrons
(derived from the complex band structure as described below),
h̄ is the reduced Planck’s constant, and z1C and z2C are the
positions where �C(s,V, z) = Ez.

Besides the contribution from electrons tunneling through
the barrier below the CBM described above, there is also a
contribution from holes tunneling through the barrier above
the VBM from the right to the left electrodes. Following the
derivations in Ref. [57], we can derive the analogs of Eqs. (7),
(11), and (12) for holes:

Jh(s,V, T ) = 4πe

h3
m∗

M

∫ ∞

E2

Th(s,V, Ez )Nh(T,V, Ez ) dEz,

(13)

Th(s,V, Ez ) = exp

[
−2

h̄

∫ z2V

z1V

√
2m∗

h (Ez − �V(s,V, z))dz

]
,

(14)

Nh(T,V, Ez ) = kBT ln

{
1 + exp[+(Ez − EF,2)/(kBT )]

1 + exp[+(Ez − EF,1)/(kBT )]

}
,

(15)

where E2 is the minimum of �V as shown in Fig. 2, m∗
h is

the tunneling effective mass for holes, and z1V and z2V are
the positions where �V(s,V, z) = Ez. The total normal-state
current density J (s,V, T ) that enters Eq. (6) is then

J (s,V, T ) = Je(s,V, T ) + Jh(s,V, T ). (16)

In the present work, we calculate the critical current densi-
ties Jc for various values of s. We use T = 0.02 K, a typical
operating temperature of superconducting qubits [68], which
is significantly smaller than the superconducting transition
temperatures Tc of both Al (1.2 K [69]) and CoSi2 (1.26 K
[22]). According to the Bardeen-Cooper-Schrieffer theory,
which describes Al and CoSi2 relatively well [22,69], the gap
parameter �(T ) is practically unchanged for T < 0.5Tc [70],
and therefore we treat � as constant at these temperatures.
We choose � equal to 0.2 meV for Al (which is the value
reported in Ref. [71] from extrapolating the experimental data
to 0 K) and 0.189 meV for CoSi2 (from averaging the mea-
sured gap parameters reported in Ref. [72] at 0.37 K [0.3Tc

of CoSi2]). Note that we evaluate the normal-state current
density J (s,V, T ) at the operating temperature T of the su-
perconducting junction. We have checked that the calculated
Jc values vary weakly with T for T < 0.5Tc.

We take the electron effective mass m∗
M in the metal elec-

trodes to be ∼1.4m0 for Al [73] and ∼m0 for CoSi2 [74],
where m0 is the free-electron mass. To obtain the tunneling
effective masses for electrons (m∗

e ) and holes (m∗
h), we take

the complex band structure of Si[111] computed in Ref. [75]
and fit the imaginary part to

√
2m∗

e (ECBM − E )/h̄ and
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√
2m∗

h (E − EVBM)/h̄, respectively. We obtain m∗
e = 0.19m0

and m∗
h = 0.08m0. For the image charge correction, we carry

out the sum over j in Eq. (10) until j = 11 (as in Ref. [57]),
up to which we find that the sum has converged to within 3%
of the sum up to j = 10001. Finally, we use sufficiently small
values of V such that the junction is in the Ohmic region [76]
and therefore Eq. (6) holds, yielding Rn(s, T )Aeff values that
vary weakly with V .

To allow comparison between our estimated Jc values and
the desired values for actual silicon-based METs, we estimate
the qubit resonant frequencies based on our Jc values. The
resonant frequency is given by [68,77]

fq = (1/h)[
√

8EJEC − EC] ≈ (1/h)
√

8EJEC, (17)

where EJ is the energy stored in the Josephson junction, and
EC is the energy stored in the shunt capacitor. The approxi-
mation in the above equation is valid for transmons, for which
typically EJ � 50EC [68]. The energies EJ and EC are given
by [68]

EJ = h̄

2e
JcAeff , (18)

EC = e2

2C
= e2s

2εrε0Aeff
, (19)

where we have used the parallel-plate capacitor formula for
the capacitance C. Plugging in these equations into Eq. (17)
yields

fq ≈
√

e

πhε0

Jcs

εr
, (20)

and thus, approximately, fq only depends on the semiconduc-
tor’s dielectric constant εr and thickness s, and the Josephson
critical current density Jc.

Novel silicon-based METs, e.g., FinMETs [18], aim to
achieve a qubit resonant frequency in the range 4–5 GHz,
the same range as the predecessor METs made of Al/AlOx

junctions [21]. Therefore we will use Eq. (20) in combination
with our estimated values for Jc as a function of s to estimate
the resulting fq’s and compare them with the desired range of
4–5 GHz.

III. Results: Al(111)/Si(111)

A. Structures and formation energies

Forcing the in-plane periodicity of Al to match that of Si
in a (1×1) interfacial unit cell would lead to a huge in-plane
strain, since the lattice parameters of Al and Si differ by 35%.
A commensurate interface that minimizes the strain can be
identified by matching four in-plane lattice parameters of Al to
three in-plane lattice parameters of Si, leading to a remaining
strain of only ∼1% in Al. The resulting structure, which
was experimentally observed [3,4,7,14,16,17], is illustrated in
Fig. 3. Due to the large lattice parameters of the supercell,
we find that a Brillouin-zone sampling mesh of 4 × 4 × 1 is
sufficient to converge �V̄ to within 0.01 eV.

Figure 4 shows a side view of the Al(111)/Si(111) super-
cell used. Two possibilities exist for the relative orientation
of the Si and Al layers [5]: type A, where the fcc stacking
sequence is the same for both the metal and the semiconductor

FIG. 3. In-plane unit cell of the Al(111)/Si(111) hexagonal su-
percell, showing the positions of Al and Si atoms near the interface,
with three repeat units of Si matching four repeat units of Al.

FIG. 4. Side view of Al(111)/Si(111) supercell used, shown here
for Al and Si interfacial layers both having one atom with the same
in-plane position. Layers are enumerated from the top interface.
(a) Type-A orientation, where Al and Si have the same fcc stack-
ing sequence (parallel sets of dashed lines). (b) Type-B orientation,
where Al and Si have opposite fcc stacking sequences (nonparallel
sets of dashed lines).

