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Multidomain simulations of aluminum nitride with machine-learned force fields
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Aluminum nitride (AlN) and other wurtzite materials are widely used in piezoelectric microelectromechanical
systems and are of great interest for future thin-film ferroelectric devices. Much progress has been made by
modeling these materials with quantum mechanical methods such as density functional theory (DFT). However,
there are very few existing methods that can model AlN on a larger scale, and none that can model multiple
phases and domain walls with the accuracy of DFT. In this work, we present a machine-learned molecular
dynamics force field (MLFF) for AlN constructed by fitting an artificial neural network to an underlying DFT
dataset. Using our trained MLFF, we can predict the energies, forces, and phonon dispersions of AlN with the
accuracy of DFT at dramatically lower computational cost. Accordingly, our MLFF can simulate systems orders
of magnitude larger than DFT, enabling the study of emergent and long-range effects, such as the frequency-
dependent dielectric function and multiple ferroelectric domains. This method can easily be expanded to other
wurtzite nitrides, oxides, and solid solutions.
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I. INTRODUCTION

Aluminum nitride, along with dopants including scandium
and boron, is used as the industry standard for radio frequency
microelectromechanical systems that use film bulk acoustic
resonators for mobile networks across the world due to Si
compatibility, high piezoelectricity, and temperature stability
[1–5]. Additionally, there is a growing interest in the potential
for doped AlN to be used in thin-film ferroelectric devices
for next-generation computing and other memory applications
[6–12]. While these materials have long been studied using
density functional theory (DFT) and other first-principles ap-
proaches, there is a great need to study emergent properties
of this material class that require supercell sizes too large for
DFT alone. While several classical molecular dynamics (MD)
force fields have been proposed for AlN [13–17], there has yet
to be developed a classical force field that can approach the
accuracy of DFT and simultaneously study multiple phases
and domain walls. While previous methods, predominantly
fitted from experimental results for specific use cases, have
shown great successes in their designed application, we aim
to create a potential derived purely from ab initio data that
can be used for many phases of AlN that have not been
experimentally realized but may be essential for applications
in ferroelectric domains.

In recent years, there has been an explosion in the use of
machine learning (ML) to fit large datasets across many fields
[18,19]. A particularly fruitful application of ML in materials
science is in machine-learned force fields (MLFFs) for MD
simulations, with simulations able to match DFT accuracy
for up to 10 billion atoms [20]. Gaussian processes [21] and

*Also at Department of Physics, Federal University of Minas
Gerais, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brazil.

†Contact author: rappe@sas.upenn.edu

artificial neural networks (ANNs) [22–24] are developed to fit
a large database of representative DFT snapshots of a material
to a many-parameter classical potential based on local interac-
tions of atoms with their neighbors. These methods have been
used to model materials ranging from simple bulk insulators
and metals to surfaces and layered materials [25–30]. In the
present work, we choose an ANN approach to model AlN,
due to the quick training and the relatively small increase in
training time with increased dataset size and the number of
element types [31]. Since we want to provide a potential that
can readily be expanded to include many structures of interest,
the ANN gives an advantage in quickly training over the large
resultant datasets [31,32]. The aim of this work is to develop
a reliable potential for AlN that can be used for future study
of doped AlN, multidomain AlN, polarization switching, and
other analogous wurtzite systems and properties.

II. METHODS

Because the trained MLFF will approach the accuracy of
DFT, the details of the calculations included in the training
set are very important to the overall model quality. DFT cal-
culations were performed using Quantum Espresso [33] with
optimized norm-conserving pseudopotentials from OPIUM
[34,35]. The generalized gradient approximation (GGA) of
Perdew, Burke, and Ernzerhof (PBE) was used to calculate
the exchange-correlation energy [36]. All calculations were
performed with an energy cutoff of 680 eV, with an energy
convergence of 1.4 × 10−5 eV/cell, a force convergence cut-
off of 2.6 × 10−4 eV/Å, and a 4 × 4 × 4 k-point grid.

