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Quantum vortex lattice: Lifshitz duality, topological defects, and multipole symmetries

Yi-Hsien Du,1,2,*,† Ho Tat Lam ,3,*,‡ and Leo Radzihovsky 4,§

1Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, Illinois 60637, USA
2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

3Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
4Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA

(Received 30 October 2023; revised 16 April 2024; accepted 2 July 2024; published 31 July 2024)

We study an effective field theory of a vortex lattice in a two-dimensional neutral rotating superfluid. Utilizing
particle-vortex dualities, we explore its formulation in terms of a U (1) gauge theory coupled to elasticity that
at low energies reduces to a compact Lifshitz theory augmented with a Berry phase term encoding the vortex
dynamics in the presence of a superflow. Utilizing elasticity- and Lifshitz-gauge-theory dualities, we derive dual
formulations of the vortex lattice in terms of a traceless symmetric scalar-charge theory and demonstrate low-
energy equivalence of our dual gauge theory to its elasticity-gauge theory dual. We further discuss a multipole
symmetry of the vortex lattice and the multipole one-form symmetries of its dual gauge theory. We also study
its topological crystalline defects, where the multipole one-form symmetry plays a prominent role. It classifies
the defects, explains their restricted mobility, and characterizes descendant vortex phases, which includes a
vortex-supersolid phase. Using the dual gauge theory, we also develop a mean-field theory for the quantum
melting transition from a vortex crystal to a vortex supersolid.
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I. INTRODUCTION

Motivated by numerous directions—robust quantum mem-
ory [1–3] and computing, beyond quantum field theory (QFT)
classes of quantum liquids, quantum elasticity and melting
[4–6], and generalized symmetries [7,8]—recently, there has
been an explosion of research on models with quasiparti-
cles characterized by restricted mobility [9–13]. Significant
progress was made in identifying a class of U (1) fractonic
gauge theories as duals of quantum crystals with topological
defects [5,6,14,15]. This connection demystified and clarified
some aspects of fractonic orders, provided their in-principle
physical realization as crystalline topological defects, and
uncovered generalized fractonic models as duals of well-
understood elastic theories, such as, e.g., quantum smectics
[16,17] and supersolids [6,14,18]. Complementarily, such
generalized gauge theories provided a compact effective field
theory description of quantum crystals, their defects, and as-
sociated quantum melting transitions.

The duality was subsequently extended to time-reversal
broken crystals such as, for example, a Wigner crystal [14,18]
and rotating superfluids hosting a vortex lattice [19]. Al-
though there is strong similarity between resulting models
and their fractonic tensor-gauge theory duals, a vortex crystal
is strongly coupled to its superfluid sector, which encodes
superflow-mediated vortex-lattice incompressibility, which on
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dualizing the bosonic sector, couples elasticity to a U (1) vec-
tor gauge field.

Upon a proliferation of mobile vortex vacancies and/or
interstitials, a vortex crystal is expected to undergo a quantum
phase transition to a nonsuperfluid form, where the underlying
superfluid order is destroyed [U (1) symmetry of the boson
number is restored], a state that is the vortex-lattice analog
of a supersolid—a superfluid crystal of bosons that exhibits
off-diagonal long-range order (ODLRO) [6,14]. Fundamen-
tally, such a normal (i.e., a nonsuperfluid) vortex-lattice state
is a rotated Mott insulating crystal of bosons. In this vortex
supersolid, the superflow is absent, with the aforementioned
dual U (1) gauge sector Higgs’ed, and one expects the state
to reduce to a time-reversal-broken Wigner crystal with its
guiding-center dynamics and previously studied gauge theory
dual [14,18]. We also expect that the crystal can further disor-
der through quantum melting into smectic, hexatic, or nematic
vortex states [12,16,17]. These properties can be equivalently
captured both in the direct and dual tensor-gauge theory de-
scriptions [19], though the analysis of phase transitions is
particularly well accessible on the gauge-dual side, where they
correspond to various types of generalized Higgs transitions
[12,16,17]. The classical analogs of such states have been pre-
viously studied in three-dimensional vortex states in type-II
superconductors [20,21].

It was recently observed [13] that, in the superfluid vor-
tex phase, the coupling to the superfluid flow [U (1) vector
gauge field in the dual description] leads to vortex-lattice
incompressibility. This constrains lattice distortions to be di-
vergenceless, reducing its description to a generalized Lifshitz
theory (studied previously in several other contexts [22–28])
of a single superfluid phaselike Goldstone mode (GM).
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FIG. 1. A schematic phase diagram for a vortex crystal and its
associated phases studied in this paper. With increasing quantum
fluctuations (e.g., rate of rotation), the vortex crystal undergoes
a quantum phase transition into a vortex supersolid, a nonsuper-
fluid but periodic vortex state, driven by condensation of vortex
vacancies/interstitials. Upon further increase in quantum fluctua-
tions, the vortex supersolid undergoes a quantum melting transition
to a vortex hexatic (or depending on microscopic interaction details,
to a vortex nematic or vortex smectic), driven by condensation of
vortex dislocations [16,17,20,21]. At higher rotation, the system
quantum melts into a vortex-liquid phase.

Duality of the Lifshitz theory has been analyzed in earlier
works [28,29], and we thus extend it here to duality of a vortex
crystal.

We summarize the main results of this paper below. First,
we revisit the derivation of the low-energy effective Lifshitz
theory for the vortex lattice, paying special attention to the
compactness of the Lifshitz field. This allows us to uncover a
rotation-induced Berry phase in the effective Lifshitz theory.
Second, we derive a dual gauge theory description of the
vortex lattice in terms of traceless symmetric scalar-charge
theory. Third, using the effective Lifshitz theory and the dual
gauge theory, we systematically analyze a hidden multipole
(one-form) symmetry and the topological defects of the vortex
lattice, which are associated with the winding of the Lifshitz
field and the Wilson defects in the tensor gauge theory. Fourth,
we characterize the neighboring quantum phases of the vortex
lattice and formulate a mean-field theory for the transitions
between the vortex-lattice phase and these neighboring phases
using the Higgs transitions of the dual gauge theory. These
phases are illustrated schematically in Fig. 1.

This paper is organized as follows. In Sec. II, we review
superfluids and their U (1) boson-vortex duality. We then in-
troduce in Sec. III a rotating superfluid and its linearized
Lifshitz theory formulation. Then utilizing Lifshitz gauge
duality, in Sec. IV, we describe vortex lattice in terms of
traceless symmetric scalar-charge gauge theory and discuss
its multipole symmetries in Sec. V, its defects and multipole
one-form symmetries in Sec. VI, and its descendant vortex
phases and their phase transitions in Sec. VII.