035302-6



FIRST-PRINCIPLES STUDIES OF SCHOTTKY BARRIERS … PHYSICAL REVIEW B 110, 035302 (2024)

(indicated by parallel sets of lines), and type B, where the
fcc stacking sequences are different (nonparallel sets of lines).
Note that both Figs. 3 and 4 show a particular case where on
the interfacial Al layer (the “Al 1” layer), there is one Al atom
at the same in-plane position as a Si atom at the interface (the
“Si 1” layer). In principle, other structures can occur where
none of the Al atoms have the same in-plane position as the
interfacial Si atoms. In practice, we found that these other
structures all have very similar energies. For each orienta-
tion type, starting from the structures shown in the figures,
when we allowed all Al atoms to relax in the (111) plane (in
addition to allowing the layers near the interface to relax in
all directions), the Al atoms in the central layers (Al 3–11)
practically did not move, and the resulting relaxed structure
yielded a total energy within 0.3 meV per (1 × 1)Si and a
�V̄ within 5 meV from the results corresponding to fixing
the central Al atoms. We also have relaxed the structures in
which we uniformly displace the Al atoms along the (111)
plane such that one Al atom at the “Al 1” layer is now at
the same in-plane position as a Si atom at the second layer
from the interface (“Si 2” layer). We found that the central
Al atoms also practically did not move, and that the energies
and �V̄ are within 0.1 meV per (1 × 1)Si and 2 meV from
the undisplaced structure for type B, and are within 0.6 meV
per (1 × 1)Si and 2 meV for type A. These suggest that the
particular in-plane positions of the Al atoms relative to the Si
atoms shown in Figs. 3 and 4 are energetically as favorable as
other relative in-plane positions, and that all of these positions
have very similar SBHs. Additionally, we examined 24 other
relative in-plane positions and calculated their total energies
without relaxation, and found that the energies were all within
0.3 meV per (1 × 1)Si from each other, again suggesting
that there is no energetic preference for a particular in-plane
position of Al relative to Si. Our finding is consistent with
the experimental observations on Al(111)/Si(111) interfaces
reported in Ref. [16], which suggest two different in-plane
positions on the same sample.

We also considered another possible case where the layers
“Si 1” and “Si 24” are removed. For both types A and B
corresponding to this case, the energies per (1 × 1)Si after
relaxation are ∼6 eV higher, demonstrating that these struc-
tures are far less energetically favorable. Due to all of the
above reasons, in the present work we focus on the particular
structures shown in Figs. 3 and 4, and proceed with relaxing a
few layers near the interface as described next.

For both orientation types, we relax two Al layers and two
Si-Si bilayers near each interface: Al 1, 2, 12, and 13, and
also Si 1-4 and 21-24 in Fig. 4. Relaxing three Al layers and
three Si-Si bilayers changes the �V̄ value by merely ∼1 meV,
as seen in Table S2 in the Supplemental Material [63]. De-
tailed results and discussions of atomic displacements at the
interface are included in Sec. S3 of the Supplemental Material
[63]. The magnitudes of atomic relaxations and interlayer
spacings are given in Tables S4 and S5.

Table I shows the interface formation energies per (1 × 1)
Si for all considered Al(111)/Si(111) structures. This en-
ergy equals the formation energy per unit area γ f , Eq. (4),
multiplied by the area A(1×1)Si = (

√
3/4)a2

Si = 12.9 Å2. (Here
aSi is the lattice parameter of Si, which we calculate to be
5.469 Å using PBE.) The energies for both orientations are

TABLE I. Interface formation energies per (1 × 1) in-plane Si
(γ fA(1×1)Si), and p- and n-type Schottky barrier heights (φn, φp) of
Al(111)/Si(111).

Orientation type γ fA(1×1)Si (eV) φp (eV) φn (eV)

A 0.55 0.581 0.587
B 0.56 0.577 0.590

very similar to each other, differing by at most 0.01 eV. We
attribute this to the weakly covalent character of the bonding
across the interface as evidenced by the total charge density
distributions in Fig. S2 in the Supplemental Material [63],
leading to very similar atomic structures (Fig. 4) and layer-
projected densities-of-states (Fig. S3 in the Supplemental
Material [63]).

Our calculated energy for the type-A orientation is 0.12 eV
higher than the value calculated by molecular dynamics with
empirical interatomic potentials [13]. We note, however, that
Ref. [13] did not make it clear what they used as reference
energies in calculating the interface energy, e.g., strained
bulk Al [as we do in Eq. (4)] or unstrained bulk Al, or
relaxed/unrelaxed surface slabs of Al and Si.

B. Schottky barrier heights

The potential alignment for the interface with type-A ori-
entation is shown in Fig. 1. The macroscopically averaged
potential becomes flat within about two atomic layers from
the interface, illustrating convergence to the bulk value. The
absence of any slope in the central regions also indicates
that the two interfaces in the supercell are truly equivalent.
The kink in the macroscopically averaged potential near the
interface is an artifact of the abrupt change in the period
used for macroscopic averaging, which is clearly different
for Al and Si. The difference between the flat regions of the
macroscopically averaged potential yields �V̄ = −1.95 eV.
Per the convention introduced in Sec. II A this �V̄ value is
negative because the macroscopically averaged potential is
lower on the metal side. Combining this �V̄ with the bulk
values reported in Sec. II B, we obtain the p-type SBH φp =
�V̄ + EF − EVBM = −1.95 + 7.98 − 5.45 = 0.58 eV. Com-
bined with the Si band gap, Eg = 1.17 eV, this yields an n-type
Schottky barrier height SBH φn = 0.59 eV.

Our calculations for the type-B orientation yield the same
p- and n-type SBHs to within 0.01 eV, as shown in Table I.
Again, this is due to the very similar atomic and electronic
structures between the two orientations, as discussed in the
previous section. We estimate an uncertainty of ∼0.06 eV
from the differences in �V̄ observed in our PBE vs HSE test
calculations. However, we expect the differences between our
calculated SBHs to be more accurate, as systematic errors tend
to cancel [78].

Experimentally measured n-type SBHs are in the range
0.67–0.79 eV [5,6]. A very careful study on epitaxial
Al(111)/Si(111) was performed by Miura et al. [6]; they
verified the 4/3 alignment noted in Fig. 3, and also checked
the orientation of the Al film relative to the Si substrate.
For a sample with type-A orientation, they obtained φn =
0.68 eV from capacitance-voltage measurements at 200 K.
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TABLE II. Estimates of Josephson critical current densities (Jc)
and qubit resonant frequencies ( fq) for Al(111)/Si(111) junctions,
for various Si barrier thicknesses s.

s (nm) Jc (A/m2) fq (GHz)
A & B A & B

5 3 × 105 32
6 2 × 104 10
7 2 × 103 3.5
10 2 0.1
20 10−10 10−6

Values obtained with current-voltage and internal photoemis-
sion methods were within 0.01 eV. They also observed a
slight decrease in SBH for this sample as the temperature
decreased. For another sample, in which the Al film was still
(111)-oriented but had grains rotating with a random angle
distribution in the plane parallel to the interface, they mea-
sured φn = 0.77 eV. For the type-A interface, our calculated
value (at 0 K) is 0.59 eV, ∼ 0.1 eV lower than experiment.
The measurements by Miura et al. [6] seem to indicate that
deviations from the pure type-A orientation would lead to an
increase in φn, which is something we do not observe in our
calculations. The presence of grain boundaries in the experi-
mental sample with randomly oriented grains may affect the
measured SBH, making it higher than the sample with type-A
orientation.

C. Josephson currents

Using our calculated SBHs, Table II presents estimates of
the Josephson critical current densities, Eq. (5), for various
Si barrier thicknesses in the Josephson junction. We include
thicknesses ranging from 5 to 20 nm, encompassing the thick-
nesses 5–10 nm for which FinMET devices are expected to
have appreciable tunneling currents [18]. For each thickness,
the critical current densities are practically the same for both
type-A and type-B orientations because their SBHs are within
0.01 eV from each other. The values in Table II include
image-charge corrections; without those corrections, the cur-
rent densities are ∼2× smaller.