The DFT dataset was generated by taking snapshots of AlN
in the wurtzite, zinc-blende, hexagonal boron nitride, cubic,
and β-BeO phases, all with 32-atom unit cells (Fig. 1). For
each non-wurtzite phase, 500 structures with random atomic
displacements and strains were calculated with DFT. The ran-
dom displacements were limited to 0.2 Å, and the strain was
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FIG. 1. Workflow for training a MLFF.

limited to ±5%. Since we are primarily concerned with the
wurtzite phase, 2000 random structures of wurtzite AlN were
used. To capture the low-energy wurtzite configurations, ab
initio molecular dynamics (ai-MD) using DFT was conducted
for the wurtzite phase at 100 K, 300 K, and 600 K for 500 steps
each. To improve the modeling of phonon modes, different
supercells of the wurtzite phase with up to 108 atoms (3 ×
3 × 3, 1 × 1 × 8, 2 × 1 × 4, etc.) were added and random
displacements of those structures were included. Finally, we
performed 7-step nudged elastic band (NEB) calculations of a
switching pathway from N-polar to Al-polar AlN, and snap-
shots generated from the intermediate configurations were
also added to the dataset. In total, just over 6400 snapshots
of AlN were included in the final dataset. It is important to
note that in the workflow described in Fig. 1, DFT snapshots
were not generated in an automated fashion, and user intuition
was required to select snapshots that represent the desired
use-case of the potential. While this requires a certain level
of expertise and knowledge of the desired uses, the described
methodology can be extended to related systems (e.g., adding
dopants) simply by adding more structures [31,37].

The ANN was trained using the AENET program [22],
and classical molecular dynamics simulations were performed
using AENET-LAMMPS [38,39]. The network was trained
using four hidden layers, each containing 15 nodes with hy-
perbolic tangent activation functions. The ANN was trained
with the Chebyshev basis set, with a cutoff of 8.0 Å for
the radial expansion (expansion order of 12) and a cutoff of
6.5 Å for the angular expansion (expansion order of 6) [31].
The dataset was split, with 10% of the data used as a testing
set and the rest was used for training with the L-BFGS-B
algorithm [40]. The training continued until the root mean
square errors (RMSEs) for both the training and testing sets
are converged below 5 meV/atom.

FIG. 2. Energy comparison between DFT and the trained MLFF
over a MD trajectory at three different temperatures (50 K, 300 K,
600 K). Both the DFT and MLFF are shifted so that the lowest energy
structure is at 0 meV/atom. The MD trajectories were not included
in the training set for the MLFF.

The MLFF built off ANNs can also be easily expanded
to include the effects of vacancies and dopants on the phase
diagram and the material properties, as has been shown in
previous applications [22,31,32].

III. PHYSICS TESTING

For the MLFF to provide physically meaningful MD sim-
ulations, we must assess its ability to model energies and
forces for new structures of AlN to the same accuracy as DFT.
Accordingly, we compared the energies between the MLFF
and DFT for structures that were not in the training dataset.
To do this, new ai-MD simulations were run at three differ-
ent temperatures using the same DFT methods on an AlN
supercell consisting of 16 atoms. The structures in these tra-
jectories were then fed to the MLFF to compare the energies
and the forces, with the energy comparison shown in Fig. 2.
The energy difference between the MLFF and DFT has a
RMSE of 3.5 meV/atom and never goes above 17 meV/atom,
indicating that the MLFF reliably reproduces DFT energies
for AlN configurations that were not included in the original
training set.

In addition to the energy, the forces for each atom must
match relatively well between the MLFF and DFT, to ensure
that atomic movements generated with the MLFF will repro-
duce DFT MD closely. To investigate whether the forces are
captured by the ANN, we used the 600 K ai-MD simulation
and compared the forces for each atom in each Cartesian
direction (Fig. 3). Even for this high-temperature simulation,
the forces agree closely between the MLFF and DFT, indicat-
ing that the MLFF captures the shape of the potential energy
surface for the active space of the wurtzite phase in AlN.

Beyond reproducing energies and forces from the training
set, it is important that our MLFF can perform physically
under various conditions, including strained states. To test
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FIG. 3. Comparison of forces between MLFF and DFT based on structures generated during the ai-MD run at 600 K. Lower right panel
shows a histogram of the distribution of the difference between forces calculated with MLFF and DFT. None of these structures were in the
original training set for the MLFF.

whether our trained MLFF is comparable to DFT for new data
and stable under NPT simulations, we generated an equa-
tion of state for five phases of AlN and compared the methods
in Fig. 4. While uniaxial strain was primarily included in
the training set, the volume in Fig. 4 was changed manually
and the cell was allowed to relax cell parameters and atomic
positions at the corresponding volume while maintaining the
desired symmetry. The MLFF correctly predicts the energies
for the strained states generated with DFT, and is stable under
NPT simulations.

To explore the model properties further, we compare the
phonon dispersion spectra of the wurtzite phase calculated
using the MLFF and DFT models (Fig. 5). The spectra
were calculated using finite displacements and a harmonic
approximation with the ALAMODE program [41] and TO-
LO splitting was included using the Parlinski approach [42].
While this second-order derivative information around local
minima is not explicitly included in the training for the MLFF,
it is still quite consistent with DFT, further validating that
the MLFF captures the accuracy of DFT and the underlying
physics of the wurtzite AlN. Phonon spectra comparisons
for other secondary phases are included in the Supplemental
Material [43] (see also Refs. [13–15,17,44,45] therein).