II. SUPERFLUID AND ITS DUALITY

At low energies, a superfluid is characterized by a local su-
perfluid phase ϕ(x) ∼ ϕ(x) + 2π and canonically conjugate
boson density n(x), with boson operator a ∼ eiϕ satisfying
[eiϕ, n] = eiϕ . Its universal properties are well captured by a
Hamiltonian density (taking h̄ = 1):

Hs f = ns

2
(∇ϕ)2 + χ−1

2
(δn)2, (1)

with δn = n − n0 the fluctuation of boson density n away from
its equilibrium value n0, and ns and χ the superfluid stiff-
ness and compressibility (proportional to the inverse of the
boson interaction), respectively. A corresponding Lagrangian

density is given by

Ls f = χ

2
(∂tϕ)2 − ns

2
(∇ϕ)2. (2)

The bosonic particle 3 current is given by

Jμ = (δn, Ji )μ = (χ∂tϕ, ns∂iϕ)μ, (3)

with the Euler-Lagrange equation encoding boson conserva-
tion via continuity relation:

∂μJμ = 0, (4)

where μ = (t, x, y). In addition to these low-energy GM exci-
tations, a superfluid admits vortex excitations, corresponding
to singular configurations of the compact phase ϕ:

1

2π
εμνγ ∂ν∂γ ϕ = jμ, (5)

with the integer-valued vortex 3 current jμ, enabling super-
fluid rotation. Note that, naively, the left-hand side of the
equation vanishes due to the antisymmetric properties of the
Levi-Civita tensor. However, it can be nonzero for singular,
nonsingle-valued ϕ configurations corresponding to vortices.

Following the standard boson-vortex duality [30–32], we
express the bosonic Lagrangian in Eq. (2) in terms of the
bosonic current Jμ ≡ (∂ × a)μ, with (∂ × a)μ ≡ εμνγ ∂νaγ ,
whose continuity in Eq. (4) is solved by expressing it in terms
of U (1) gauge potential aμ. This thereby maps the bosonic
3 current J onto a dual electromagnetic field b = ∇ × a,
e = ∂t a − ∇at :

Jμ = (δn, Ji )μ ≡ 1

2π
(δb, εi je j )μ, (6)

with δb = b − b0 (and b0/2π = n0, corresponding to the
background boson density) and equivalently the Hodge-
dual ∗J maps onto the electromagnetic field strength fμν =
2πεμνγ Jγ . With this, the bosonic continuity in Eq. (4) and
circulation in Eq. (5) map onto the Faraday and Ampere law,
respectively, and the Lagrangian in Eq. (2) to the Maxwell
action:

L = 1

8π2ns
e2 − 1

8π2χ
(δb)2 − aμ jμ, (7)

coupled to charged matter representation of vortices. Cor-
respondingly, the Hamiltonian density in Eq. (1) transforms
into H = 1

8π2ns
e2 + 1

8π2χ
(∇ × δa)2 − a · j, with electric field

ei and gauge vector potential ai canonically conjugate, and
supplemented by Gauss’s law ∇ · e = jt . The latter encodes
vortex circulation density, corresponding to the temporal com-
ponent in Eq. (5).

III. ROTATING SUPERFLUID: VORTEX LATTICE

An imposed rotation with angular velocity � = 
ẑ is
conveniently treated in a rotating reference frame, where a
particle of mass m experiences the Coriolis force F = 2mv ×
�. It can be effectively viewed as the Lorentz force acting
on a unit-charged particle moving in an effective magnetic
field B = 2m
. At the level of a Lagrangian, 
 appears as
a Lagrange multiplier −� · L = −A · J, enforcing a nonzero
angular momentum density L = nsmx × ∇ϕ, with the effec-
tive external vector potential A = m� × x inducing a particle
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current J. In the dual language, the rotation is encoded via
the external gauge potential A coupled to the particle current
J = 1

2π
e × ẑ leading to the coupling −A · J = 1

2π
Aiεi j∂ jat =

1
2π

at B (having integrated by parts under an implicit integral
sign and dropped the ∂t ai component of ei that is a total
derivative for a time-independent Ai). As a consequence, a
two-dimensional superfluid rotating at angular velocity 


gives rise to the formation of a triangular lattice of quantized
vortices with equilibrium vortex density:

nv = 2m


2π
≡ B

2π
. (8)

The elementary GM excitations of the vortex lattice, known as
Tkachenko modes [13,33–37], possess several unconventional
characteristics compared with ordinary sound waves in solids.
Most notably, they are characterized by a quadratic dispersion
ω ∼ q2 at low momentum, with only one polarization.

A. Effective vortex-lattice field theory

A recent discovery has revealed that the Tkachenko modes
can be described by a nonlinear Lifshitz scalar theory, which
incorporates nonlinear dipole and higher multipole symme-
tries arising from magnetic translations and rotations [13] and
will be the starting point of our analysis. The nonlinear theory
of the Tkachenko mode allows a convenient formulation as a
noncommutative field theory [38–40]. Here, we begin with a
review of this effective field theory of a vortex lattice and then
derive the linearized Lagrangian by expanding the effective
field theory to quadratic order [13].

As any two-dimensional crystal, a vortex lattice can be
described by two scalar fields frozen into the lattice X a(t, xi ),
with a = x, y, which is related to the lattice displacement ua

by X a(t, xi ) = δa
i xi − ua(t, xi ), in the Eulerian (laboratory)

coordinates xi. The Lagrangian density consists of the elastic
component:

Lel = 1
2ρ(∂t ui )

2 − 1
2 Ki j;kl ui jukl , (9)

and the superfluid sector Ls f , in Eq. (2), coupled through the
superflow (Jμ) and vortex ( jμ) currents. In Eq. (9), ρ is the
effective vortex mass density, Ki j;kl is the elastic tensor, and
ui j = 1

2 (∂iu j + ∂ jui ) is the linearized symmetric strain tensor.
The crucial coupling of the two sectors is most trans-

parently implemented in the gauge-dual description of the
superfluid in Eq. (7), via −aμ jμ, with the vortex current
given by

jμ = 1
2 nvεμνγ εab∂

νX a∂γ X b, (10)

that is a space-time Jacobian between the reference and
vortex-lattice coordinates. In terms of the phonon distortions,
the temporal and spatial currents take the form:

jt = nv − nv∂iu
i + 1

2 nvεi jεab∂iua∂ jub,

ji = −nv∂t ui − nvεi jεab∂ jua∂t ub, (11)

which have a natural and transparent interpretation. Com-
bining these inside −aμ jμ, together with the elastic Lel and
electromagnetic (superfluid) Ls f sectors and the rotation-
imposed external vector potential −A · J, we obtain the
vortex-lattice Lagrangian density, which at harmonic level

and dropping the subdominant kinetic 1
2ρ(∂t ui )2 and electric

1
8π2ns

e2 energies takes the form:

L = −μu2
i j − λ

2
u2

ii − 1

8π2χ
(δb)2 + at

(
B

2π
− nv

)

