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Anisotropic surface polaritons at isotropic-uniaxial interface: An exact algebraic solution
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Surface polaritons in an anisotropic media possess a strong dependence of the wave vector on the propagation
direction, which is called the isofrequency contour. This can lead to the fact that polariton propagation is possible
only in a limited range of angles in the boundary plane. Notable examples are Dyakonov surface waves at the
boundary of two dielectrics and hyperbolic plasmons in a hyperbolic metamaterial. Exact closed-form solutions
of the polariton dispersion equation are known only in special cases: in a weakly anisotropic medium and in
an arbitrary medium for highly symmetric directions of polariton propagation. This work provides an universal
exact solution in algebraic form for a surface polariton at the interface of arbitrary isotropic and uniaxial media
for the case of the optic axis parallel to the boundary. As an example, it is used to analyze the shapes of
isofrequency contours of surface polaritons. The work brings together previously scattered results of studies
on surface polaritons of various types in uniaxial media. In addition, two cases not previously considered in the
literature are analyzed in detail here. The first corresponds to the boundary of an isotropic metal and a Type I
hyperbolic medium, for which the existence of a surface polariton is predicted. In the second case, “elliptic”
surface polaritons at the boundary of an isotropic dielectric and an anisotropic metal-like medium are analyzed.
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I. INTRODUCTION

Surface waves have attracted the attention of researchers
for many years. Specifically, in physics, active research con-
tinues on surface electromagnetic waves in a variety of media,
both natural and artificial. In the literature they are also called
surface polaritons emphasizing the connection with a disper-
sive medium. Due to edge cases it is not always possible to
clearly determine when a surface wave becomes a surface
polariton. Therefore, both terms are used equally in the lit-
erature, often implying the same meaning.

As we know, the basic properties of waves, such as polar-
ization and speed, in an anisotropic medium depend on the
direction of propagation. In particular, the range of possible
propagation directions in the boundary plane becomes an
important characteristic of surface waves. This is also called
the angular existence domain (AED). In the simple case AED
always equals 2π when the boundary between materials is
isotropic. For example, surface plasmon polaritons (SPPs)
at the boundary of metal and a dielectric, if it exists, can
propagate in any direction. In this work we consider the case
of anisotropic boundary, and AED in some cases may be less
than 2π . An illustrative example is Dyakonov surface waves
(DSWs) [1] that are propagating along the interface between
two transparent media at least one of them is birefringent. The
characteristic AED for DSWs in highly anisotropic natural
minerals (Hg2Cl2, TiO2, YVO4) in the optical spectrum is
only a few degrees. The AED for surface polaritons may
depend on the frequency due to the dispersion of dielectric
constants. All other properties of surface waves, such as the
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localization length, propagation length, frequency dispersion,
and others, may also be highly direction dependent.

A. Early studies

Surface polartions in anisotropic medium have been stud-
ied for a long time. Early studies examined plasmonic waves
and others that have existence conditions similar to SPPs (a
negative dielectric constant): surface magnetoplasmons in a
magnetoactive plasma [2–5] in a semiconductor [6]; surface
phonon polaritons (SPhPs) [7–10] and surface phonon plas-
mons [11,12]; and surface polaritons in a resonant medium
[13,14] in an uniaxial antiferromagnets [15] and in a general
uniaxial medium [16]. See also reviews [17–19].

It is well known that a SPP in isotropic media is a purely
transverse magnetic wave (TM wave). We can roughly take
anisotropy of the medium into account as a perturbation lead-
ing to small changes in the wave polarization [4,20]. The
conditions for the existence of a SPP with such a rough ap-
proach remain almost unchanged. Therefore, it was assumed
that the negativity of at least one of the principal components
of a dielectric tensor is the necessary condition for surface
polariton existence in a homogeneous [21] medium. As we
now know, this idea turned out to be wrong.

B. Dyakonov surface waves

One of the earliest works mentioning the existence of
surface polaritons in an anisotropic dielectric is [22]. It pre-
dicts the existence of a singular surface polariton, also called
an exceptional surface wave or surface Voigt wave, in two
cases. One of them is interpreted as the case of two dielectric
media. But the existence condition requires extremely strong
anisotropy of an uniaxial medium [23], and the authors did
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not pay much attention to this. To the best of the author’s
knowledge, a detailed analysis of the existence of surface
waves in a homogeneous anisotropic dielectric was carried out
for the first time in [1] by M. I. Dyakonov, in the case of the
optic axis parallel to the interface. Later it was generalized to
an arbitrary oriented optic axis in [24–26]. Now we call these
Dyakonov surface waves (DSWs). The obtained existence
condition in [1] is less strict and in the strong anisotropy limit
includes previous given in [22]. This statement was noted
much later [27]. DSWs possess two remarkable properties.
Unlike SPPs, the DSWs usually [28] do not propagate in the
most symmetrical directions: along the optic axis or orthogo-
nal to it. This is due to the second property that the DSW is a
hybrid wave mixing two polarizations. Thus, birefringence of
the medium is the crucial property required for DSWs. Other
properties and features are described in more detail in the
review [29].

C. Surface hyperbolic plasmons, Dyakonov
plasmons, and others

A new round of research on surface polaritons in
anisotropic media is associated with metamaterials and struc-
tures related to them. A metamaterial in a certain frequency
range may have significantly stronger anisotropy and lower
losses than natural minerals. For example, the AED of DSWs
in a 2D photonic crystal based on Si and SiO2 [30] may be a
couple of times wider, especially for an optical spectrum. Hy-
perbolic media are one of the types of metamaterials in which
Dyakonov-type surface waves continue to be actively studied
[31–37]. They are named hyperbolic due to the shape of
isofrequency surfaces for a plane wave, which is a one- or two-
sheet hyperboloid [38]. This is possible when the components
of the dielectric tensor in such a medium have different signs,
or in other words, it has an indefinite dielectric tensor. Despite
the fact that such media have been studied for a long time,
the term hyperbolic medium has been established relatively
recently. A notable example mentioned above is light-optical
phonon coupling in an anisotropic crystal that may lead to
hyperbolic behavior in some frequency ranges around the
frequencies of optical phonons [36]. After Dyakonov’s paper,
already known surface polaritons were studied in more detail
and new types were analyzed in hyperbolic media: Dyakonov
plasmons [31,35,39,40], DSWs [41], SPP and DSW coupling
on two closely spaced interfaces [42,43], and others (see the
review [33]).

D. Experimental studies and suitable materials

Despite the fact that the work is devoted to a theoretical
description of polaritons, it is worth mentioning experimental
studies. Surface waves have been actively studied and con-
tinue to be studied, especially in the context of near-field
heat transfer [44–47]. Examples of materials in which phonon
polaritons of interest to us were studied are LiTaO3 and
LiNbO3 [48], CdS [49], MgF2 and TiO2 [50], BaTiO3 and
PbTiO3 [51], α-SiO2 [8,52], α-LiIO3 [10], uniaxial Al2O3

[53], 6H-SiC [54], and CaCO3 [55]; see also reviews [56–58].
Polaritons in anisotropic van der Waals structures are also
of great interest at the present time [59]. Surface plasmon

polaritons at the interface of a metal and an anisotropic di-
electric have also been studied experimentally in liquid crystal
[60], in CaCO3 [61], in ZnO [62], and in para-sexiphenyl
nanowire films [63]. The possibility to create anisotropic
metal layers and, accordingly, the existence of anisotropic sur-
face plasmons was experimentally demonstrated in [64,65].
Hyperbolic waves and Dyakonov plasmons were studied in
a large number of artificial structures, for example, based on
Au nanorods [66], on Ag/SiN thin-layered structure [67], on
metal gratings Ag [68], on Si/ZnO:Al nanorods [69], in deep
trench structures [34,70], and in nanostructured hexagonal BN
[71]. Surface hyperbolic phonon polaritons in 2D films are
being actively studied, for example, in a single [72,73] or
twisted [74] α-MoO3 flakes. At the same time, DSWs have
not been experimentally studied in such detail as others. The
first observation of DSWs was made more than 20 years after
the theoretical prediction in [75] at the interface of a positive
biaxial crystal (KTiOPO4) and index–matching liquid. There
are only a few other studies in which the excitation of DSWs
was also observed: nematic liquid crystal and polycarbon-
ate [76], MgF2, and chiral sculptured thin film [77]. Guided
modes enabled by DSWs have been observed in a Al2O3

nanosheet between a negative biaxial crystal (LiB3O5) and
index-matching liquid [78].