We now compare our estimated critical current densities Jc

with the desired values for FinMET devices. Using Eq. (20),
we estimate the qubit resonant frequencies fq and tabulate
the results in Table II. We note that fq increases as thickness
decreases, and that the desired qubit frequencies of 4–5 GHz
[21] are potentially achievable for thicknesses in the range
6–7 nm.

It is fruitful to discuss how Jc depends on the SBHs. Fig-
ure 5 shows the calculated Jc at n-SBHs from 0.59 eV to
0.79 eV (corresponding to φp from 0.58 eV to 0.38 eV), a
range that includes n-SBHs from both our calculations and
experimental measurements discussed in the previous sec-
tion. For these SBHs, the tunneling processes are actually
dominated by holes: the hole contributions Jh, Eq. (13), are
∼ 100–1000 A/m2, whereas the electron contributions Je,
Eq. (7), are merely ∼0.01–0.1 A/m2. We attribute this to
the tunneling effective mass for holes, m∗

h = 0.08 m0, being
significantly smaller than the tunneling effective mass for

FIG. 5. Estimated Jc as a function of SBH of Al(111)/Si(111) at
Si thickness s = 6 nm (circles) along with the fit to the WKB tun-
neling probability formula of holes tunneling through a rectangular
barrier of height φp (dashed curve).

electrons, m∗
e = 0.19m0 (see Sec. II E). These effective masses

appear in the exponents of the transmission coefficients for
electrons and holes [Eqs. (11) and (14)], and therefore signifi-
cant differences in these masses lead to differences of several
orders of magnitude in Jh and Je.

Because the hole contributions dominate, the dependence
of Jc in Fig. 5 on the SBHs may be approximated by the
dependence of the tunneling rate of holes on φp. As a simple
model we approximate the hole tunneling barrier as a rectan-
gular barrier with uniform height equal to φp across the entire
junction, and then use the WKB approximation to calculate
the tunneling probability. We therefore fit our Jc according to

Jc = J0 exp

(
−2s

h̄

√
2m∗

hφp

)
, (21)

where the exponent results from the WKB approximation and
J0 is the only free parameter. From Fig. 5, we see that this fit
matches our Jc values remarkably well; from the fit, we obtain
J0 ≈ 1 × 1010 A/m2.

We can also estimate J0 independently, by starting from
Eqs. (5)–(16) and making the following approximations: (1)
Jh + Je ≈ Jh, (2) Jh ≈ twice Jh without image charge cor-
rection, (3) rectangular barrier of width s and height φp, (4)
m∗

M ≈ m0, (5) tanh(�(T )/(2kBT )) ≈ 1 for T sufficiently be-
low the transition temperature, and (6) φp ∼ Eg/2. With these
assumptions and approximations, we obtain

J0 ≈ πem0

h2

√
Eg

m∗
h

�

s
. (22)

For the example shown in Fig. 5, Eq. (22) yields 0.9 × 1010

A/m2, essentially the same value as the value obtained from
the fit. Using the approximate J0, and φp from Table I, Eq. (21)
reproduces the Jc values from Table II within a factor of 2,
with a decay constant of (2/h̄)

√
2m∗

hφp ≡ 2κh = 2.2 nm−1.
The rectangular barrier approximation in this case is rea-

sonable because (1) the image-charge corrections are small
(without such corrections, the Jc’s are only ∼2x smaller, as
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FIG. 6. The six crystal structures of CoSi2(111)/Si(111) interfaces proposed in the literature, all of which are considered in the present
work: A8, B8, A5, B5, A7, and B7. The letter A or B denotes whether CoSi2 and Si have the same (A; parallel sets of dashed lines) or opposite
(B; nonparallel sets of dashed lines) fcc stacking sequences. The number 5, 7, or 8 denotes the coordination of the Co atoms at the interface.
The numbers below each structure indicate the layer number from the interface shown.

mentioned above); (2) the applied voltage V we use is small;
and (3) the temperature T is low, 20 mK. Points (1) and (2)
make the hole tunneling barrier shaped more like a rectangle
than the curved trapezoid illustrated in Fig. 2, while point (3)
implies that holes near the Fermi level contribute most, and
therefore the effective rectangular barrier height would be φp.

The remarkably good fit obtained here reflects the near-
ideal nature of the Al/Si interface. This contrasts with, for
instance, the Al/Al2O3 interface studied in Ref. [51], where
equivalent barrier heights (0.043–0.11 eV) much smaller than
the physical SBH (∼1–3 eV [79,80]) had to be assumed to
match actual calculated transmission coefficients in a fit to
a WKB approximation, indicative of the more complicated
interfacial structure and greater sensitivity to thickness fluc-
tuations for that junction.

Finally, one might think that for a Si thickness of
∼ 6 nm, quantum confinement effects may play a role in
shifting the band extrema, thereby affecting the estimated
tunneling currents. First, we note that for this type of
metal/semiconductor/metal junction the carrier wave func-
tions can freely extend into the metal regions, and thus
quantum confinement, in principle, is not present. Second,
even if confinement would occur, the impact on the calculated
results would be minor. We performed estimates for the limit-
ing case of an infinite square well of width ∼6 nm, assessing
the shifts in ground-state energies for light holes, heavy holes,
and electrons. We found that Jh remains significantly larger
than Je, and Jc becomes smaller by less than a factor of three.
We conclude that even if quantum confinement were present
it would have only a small quantitative impact on our results.

IV. RESULTS: CoSi2(111)/Si(111)

A. Structures and formation energies

Because of the relatively close lattice match between
CoSi2 and Si, a commensurate interface can be created
by matching unit cells of both materials across the inter-
face in a 1 × 1 structure. Figure 6 shows the six structures
of CoSi2(111)/Si(111) interfaces that have been proposed
in the literature based on experimental observations and
theoretical considerations [30–37]. Similar to the case of
Al(111)/Si(111), the interface can have type-A and type-B
orientations, based on whether the fcc stacking sequence in
the metal is the same as or opposite to the stacking sequence
in Si. For each orientation type, there are three structures,
classified by the number of Si atoms bonded to each Co atom
at the interface (i.e., the coordination number of the interfacial
Co): 5, 7, and 8. For A8/B8, the Co coordination number is
the same as in the bulk. This results in one dangling bond on
each Si atom at the interface on the CoSi2 side. Structures
A5/B5 are created by removing this Si atom from A8/B8.
Structures A7/B7, finally, are created by starting from A8/B8
and shifting the CoSi2 layer laterally relative to the Si layer, in
the process breaking the Co-Si bond across the interface and
bonding the resulting Si atom on the Si side with the Si atom
that had the dangling bond in A8/B8.

Matching the in-plane lattice parameter of CoSi2 to that of
Si results in an in-plane strain of ∼2% for CoSi2. We find that
a Brillouin-zone sampling mesh of 12 × 12 × 1 is sufficient
to converge the average potential difference �V̄ to within
0.01 eV.
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TABLE III. Interface formation energies per (1 × 1) in-plane Si
(γ fA(1×1)Si) for all CoSi2(111)/Si(111) structures considered.