+ nveiui + 1

2
nvb0εi jui∂t u j . (12)

Above, for simplicity, we have taken isotropic elasticity with
elastic tensor:

Ki j;kl = μ(δikδ jl + δilδ jk ) + λδi jδkl , (13)

characterized by two Lamé elastic constants, μ (shear mod-
ulus) and λ (valid for a triangular lattice) and integrated by
parts in the second and last terms of the second line. We also
restricted our analysis to a harmonic approximation, with b
replaced by b0 = 2πn0 in the last term, set by the equilibrium
particle number density n0. This last term crucially encodes
guiding center vortex dynamics, that sees background boson
density n0 as an effective magnetic field b0 = 2πn0, equiva-
lently corresponding to the Magnus force on a moving vortex.
It encodes noncommutativity of components of the phonon
operator but with the commutation relation modified by the
superflow encoded in the gauge field ai. The Lagrangian
explicitly breaks the spatial reflection (R) and time-reversal
(T) symmetry but is still invariant under the combined RT
transformation [13,41,42].

Functionally integrating over at in the partition function
locks the equilibrium vortex density nv to the flux density B
(equivalently to the imposed angular velocity 
, with critical
velocity 
c vanishing in the thermodynamic limit) with one
unit of flux quantum per vortex-lattice unit cell according to
Eq. (8). At long wavelengths, this then introduces a crucial
incompressibility constraint on the vortex lattice:

∂iui = 0, (14)

forcing a transversal form of the vortex-lattice phonon ui(x).
We emphasize that this incompressibility constraint is for the
vortex lattice, not the underlying superfluid [43]. We also note
that keeping the subdominant electric energy term 1

8π2ns
e2 in

the above Lagrangian would allow for nonzero vortex-lattice
comprehensibility. At long scales, the incompressibility con-
straint reduces the Lagrangian in Eq. (12) to

L = −μu2
i j − 1

8π2χ
(δb)2 − nvai∂t ui + 1

2
nvb0εi jui∂t u j,

(15)

with the Lamé elastic constant λ dropping out due to the
incompressibility condition in Eq. (14). It is straightforward
to see (via, e.g., the equation of motion) that, Eq. (15) encodes
a single-polarization Tkachenko modes with a quadratic dis-
persion relation ω ∼ q2. We emphasize that, because of the
Berry phase coupling of phonon velocity ∂t ui to the superfluid
gauge field ai, the commutation relations are distinct from that
of pure guiding-center dynamics (in the absence of the gauge
field) of, e.g., a Wigner crystal in a magnetic field, though the
quadratic dispersion is the same.
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The Euler-Lagrange equation for ui is given by

nvei + nvb0εi j∂t u j + 2μ∂ jui j + λ∂iukk = 0. (16)

It encodes a local equilibrium force balance in the vortex
lattice. The first and second terms are the dual electric and
magnetic forces (dual Lorentz force), corresponding to a Mag-
nus force experienced by a moving vortex due to a superflow
Ji = 1

2π
εi je j . It is equivalent to Kelvin’s condition that, in the

absence of other forces, a vortex moves with a local superfluid
velocity. The third and fourth terms comprise a force asso-
ciated with elastic stresses. Equations (14) and (16) will be
important for our subsequent analyses.

We take the vortex lattice to be triangular, correspond-
ing to the expected lowest-energy state for repulsive vortex
interaction. A triangular unit cell has area

√
3l2/2, with

the equilibrium vortex density nv related to the lattice
constant l by nv = 2/

√
3l2. Our discussions so far have

neglected vortex-lattice topological defects—disclinations,
dislocations, vacancies, and interstitials. These enter the low-
energy linearized effective field theory in Eq. (12) through
the compactness of ui, associated with lattice periodicity and
captured by the identifications on the displacement field ui:

ux ∼ ux + kxl + 1

2
kyl, uy ∼ uy +

√
3

2
kyl, (17)

where ki are integers. Similarly, a 2π/6 rotation around a lat-
tice site leaves the lattice invariant so the bond angle θ should
be 2π/6 periodic. In the linearized elasticity theory, the bond
angle is approximated by θ ≈ 1

2εi j∂iu j , which together with
the 2π/6 periodicity of the bond angle, implies the following
identification on ui:

ui ∼ ui + 2πk

6
εi jx j, (18)

where k is an integer. The above thereby allow singular con-
figurations, with nonzero ∇ × ∇ui and ∇ × ∇θ , which will
be vitally important for the defect analysis in Sec. VI.

B. Compact Lifshitz theory with a Berry phase

The Lifshitz field theory arises from the linearized effective
field theory in Eq. (15) of the vortex lattice by integrating out
the U (1) vector gauge field aμ representing the bosonic matter
component and the associated superflow. As we saw in the
previous section, the integration over at imposed the incom-
pressibility condition in Eq. (14) and transformed Eq. (12) into
Eq. (15). The condition in Eq. (14) is straightforwardly solved
using a phase φ(x), defined by

ui = 1

B
εi j∂ jφ. (19)

A priori, at this stage, φ(x) is unrelated to the superfluid phase
ϕ(x) of the previous section. However, as we will see below,
φ(x) is a deviation from ϕV L(x) describing a triangular vortex
lattice of single vortex configurations ϕvortex(x) = arctan[(y −
yi )/(x − xi )]. The linearized symmetric strain tensor can then
be expressed as

ui j = 1

2
(∂iu j + ∂ jui ) = 1

B
ε jkDikφ, (20)

where we defined a differential operator:

Di jφ ≡
(

∂i∂ j − 1

2
δi j∂

2

)
φ. (21)

Next, integrating out ai gives

1

2π
δb = −χ∂tφ, (22)

which together with Eq. (19) reduces the Lagrangian in
Eq. (15) to a linearized (quadratic) Lifshitz theory:

L = χ

2
(∂tφ)2 − μ

B2
(Di jφ)2 + b0

4πB
εi j∂iφ∂ j∂tφ, (23)

supplemented by a Berry phase, which is a distinctive char-
acteristic of a quantum vortex lattice, crucially contrasting it
from the previously studied Lifshitz theory description [44].
The Berry phase is the only term in the Lagrangian that breaks
the T and R symmetry while preserving the combined RT
symmetry.

Naively, one may hastily neglect the Berry phase term,
arguing that, as a total derivative, it is unimportant in
the bulk. However, since φ(x) is a compact angular
field, it can wind, encoding singular vortex configura-
tions for which 1

2π
εi j∂i∂ jφ = 1

2π
∇ × ∇φ = δ jt (x) = jt (x) −

jV L
t (x) �= 0, where jV L

t (x) = ∇ × ∇ϕV L is the vortex density
corresponding to a vortex lattice in ϕ(x), with average nv . For
such vortex configurations, the Berry phase term contributes
nontrivially in the bulk:

LBerry = b0

4πB
εi j (∂i∂ jφ)∂tφ = 1

2
νδ jt∂tφ, (24)

where ν ≡ b0/B is the filling fraction of boson per vortex.
Not unrelated, it is tempting to rewrite the second elastic

term as simply μ

2B2 (∇2φ)2 through integration by parts. How-
ever, in the presence of vortices, there is an obstruction to
integration by parts as derivatives on φvortex do not commute
(see Refs. [5,6,14,28] for related discussions).