In all works up to [79], it was believed that the solution
to the dispersion equation of a surface wave for an arbi-
trary direction of propagation cannot be obtained in analytical
form. The systems of equations were solved numerically.
This may be inconvenient for further analysis of frequency
dispersion, for example, in metamaterials. Therefore, the aim
of the present work is to extend the solution for Dyakonov
surface waves given in [79], where only positive dielectric
permittivities were considered, to the case of arbitrary dielec-
tric permittivities. A universal analytical solution in algebraic
form is given for an arbitrary ratio of the dielectric permittiv-
ities of media.

The main part of the work is devoted to the detailed analy-
sis of it and correspondence with previously known results.
This part also provides examples of the basic isofrequency
contour shapes depending on the dielectric permittivities.
When analyzing combinations of different materials, it was
discovered that two types of surface polaritons were not de-
scribed in the literature. The first type is polaritons at the
interface of an isotropic metal-like medium and Type I hy-
perbolic medium, which can be elliptic- or hyperbolic-like.
The second is elliptic polaritons at the interface of anisotropic
medium with both negative dielectric permittivities. Other pa-
pers mentioned only hyperbolic polaritons. The classification
of surface polaritons according to the shapes of isofrequency
contours is given in the summary.

Cumbersome transformations that may be useful are given
in the Appendixes.

II. MODEL

We are looking for surface electromagnetic waves propa-
gating along the interface of two homogeneous nonmagnetic
nonchiral media. Electromagnetic properties of media are de-
scribed within dielectric permittivity which may depend on
the frequency of the wave ω. Let us suppose an isotropic
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FIG. 1. A planar interface is formed between an uniaxial medium
and an isotropic medium where surface polaritons propagate at angle
ϕ to the z axis. The optic axis of an uniaxial medium coincided with
the z axis and is parallel to the interface plane.

medium filling the upper half-space x > 0 and an anisotropic
uniaxial medium filling the lower half-space x < 0. Let εi

be dielectric permittivity of the isotropic medium and ε̂ be
dielectric tensor of the anisotropic medium. In principal axes

ε̂ =
⎛
⎝εo 0 0

0 εo 0
0 0 εe

⎞
⎠ (1)

has two independent components [80].
As a good first approximation, we neglect absorption, dis-

sipation, and gain in media if |Re εi,o,e| � |Im εi,o,e|. Then let
Im εi = Im εo = Im εe = 0 at ω. If we do not neglect losses,
then a surface polariton would have a finite propagation length
or finite lifetime. To find them, one can use the solution
obtained as a good first approximation. One should be careful,
because such an approximation is unacceptable in ε-near-zero
materials in which it is assumed Re εi,o,e ≈ 0. Also, in an
anisotropic medium, this may change the AED of the surface
polariton.

A. Dispersion equation

Let us choose the coordinate system (Fig. 1) in such a
way that the plane x = 0 coincides with the interface between
media. An optic axis C is parallel to the interface and directed
along the z axis. That is, the coordinate axes coincide with
the principal axes of (1). Let q = (0, qy, qz ) be the wave
vector of a surface polariton making angle ϕ with C. It is
then determined from the dispersion equation. In a general
case, a surface wave should be a linear combination of all
eigenwaves, with some specific exceptions [81]. They all have
the same q, but possibly different decay with distance from the
interface. As usual, eigenwaves mean solutions to Maxwell’s
equations with constitutive relations

∇ × E = iω

c
B, ∇ × H = − iω

c
D,

∇ · D = 0, ∇ · B = 0,

Di(ω) = ε̂ik (ω)Ek (ω), Bi = Hi,

in the form of a monochromatic plane wave, such
that E, D, H ∝ exp(iqyy + iqzz − iωt ± κx). In the isotropic
medium we can freely choose the combination of two waves
with orthogonal polarization and transverse electric (TE) and

transverse magnetic wave (TM wave), for example. There is
no such freedom in the uniaxial medium, and the general
solution is a combination of an ordinary and an extraordinary
wave. There is an exception to this that will be specifically
mentioned.

Although there are many works [1,10,82–85] that study
surface waves in this case and even for an arbitrary optic axis
direction [24,26,35,86], nowhere previously [79] was an ana-
lytical solution obtained in a simple and elegant 1-parametric
form. Here we use the similar method proposed in [79] for
DSWs to obtain an analytical solution for any possible com-
bination of signs εi, εo, εe [87].

From now on, all dimensional quantities are expressed in
units of the wave vector in vacuum k0 = ω/c. Using standard
boundary conditions for the continuity of tangential compo-
nents of the electric Ey,z and magnetic fields By,z, we obtain
the dispersion equation[
κi

(
n2

z − εo
) + κo

(
n2

z − εi
)]×[

κiεi
(
n2

z − εo
) + κeεo

(
n2

z − εi
)]

= n2
yn2

z (εi − εo)2 (2)

to which we need to add the relations for different eigenwaves

κ2
i = n2

y + n2
z − εi, (3)

κ2
o = n2

y + n2
z − εo, (4)

κ2
e = n2

y + εe

εo
n2

z − εe, (5)

where κi = the TE and TM wave decay constant, κo = the
ordinary wave decay constant, κe = the extraordinary wave
decay constant, and ny = qy/k0, nz = qz/k0. The system of
four equations (2)–(5) contains five unknowns ny, nz, κi, κo, κe

that need to be found. One also needs to remember that ny =
nz tan ϕ. The detailed derivation of dispersion equation (2) and
expressions for field components in a surface wave are given
in Appendix A.

It should be noted that (2) differs from the previously
derived [Eq. (8) in 1] and [Eq. (12) in 29], but is similar to
the dispersion equation for the eigenmodes in an anisotropic
cylindrical wave guide [Eq. (4) in 88]. In Appendix B,
dispersion equation (2) is proven to be equivalent to the equa-
tion obtained by Dyakonov [Eq. (9) in 1].

B. Algebraic solution

We say that a surface polariton exists at angle ϕ if there
is a solution to the system (2)–(5) that satisfies the conditions
κi, κo, κe > 0 and ny, nz is real. According to symmetry, the
surface polariton also exists for angles −ϕ, π + ϕ, π − ϕ.
Often the dispersion equation (5) is solved numerically for a
chosen direction making an angle ϕ with the optic axis. But,
in fact, it is possible to write the exact solution in algebraic
form [79] using an additional variable,

κo(s) =
√

−P2(s)

P4(s)
, κe(s) = sκo(s), (6)

κi(s) =
√

κ2
o (s) + εo − εi, (7)
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ny(s) =
√

(εe − εos2)κ2
o (s)

εe − εo
, (8)

nz(s) =
√

(s2 − 1)εoκ2
o (s)

εe − εo
+ εo, (9)

q(s) =
√

ny(s)2 + nz(s)2, (10)

ϕ(s) = arctan
ny(s)

nz(s)
, (11)

where P2(s) and P4(s) are polynomials of degree 2 and degree
4 defined as

P2(s) = (εi − εo)(εe + εos)2, (12)

P4(s) = (εi + εos)(1 + s)

× [εi − 2εe + (εi − εo)s + εos2]. (13)

A detailed derivation of the solution (6) is given in Ap-
pendix C. If the value s is known, then all parameters of
the surface polariton are determined uniquely. In fact, the
range of permissible values of s is limited and corresponds
to the surface wave solution. This range is determined only by
the dielectric permittivities εi, εo, εe.