γ fA(1×1)Si (eV)

A5 B5 A7 B7 A8 B8

This work, PBE 1.90 1.94 0.60 0.66 0.40 0.37
This work, HSE - - - - 0.42 0.41
Ref. [32] (LDA) 2.20 - 0.86 - 0.68 0.53
Ref. [35] (GGA) - - 0.45 0.49 0.39 0.43

We find that allowing all atoms on the CoSi2 to relax along
the (111) plane (as opposed to keeping the central layers
fixed) does not change the structure, and the resulting energy
and �V̄ differ by within 3 meV per (1 × 1)Si and 5 meV,
respectively. This preferential lateral alignment of the Si and
CoSi2 is to be expected, since there is a clear covalent bonding
pattern across the CoSi2(111)/Si(111) interface as seen in
Fig. 6, and also Fig. S4 in the Supplemental Material [63].

For all six structures, we relax two CoSi2 trilayers and two
Si-Si bilayers near each interface. Relaxing three CoSi2 trilay-
ers and three Si-Si bilayers changes �V̄ by � 10 meV, as seen
in Table S3 in the Supplemental Material [63]. Detailed results
and discussions of atomic displacements at the interface are
included in Sec. S5 of the Supplemental Material [63]. The
magnitudes of atomic relaxations and interlayer spacings are
given in Tables S6– S9.

Table III shows the interface formation energies per (1 ×
1) Si for all considered CoSi2(111)/Si(111) structures. Note
that, unlike Al(111)/Si(111), the energies vary significantly
for different structures. We attribute this to the more covalent
character of the bonding across the interface as evidenced
by the total charge density distributions in Fig. S4 in the
Supplemental Material [63], leading to different atomic struc-
tures (Fig. 6) and layer-projected densities-of-states (Fig. S4
in the Supplemental Material [63]). Similar to Refs. [32] and
[35], we find the eightfold-coordinated structures to be lowest
in energy and the fivefold-coordinated structures to be least
energetically favorable, and therefore the latter may be very
difficult to grow. We note that the energies in Ref. [32] are
larger than both ours and those reported in Ref. [35], likely
because no atomic relaxation was allowed.

For the lowest-energy structures, A8 and B8, we also per-
formed full HSE calculations, starting from the relaxed PBE
geometry but scaled to match the HSE lattice parameters
and bond lengths. We then allowed for atomic relaxation of
the atoms near the interface. Due to the high computational
expense, we stopped the HSE calculations when �V̄ values
were converged to within 0.01 eV. We find that the magnitudes
of relaxations and the interlayer spacings differ by as large as
0.04 Å from the PBE ones when normalized to HSE bulk bond
lengths. As shown in Table III, for A8 and B8 structures, the
fully HSE formation energies are merely 0.02 eV and 0.04 eV
higher than our PBE formation energies.

B. Schottky barrier heights

Our calculated p-type SBHs for all six CoSi2(111)/Si(111)
structures are presented in Table IV. The SBHs display

TABLE IV. p- and n-type Schottky barrier heights (φp and φn)
for all CoSi2(111)/Si(111) structures considered. The values of φp

in the literature are also included. Results marked with asterisks
(*) use the layer-projected density-of-states method; the others use
the potential-alignment method. The notation “PBE+HSE” indicates
that interface calculations are performed with PBE and combined
with HSE calculations for bulk as described in Sec. II.

φp (eV)

A5 B5 A7 B7 A8 B8

This work, PBE+HSE 0.41 0.41 0.68 0.54 0.79 0.56
This work, HSE - - - - 0.87 0.42
This work, PBE 0.06 0.06 0.33 0.18 0.43 0.20
Ref. [35] (GGA) - - 0.66 0.48 0.51 0.28
Ref. [40] (LDA)* - - - - - 0.28
Ref. [42] (LDA+HSE)* - - - - - 0.45
Ref. [45] (PBE)* - - 0.34 0.18 0.38 0.14

φn (eV)

This work, PBE+HSE 0.76 0.76 0.48 0.63 0.38 0.61

variations by as much as ∼0.4 eV, which is not surprising,
given the distinct differences in bonding. Note that the SBHs
for A5 and B5 are within 0.01 eV from each other, yet the
p-SBH for A7 is 0.14 eV higher than that of B7, and the
p-SBH for A8 is 0.23 eV higher than that of B8. We suggest
this is because, as seen in Fig. 6, (1) the lateral positions of the
Si atoms with a dangling bond relative to the atoms in the Si
slab are different for A8 and B8, and (2) the lateral positions
of interfacial Co atoms relative to the atoms in the Si slab are
different for A7 and B7, yet (3) for A5 and B5, there are no
Si atoms with a dangling bond, and the interfacial Co atoms
remain in the same lateral positions relative to the Si slab.
We also note that for NiSi2(111)/Si(111), a similar interface,
experimental measurements have shown that that the p-SBH
of the A7 structure is 0.14 eV higher than that of B7 [81].

As to why A8 has the highest p-SBH, we think this might
be due to the interaction between the Si atoms with dangling
bond and the second Si layer away from the interface on the
Si side, both of which are at the same in-plane positions. This
interaction seems to increase the charge near the dangling-
bond site, as seen in the total charge density distributions in
Fig. S4 in the Supplemental Material [63], thereby increasing
the electrostatic potential energy on the metal side and ulti-
mately the p-SBH. The positioning mentioned above is not
present in B8, and all other structures do not have Si atoms
with a dangling bond.

Table IV also reports the p-type SBHs for the all-HSE
calculations of A8 and B8 described in the previous sec-
tion. While the value for B8 is lower by 0.14 eV from our
PBE+HSE calculation, φp for A8 is higher by 0.08 eV. We
speculate that the HSE functional strengthens the effect that
makes φp for A8 higher, possibly due to the aforementioned
interaction between the Si with a dangling bond and the sec-
ond Si layer away from the interface on the silicon side. In
particular, HSE tends to localize electrons more strongly than
PBE, and therefore the charge at the dangling-bond site could
be more localized on the metal side, leading to higher p-SBH.
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The difference in the PBE+HSE and all-HSE results may
also contain a contribution from the difference between the
in-plane strain of CoSi2 for HSE and that for PBE. Within
HSE, we find that changing the in-plane strain of CoSi2 from
the PBE value (+2.1%) to the HSE value (+2.6%) decreases
the bulk Fermi level by ∼0.1 eV. This may contribute to the
0.14-eV discrepancy of φp for B8 between PBE+HSE and
all-HSE.

We now compare our p-SBH results with previous first-
principles calculations. As seen in Table IV, our PBE+HSE
results differ from previous calculations by as much as 0.4 eV.
Nevertheless, the differences between type-A and type-B ori-
entations agree with both Refs. [35] and [45]: the p-SBH of
A7 is ∼0.15 eV higher than that of B7, and the p-SBH of
A8 is ∼0.25 eV higher than that of B8, consistent with the
expectation that the differences in SBHs are more accurate
than their absolute values.