The compactness of φ follows from the identifications on
ui, listed in Eqs. (17) and (18), and the relationship between ui

and φ in Eq. (19), which lead to the following identifications:

φ(x) ∼ φ(x) + kxyBl + 1

2
ky(y −

√
3x)Bl + 2πk

12
Br2, (25)

with r =
√

x2 + y2 the radial coordinate and integers kx, ky, k.
In addition to these, there is another constant identification
on φ:

φ(x) ∼ φ(x) + 2π, (26)

following from the 2π periodicity of the superfluid phase
ϕ(x) ∼ ϕ(x) + 2π .

The Tkachenko modes are made explicit in the linearized
Lifshitz theory in Eq. (23). They are the plane-wave exci-
tations of the phase field φ that manifestly have only one
polarization and a quadratic dispersion with dynamical expo-
nent z = 2, characteristic of the Lifshitz symmetry (t, xi ) →
(ξ t, ξ 2xi ), with the scaling factor ξ [43].

For later use, we summarize the operator maps between the
effective field theory in Eq. (15) and the linearized Lifshitz
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theory in Eq. (23):

ui ←→ 1

B
εi j∂ jφ,

ui j ←→ 1

B
ε jkDikφ,

1

2π
δb ←→ −χ∂tφ,

1

2π
ei ←→ b0

2πB
∂i∂tφ − μ

B2
εi j∂ j∂

2φ. (27)

The last relation can be derived by substituting Eq. (19) into
the Euler-Lagrange Eq. (16).

IV. DUALITY

In this section, we derive several equivalent formulations
of the vortex lattice starting from the Lifshitz field theory
presented in Eq. (23) and the effective field theory presented
in Eq. (15). We apply a generalized Lifshitz duality [28,29]
to the Lifshitz field theory [13], obtaining the main new
result of this section—a traceless symmetric scalar-charge
gauge theory description of the vortex lattice. We then demon-
strate the low-energy equivalence of this dual gauge theory
to the vortex-lattice description via fracton-elasticity duality
[5,6,14], derived in an earlier work [19].

A. Lifshitz duality to traceless symmetric
scalar-charge gauge theory

We now derive another equivalent description of the vortex
lattice by dualizing the linearized Lifshitz theory to a trace-
less symmetric scalar-charge gauge theory, generalizing the
Lifshitz duality studied in Refs. [28,29].

To this end, we introduce Hubbard-Stratonovich (HS)
fields π̂t , π̂i j , and ui into Lagrangian L[φ] in Eq. (23) so that
φ appears linearly in the transformed Lagrangian:

L[φ, π̂, ui] = − 1

2χ
π̂2

t + π̂t∂tφ + B2

4μ
π̂2

i j + π̂i jDi jφ

− b0B

4π
εi jui∂t u j − b0

2π
ui∂t∂iφ, (28)

where π̂i j is a traceless symmetric tensor, with a hat symbol
emphasizing its tracelessness. The original Lifshitz La-
grangian is straightforwardly recovered, integrating out in the
path integral the π̂t , π̂i j , and ui fields. At the harmonic level,
this establishes relations:

π̂t = χ∂tφ, π̂i j = −2μ

B2
Di jφ, ui = 1

B
εi j∂ jφ, (29)

which reveals that π̂t , π̂i j , and ui play the roles of the boson
density, vortex-lattice stress, and the displacement (phonon)
field, respectively. We note that, although we used the same
symbol ui, there was no a priori relationship with the vortex-
lattice phonon field appearing in Eq. (9). However, the third
equation above, relating ui and φ is exactly the one that ap-
peared in Eq. (19), thereby identifying HS field ui with the
vortex displacement field.

To obtain the dual Lagrangian, we integrate out φ, which
appears linearly and thereby gives the following constraint:

∂t π̂t − Di jπ̂i j + b0

2π
∂t∂iui = 0. (30)

We note that, through the last term, the dynamics here is qual-
itatively modified by the Berry phase, encoding a coupling
between superfluid current ∂iφ, vortex density ∂iui, and boson
density π̂t , which physically goes back to Kelvin’s condition
for vortex motion in a superflow. To solve the constraint, it
is convenient to define dual magnetic and electric fields (that
respectively encode a sum of boson and vortex densities, and
vortex-lattice stress):

B̂ ≡ 2ππ̂t + b0∂iui, Êi j ≡ 2πε jkπ̂ik, (31)

in terms of which constraint transforms into Faraday-like law:

∂t B̂ − εikD jk Êi j = 0. (32)

Here, Êi j is a traceless symmetric tensor following from the
fact that π̂i j is traceless symmetric. The constraint can be
solved by introducing a tensor gauge field:

Ât ∼ Ât + ∂t λ̂, Âi j ∼ Âi j + Di j λ̂, (33)

with Âi j a traceless symmetric tensor and identifying Êi j , B̂
with the gauge-invariant field strengths of the tensor gauge
field:

Êi j = ∂tÂi j − Di jÂt , B̂ = εikD jkÂi j . (34)

This then gives our main result, the dual traceless tensor gauge
theory Lagrangian:

L = B2

16π2μ
Ê2

i j − 1

8π2χ
(B̂ − b0∂iui )

2 − b0B

4π
εi jui∂t u j .

(35)

As ui appears quadratically in the Lagrangian, we can further
integrate it out and reduce the Lagrangian to a functional
depending only on the traceless symmetric tensor gauge fields.
However, because ui is gapless, this will result in a long-range
interaction and thus will obscure the locality of the resulting
Lagrangian. Thus, we keep the ui field and present the La-
grangian in the current form. In Appendix A, for comparison,
we study the duality of the Lifshitz theory in Eq. (23) without
the Berry phase.

This tensor gauge theory description of the vortex lattice
has the advantage of making the topological crystalline de-
fects and their mobility explicit (see Sec. VI). It will also serve
as the starting point for our study of the vortex phases that can
appear after melting of the vortex lattice.

For later use, we summarize the operator maps between
the Lifshitz theory in Eq. (23) and the tensor gauge theory in
Eq. (35):

∂tφ ←→ 1

2πχ
(B̂ − b0∂iui ),

Di jφ ←→ B2

4πμ
ε jk Êik, (36)

which follow from Eqs. (29) and (31).
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B. Vortex-lattice dual through fracton-elasticity duality

In a distinct approach, authors of Ref. [19] dualized a vor-
tex lattice by applying fracton-elasticity duality [5,6,14] to the
elastic sector of the effective field theory in Eq. (12), obtaining
a symmetric scalar charge theory coupled to a U (1) vector
gauge field of the superfluid. We review their derivation below
and show that our traceless symmetric tensor gauge theory in
Eq. (35) consistently emerges in the low-energy limit.