The next section is devoted to the analysis of permissible
values of s in different media, extending the results obtained
in [79] for DSWs.

III. ANALYSIS OF ALGEBRAIC SOLUTION

Let us consider the general case when the signs εi, εo,
and εe are arbitrary. We divide all combinations of signs into
three groups: negative permittivity group, positive permittivity
group, and hyperbolic group. In fact, the division is quite
arbitrary, because negative permittivity and hyperbolic groups
have something in common with each other. This will become
clear later.

The number of cases that need to be analyzed is slightly
reduced. It follows from (2) that there are no solutions if
εi, εo < 0 regardless of εe.

A. Negative permittivity materials: SPPs and SPhPs

The negative ε group includes such cases where one
medium has all negative components of the dielectric tensor,
and other has all positive components of the dielectric tensor.
From (2) it follows that there is no solution if all εi, εo, εe < 0.
Therefore there are four different cases of partnering media:
anisotropic metal-like medium (εe < εo < 0 or εo < εe < 0)
and isotropic dielectric εi > 0, isotropic metal-like medium
εi < 0, and uniaxial dielectric medium, positive (εo < εe)
or negative (εe < εo). It is clear that in the limit of weak
anisotropy (εo ≈ εe), surface polaritons in this group include
surface plasmon polaritons (SPPs), surface phonon polaritons
(SPhPs), and other polaritons in isotropic media with negative
permittivity [89].

1. Isotropic metal-like medium and uniaxial dielectric

Surface polaritons at the boundary of a metal or medium
having negative permittivity at some frequency and an uniax-
ial dielectric have been considered earlier. Surface plasmon
(potential wave) dispersion equations in the quasistatic ap-
proximation (q � ω/c) have been obtained in [2,4]. In
[83,84,90,91] authors numerically analyzed dispersion of
SPPs for an arbitrary propagation direction. Also in [84],
surface polariton AED has been obtained analytically. The
paper [85] pays attention to the special case when the SPP
propagation length increases significantly for some directions.
It happens due to a large penetration length (κe → 0) in
the uniaxial dielectric, physically meaning that the polariton
energy is transferred mainly in the dielectric without signif-
icant losses. The case of an arbitrary oriented optic axis has
been analyzed in [86] using an iterative method.

Let

η = εe

εo
− 1 (14)

be the relative anisotropy strength, and

χ = − εi

εo
(15)

be the relative permittivity of the isotropic medium. More
general η = η(ω) and χ = χ (ω). Then η > 0 corresponds to
positive birefringence and −1 < η < 0 to negative birefrin-
gence. In this section χ > 0. Its value is important and allows
us to make several statements about the existence of surface
polaritons. If χ > 1 and anisotropy is weak η ≈ 0, then a
surface polariton propagating perpendicular to the optic axis
ϕ = π/2 exists. This is clear from the well-known dispersion
law for SPP in isotropic media,

q2
SPP = εiεo

εi + εo
= εoχ

χ − 1
. (16)

More details are given in Appendix D.
Let us look at the exact solution (6). The range of s is

determined in this case from the condition that the radical
expressions (8) and (9) are positive and finite. When solving
inequalities, it turns out to be convenient to introduce special
values

s1 =
{√

1 + η − ηχ, if 1 + η − ηχ > 0
0, otherwise

, (17)

s2 =
√

1 + η, (18)

s3 = χ. (19)

These values correspond to zeros or poles of any rational
expression under radicals (6)–(10): nz → 0 as s → s1 > 0
(if s = 0 then κe = 0); ny → 0 as s → s2; and P4(s) → 0
as s → s3. Condition (17) may seem artificial, but it has a
clear physical sense. The extraordinary wave becomes a TM
wave for ϕ = π/2 and has only Ey, Ex, Hz components. It
means that surface polariton wave vector q is determined by
εo and εi only (16). But at the same time, for the existence
of a surface wave, qSPP must be greater than the wave vec-
tor of a homogeneous extraordinary wave q2

SPP > εe, which
implies (17).
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One may note that s1 < s2 if η > 0, and s1 > s2 if η < 0.
The range of s differs slightly for these cases. Let us consider
both cases in more detail.

Positive birefringent dielectric, η > 0.

s1 < s < min(s2, s3).

Using (17)–(19) we obtain a necessary and sufficient condi-
tion for the existence of a surface polariton

χ > 1 ⇔ εo + εi < 0.

One can already notice several features. If s1 = 0, then
κe = 0 for some angle ϕ(0) = ϕe and

tan2 ϕe = (1 + η)3(1 + χ )

(1 + η + χ )(ηχ − 1 − η)
. (20)

It means that surface polariton is weakly localized in dielectric
for directions ϕ ≈ ϕe which is noted in [84,85]. ϕe exists if
η, χ fall into domain I + II in Fig. 2(a).

If min(s2, s3) = s3 and κo, κe, κi, q → ∞ as s → s3. This
limit corresponds to the quasistatic approximation, when
κo, κe, κi, q � k0, and we can neglect retardation. The corre-
sponding angle ϕQS at which this occurs is determined by

tan2 ϕQS = 1 + η − χ2

χ2 − 1
. (21)

Angle ϕQS [92] exists only if 1 < χ <
√

1 + η, corresponding
to domain II + III in Fig. 2(a). The analytical expression (21)
was first obtained in [4]. It should be understood that q → ∞
as ϕ → ϕQS only in the absence of any losses (Im εo,e,i = 0).
Therefore, in real materials Re q is finite, but possibly large.

Negative birefringent dielectric, η < 0.

s2 < s < min(s1, s3).

The existence condition in this case includes part of the region
χ < 1 and is written as

χ >
√

1 + η.

If χ < 1 then angle ϕQS exists in the same way as in the case
of η > 0. This domain is marked V in Fig. 2(a).

When η 	= 1 and χ > 1 (domains I–IV) singular surface
polariton (SSP) exists, which is propagating at an angle

tan2 ϕSSP = (2 + η)2(1 + χ )

4(1 + η + χ )(χ − 1)
. (22)

At this propagation angle κe = κo, and the polarization vec-
tors of the ordinary and extraordinary wave are proportional
to each other. This leads to the fact that the independent
solutions of the Maxwell’s equations are not Ao exp(−κox)
and Ae exp(−κex), but A1 exp(−κx) and A2x exp(−κx) where
κ = κo = κe [93]. This consideration for surface waves called
SSPs were discussed in [22], but only in the case of isotropic
dielectric. The case of isotropic metal and anisotropic dielec-
tric was addressed in [94], and the authors called this the
SPP-Voigt wave.

It should be noted that η = 0 and s1 = s2 = 1 for the case
of isotropic media. Accordingly, the range of s degenerates
into a single point. Having carefully calculated the limit in
this case, we obtain the dispersion of an isotropic SPP (16).