To investigate the effects of using different functionals, in
the table we also include our PBE results of p-SBH, calcu-
lated entirely using PBE. We find that, compared to PBE,
using HSE functional and structure (with in-plane strain cor-
responding to the PBE value) increases the Fermi level by
0.18 eV and lowers the Si VBM by 0.17 eV; this explains
why our PBE+HSE results are around 0.35 eV higher than our
PBE results. Our PBE results are within 0.01 eV of the results
of [45] for A7 and B7, and within 0.06 eV for A8 and B8.
Our PBE results also agree with Ref. [35] within their quoted
uncertainty of 0.2 eV, except for A7 and B7; the deviations
might be due to the differences in the GGA functional and
pseudopotentials used. For B8, our PBE+HSE result is within
0.02 eV of the LDA+HSE result from Ref. [42]. Experimen-
tally measured n-type SBHs are in the range 0.62–0.9 eV
[26,27,31,82]. Using the Si band gap of 1.17 eV (at 0 K), our
calculated n-SBHs are in the range 0.38–0.76 eV as seen in
Table IV. Our calculated values mostly overlap with the exper-
imental range. The experimental papers do not associate the
measured SBHs with specific structures, except for Ref. [31],
which measured an n-SBH of around 0.64 eV at room tem-
perature for a structure that was stated to be consistent with
B5. This value is lower than our calculated n-SBH for B5,
which is 0.76 eV. The discrepancy may be due to defects such
as misfit dislocations, which Refs. [26,27,31,82] mentioned
were present in their samples.

C. Josephson currents

Using the SBHs from our PBE+HSE calculations, Table V
presents estimates of the Josephson critical current densities,
Eq. (5), for various Si barrier thicknesses in the Josephson
junction. Without image-charge corrections, the current den-
sities are ∼2× smaller. For each thickness, the critical current
densities are very similar for A5 and B5 because their SBHs
are within 0.01 eV from each other. The current densities for
A5 and B5 are higher than those for other structures, which we
attribute to the p-SBHs of A5 and B5 being smaller than those
for the other structures, leading to higher hole currents. How-
ever, as seen in Table III, these structures have significantly
higher interface formation energies than the other structures,
and therefore may be very difficult to grow experimentally.

TABLE V. Estimates of Josephson critical current densities (Jc)
and qubit resonant frequencies ( fq) for CoSi2(111)/Si(111) junctions
using our PBE+HSE SBHs, for various Si barrier thicknesses s. Also
listed are the decay constants 2κh ≡ (2/h̄)

√
2m∗

hφp from fitting Jc to
Eq. (21).

Jc (A/m2)
s (nm) A5 B5 A7 B7 A8 B8

5 9 × 105 9 × 105 7 × 104 3 × 105 4 × 104 2 × 105

6 1 × 105 1 × 105 6 × 103 3 × 104 3 × 103 2 × 104

7 2 × 104 2 × 104 4 × 102 3 × 103 2 × 102 2 × 103

10 46 46 0.2 3.5 0.05 2.4
20 10−7 10−7 10−12 10−9 10−13 10−11

fq (GHz)

5 59 59 17 31 12 29
6 23 23 5.0 11 3.4 9.8
7 9.3 9.3 1.5 3.8 0.9 3.4
10 0.6 0.6 0.04 0.2 0.02 0.1
20 10−4 10−4 10−7 10−6 10−8 10−6

2κh (nm−1)

1.86 1.86 2.40 2.12 2.57 2.16

As discussed in Sec. II E, for FinMET devices the desired
qubit frequency fq is 4–5 GHz. From our estimations, all
structures potentially satisfy this expectation at semiconductor
thicknesses in the range of 5–10 nm. Among these structures,
B8 has the lowest interface formation energy, as seen in Ta-
ble III, and therefore may be the easiest to grow.

Finally, we analyze how Jc depends on the SBHs. Figure 7
shows our calculated Jc for φn in the range 0.38–0.9 eV, which
includes both our calculated and experimentally measured
n-SBHs as discussed in the previous section. Equation (21)
yields a remarkably good fit to our Jc data. Similar to the
case of Al(111)/Si(111), here we also find that (1) hole tun-
neling dominates (Jh ∼ 30–104 A/m2, while Je ∼ 10−3–10
A/m2), and (2) image-charge corrections effects are small.

FIG. 7. Estimated Jc as a function of SBH of CoSi2(111)/Si(111)
at Si thickness s = 6 nm (circles) along with the fit to the WKB tun-
neling probability formula of holes tunneling through a rectangular
barrier of height φp (dashed curve).
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The remarkably good fit reflects the near-ideal nature of the
CoSi2/Si interfaces. The coefficient J0 from the fit is 0.9 ×
1010 A/m2, approximately equal to the expression given by
Eq. (22). Using this approximate J0 and the PBE+HSE φp

values from Table IV, Eq. (21) reproduces the Jc values from
Table V within a factor of 2, with decay constants 2κh shown
in the table.

V. CONCLUSIONS

This work presents first-principles calculations of struc-
tural relaxations, formation energies, and Schottky barrier
heights (SBHs) for Al(111)/Si(111) and CoSi2(111)/Si(111)
interfaces. For Al(111)/Si(111), we find that due to the metal-
lic nature of the bonding, the interface energies and SBHs
are not sensitive to the details of the structure, including
lateral displacements of the Al layers relative to the Si lay-
ers within the interfacial structure of (4 × 4)Al matched to
(3 × 3)Si, which accommodates the lattice mismatch. For
CoSi2(111)/Si(111), on the other hand, the covalent nature
of the bonding leads to distinct energetic and structural dif-
ferences between the six possible interface structures we
considered, also resulting in different electronic properties
and SBHs. Fivefold-coordinated structures are energetically
unfavorable, while eightfold-coordinated structures are lowest
in energy. The SBHs for the fivefold-coordinated structures

are very similar, while for the sevenfold- and eightfold-
coordinated structures, the p-type SBHs are higher for the A
orientation than for the B orientation.

We also provide estimates of the Josephson critical cur-
rents for the calculated interfaces, for various tunneling barrier
thicknesses. These values are then used to estimate qubit
resonance frequencies for FinMETs, demonstrating that qubit
frequencies of 4–5 GHz can be obtained with Si barrier thick-
nesses around 5–10 nm. A fit of the critical current results
to a model based on the WKB tunneling probability for a
rectangular barrier shows predictive capability for the change
in current (and frequency) as a function of barrier height.
The results should be useful as a guide in developing novel
silicon-based merged-element transmons.

ACKNOWLEDGMENTS

We gratefully acknowledge discussions with R. W. Sim-
monds, A. P. McFadden, D. Waldhoer, and C. A. Broderick.
This work was supported by the U.S. Army Research Of-
fice (Grant No. W911NF-22-1-0052), and used the SDSC
Expanse at the University of California, San Diego through
allocation DMR070069 from the Advanced Cyberinfrastruc-
ture Coordination Ecosystem: Services & Support (ACCESS)
program [83], which is supported by National Science Foun-
dation Grants No. 2138259, No. 2138286, No. 2138307, No.
2137603, and No. 2138296.

[1] S. G. Louie, J. R. Chelikowsky, and M. L. Cohen, Ionicity and
the theory of Schottky barriers, Phys. Rev. B 15, 2154 (1977).