Following fracton-elasticity duality [5,6,14], we linearize
the appearance of the phonon field ui in Eq. (12) by respec-
tively introducing the lattice momentum, stress tensor, and
bond angle HS fields πi, σi j, and θ , which transforms the
effective field theory to

L = 1

2
K−1

i j;klσi jσkl + σi j (∂iu j − θεi j )

− 1

2nvb0
εi jπi∂tπ j + πi∂t ui + nveiui − 1

8π2χ
(δb)2,

(37)

with K−1
i j;kl the inverse of the elastic tensor in Eq. (13):

K−1
i j;kl = 2μδikδ jl + λ(2δikδ jl − δi jδkl )

4μ(λ + μ)
. (38)

The role of the bond angle field θ is to relax the sym-
metrization of the strain tensor ui j to ∂iu j − θεi j , with θ

effectively Higgs’ing the antisymmetric component of the
unsymmetrized strain ∂iu j [15]. The original Lagrangian is re-
covered by integrating over θ, πi, σi j in the partition function,
which because the model is quadratic, gives the relations:

πi = −nvb0εi ju j,

σi j = −Ki j;kl ukl ,

θ = 1
2εi j∂iu j . (39)

To derive the dual Lagrangian, we instead integrate out (ex-
actly) ui and θ , which gives rise to the following constraints:

∂tπi + ∂ jσ ji = nvei, εi jσi j = 0. (40)

The first constraint is the continuity equation for the vortex-
lattice stress-energy tensor broken by a dual electric field
associated with the superflow, which exerts a force on the
lattice. The second constraint symmetrizes the stress tensor
σi j . To solve the constraint, it is convenient to define dual
magnetic and electric fields:

Bi ≡ − 1

nv

εi j (π j − nvδa j ),

Ei j ≡ − 1

nv

εikε jl (σkl + nvδatδkl ), (41)

with δaμ = aμ − a0,μ the fluctuation around the equilibrium
gauge field a0,μ, whose magnetic field is b0 and electric field
vanishes. In terms of these new fields, the constraint reduces
to a Faraday-like law [5,6,14,15] and symmetrization of the
electric field tensor:

∂tBi − ε jk∂ jEki = 0, εi jEi j = 0. (42)

These can be solved by introducing a symmetric tensor gauge
field:

At ∼ At + ∂tλ, Ai j ∼ Ai j + ∂i∂ jλ, (43)

and setting Bi, Ei j to be its gauge-invariant field strengths:

Bi = ε jk∂ jAki, Ei j = ∂tAi j − ∂i∂ jAt . (44)

We emphasize that, unlike Eq. (33), this symmetric tensor
gauge field is not traceless. With this, utilizing this gauge
field description, we arrive at the dual Lagrangian derived in
Ref. [19]:

L = 1

2
n2

vK̃−1
i j;kl (Ei j + δatδi j )(Ekl + δatδkl )

− B

4πb0
εi j (Bi − εikδak )∂t (B j − ε jlδal ) − 1

8π2χ
(δb)2,

(45)

with K̃−1
i j;kl = εii′ε j j′εkk′εll ′K

−1
i′ j′;k′l ′ . It describes a symmetric

tensor gauge theory coupled to a vector gauge theory. For the
Lagrangian to be gauge invariant, Ai j must transform under
the gauge redundancy of δaμ as

δaμ ∼ δaμ + ∂μβ, Ai j ∼ Ai j + βδi j, (46)

in additional to its own gauge redundancy in Eq. (43).
We now relate this description of the vortex lattice with

our traceless symmetric tensor gauge theory in Eq. (35). To
this end, we define the following field identifications:

ui ≡ 1

b0
(Bi − εi jδa j ),

(Ât , Âi j ) ≡
(
At ,Ai j − 1

2
δi jAkk

)
. (47)

Here, ui is the displacement field with the definition consistent
with Eqs. (39) and (41), and (Ât , Âi j ) is a traceless symmetric
tensor gauge field which shares the same gauge redundancy
as Eq. (33) with the gauge parameter λ̂ = λ and is invariant
under the gauge transformation in Eq. (46) associated with β.
The field strength of (Ât , Âi j ) is related to the field strength
of (At ,Ai j ) by

Êi j = Ei j − 1
2δi jEkk, B̂ = −∂iBi. (48)

With this, we can reduce the Lagrangian in Eq. (45) into a
functional of these new fields. To this end, we integrate out
δat , which sets a relation:

δat = − 1
2Ekk . (49)

The first term of the Lagrangian in Eq. (45) then transforms
into

1

2
n2

vK̃−1
i j;kl Êi j Êkl = B2

16π2μ
Êi j Êi j, (50)

which simplifies significantly due to the tracelessness of Êi j .
Expressing the remaining components of the Lagrangian in
terms of the newly defined fields gives

−b0B

4π
εi jui∂t u j − 1

8π2χ
(B̂ − b0∂iui )

2, (51)

which together with Eq. (50) reduces to our Lagrangian in
Eq. (35) of the traceless symmetric tensor gauge theory.
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V. GLOBAL SYMMETRIES

A. Microscopic symmetries

In this section, we analyze the global symmetries of the ef-
fective field theory in Eq. (12) and track them across dualities.
These global symmetries include the U (1) symmetry associ-
ated with boson number conservation and the translation and
rotation symmetry of the vortex lattice.

The microscopic boson number conservation is realized
in the effective field theory in Eq. (12) as a U (1) symmetry
generated by the current:

Jμ = 1

2π
εμνρ∂νaρ − n0δμ,t . (52)

In our definition, we subtracted the equilibrium boson den-
sity n0 in the temporal component of the current Jt so that
Jt represents the fluctuation of the boson density around its
equilibrium value. This current obeys a continuity equation:

∂μJμ = 0, (53)

corresponding to the local boson number conservation. The
quantized conserved charge is

Q =
∫

d2x Jt , (54)

which measures the fluctuations of the boson number around
its equilibrium value.

The translation and rotation symmetry of the vortex lattice
acts on the displacement fields ui as

ui → ui + cxδi,x + 1
2 cy(δi,x +

√
3δi,y) + αεi jx j, (55)

where cx and cy are respectively the translations along the x
axis and along the axis 2π/6 counterclockwise to the x axis,
and α is the rotation angle. We parameterized the symmetry
transformation in such a way so that the parameters have the
periodicity ci ∼ ci + l and α ∼ α + 2π/6. The rotation sym-
metry parameterized by α takes the form of an infinitesimal
rotation, although it remains a symmetry of the effective field
theory in Eq. (12) at nonzero α due to linearized elasticity of
the Lagrangian. We note that these symmetries should not be
confused with the translation and rotation symmetry of the full
system.