FIG. 2. Types of surface polaritons and its existence domains at
the interface of a metal-like medium εi < 0 and an uniaxial dielec-
tric εo, εe > 0. (a) Surface polariton existence domains in material
parameter space. Vertical orange rectangle shows the domain corre-
sponding to the usual surface plasmon polariton (SPP) in a weakly
anisotropic medium. The shaded region is the domain of parameters
in which there is no surface polariton at any propagation angle ϕ.
(b)–(g) Isofrequency contours q(ϕ) of a surface polariton for selected
parameters (triangles) from different domains. The thick red curve
is the isofrequency contour. The red shaded region is the angular
existence domain. The optic axis C is horizontal. Thin blue lines are
the light cones for ordinary and extraordinary waves. Angle ϕSSP (22)
shows the angle at which singular polariton propagates. Angles ϕe

and ϕQS are defined by (20) and (21).
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All analysis results are shown in Fig. 2. It shows all do-
mains of material parameters in which a surface polariton
exists and examples of isofrequency contours q(ϕ) for differ-
ent material parameters. This should be understood as follows.
η and χ change with frequency ω due to frequency dispersion,
and accordingly the point (η, χ ) in the plot [Fig. 2(a)] falls
into different domains depending on ω. This leads to a change
in the shape of the polariton isofrequency contour and AED.
The combined existence condition can be written as

χ > min(1,
√

1 + η).

It is equivalent to the existence condition given in [84]. The
case of isotropic media falls into domain IV. In this domain
of parameters the contour is ellipse-like and is most similar
to a circle as for an isotropic SPP. AED in IV is a full plane,
ϕ ∈ [0, 2π ). In domain I the angle ϕe exists, and the surface
polariton contour looks like the trimmed ellipse. If material
parameters fall into domains II, III, and V, then the contour
is hyperbola-like curve due to the existence of angle ϕQS.
Depending on the type of isofrequency curve, we call surface
polaritons elliptic-like or hyperbolic-like. It should be noted
that only in domain II does the surface polariton not exist
for highly symmetric directions, along the optic axis, and/or
perpendicular to the optic axis.

2. Isotropic dielectric and anisotropic metal-like medium

There is not much variety of surface polaritons in this case.
In the first works [2,14,16] existence conditions of a surface
polariton were analyzed in the quasistatic approximation and
without it for directions of high symmetry. The case of an
optic axis perpendicular to the boundary is analyzed in [95].
SPP in anisotropic metals with anisotropic plasma frequency
were studied in [96]. A detailed analysis of different types
of surface polaritons in this case, and its AED, was carried
out in [97] and in an unpublished paper [98]. It is also worth
noting the work [99] in which similar results were obtained
for a metal metasurface designed as diffraction grating.

It is possible to use previously defined η and χ in (14)
and (15) to describe the domain of material parameters where
surface polaritons exist. The surface polariton existence con-
dition in this case [97] is

0 < χ < max(1,
√

1 + η).

The range of the parameter s again depends on the sign of the
anisotropy strength η.

Positive anisotropy, η > 0:

max(s1, s3) � s � s2. (23)

Negative anisotropy, η < 0:

max(s2, s3) � s � s1. (24)

Limit values s1,2,3 are the same as in (17)–(19). Similar to the
previous case s1 = s2 in the limit of isotropic metal η = 0.
Carefully calculating the polariton wave vector in this limit,
we obtain an isotropic SPP (16).

All possible types of surface polaritons and material pa-
rameters domains are shown in Fig. 3. A surface polariton has
hyperbolic-like isofrequency contour for parameters from do-
mains I and III. The boundaries of AED are determined by the

FIG. 3. Types of surface polaritons and its existence domains at
the interface of an isotropic dielectric εi > 0 and an uniaxial metal-
like medium εo, εe < 0. (a) Surface polariton existence domains in
material parameter space. (b)–(e) Isofrequency contours q(ϕ) of a
surface polariton for selected parameters (triangles) from different
domains. Thin blue line is the light cone in isotropic medium. Other
notations used are the same as in Fig. 2. Angle ϕQS is defined by (21).

same angle ϕQS (21). It can also be noted that the isofrequency
contour has additional inflection points in domain I. In domain
II the surface polariton is elliptic-like.

B. Positive permittivity materials: DSWs

The next group of materials is the positive permittivity
group. A surface polariton, known as DSW, at the interface of
two media with positive components of dielectric exists only
if 0 < εo < εi < εe [1]. That is, an uniaxial medium has to
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be positive with an additional condition to isotropic dielectric
permittivity εi. In our notation the DSW existence condition
is written as

−1 − η < χ < −1.

This can be seen as an extension of the case (Sec. III A 1) to
the region χ < 0. A complete analytical solution to this case
is discussed in [79]. Let us repeat it briefly for completeness.
The parameter s varies within

0 < s < s4,

where s4 is determined from κi = 0 and equals

s4 = χ +
√

(2 + χ )2 + 4η

2
. (25)

Let ϕi be the angle at which κi = 0. AED is determined by the
angles ϕi < ϕ < ϕe and the mirrored domains relative to optic
axis and normal to it. Angle ϕe is defined above (20), and ϕi

in our notation

sin2 ϕi = (−1 − χ )[2 + χ +
√

(2 + χ )2 + 4η]

2η
. (26)

Let us recall that before DSWs, the possibility of SSP
existence was mentioned in [22]. It is now often called the
Dyakonov-Voigt surface wave (DVSW). The domain of ma-
terial parameters for which it exists lies within the domain of
DSWs −η/2 < χ < −1. This was also noted in [27]. Figure 4
shows the existence domain of DSWs (I and II) and DVSW
(II).

Unlike surface polaritons discussed above, DSWs are
weakly localized at the interface at any propagation angle.
This can be understood by the proximity of the isofrequency
contour [Figs. 4(b) and 4(c)] to the light cones. The field
distributions fall away from the interface ∝ exp(−|x|/xDSW),
where xDSW is the characteristic localization length. The
estimated value xDSW � 2

√
2η−3/2λi in the limit of weak

anisotropy η � 1, where λi is the wavelength in isotropic
medium λi. For example, η ≈ 0.8 in strongly anisotropic
Hg2Cl2 for visible wavelengths and the corresponding length
xDSW ≈ 10λi. In more common natural anisotropic minerals
xDSW ≈ 10–100λi.

C. Hyperbolic medium

In the last hyperbolic group we include cases in which the
uniaxial medium has different signs of the dielectric tensor
components. An indefinite medium or hyperbolic medium
[38,100], as we now call them, has been known for a long
time in the infrared. The contribution of optical phonons to
the dielectric permittivity of a uniaxial crystal can be highly
anisotropic, leading to hyperbolic dispersion of electromag-
netic waves in the bulk. Hyperbolic dispersion means that the
light cone of an extraordinary wave is a one-sheet or two-sheet
hyperboloid, instead of an ellipsoid. Therefore, researchers
were also interested in the dispersion of surface polaritons in
such a hyperbolic medium. The analysis of surface polaritons
was first done in the quasistatic approximation in [4,16], and
then revisited much later [101] in structured hyperbolic meta-
materials. For a long time, the exact solution was known only
for directions of high symmetry [14], and in the form of a

FIG. 4. Dyakonov surface waves (DSWs) and singular surface
polariton existence domains at the interface of an isotropic εi > 0 and
an uniaxial dielectric εo, εe > 0. (a) Its existence domains in material
parameter space. The shaded region is the domain of parameters
in which there is no surface polariton at any propagation angle ϕ.
(b)–(c) Isofrequency contours q(ϕ) of DSW for selected parameters
(triangles) for a “weakly” and strongly anisotropic medium. Thin
blue lines are the light cones for ordinary, extraordinary, TE, and TM
waves. Angle ϕSSP (22) shows the angle at which a singular polariton
propagates. Angles ϕe and ϕi are defined by (20) and (26). Other
notations used are the same as in Fig. 2.

singular surface polariton [22]. Researchers’ interest in sur-
face polaritons in already known hyperbolic media returned
after a long time. In [31] it was proposed to exploit hyperbolic
metamaterials for extending AED of DSWs. The resulting
surface polariton is called a Dyakonov plasmon because it
“combines” the properties of both SPPs and DSWs.