To test whether large unit cells simulated with the MLFF
can accurately reproduce experimental observables for bulk
AlN, we calculate the frequency-dependent dielectric func-
tion. To do this, we perform MD on a thermally equilibrated
4096 atom supercell under NVE conditions for 100 ps with
1 fs time steps. The macroscopic polarization is calculated
using the atomic displacements from the layered hexagonal

boron nitride phase multiplied by the born effective charge
of the corresponding atom. Using this method, we calculate
the spontaneous polarization to be 134 µC

cm2 using both the

FIG. 4. Equations of state for the five major phases of bulk AlN
using DFT and MLFF. For each volume and phase considered, we
relax any internal coordinates not constrained by the phase space
group, and we relax the relevant axis ratios, then both methods were
used to calculate the energy of the optimized strained structures.
None of the structures were in the original training set for the MLFF.
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FIG. 5. Comparison of DFT and MLFF phonon dispersions cal-
culated with finite atomic displacements [41]. A 72-atom unit cell
was used.

MLFF and DFT, compared to 132 µC
cm2 calculated with the

Berry-phase method in DFT and approximately 150 µC
cm2 from

experiment [11]. For dielectric calculations, the polarization
of the cell is collected every 10 fs, and the autocorrelation
function of this time series is used to calculate the ionic
part of the dielectric function using the Kubo-Green relation
[46–48]. To calculate the full dielectric function, we added
the optical part calculated with DFT, which is a constant
over the considered frequency range. The wurtzite structure
contains two unique axes, with εxx = εyy and εzz being the only
nonzero values in the dielectric tensor. The real part of the
dielectric function is computed and plotted in Fig. 6. Note that
the molecular dynamics does not capture TO-LO splitting. To

FIG. 6. Dielectric function for bulk aluminum nitride calculated
from atomic trajectories generated with MLFF.

TABLE I. Comparison of phonon mode frequencies calculated
using finite differences with both DFT and the MLFF, TO peaks
fitted from MLFF dielectric function, and those deduced from IR and
Raman transmission experiments [50,51].

Mode IR Active? Exp. DFT MLFF ML-Dielectric

E2 (low) No 248 233 260
B1 (low) No 535 529
A1 (TO) Yes 610 592 584 575
E2 (high) No 655 634 638
E1 (TO) Yes 667 647 662 641
B1 (high) No 704 716
A1 (LO) Yes 888 860 855
E1 (LO) Yes 910 883 876

compare modes observed with our MLFF dielectric function
to experiment and finite difference methods, we show the
frequencies of the observed modes in Table I. The relatively
low error and correct ordering of the axes further provide
credence to the use of our potential to study macroscopic
observables using the MLFF. In addition to the frequency-
dependent dielectric response, we have calculated the optical
dielectric response from our MLFF simulations. We find a
zero frequency dielectric constant value of 10.9 which is in
close agreement with experiments [49].

In order to test the temperature-dependent properties of the
potential, we observe the melting temperature of our simu-
lations and compare to experimental results. To do this, we
perform an NPT simulation on a 8000-atom supercell with
1 bar of pressure and gradually increase the temperature. First
the simulation was equilibrated to 1700 K, then the tempera-
ture in the Nosé-Hoover thermostat was increased to 1900 K
over 1 000 000 time steps (1 ns). We deduce the simulation
melting temperature to be the temperature at which the first
Al-N bonds break and the ions start to flow freely, which
in our simulation was 1725 K. Experimentally, AlN melts
at 2100 K in vacuum and 2400 K under inert atmospheric
pressure. Thus, our potential is stable even up to extremely
high temperatures and realistically predicts both the lack of
solid-solid phase transition and provides a rough estimation
for the melting point.

IV. MULTIDOMAIN SIMULATIONS

Finally, we show that our force field is stable when simulta-
neously simulating multiple phases of AlN with domain walls.
Previous studies have shown that the 180 degree domain wall
between the Al- and N-polar phase interface of AlN is similar
in structure to the β-BeO phase [12,52–54]. Additionally, this
phase has been shown to be a possible intermediate in the
switching pathway of B-doped AlN [55]. Therefore we added
this structure to our training set in accordance with the training
workflow (Fig. 1) in order to enable the simulations of AlN as
a function of domain wall density and to probe the energy of
different domain wall configurations. In Fig. 7, we show five
possible domain wall densities initialized with our MLFF that
are stable for over 100 ps at 300 K under NVT conditions.