[2] C. Tejedor, F. Flores, and E. Louis, The metal-semiconductor
interface: Si (111) and zincblende (110) junctions, J. Phys. C
10, 2163 (1977).

[3] F. K. LeGoues, M. Liehr, and M. Renier, Epitaxy in the pres-
ence of very large misfit: High resolution TEM study of Al/Si,
Ag/Si, Al/CaF2/Si and Ag/CaF2/Si, MRS Online Proc. Libr. 94,
121 (1987).

[4] A. S. Yapsir, C.-H. Choi, S. N. Yang, T.-M. Lu, M. Madden, and
B. Tracy, Structural effects in Al(111)/Si(111) heteroepitaxy by
partially ionized beam deposition α, MRS Online Proc. Libr.
116, 465 (1988).

[5] Y. Miura, K. Hirose, K. Aizawa, N. Ikarashi, and H.
Okabayashi, Schottky barrier inhomogeneity caused by grain
boundaries in epitaxial Al film formed on Si(111), Appl. Phys.
Lett. 61, 1057 (1992).

[6] Y. Miura, S. Fujieda, and K. Hirose, Different Fermi-level pin-
ning positions between epitaxial and rotational Al/Si interfaces,
Phys. Rev. B 50, 4893 (1994).

[7] A. W. Fortuin, P. F. Alkemade, A. H. Verbruggen, A. J.
Steinfort, H. Zandbergen, and S. Radelaar, Characterization of
single-crystalline Al films grown on Si(111), Surf. Sci. 366, 285
(1996).

[8] V. G. Zavodinsky and I. A. Kuyanov, Schottky barrier
at the Al/Si(111) doped and double-doped interfaces: A
local-density cluster study, Superlattices Microstruct. 24, 55
(1998).

[9] D. Skachkov, S.-L. Liu, Y. Wang, X.-G. Zhang, and H.-P.
Cheng, First-principles theory for Schottky barrier physics,
Phys. Rev. B 104, 045429 (2021).

[10] Y. Xu, H. Fan, Z. Li, and Y. Zhou, Signatures of anharmonic
phonon transport in ultrahigh thermal conductance across atom-
ically sharp metal/semiconductor interface, Int. J. Heat Mass
Transf. 201, 123628 (2023).

[11] Y. Q. Liu, S. H. Wei, J. Z. Fan, Z. L. Ma, and T. Zuo, Mechanical
properties of a low-thermal-expansion aluminum/silicon com-
posite produced by powder metallurgy, J. Mater. Sci. Technol.
30, 417 (2014).

[12] Y. Wang, Y. Lu, S. Zhang, Y. Wang, L. Tong, W. Hong, and
Z. Chen, Analysis of interface properties and associated void
of nanoscale Al precipitates in Al-Si alloys: First-principles
calculations and experiment, J. Alloys Compd. 873, 159598
(2021).

[13] W. Wu, M. Gong, B. Wei, A. Misra, and J. Wang,
Atomistic modeling of interface strengthening in
Al-Si eutectic alloys, Acta Mater. 225, 117586
(2022).

[14] M. Chang, J. Li, Z. Yuan, K. Zhang, C. Li, Y. Deng, H. Lu, and
Y.-F. Chen, Low loss single crystalline aluminum films obtained
on Si (1 1 1) through interfacial modulation, J. Cryst. Growth
588, 126678 (2022).

[15] M. S. Moeed, C. T. Earnest, J. H. Béjanin, A. S.
Sharafeldin, and M. Mariantoni, Improving the time stabil-
ity of superconducting planar resonators, MRS Adv. 4, 2201
(2019).

035302-12

https://doi.org/10.1103/PhysRevB.15.2154
https://doi.org/10.1088/0022-3719/10/12/022
https://doi.org/10.1557/PROC-94-121
https://doi.org/10.1557/PROC-116-485
https://doi.org/10.1063/1.107715
https://doi.org/10.1103/PhysRevB.50.4893
https://doi.org/10.1016/0039-6028(96)00824-2
https://doi.org/10.1006/spmi.1996.9986
https://doi.org/10.1103/PhysRevB.104.045429
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123628
https://doi.org/10.1016/j.jmst.2013.11.003
https://doi.org/10.1016/j.jallcom.2021.159598
https://doi.org/10.1016/j.actamat.2021.117586
https://doi.org/10.1016/j.jcrysgro.2022.126678
https://doi.org/10.1557/adv.2019.262


FIRST-PRINCIPLES STUDIES OF SCHOTTKY BARRIERS … PHYSICAL REVIEW B 110, 035302 (2024)

[16] X.-Y. Liu, I. Arslan, B. W. Arey, J. Hackley, V. Lordi, and
C. J. K. Richardson, Perfect strain relaxation in metamorphic
epitaxial aluminum on silicon through primary and secondary
interface misfit dislocation arrays, ACS Nano 12, 6843 (2018).

[17] B. M. McSkimming, A. Alexander, M. H. Samuels, B. Arey,
I. Arslan, and C. J. K. Richardson, Metamorphic growth of
relaxed single crystalline aluminum on silicon (111), J. Vac. Sci.
Technol. A 35, 021401 (2017).

[18] A. Goswami, A. P. McFadden, T. Zhao, H. Inbar, J. T. Dong, R.
Zhao, C. R. H. McRae, R. W. Simmonds, C. J. Palmstrøm, and
D. P. Pappas, Towards merged-element transmons using silicon
fins: The FinMET, Appl. Phys. Lett. 121, 064001 (2022).

[19] R. Zhao, S. Park, T. Zhao, M. Bal, C. R. H. McRae, J. Long,
and D. P. Pappas, Merged-element transmon, Phys. Rev. Appl.
14, 064006 (2020).

[20] L. J. Zeng, S. Nik, T. Greibe, P. Krantz, C. M. Wilson, P.
Delsing, and E. Olsson, Direct observation of the thickness dis-
tribution of ultra thin AlOx barriers in Al/AlOx/Al Josephson
junctions, J. Phys. D: Appl. Phys. 48, 395308 (2015).

[21] H. J. Mamin, E. Huang, S. Carnevale, C. T. Rettner, N.
Arellano, M. H. Sherwood, C. Kurter, B. Trimm, M. Sandberg,
R. M. Shelby, M. A. Mueed, B. A. Madon, A. Pushp, M.
Steffen, and D. Rugar, Merged-element transmons: Design and
qubit performance, Phys. Rev. Appl. 16, 024023 (2021).

[22] T. Kitomi, T. Shigeru, I. Masayasu, and H. Toshiyuki, Super-
conductivity of intermetallic compound CoSi2, J. Phys. Soc.
Jpn. 64, 2237 (1995).

[23] M. S. Shur, Handbook Series on Semiconductor Parameters
(World Scientific, Singapore, 1996), Vol. 1.

[24] P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallo-
graphic Data for Intermetallic Phases (American Society for
Metals, Metals Park, OH, 1985), Vol. 2, p. 1830.

[25] R. T. Tung, J. C. Bean, J. M. Gibson, J. M. Poate, and
D. C. Jacobson, Growth of single-crystal CoSi2 on Si(111),
Appl. Phys. Lett. 40, 684 (1982).