It is known that there are two types of hyperbolic media
[100]. In a Type I hyperbolic medium two components of di-
electric tensor are positive εo > 0, and one is negative εe < 0.
In a Type II hyperbolic medium two components are negative
εo < 0, one is positive εe > 0. Let us consider these cases
separately.

1. Type I hyperbolic medium

To the best of author’s knowledge, this case is the least well
described in the literature and may not have been studied ex-
perimentally. Since εo > 0, the existence of a surface polariton
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at the boundary is possible not only with an isotropic dielectric
(e.g., air), but also with a metal-like medium. In our notation
χ < 0 corresponds to the case of a dielectric and χ < 0 to a
“metal.”

The latter case means, in a sense, the coupling of SPP in
a metal and a surface phonon polariton (SPhP) in a hyper-
bolic medium. It should be distinguished from the case of
SPP-SPhP coupling in the same medium [62,102]. The first
description of the surface polariton at the interface of a metal
and a hyperbolic medium is given in the quasistatic approxi-
mation [11,12]. Much later and independently, the possibility
of the existence of the surface waves in a planar anisotropic
waveguide with perfectly conducting walls was noted in
[103]. It is possible that hybrid SPPs in graphene-coupled
anisotropic van der Waals material [104] refers specifically
to the case under discussion in the limit of a thin metal layer.

The case of a boundary with a dielectric was first consid-
ered in [22] (free surface LiTaO3), in the form of a singular
surface polariton propagating at fixed angle ϕSSP. A more
detailed analysis for an arbitrary propagation angles was car-
ried out in [32,40,41] by numerically solving the dispersion
equation.

The only necessary and sufficient condition for surface
polariton existence in this case is εi < εo or in our notation

χ > −1. (27)

The range of acceptable values s in the exact solution (6) in
the case under consideration is not as simple as the previous
ones. To describe the range of possible values of s in this case,
another special value is needed:

s5 = −1 − η. (28)

First, it should be noted that there is an exact solution
that has a very simple form. If it turns out that εi = εe, and
therefore χ = −1 − η, then dispersion equation (2) can be
simplified to the form

εiκo + εoκe = 0. (29)

The solution to it is

n2
y

η + 2

η + 1
+ n2

z = εo. (30)

The shape of isofrequency contour is an ellipse if η < −2,
and a hyperbola otherwise. In terms of s the range of possible
values degenerates to a point s = s1 = s3 = s4 = s5. This is
similar to the isotropic case εo = εe. It can also be noted that
P2(s) and P4(s) have a common divisor when εi = εe.

In all other cases, the range of s is not degenerated. For
χ > −1 − η it is defined by

s5 < s < min(s1, s3),

and in the region χ < −1 − η by

max(s3, s1) < s < s5.

There are also many types of isofrequency contours of
surface polariton (Fig. 5), as in the case of a metal and an
anisotropic dielectric (Sec. III A 1). They all have one feature
in common. The propagation of polariton along the optic axis

FIG. 5. Types of surface polaritons and their existence domains
at the interface of an isotropic medium εi and a Type I hyperbolic
medium εo > 0, εe < 0. (a) Surface polariton and singular surface
polariton existence domains in material parameter space. (b)–(g)
Isofrequency contours q(ϕ) of surface polariton for selected param-
eters (triangles) from different domains. White point at the contour
shows that surface polariton cannot propagate along the optic axis.
Thin blue lines are the light cones for ordinary, extraordinary, TE,
and TM, waves. Angle ϕSSP (22) shows the angle at which singular
polariton propagates. Angles ϕe and ϕQS are defined by (20) and (21).
Other notations used are the same as in Fig. 2.
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is prohibited, but at an any small angle ϕ 	= 0 it is already
possible.

As far as the author knows, only the case of the bound-
ary between a dielectric and a hyperbolic medium has been
considered previously. In the notation used, this means χ <

0. These are domains V and VI in Fig. 5(a). This case
corresponds, for example, to a surface polariton at the free
boundary (εi = 1) of hyperbolic medium. The AED of a sur-
face polariton in this case is limited by angle ϕe (20) [32,40].
Before these works, the existence of a SSP in domain V was
predicted [22]. It propagates at angle ϕSSP (22). The isofre-
quency contour shape is more like an arc than an ellipse or a
hyperbola. This is reminiscent of DSWs. The polariton in this
case is also weakly localized. This can be understood by the
proximity of the isofrequency contour [Figs. 5(f) and 5(g)] to
the light cone of extraordinary waves.

The region χ > 0 (domains I–IV) corresponds to the
boundary with an isotropic metal-like medium and is ana-
lyzed in this paper without the quasistatic approximation. In
domains I and II isofrequency contours (Fig. 5) of the surface
polariton is similar to an ellipse, and we call it elliptic-like.
AED is the entire plane except ϕ = 0 and ϕ = π . In domains
III and IV the surface polariton is hyperbolic-like, as can be
seen from the shape of the isofrequency contour [Figs. 5(d)
and 5(e)]. AED in this case is limited by the angle ϕQS (21).
The angle ϕQS was obtained in the quasistatic approximation
in [11]. Compared to the previous case, the polariton is well
localized at the boundary for any propagation direction not
near the optic axis. Also in domains II and III there is SSP
at angle ϕSSP (22). It is worth recalling that there is a simple
shape (ellipse or hyperbola) of the isofrequency contour (30)
in I and IV if εi = εe, or χ = −1 − η in our terms.

2. Type II hyperbolic medium

In a Type II hyperbolic medium εo < 0 and εe > 0. As
mentioned at the beginning, there is no surface polariton if
εi < 0 and εo < 0. Therefore, we need to consider only the
case εi > 0 corresponding to χ > 0. The properties of surface
polaritons in this case are known and well described in the
literature [31,35,40,41].

The necessary condition for existence in this case is quite
simple, εi < |εo|, which is

0 < χ < 1

in our notation. The range of possible values s is defined by

min (s1, s3) < s < max (s1, s3), (31)

and it always includes the bound s1 	= 0. If s1 = s3, the range
degenerates to a point and the solution is given by Eq. (30),
the same as in the case of a Type I hyperbolic medium. The
corresponding relation χ = −1 − η is shown in Fig. 6(a).
Since −2 < η < −1, the shape of an isofrequency contour is
a hyperbola.

There are two domains of parameters in which the isofre-
quency contour has a different shape [Fig. 6(a)]. They are
separated by the relation εi = |εo|εe/(|εo| + εe), which is writ-
ten as χ = 1 + 1/η in the notation used. AED of surface
polariton in domain I [Fig. 6(b)] is limited only by the an-
gle ϕQS (21). But in domain II there is no surface polariton

FIG. 6. Types of surface polaritons and their existence domains
at the interface of an isotropic dielectric εi > 0 and a Type II hyper-
bolic medium εo < 0, εe > 0. (a) Surface polariton existence domain
in material parameter space. (b)–(c) Isofrequency contours q(ϕ) of
surface polaritons for selected parameters (triangles) from different
domains. Thin blue lines are the light cones for extraordinary, TE,
and TM waves. Angles ϕe and ϕQS are defined by (20) and (21). Other
notations used are the same as in Fig. 2.

propagating perpendicular to the optic axis φ = π/2, and
AED is more narrow ϕQS < ϕ < ϕe [Fig. 6(c)]. The isofre-
quency contour of a polariton starts from the light cone of
extraordinary waves at the angle ϕe (20). In both cases surface
polariton is called hyperbolic-like.