The current Jμν associated with translational and rotational
global symmetries is the symmetric rank-2 stress-energy ten-
sor of the vortex lattice:

Jit ≡ pi = nvai + nvb0εi ju j,

Ji j = nvatδi j − 2μui j − λukkδi j, (56)

with pi denoting the momentum density. It obeys the current
conservation equation:

∂t Jit = ∂ jJi j, (57)

which follows from the Euler-Lagrange Eq. (16) of ui. The
conserved charges are the momentum Pi and the orbital angu-
lar momentum L of the vortex lattice:

Pi =
∫

d2x pi, L =
∫

d2x εi jxi p j . (58)

The conjugate momenta of ui and ai are πi = pi and
�i = nvui, respectively. Upon quantization,

[πi(x), u j (x
′)] = iδi jδ

2(x − x′),

[πi(x), a j (x
′)] = 0,

[�i(x), u j (x
′)] = 0,

[�i(x), a j (x
′)] = iδi jδ

2(x − x′). (59)

These commutation relations reduce to more basic ones:

[ui(x), u j (x
′)] = 0,

[ui(x), a j (x
′)] = i

nv

δi jδ
2(x − x′),

[ai(x), a j (x
′)] = − ib0

nv

εi jδ
2(x − x′). (60)

Using these commutation relations, we obtain the following
algebra of the momentum density of the vortex lattice:

[pi(x), p j (x
′)] = invb0εi jδ

2(x − x′), (61)

where b0 = 2πnp. The momentum operator thus obeys

[Pi, Pj] = iNvb0εi j, (62)

where Nv is the total number of vortices. This nontrivial alge-
bra is a consequence of the Berry phase term in Eq. (12). It is
like the algebra obeyed by the magnetic translation operator
P̂i = −i∂i − Ai in a background magnetic field B = εi j∂iA j :

[P̂i, P̂j] = iBεi j . (63)

This is not a coincidence, as the vortices are coupled to the
vector gauge field aμ of the superfluid and experience an
effective magnetic field b0, proportional to boson number
density.

The algebra in Eq. (62) has a c number on the right-hand
side, which can also be expressed as iBN0εi j , with N0 the total
boson number in equilibrium. Physically, this algebra captures
a mixed anomaly between the orthogonal lattice translation
symmetries when the boson number is nonzero in equilibrium.
It is to be contrasted with the noncommutative algebra dis-
cussed in Ref. [13], where the boson number on the right-hand
side is promoted to an operator. Such noncommutative algebra
implies that the full symmetry group is an extension of the
translation symmetry by the U (1) symmetry associated with
boson number conservation. The algebra reduces to our alge-
bra in Eq. (62) by approximating the boson number operator
by its expectation value.

B. Multipole symmetry of the Lifshitz theory

The Lifshitz theory in Eq. (23) exhibits a quadrupole sym-
metry that shifts

φ → φ + c + cxBy + 1
2 cyB(y −

√
3x) + 1

2αBr2. (64)

The associated current is

Jφ
t = χ∂tφ − b0

B
δ jt , Jφ

i j = 2μ

B2
Di jφ + b0

2πB
εi j∂tφ, (65)

where

δ jt = 1

2π
εi jDi jφ = 1

2π
∇ × (∇φ) (66)
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is the density of vortex interstitials. It obeys the following
current conservation equation corresponding to the Euler-
Lagrange equation for φ:

∂t J
φ
t + Di jJ

φ
i j = 0. (67)

Similar quadrupole symmetry has also featured in clas-
sical vortex systems in a two-dimensional incompressible
fluid [45].

We can construct four conserved charges from this current.
They are respectively the integral, the first-moment integral in
the x and y direction, and the second-moment integral of Jφ

t :

Q = −
∫

d2x Jφ
t ,

Pi =
∫

d2x Bεi jx jJ
φ
t ,

L = −
∫

d2x
1

2
Br2Jφ

t . (68)

The monopole charge Q generates the constant shift on
φ → φ + c. Through the operator correspondence in Eq. (27),
it is mapped to the charge Q in Eq, (54) that measures the
fluctuation of the total boson number around the equilibrium.
Since Q is an integer, the constant identification on φ is fixed
to be φ ∼ φ + 2π .

The dipole charge Pi generates the linear shift on φ →
φ + Bεi jx j , which under the relation in Eq. (19) acts on the
displacement field ui as lattice translation u j → u j + δi j . It is
therefore identified with the lattice momentum operator Pi in
Eq. (58). Indeed, one can check that the two charges are re-
lated by the operator map in Eq. (27) and integration by parts.
The conjugate momentum of φ is Jφ

t , so upon quantization,
we have [

Jφ
t (x), φ(x′)

] = iδ2(x − x′). (69)

This, together with Eq. (66), leads to the following algebra of
the current Jφ

t :

[
Jφ

t (x), Jφ
t (x′)

] = − ib0

2πB
∇ × [∇δ2(x − x′)], (70)

which can be understood as a consequence of the Berry term
in Eq. (23). Using integration by parts, the dipole charge Pi

reproduces the algebra of momentum operators in Eq. (62).
Similarly, the quadrupole charge L generates the quadratic

shift on φ → φ − 1
2 Br2 that acts on ui as the lattice rotation

ui → ui − εi jx j under the relation in Eq. (19). It is thus iden-
tified with the angular momentum operator in Eq. (58) of the
vortex lattice.

By Lifshitz duality encoded in Eq. (36), the traceless sym-
metric tensor gauge theory is manifestly invariant under the
quadrupole symmetry in Eq. (64). The corresponding currents
in Eq. (65), expressed in terms of ∂tφ and Di jφ, can be
expressed in terms of the dual field strength B̂, Êi j and the
displacement field ui:

Jφ
t = 1

2π
(B̂ − b0∂iui ) − b0B

8π2μ
ε jk Êik,

Jφ
i j = 1

2π
ε jk Êik + b0

4π2χB
εi j (B̂ − b0∂iui ). (71)

The operators charged under the quadrupole symmetry are
then the displacement field ui and the magnetic monopole
operators eiφ of the tensor gauge field, where the latter have
no local representation on the dual side.

VI. TOPOLOGICAL CRYSTALLINE DEFECTS

One common way to characterize phases and phase tran-
sitions (complementary to Landau’s approach of breaking
symmetry of a disordered symmetric state) is through a pro-
liferation of topological defects that restore symmetry of
the symmetry-broken state [46–48], as have been recently
applied to quantum melting of crystals and its descen-
dant states, particularly utilizing fracton-elasticity dualities
[5,6,12,14–18].