[26] H. Sirringhaus, E. Y. Lee, and H. von Känel, Hot carrier
scattering at interfacial dislocations observed by ballistic-
electron-emission microscopy, Phys. Rev. Lett. 73, 577 (1994).

[27] T. Meyer and H. von Känel, Study of interfacial point defects
by ballistic electron emission microscopy, Phys. Rev. Lett. 78,
3133 (1997).

[28] Y. Fang, D. Wang, P. Li, H. Su, T. Le, Y. Wu, G.-W. Yang,
H.-L. Zhang, Z.-G. Xiao, Y.-Q. Sun, S.-Y. Hong, Y.-W. Xie,
H.-H. Wang, C. Cao, X. Lu, H.-Q. Yuan, and Y. Liu, Growth,
electronic structure and superconductivity of ultrathin epitaxial
CoSi2 films, J. Phys.: Condens. Matter 33, 155501 (2021).

[29] Z. Lu, N. P. Smith, M. P. Prange, R. A. Bunker, J. L. Orrell,
and A. M. Chaka, Effect of interfacial structures on phonon
transport across atomically precise Si/Al heterojunctions,
Phys. Rev. Mater. 5, 086002 (2021).

[30] J. M. Gibson, J. C. Bean, J. M. Poate, and R. T. Tung, Di-
rect determination of atomic structure at the epitaxial cobalt
disilicide on (111) Si interface by ultrahigh resolution electron
microscopy, Appl. Phys. Lett. 41, 818 (1982).

[31] R. T. Tung, Schottky barrier heights of single crystal silicides
on Si(111), J. Vac. Sci. Technol. B 2, 465 (1984).

[32] D. R. Hamann, New silicide interface model from structural
energy calculations, Phys. Rev. Lett. 60, 313 (1988).

[33] A. Catana, P. E. Schmid, S. Rieubland, F. Levy, and P.
Stadelmann, Evidence for seven-fold cobalt coordination at

the CoSi2/Si(111) interface, J. Phys.: Condens. Matter 1, 3999
(1989).

[34] C. W. T. Bulle-Lieuwma, A. F. de Jong, A. H. van Ommen,
J. F. van der Veen, and J. Vrijmoeth, Determination of the
coordination number of Co atoms at the CoSi2(A,B)/Si(111)
interface by transmission electron microscopy, Appl. Phys. Lett.
55, 648 (1989).

[35] R. Stadler, D. Vogtenhuber, and R. Podloucky, Ab initio study
of the CoSi2(111)/Si(111) interface, Phys. Rev. B 60, 17112
(1999).

[36] M. Li, F. Wang, C. Li, C. Li, Q. Sun, S. Wang, and Y. Jia,
Strong quantum size effects in transition metal silicide ultrathin
films: Critical role of Fermi surface nesting, J. Appl. Phys. 112,
104313 (2012).

[37] A. Seubert, J. Schardt, W. Weiß, U. Starke, K. Heinz, and T.
Fauster, Interface structure of ultrathin CoSi2 films epitaxially
grown on Si(111), Appl. Phys. Lett. 76, 727 (2000).

[38] A. D. Becke, Density-functional exchange-energy approxima-
tion with correct asymptotic behavior, Phys. Rev. A 38, 3098
(1988).

[39] J. P. Perdew, Density-functional approximation for the correla-
tion energy of the inhomogeneous electron gas, Phys. Rev. B
33, 8822 (1986).

[40] P. Zhao, Y. Ouyang, J. Chauhan, and J. Guo, First principal
simulation of CoSi2/Si and NiSi2/Si contacts, in 2009 Device
Research Conference (IEEE, New York, 2009), pp. 259–260.

[41] D. M. Ceperley and B. J. Alder, Ground state of the electron gas
by a stochastic method, Phys. Rev. Lett. 45, 566 (1980).

[42] Q. Gao and J. Guo, Barrier height determination of silicide-
silicon contact by hybrid density functional simulation,
Appl. Phys. Lett. 99, 183110 (2011).

[43] J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals
based on a screened Coulomb potential, J. Chem. Phys. 118,
8207 (2003).

[44] J. Heyd, G. E. Scuseria, and M. Ernzerhof, Erratum: Hybrid
functionals based on a screened Coulomb potential, J. Chem.
Phys. 124, 219906(E) (2006).

[45] A. H. M. A. Wasey and G. P. Das, Manifestation of interface-
induced effects of two-dimensional MSi2/Si(111) quantum
heterostructures: A first principles study, Physica E 142,
115291 (2022).

[46] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient
approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).

[47] C. G. Van de Walle and R. M. Martin, Theoretical study of
band offsets at semiconductor interfaces, Phys. Rev. B 35, 8154
(1987).

[48] K. T. Delaney, N. A. Spaldin, and C. G. Van de Walle,
Theoretical study of Schottky-barrier formation at epitaxial
rare-earth-metal/semiconductor interfaces, Phys. Rev. B 81,
165312 (2010).

[49] X. Ma, Y. Dai, L. Yu, and B. Huang, Interface Schottky bar-
rier engineering via strain in metal-semiconductor composites,
Nanoscale 8, 1352 (2016).

[50] L. Weston, H. Tailor, K. Krishnaswamy, L. Bjaalie, and C. G.
Van de Walle, Accurate and efficient band-offset calculations
from density functional theory, Comput. Mater. Sci. 151, 174
(2018).

[51] C.-E. Kim, K. G. Ray, and V. Lordi, A density-functional theory
study of the Al/AlOx/Al tunnel junction, J. Appl. Phys. 128,
155102 (2020).

035302-13

https://doi.org/10.1021/acsnano.8b02065
https://doi.org/10.1116/1.4971200
https://doi.org/10.1063/5.0104950
https://doi.org/10.1103/PhysRevApplied.14.064006
https://doi.org/10.1088/0022-3727/48/39/395308
https://doi.org/10.1103/PhysRevApplied.16.024023
https://doi.org/10.1143/JPSJ.64.2237
https://doi.org/10.1063/1.93234
https://doi.org/10.1103/PhysRevLett.73.577
https://doi.org/10.1103/PhysRevLett.78.3133
https://doi.org/10.1088/1361-648X/abdff6
https://doi.org/10.1103/PhysRevMaterials.5.086002
https://doi.org/10.1063/1.93699
https://doi.org/10.1116/1.582896
https://doi.org/10.1103/PhysRevLett.60.313
https://doi.org/10.1088/0953-8984/1/25/011
https://doi.org/10.1063/1.102439
https://doi.org/10.1103/PhysRevB.60.17112
https://doi.org/10.1063/1.4766304
https://doi.org/10.1063/1.125875
https://doi.org/10.1103/PhysRevA.38.3098
https://doi.org/10.1103/PhysRevB.33.8822
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1063/1.3657767
https://doi.org/10.1063/1.1564060
https://doi.org/10.1063/1.2204597
https://doi.org/10.1016/j.physe.2022.115291
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.35.8154
https://doi.org/10.1103/PhysRevB.81.165312
https://doi.org/10.1039/C5NR05583K
https://doi.org/10.1016/j.commatsci.2018.05.002
https://doi.org/10.1063/5.0020292


NANGOI, PALMSTRØM, AND VAN DE WALLE PHYSICAL REVIEW B 110, 035302 (2024)

[52] V. Ambegaokar and A. Baratoff, Tunneling between supercon-
ductors, Phys. Rev. Lett. 10, 486 (1963).