While AlN has been used for decades as a piezoelectric, the
novelty of ferroelectricity in doped AlN devices has thus far
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FIG. 7. Images of various domain wall densities and correspond-
ing considered unit cells along the [100] direction. Green and red
shaded areas represent up and down polarized regions of the material,
respectively, for (a) 1.00, (b) 0.50, (c) 0.25, (d) 0.125, and (e) 0.00
domain walls per cell.

prevented in-depth analysis of domain wall energetics in AlN
and other wurtzite materials. Here we show the first simulation
of domain wall energy as a function of domain wall density in
bulk AlN. To do this, we employ an 8 × 8 × 8 AlN supercell
of over 4000 atoms with our MLFF. The limit of high domain
wall density in AlN is switching every other layer, which is
equivalent to the β-BeO phase. The energies of these different
domain wall densities in Fig. 7 per domain wall are listed in
Table II. Clearly, the domain wall energy is not completely
independent of the local domain environment. However, other
than the wall stabilization shown by the β-BeO phase, the
energy increase per wall is small and relatively constant when
the density is changed. Additionally, the polarization reverses
completely between adjacent domains no matter the density
of the domain walls in the material. Thus, the domain walls

TABLE II. Energy for a domain wall for multiple domain wall
densities. The domain wall density is defined as the number of
domain walls per unit cell of AlN.

Wall Density Wall Energy (mJ/m2)

0.125 226
0.250 231
0.500 236
1.000 179

FIG. 8. NEB calculations for bulk switching pathway from polar-
ization up to down calculated with DFT, the Vashishta potential, and
our MLFF. Inset structures show the minimum and maximum energy
structures along the pathway. Energy is relative to the minimum
energy wurtzite structure.

in AlN are incredibly localized to the single unit cell limit. It
is also important to note that due to the hexagonal symmetry,
each line of atoms along the c axis can have 3 distinct domain
walls and wall propagation can theoretically advance along
any direction.

Thus, even though the domain wall energy in AlN is sim-
ilar to traditional perovskites like lead titanate (208 mJ/m2)
[56], the domain walls in AlN are very different from other
ferroelectrics. Only the 180 degree domain is possible due
to symmetry and the polarization completely reverses over a
single unit cell, which is not the same in perovskites [57], due
to the stability and locality of the presence of the β-BeO phase
at the boundary.

Additionally, to highlight the accuracy of the force field
relative to existing potentials and DFT for the homogeneous
switching pathway in addition to the heterogeneous pathway
represented by the uncharged domain walls, here we show
NEB calculations for DFT, MLFF, and the classical Vashishta
potential (Fig. 8). The Vashishta potential is chosen to be
representative of classical 3-body empirically fitted potentials.
Because the MLFF can accurately match the energy of DFT
for both models of switching and multidomain simulations,
we are confident this model can accurately predict ferroelec-
tric switching dynamics at the nm scale. Furthermore, the
NEB switching barrier is much higher in energy than for
even the densest domain wall configuration of the β-BeO
phase (Figs. 4 and 8). The maximum slope of the NEB, using
the atomic displacements between images, corresponds to the
force to switch along this pathway, which can be converted
to a maximum applied field for each method: 46.3, 46.2, and
31.4 MV/cm for DFT, MLFF, and Vashishta, respectively.
While these pathways have been proposed previously as the
switching mechanism from DFT [55], the extreme fields re-
quired to access these pathways show there must be lower
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energy pathways that can only be accessed with simulations
that require a classical potential with DFT-level accuracy.
This adds further credence and importance of understanding
domain wall density and interactions in the wurtzite structure
and to the unique ability of this potential to explain more
complicated and feasible switching mechanisms.

V. CONCLUSION

In summary, here we present an MLFF for bulk wurtzite
and multiphase aluminum nitride. The MLFF correctly re-
produces DFT energies and forces for structures that were
not in the original dataset used for training, indicating that
it can simulate bulk aluminum nitride at a fraction of the
cost of DFT without sacrificing accuracy. For the 32-atom
system, the MLFF is approximately 75 000 times faster than
DFT. Additionally, the MLFF reproduced the phonon disper-
sion spectrum of AlN, even though the perturbed structures
were not included in the training set. This potential was
also able to produce the complex dielectric function with IR
modes closely matching both DFT and experiment. The po-
tential can be readily expanded to include dopants, vacancies,
new phases, domain walls, and more; future work based on
this MLFF has the potential to study emergent ferroelectric
switching properties of this important material and provide
insights that would not have been possible with DFT alone.
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