A vortex lattice disorders similarly by proliferating topo-
logical defects that we analyze below, as was first imple-
mented in a three-dimensional classical vortex lattice in
Ref. [21] and recently in a two-dimensional quantum vortex
crystal in Ref. [19]. The distinction from a crystal of bosonic
atoms is that, in a vortex lattice, time-reversal symmetry is
explicitly broken, and vortices are nontrivially coupled to su-
perfluidity (superflow) encoded in the dual U (1) gauge theory,
as detailed in Sec. III. As we have seen, important conse-
quences of this are the incompressibility constraint encoded
in the transversality of the phonon displacement ∂iui = 0 and
a nontrivial Berry phase of the Lifshitz theory in Eq. (23) and
its dual that we derived in Eq. (35).

There are three types of topological crystalline defects
exhibited by a vortex lattice: disclinations, dislocations, and
vortex vacancies/interstitials [49]. Below, we discuss and
formulate these vortex-lattice topological defects in terms of
Lifshitz theory and its dual traceless symmetric tensor gauge
theory and use them to summarize possible descendant phases
and discuss their properties, leaving a detailed analysis of
corresponding Higgs transitions to future research.

To this end, we note that there are a number of consistent
disordering transition routes of a fully ordered commensurate
superfluid vortex crystal. However, these are constrained by
the interrelation of the associated topological defects, most
importantly that dislocations and vacancies/interstitials are
dipoles and quadrupoles of the elementary disclination de-
fects, respectively. This is encoded in, e.g., dislocation (ψ†

b )-
disclination (ψ†

s ) coupling ψ†
s (x − d/2)ψs(x + d/2)ψb(x),

which demands that, when the latter condenses, so does neces-
sarily the former. As such, phases in which some defects have
proliferated and condensed, but their multipoles have not, are
inconsistent and thus physically impossible [6,17,18]. With
this, we now construct these defects in Lifshitz theory and
its gauge-dual representations, as summarized in Table I, and
discuss the corresponding phases that will generically appear
as descendants of a vortex crystal.

A. Vortex-lattice defects via winding defects in Lifshitz theory

In the Lifshitz theory, the crystalline defects are realized
as point singularities around which the phase φ(x) winds. For
such defects at the origin, the most general winding of φ(x) is
fixed by the identification in Eqs. (25) and (26) and is given
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TABLE I. The topological crystalline defects of the vortex lattice in the Lifshitz theory description in Eq. (23) and in its dual traceless
symmetric scalar-charge theory description in Eq. (35). The phase φ(x) of the Lifshitz theory winds around the defect placed at the origin, as
listed in the second column. In the tensor gauge theory, the defects are realized as Wilson defects, as listed in the third column. These defects
are charged under the multipole one-form symmetry in Eq. (84).

Traceless symmetric
Vortex lattice Lifshitz theory tensor gauge theory

Disclination φ(x) = − B
12 ϑr2 exp

[
iB
6

∫
Ât dt

]
Dislocation with Burgers vector b φ(x) = B

4π
(b · x + 2ϑb × x) exp

[− iB
2π

∫
b × ∇Ât dt

]
Vortex interstitial φ(x) = ϑ exp

[− i
2

∫ ∇2Ât dt
]

by

φ(ϑ + 2π, r) = φ(ϑ, r) + 2πZ + yBlZ

+ 1

2
(y −

√
3x)BlZ + 2π

12
Br2Z, (72)

where (ϑ, r) is the polar coordinate related to the Carte-
sian coordinate by (x, y) = (r cos ϑ, r sin ϑ ). Below, we relate
crystalline defects of the vortex lattice to the winding defects
in phase φ of the Lifshitz theory.

1. Disclination

A disclination defect is a singularity of the local lattice
bond angle θ = 1

2εi j∂iu j , which utilizing Eq. (19) is given by

θ = − 1

2B
∂2φ, (73)

in the Lifshitz theory under the operator map in Eq. (27). As
the vortex lattice is a triangular lattice, the bond angle θ winds
by 2π/6 around an elementary disclination defect, leading to
the following singularity equation for φ:

− 1

2B
εi j∂i∂ j∂

2φ = εi j∂i∂ jθ = 2π

6
δ2(x). (74)

Solving it gives

φ = − B

12
ϑr2, (75)

which corresponds to the quadratic winding in Eq. (72), with
ϑ the polar angle singular at the defect location r = 0. The
energy of a disclination:

Edisc =
∫ L

a
rdr

∫ 2π

0
dθ

μ

B2
(Di jφ)2 = 2πμ

144
L2, (76)

diverges quadratically with the system size L, consistent with
the studies of two-dimensional classical crystals [47,48].

2. Dislocation

A dislocation defect is characterized by its Burgers vector
b—the shift by a lattice vector when going around the defect,
possible because of the compactness of u(x). It can be decom-
posed into a dipole of the elementary disclinations separated
by the vector 6

2π
ẑ × b. As a result, the φ configuration around

it is related to the one in Eq. (75) around a disclination by the

action of a differential operator − 6
2π

b × ∇, which gives

φ = B

4π
εi jbi∂ j (ϑr2) = B

4π
bi(xi + 2ϑεi jx j ). (77)

As ϑ increases by 2π , φ(x) winds around by

φ(ϑ + 2π ) = φ(ϑ ) + Bεi jbix j

= φ(ϑ ) + yBlZ + 1
2 (y −

√
3x)BlZ, (78)

where we use the fact that the Burgers vector are integer linear
combinations of the triangular lattice vectors:

b = {
x̂Z + 1

2 (x̂ +
√

3ŷ)Z
}
l. (79)

This φ winding around a dislocation corresponds to the linear
winding in the most general identification in Eq. (72). The
energy of a dislocation is given by

Ev =
∫ L

a
rdr

∫ 2π

0
dθ

μ

B2
(Di jφ)2 = μ

2π
b2 ln

(
L

a

)
, (80)

diverging logarithmically with the system size L as in a con-
ventional two-dimensional classical crystal [47,48].

3. Vacancy and interstitial

A vacancy/interstitial of the vortex lattice can be created
by removing/inserting a vortex into the lattice. In the effective
field theory in Eq. (23), a vortex is represented by a Wilson
line W = exp(i

∫
at dt ) of the superfluid gauge field aμ. Con-

sequently, a vortex vacancy and interstitial are described by
W † and W , respectively. Without loss of generality, we will
focus on the interstitial defect in the discussion below.