D. Summary

The results of the analysis are summarized in Table I.
Each line of the table shows the main features of the sur-
face polariton, based on its isofrequency contour shape and
the conditions for its existence. The first three columns are
self-explanatory. The fourth column describes what curve an
isofrequency contour resembles. “0–hyperbola” means that
the contour looks like a hyperbola with foci on the optic
axis, similar to a “π/2–hyperbola,” but the foci are on the
perpendicular to the optic axis. A finite or infinite arc means
whether the wave vector q of the surface polariton is limited
or not at any propagation angle ϕ. The parameter s range
corresponds to the permissible values of s in the algebraic
solution (6)–(11). The AED column describes the range of
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TABLE I. List of surface polaritons isofrequency contour shapes and its basic properties.

Sign

εi εo εe Contour shape s range in Eqs. (6)–(11) AEDa Existence condition Refs.b SSPc

− − ± — — — — — —

− + + “Ellipse” [s1, s2] ∪ [s2, s1]d

[
0,

π

2

]
εe < εo < |εi| or [83–86] yes [94]

√
εoεe < |εi| <

εe

η
;e

“Elliptic” arc (0, s2] [0, ϕe) max

(
εe

η
,
√

εoεe

)
< |εi| [83–86] yes [94]

“0–hyperbola” [s2, s3) [0, ϕQS)
√

εoεe < |εi| < εo [84] no [94]

“π/2–hyperbola” [s1, s3)

(
ϕQS,

π

2

]
εo < |εi| < min

(
εe

η
,
√

εoεe

)
[84] yes [94]

“π/2–hyperbolic”
Infinite arc

(0, s3) (ϕQS, ϕe)
εe

η
< |εi| <

√
εoεe [84] yes [94]

+ − − “ellipse” [s1, s2] ∪ [s2, s1]d

[
0,

π

2

]
εi < min(|εo|,

√|εo||εe|) This work no

“0–hyperbola” (s3, s2] [0, ϕQS) |εo| < εi <
√|εo||εe| [97] no

“π/2–hyperbola” (s3, s1]

(
ϕQS,

π

2

] √|εo||εe| < εi < |εo| [97] no

+ + + arc (0, s4) (ϕi, ϕe) εo < εi < εe [1,79] yes [22], if
εe > 3εo

− + − “Ellipse” [s1, s5) ∪ (s5, s1]f

(
0,

π

2

]
0 < εo < |εi| This work yes, if

εo > |εe|
“0–hyperbola” (s3, s5) ∪ (s5, s3)f (0, ϕQS) |εi| < εo This work yes, if

εo < |εe|
+ + − “0–hyperbolic”

finite arc
(0, s5) (0, ϕe) 0 < εi < εo [32,40] yes [22], if

εo < |εe|
+ − + “π/2–hyperbola” [s1, s3) ∪ (s3, s1]f

(
ϕQS,

π

2

]
εe

|η| < εi < |εo| [31,40,41] no

“π/2–hyperbolic”
infinite arc

(0, s3) (ϕQS, ϕe) 0 < εi <
εe

|η| [31,40,41] no

η = εe/εo − 1; s1, s2, s3, s4, s5 are defined by Eqs. (17)–(19), (25), (28).
aAngular existence domain (quadrant I only).
bIn all references below the dispersion equation (2) of surface polariton is solved numerically. An analytical solution in particular cases is
given in [1,79,85,86].
cSingular surface polariton.
ds = s1 = s2 corresponds to the isotropic case εo = εe.
eThe last inequality can be read as εe < εo|εi|(|εi| − εo)−1, simply meaning that the polariton wave vector is greater than the greatest possible
wave vector for an extraordinary wave.
fs = s1 = s5 = s3 corresponds to the case εe = εi (30).

angles ϕ relative to the optic axis along which surface polari-
ton propagation is possible. The existence condition column
describes restrictions on dielectric permittivities of the media
under which the corresponding isofrequency contour shape is
implemented. The last column indicates whether the singular
surface polariton [22,27,94,106] exists and an additional con-
dition if it does. Recall that the angle at which it propagates is
equal to ϕSSP (22).

Table II shows examples of pairs of materials in which the
surface polaritons discussed in this work were experimentally
studied. It mentions only a part of the works listed in the
introduction, which seemed the most interesting for further

research. The fourth column indicates which the parameter
domain (η, χ ) that the pair of materials from the fifth and sixth
columns falls into. The fifth and sixth columns indicate the
name of the material and the range of dielectric permittivity
(or dielectric tensor in principal axis) for the wavelength range
in which they were studied. As can be seen, experimental
methods make it possible to study surface polaritons in a
wide range of wavelengths. However, it should be noted that
in many works only the most symmetrical directions were
considered to simplify further analysis. More examples of
potential materials could be found in the reviews [29,56–58]
and in the collection [105].
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TABLE II. List of experimental works, media, and wavelengths by type of surface polaritons.

Sign

εi εo εe (η, χ ) domain “Isotropic” medium, εi Anisotropic medium, ε̂a Wavelength Ref.

+ + + Slightly biaxial, I in
Fig. 4(a)

Index-matching liquid
3.15–3.20

KTiOPO4

(3.10, 3.14, 3.48)
632.8 nm [75]

I in Fig. 4(a) polycarbonate
2.49

NLCb 5CB
(2.38, 2.38, 2.85)

632.8 nm [76]

I in Fig. 4(a) MgF2

(1.89, 1.89, 1.93)
CSTFc ZnSe
?

633 nm [77]

− + + II in Fig. 2(a) Au
−11.7 + i0.73

SiO2 film 2.15 nm and NLCb

K15
(2.30, 2.30, 2.95)

632.8 nm [60]

II in Fig. 2(a) Al
−46.40 + i16.88

CaCO3

(2.21, 2.21, 2.75)
632.8 nm [61]

IV in Fig. 2(a) Ag
≈ −8.66 + i0.61d

p-6Pe nanowires
≈ (4.6, 4.6, 6.6)–
(3.2, 3.2, 3.9)

495–680 nm [63]

+ − − Not applicable,
biaxial

Air
1

Nanostructured Au film
(−1.3, −2.5, −3.9)–
(−5.0, −7.9, −11.4)f

540–680 nm [64]

I, II in 3(a) Air Ag grating (depends on ω) 530–700 nm [68]

+ − + I, II in Fig. 6(a) Air deep-trench AZOg

(−1, −1, 1.5)–
(−10, −10, 1.5)f

4–14 µm [34,70]

II in Fig. 6(a) Air CaCO3

(-3.7, -3.7, 2.3)f
6.8–7 µm [55]

+ + − Slightly biaxial, V in
Fig. 5(a)

Air Nanostructured hBNh

(2.1, 3.7, −15.2 + i0.6)
7–7.1 µm [71]

+ ± ± Figs. 3(a), 5(a) Air Doped hexagonal ZnO
(depends on ω)i

16–25 µm [62]

Figs. 3(a), 5(a), 6(a) Air Al2O3
j 13–28.5 µm [53]

Figs. 3(a), 5(a), 6(a) Air TiO2, MgF2
j 16–55 µm [50]

Figs. 3(a), 5(a), 6(a) Air α-SiO2
j 8.3–28.5 µm [8,52]

Figs. 3(a), 5(a), 6(a) Air α-LiIO3
j 11.7–13.3 µm [10]

aIn principal axes. If two are specified, then this is the range of change in the wavelength range.
bNematic liquid crystal.
cChiral sculptured thin film.
dDiffers from data in other works [105].
epara-sexiphenyl.
fWithout imaginary part.
gAl-doped ZnO.
hHexagonal boron nitride.
iThe authors assumed that the following three terms make the main contribution: static high-frequency ε∞, optical phonons (ω2

L − ω2
T)/(ω2

T −
ω2 − iωγph ), free carriers ω2

p/(ω2 − iγpω). All terms are assumed to be uniaxially anisotropic.
jMultiple Lorentz oscillators model.