[53] M. Tinkham, Introduction to Superconductivity, 2nd ed.
(McGraw-Hill, New York, 1996), p. 200.

[54] J. G. Simmons, Generalized formula for the electric tunnel
effect between similar electrodes separated by a thin insulating
film, J. Appl. Phys. 34, 1793 (1963).

[55] J. G. Simmons, Generalized thermal J-V characteristic for the
electric tunnel effect, J. Appl. Phys. 35, 2655 (1964).

[56] R. Tsu and L. Esaki, Tunneling in a finite superlattice,
Appl. Phys. Lett. 22, 562 (1973).

[57] A. Gehring and S. Selberherr, Tunneling models for semi-
conductor device simulation, in Handbook of Theoretical
and Computer Nanotechnology, edited by M. Rieth and W.
Schommers (American Scientific Publishers, Valencia, CA,
2006), Vol. 10, pp. 469–543.

[58] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B
50, 17953 (1994).

[59] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to
the projector augmented-wave method, Phys. Rev. B 59, 1758
(1999).

[60] G. Kresse and J. Furthmüller, Efficiency of ab-initio total
energy calculations for metals and semiconductors using a
plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996).

[61] G. Kresse and J. Furthmüller, Efficient iterative schemes for
ab initio total-energy calculations using a plane-wave basis set,
Phys. Rev. B 54, 11169 (1996).

[62] A. Baldereschi, S. Baroni, and R. Resta, Band offsets in
lattice-matched heterojunctions: A model and first-principles
calculations for GaAs/AlAs, Phys. Rev. Lett. 61, 734 (1988).

[63] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.110.035302 for (1) layer-projected density-
of-states plots, (2) the dependence of the average potential
difference on supercell thickness and number of relaxed layers,
(3) discussions on atomic displacements at the interface, and (4)
total charge densities near the interface.

[64] W. Bludau, A. Onton, and W. Heinke, Temperature dependence
of the band gap of silicon, J. Appl. Phys. 45, 1846 (1974).

[65] P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallo-
graphic Data for Intermetallic Phases (American Society for
Metals, Metals Park, OH, 1985), Vol. 2, p. 894.

[66] M. Kleefstra and G. C. Herman, Influence of the image force on
the band gap in semiconductors and insulators, J. Appl. Phys.
51, 4923 (1980).

[67] W. C. Dunlap and R. L. Watters, Direct measurement of the
dielectric constants of silicon and germanium, Phys. Rev. 92,
1396 (1953).

[68] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson,
and W. D. Oliver, A quantum engineer’s guide to superconduct-
ing qubits, Appl. Phys. Rev. 6, 021318 (2019).

[69] S. Caplan and G. Chanin, Critical-field study of superconduct-
ing Aluminum, Phys. Rev. 138, A1428 (1965).

[70] M. Tinkham, Introduction to Superconductivity, 2nd ed.
(McGraw-Hill, New York, 1996), p. 64.

[71] D. H. Douglass and R. Meservey, Energy gap measurements
by tunneling between superconducting films. I. Temperature
dependence, Phys. Rev. 135, A19 (1964).

[72] S.-P. Chiu, C. C. Tsuei, S.-S. Yeh, F.-C. Zhang, S.
Kirchner, and J.-J. Lin, Observation of triplet superconduc-
tivity in CoSi2/TiSi2 heterostructures, Sci. Adv. 7, eabg6569
(2021).

[73] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Har-
court, Boston, MA, 1976), Chap. 9, p. 48.

[74] F. Nava, K. N. Tu, O. Thomas, J. P. Senateur, R. Madar, A.
Borghesi, G. Guizzetti, U. Gottlieb, O. Laborde, and O. Bisi,
Electrical and optical properties of silicide single crystals and
thin films, Mater. Sci. Rep. 9, 141 (1993).

[75] S. E. Laux, Computation of complex band structures in bulk
and confined structures, in 2009 13th International Workshop
on Computational Electronics, Beijing, China (IEEE, New York,
2009), pp. 1.

[76] L. S. Dorneles, D. M. Schaefer, M. Carara, and L. F. Schelp,
The use of Simmons’ equation to quantify the insulating barrier
parameters in Al/AlOx/Al tunnel junctions, Appl. Phys. Lett.
82, 2832 (2003).

[77] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Charge-insensitive qubit design derived from the
Cooper pair box, Phys. Rev. A 76, 042319 (2007).

[78] C. G. Van de Walle, Atomic and electronic structure of CaSi2/Si
interfaces, Phys. Rev. B 43, 11913 (1991).

[79] M. Koberidze, A. V. Feshchenko, M. J. Puska, R. M. Nieminen,
and J. P. Pekola, Effect of interface geometry on electron tun-
nelling in Al/Al2O3/Al junctions, J. Phys. D: Appl. Phys. 49,
165303 (2016).

[80] V. Somjit and B. Yildiz, Atomic and electronic structure of
the Al2O3/Al interface during oxide propagation probed by
ab initio grand canonical Monte Carlo, ACS Appl. Mater.
Interfaces 14, 42613 (2022).

[81] R. T. Tung, Schottky-Barrier formation at single-crystal metal-
semiconductor interfaces, Phys. Rev. Lett. 52, 461 (1984).

[82] E. Rosencher, S. Delage, and F. A. D’Avitaya, Transient capaci-
tance study of epitaxial CoSi2/Si〈111〉 Schottky barriers, J. Vac.
Sci. Technol. B: Microelectron. Nanom. Struct. 3, 762 (1985).

[83] T. J. Boerner, S. Deems, T. R. Furlani, S. L. Knuth, and J.
Towns, ACCESS: Advancing Innovation: NSF’s Advanced Cy-
berinfrastructure Coordination Ecosystem: Services & Support,
in Practice and Experience in Advanced Research Computing,
PEARC ’23 (Association for Computing Machinery, New York,
2023), pp. 173–176.

035302-14

https://doi.org/10.1103/PhysRevLett.10.486
https://doi.org/10.1063/1.1702682
https://doi.org/10.1063/1.1713820
https://doi.org/10.1063/1.1654509
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevLett.61.734
http://link.aps.org/supplemental/10.1103/PhysRevB.110.035302
https://doi.org/10.1063/1.1663501
https://doi.org/10.1063/1.328366
https://doi.org/10.1103/PhysRev.92.1396
https://doi.org/10.1063/1.5089550
https://doi.org/10.1103/PhysRev.138.A1428
https://doi.org/10.1103/PhysRev.135.A19
https://doi.org/10.1126/sciadv.abg6569
https://doi.org/10.1016/0920-2307(93)90007-2
https://doi.org/10.1063/1.1569986
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevB.43.11913
https://doi.org/10.1088/0022-3727/49/16/165303
https://doi.org/10.1021/acsami.2c08706
https://doi.org/10.1103/PhysRevLett.52.461
https://doi.org/10.1116/1.583138