IV. CONCLUSION

For a long time it was believed that dispersion equations for
surface polaritons in an anisotropic medium can only be
solved numerically, with the exception of weakly anisotropic
media and highly symmetric propagation directions. The pa-
per [79] was the first to show the existence of an exact solution
using a computer algebra system, but the analysis was done
only for Dyakonov surface waves. In this work we extend
this result to all types of surface polaritons propagating at the

boundary of an isotropic and uniaxial medium in the case of
the optic axis parallel to the boundary. The complete solution
in algebraic form (6)–(11) is written for arbitrary ratios be-
tween the dielectric permittivities of media, neglecting losses.
In particular, the obtained solution may be useful in analyzing
the properties of surface polaritons in metamaterials, where
the weak anisotropy approximation is not applicable. Some
cases are considered in this work that have not been discussed
in detail previously in the literature. The existence of surface
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polaritons at the interface of a metal-like medium and a Type I
hyperbolic medium is predicted. “Elliptic” surface polaritons
at the interface of an anisotropic metal-like medium and an
isotropic dielectric are also described in detail; only “hyper-
bolic” ones were considered in the literature.

The dependence of the wave vector of the surface polariton
on the propagation angle relative to the optic axis has been
analyzed. As a result, possible shapes of the isofrequency con-
tour have been obtained depending on the relations between
the dielectric permittivities. In general, a surface polariton is
shown to be one of three types, depending on the shape of the
contour: elliptic-like, hyperbolic-like, and arc-like (Dyakonov
surface waves). The contour shape changes with frequency if
there is a frequency dispersion of the permittivity of media.
The results obtained can be used in the analysis of any types
of surface polaritons, regardless of their origin (phonons,
plasmons, etc.), at the boundary of a uniaxial and isotropic
medium, described only by the dielectric permittivity tensor.
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APPENDIX A: FIELD COMPONENTS AND DISPERSION
EQUATION

Following the statement of the problem we are looking for
a wave propagating along the boundary between two media.
If we exclude purely electric waves (H = 0), then in any
anisotropic linear medium there are two eigenwaves that differ
in polarization. Typically, in media without spatial dispersion,
longitudinal purely electric waves exist only at certain fre-
quencies. We do not consider these cases, assuming that there
are no longitudinal waves at frequency ω. Thus, the general
solution is the sum of two eigenwaves in each medium. In
an anisotropic medium we have to choose an ordinary and
an extraordinary wave with the exception of directions called
singular axes [22,93,106,107]. Let us choose an eigenvector
for the ordinary wave as

Eo =

⎛
⎜⎝qy

iκo

0

⎞
⎟⎠, Ho = k−1

0

⎛
⎜⎝ −iκoqz

qyqz

−(
εok2

0 − q2
z

)
⎞
⎟⎠, (A1)

and for the extraordinary wave as

Ee =

⎛
⎜⎝ −iκeqz

qyqz

−(
εok2

0 − q2
z

)
⎞
⎟⎠, He = εok0

⎛
⎜⎝−qy

−iκe

0

⎞
⎟⎠, (A2)

where (qy, qz ) is the in-plane wave vector, κo and κe are
decrements of field decay from the boundary, and k0 = ω/c
is the wave vector in vacuum. The expressions are obtained
from solving the Fresnel equation system [108].

The form of eigenvectors (A1) and (A2) is especially use-
ful. If we put εo = εe = εi as in an isotropic medium, they still

form a complete basis, like TE and TM waves. The transition
from one basis to another is given as ETE ∝ (−iκiqzEo −
qyEe) and HTM ∝ (−iκiqzε

−1
i He + qyk2

0Ho), and the other
components can be derived from Maxwell’s equations. The re-
lations between wave vector components are given by (3)–(5).

Using (A1) and (A2), the field distributions for a surface
wave are written in an anisotropic medium x < 0 as

Ex<0 = (a1Eoeκox + a2Eeeκex ) eiqyy+iqzz−iωt ,

Hx<0 = (a1Hoeκox + a2Heeκex ) eiqyy+iqzz−iωt ,

and in an isotropic medium x > 0 as

Ex>0 = (
b1E (i)

o + b2E (i)
e

)
e−κix eiqyy+iqzz−iωt ,

Hx>0 = (
b1H (i)

o + b2H (i)
e

)
e−κix eiqyy+iqzz−iωt ,

where the superscript (i) means that we put εo = εe = εi in
(A1) and (A2).

In the singular case we have q2
z = εok2

0 and accordingly
κ2

o = κ2
e = q2

y from (4) and (5). Where it immediately follows
Ee ∝ Eo and He ∝ Ho means that the chosen basis is not
complete. In this case we write the general solution [22,106],
correctly calculating H , as

E (SSP)
x<0 =

⎛
⎜⎝ qy

iqy

0

⎞
⎟⎠(a1 + a2x) eqyx eiqyy+iqzz−iωt ,

H (SSP)
x<0 =

⎛
⎜⎝−iqyqz(a1 + a2x)

qyqz(a1 + a2x)

a2

⎞
⎟⎠eqyx eiqyy+iqzz−iωt .

Even though the singular solution has a different form, this
does not affect the dispersion equation. The exact solution for
singular surface polariton is given in [22,109].

Now using the boundary conditions of continuity of the
tangential components Ey,z and Hy,z, we obtain the linear
system⎛

⎜⎜⎜⎝
iκo qyqz iκi −qyqz

qyqz −iκeεok2
0 −qyqz −iκiεik2

0

0 go 0 −gi

go 0 −gi 0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
M

⎛
⎜⎜⎜⎝

a1

a2

b1

b2

⎞
⎟⎟⎟⎠ = 0, (A3)

where go = q2
z − εok2

0 and gi = q2
z − εik2

0 . A nontrivial solu-
tion exists if det M = 0. The matrix M can be viewed as a
block matrix

M =
(

A B
C D

)
with 2×2 blocks. It is clear that CD = DC. Then det M can
be easily calculated as

det M = det(AD − BC)

= det

(
qyqz(go − gi ) −i(κigo + κogi )

ik2
0 (εiκigo + εoκegi ) qyqz(go − gi )

)
.

Calculating the last determinant yields the dispersion equa-
tion (2). The ratios of the contributions of different
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polarizations can be calculated from (A3), putting, for exam-
ple, a2 = 1.

APPENDIX B: DISPERSION EQUATION SIMPLIFICATION

The dispersion equation (2) has two remarkable properties
that will be useful. It is easy to see that substituting n2

z = εi

turns it into an identity. However, such a substitution does not
help to obtain a solution for ny. The chosen polarizations of
waves (A1)–(A2) in the isotropic medium are parallel in this
case. The wave with Ez 	= 0 is lost. Despite this, the simplified
dispersion equation obtained below allows us to obtain ny and
accordingly the surface polariton wave vector qs, although it
will not be possible to determine all field components. Simi-
larly, if we put n2

z = εo then (2) becomes κiκe = n2
y . We can

prove that this is an identity if both κi, κe > 0.
Let us explicitly take out (n2

z − εi )(n2
z − εo) in (2). Let f1 =

n2
z − εi and f2 = n2

z − εo. Then (2) becomes

(κi f2 + κo f1)(κiεi f2 + κeεo f1) − n2
yn2

z (εi − εo)2 = 0. (B1)

Let us transform the last term:

n2
yn2

z (εi − εo)2 = n2
yn2

z ( f2 − f1)2

= n2
y

[
( f1 + εi )

(
f 2
2 − f1 f2

)
+ ( f2 + εo)

(− f1 f2 + f 2
1

)]
= −n2

y (εi + εo) f1 f2 + n2
yεi f 2

2 + n2
yεo f 2

1 .

Combining terms ∝ f 2
1 and ∝ f 2

2 with the first term in Eq.
(B1) yields(

κ2
i − n2

y

)
εi f 2

2 + εo
(
κoκe − n2

y

)
f 2
1 + A f1 f2 = 0,

A = κi(εiκo + εoκe) + n2
y (εi + εo).

It follows from (3) that(
κ2

i − n2
y

)
εi = εi f1.

Combining (4) and (5) yields

εo
(
κoκe − n2

y

)= κoεo(κe − κo) + εo f2 = εe − εo

κe + κo
κo f2 + εo f2.

Using the obtained relations, Eq. (B1) can be rewritten as(
εi

[
κiκo + n2

y + f2
] + εo

[
κiκe + n2

y + f1
]

+ εe − εo

κe + κo
κo f1

)
f1 f2 = 0. (B2)

The first square bracket is κiκo + n2
y + f2 = κo(κi + κo). The

second square bracket is κiκe + n2
y + f1 = κi(κe + κi ). It fol-

lows from (4) and (5) that εoκ
2
e − εek2

o = (εo − εe)n2
y . Using

f1 = κ2
i − n2

y and rearranging the remaining terms we obtain

εoκi(κe + κi )(κe + κo) + (εe − εo)κoκ
2
i + κo

(
εoκ

2
e − εeκ

2
o

)
= [εoκe(κe + κi ) − εeκo(κo − κi )](κo + κi). (B3)

After collecting all pieces we obtain that Eq. (B1) is equiv-
alent to

[(εiκo + εoκe)(κe + κi ) + (εi − εe)κo(κo−κi )]
κi+κo

κe+κo
f1 f2=0.

(B4)

Equality of the expression in parentheses to zero leads to
solutions corresponding to the surface polaritons. The rest
respond to non-physical solutions. If we multiply the ex-
pression in square brackets by (κo + κi ), then the dispersion
equation takes form [Eq. (9) in 1]

(κi + κe)(κi + κo)(εiκo + εoκe) = (εe − εi )(εi − εo)κo.

(B5)

On the other hand, if we leave n2
y and substitute εoκ

2
e in terms

of κ2
o , then Eq. (B3) has the form [Eq. (5) in 26]

εiκ
2
o + κe(εiκo + εoκi ) + εeκiκo = (εe − εo)n2

y . (B6)

APPENDIX C: ALGEBRAIC SOLUTION DERIVATION

Let us start from dispersion equation (B4) considering that
f1 	= 0 and f2 	= 0:

(εiκo + εoκe)(κe + κi ) + (εi − εe)κo(κo − κi ) = 0. (C1)

One can notice that (C1) is a quadratic form of variable
κi, κo, κe, and it has only linear κi terms. We can isolate κi

terms

κi(εeκo + εoκe) = εiκo(κo + κe) + (
εoκ

2
e − εeκ

2
o

)
.

If we want to square it, then both sides must have the same
sign. In the set of equation for squares then additional roots
may appear. On the other hand, we can express κ2

i through κ2
o .

The resulting equation includes only the second and fourth
powers of κo and κe which are combined into two homoge-
neous polynomials P2(κo, κe) and P4(κo, κe) of degrees 2 and
4, respectively [79],

P2(κo, κe) + P4(κo, κe) = 0, (C2)

where

P2(κo, κe) = (εi − εo)(εeκo + εoκe)2,

P4(κo, κe) = (κo + κe)(εiκo + εoκe)

× [
(εi − εo)κoκe + (εi − 2εe)κ2

o + εoκ
2
e

]
.

By definition, a polynomial Pn(x, y) is called a homogeneous
polynomial of the degree n if Pn(λx, λy) = λnPn(x, y) for any
λ.

Now, Eq. (C2) can be easily solved for κe or κo, e.g., by
introducing the parameter s = κe/κo. In our case it should be
s > 0 because κe, κo > 0 for a surface polariton. Substituting
κe in (C2) and canceling by κ2

o , we obtain

P2(1, s) + κ2
o P4(1, s) = 0.

Let us put P2(s) ≡ P2(1, s) and P4(s) ≡ P4(1, s). Solving the
equation for κo we obtain (6). Introducing an inverse relation
s̄ = κo/κe = s−1 makes more sense in some cases. If s → 0,
then κe → 0 too, regardless of κo and κi. This means that
the surface polariton is becoming less localized due to the
long decay length for the extraordinary component ∝ 1/κe.
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On the other hand, if s̄ → 0 then κo → 0, and polariton is
becoming less localized due to the increasing decay length
for the ordinary component ∝ 1/κo.

APPENDIX D: DIRECTIONS OF HIGH SYMMETRY

For highly symmetric directions, along and perpendicular
to the optic axis, dispersion equation (2) is significantly sim-
plified. This is explained by the fact that along these directions
the ordinary and extraordinary waves are not mixed by the
boundary conditions. If a surface polariton propagates along
the optic axis, then ny = 0 and accordingly κ2

e = (εe/εo)κ2
o

from (4) and (5). Thus, the second bracket in dispersion equa-
tion (2) should vanish. It brings us to the equation

κe

εe
+ κi

εi
= 0, (D1)

which is similar to the well-known SPP dispersion equation.
The solution is

n2
z = εiεo(εi − εe)

ε2
i − εoεe

= εoχ (1 + η + χ )

χ2 − 1 − η
(D2)

and exists in two cases: εi < 0 and εo, εe > 0 and εi > 0 and
εo, εe < 0 [14,17,18]. Also, we need to require nz to be real.
If εo > 0 then the additional condition is χ >

√
1 + η in our

notation. This corresponds to domains I, IV, and V in Fig. 2(a).
In the case εo < 0 the condition 0 < χ <

√
1 + η should be

satisfied. The corresponding domains are I and II [Fig. 3(a)]. It
can be seen from (A2) and (A3) that only the “extraordinary”
wave in an anisotropic medium and TM wave in an isotropic
medium remain.

It may seem from the right side of Eq. (D2) that the solution
is also possible for εe < 0 and εo > 0. This is incorrect. Any
deviation from the optic axis, no matter how small, leads to the
mixing of an ordinary wave. The wave vector q of the surface
polariton cannot change significantly. The attenuation decre-
ment κo of an ordinary wave [Eq. (4)] is imaginary for such
q. It means that the ordinary wave component of a polariton
is not localized at the interface. Thus, this solution does not
correspond to a well-defined surface polariton. Such a type of
solution is called a virtual surface polariton in [17,18].

If the direction of propagation is perpendicular to the optic
axis, then nz = 0. The only way to satisfy Eq. (2) is to make
the first bracket equal to zero. This yields a dispersion equa-
tion similar to (D1)

κo

εo
+ κi

εi
= 0,

and its solution is

n2
y = εoεi

εo + εi
.

It is the well-known solution for SPP wave vector at the
boundary of two isotropic media with dielectric permittivities
εo and εi. To the usual SPP existence conditions εo + εi < 0
and εoεi < 0, we need to add n2

y > εe for the same reason as
in the previous case. In our notation they can be expressed as
follows:

εi < 0 :

{
χ > 1 if η � 0,

1 < χ < 1 + η−1 if η > 0,

εi > 0 :

{
χ < 1 if η � −1,

1 + η−1 < χ < 1 if η < −1.

The corresponding domains for the first case are III and IV in
Fig. 2(a) and I and II in Fig. 5(a). For the second case we have
II and III in Fig. 3(a) and I in Fig. 6(a).
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