Inserting a vortex interstitial modifies the Euler-
Lagrangian equation of at , resulting in a singularity in
the incompressibility condition, modifying Eq. (14) to be

nv∂iui = 1

2π
εi j∂i∂ jφ = δ2(x). (81)

Here, we employed the operator map in Eq. (27) to replace
ui with φ. Solving this equation gives the φ(x) configuration
around the interstitial defect:

φ(r, ϑ ) = ϑ, (82)

which corresponds to the constant winding component in
Eq. (72). This φ configuration is related to the one around a
disclination defect in Eq. (75) by the action of the differential
operator − 3

B∂2. This relationship arises from the fact that an
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interstitial defect can be decomposed into a group of disclina-
tion defects. The energy of a vacancy/interstitial is given by

Ev =
∫ L

a
rdr

∫ 2π

0
dθ

μ

B2
(Di jφ)2 = 2πμ

B2a2
, (83)

finite in the infrared limit but, as expected, depending sensi-
tively on the lattice cutoff a.

B. Multipole one-form global symmetry and defect mobility

An interesting characteristic of these crystalline defects
is that they could have restricted mobility, like fractons. To
systematically organize them and study their mobility, we
utilize the generalized global symmetries that they are charged
under.

In the Lifshitz theory, the relevant symmetry is the winding
symmetry with the winding conserved current:

Ji j
t = − 1

2πB
Di jφ, J = − 1

2πB
∂tφ, (84)

where Ji j
t is a traceless symmetric tensor. In the absence of

topological defects, this winding current obeys the conserva-
tion equation:

∂t J
i j
t = Di jJ, (85)

and a differential condition relating different temporal com-
ponents of the current:

ε jkDi jJ
ik
t = 0. (86)

Equations (85) and (86) are the Lifshitz theory analogs akin
to the spatial and temporal components of Eq. (5) for vortices
in the superfluid. Here too, defects violate these homogeneous
continuity equations, appearing as sources in it. A static defect
generates only sources to the differential condition in Eq. (86).

Using the winding current, we can construct several con-
served charges, e.g., Qxy

i = ∫
Jxy

t dxi, which act on the winding
operators and the winding states of φ. Their conservation
follows from the current conservation Eq. (85). Notably, these
conserved charges act only on operators inserted at a fixed
time but not on static defects extending in the time direction.
In the language of Ref. [26], these charges generate a space-
like symmetry, while the defects are charged under a timelike
symmetry. As defects are sources to the differential conditions
in Eq. (86), the timelike charges can be built from the latter.

As a warmup, we recall the simplest example of space-
like and timelike symmetries is the U (1) electric one-form
symmetry in Maxwell’s electrodynamics, generated by a con-
served two-form current:

Jμν = 1

g2
Fμν, (87)

obeying the current conservation equation (Faraday’s law):

∂t Jt i = ∂ jJ ji, (88)

and a differential condition relating different temporal com-
ponents of the current (Gauss’s law):

∂iJit = 0. (89)

The conservation and differential condition can be summa-
rized concisely as ∂μJμν = 0. The U (1) one-form symmetry
comprises a U (1) spacelike symmetry that acts on Wilson
loop operators inserted at a fixed time and a U (1) timelike
symmetry that acts on Wilson line defects oriented in the time
direction. The timelike charge for the timelike symmetry is an
integral of the differential condition in Eq. (89) over an open
volume V:

Q =
∫
V

∂iJit dx ∧ dy ∧ dz

=
∮

�

1

2
εi jkJit dx j ∧ dxk

=
∮

�

E · dS, (90)

which can be expressed as the Gauss’s law operator localized
on the boundary surface � = ∂V . A Wilson defect induces a
source to the differential condition in Eq. (89) and thus carries
charge under the timelike charges or equivalently the Gauss’s
law operators surrounding it. This is essentially the content of
Gauss’s law. The timelike charge is conserved in time if there
is no Wilson line operators crossing it:

∂t Q =
∫
V

∂i∂t Jit dv =
∫
V

∂i∂ jJi j dv = 0, (91)

where dv = dx ∧ dy ∧ dz denotes the volume form. In the
second equality, we use the current conservation Eq. (88),
while in the last equality, we use the fact that Ji j is antisym-
metric and single valued, namely, there are defects so that
derivatives on it commute.

In relativistic systems, the spacelike and timelike sym-
metries share the same symmetry group and together form
a higher-form symmetry since space and time are on equal
footings, but in nonrelativistic systems, they are generically
distinct (see the examples discussed in Ref. [26]).

After the warmup, we are now ready to explore the timelike
winding symmetry in the Lifshitz theory. The timelike sym-
metry is a multipole symmetry with, in total, three types of
timelike winding charges—monopole, dipole, and quadrupole
charges—paralleling our classification of winding defects in
the previous subsection, and particularly the three—constant,
linear, and quadratic—components of Eq. (72).

The monopole charge Q is the integral of the differential
condition in Eq. (86) over an open surface area �:

Q =
∫

�

ε jkDi jJ
ik
t dx ∧ dy

=
∮

γ

∂iJ
i j
t dx j

= −
∮

γ

1

4πB
d (∂2φ)

=
∮

γ

1

2π
dθ,

(92)

which can be expressed as an operator localized on the
boundary curve γ = ∂�. In the last two equalities, we used
the explicit form of the winding current in Eq. (84) and
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the relation in Eq. (73) between the bond angle θ and the
Lifshitz scalar field φ. This reveals the physical meaning
of the monopole charge: It measures the quadratic winding
of φ in Eq. (72) or equivalently the bond angle θ winding
around the curve γ , nonzero for an enclosed disclination
defect.

The dipole charge Qn is the first-moment integral of the
differential condition in Eq. (86) over an open area �:

Qn =
∫

�

2πεnmxm × ε jkDi jJ
ik
t dx ∧ dy

=
∮

γ

2πεnn̄
[
xn̄

(
∂nJxy

t + 2∂n̄J n̄n̄
t

)
dxn̄ + (

xn̄∂n̄Jxy
t − Jxy

t

)
dxn

]
,

=
∮

γ

1

B
εnn̄d

(
∂n̄φ − xn̄∂

2
n̄ φ

) =
∮

γ

d (un + θεnn̄xn̄). (93)

where in the last line, the indices are not summed over; in-
stead, n̄ denotes the index distinct from n. It can be expressed
as an operator localized on the boundary ∂� = γ , which
measures the linear winding of φ in Eq. (72), corresponding
to a Burgers displacement b associated with an enclosed dis-
location defect. The dipole charge is not simply an integral
of d (∂n̄φ); rather, it has an additional term −d (xn̄∂

2
n̄ φ) that

removes the contributions from the quadratic winding. In the
last equality, we expressed the dipole charge in terms of the
displacement field un and the bond angle θ using Eqs. (19) and
(73). This allows us to interpret the linear-in-x winding of φ

physically as measuring the variation of the displacement field
un around the curve γ (dislocation), modulo the contribution
θεnn̄xn̄ from the winding of the bond angle θ (disclination).

The quadratic charge Q is the second-moment integral of
the differential condition in Eq. (86) over an open area �:

Q =
∫

�

−1

2
Br2 × ε jkDi jJ

ik
t dx ∧ dy

=
∮

γ

1

2
B
[(

2yJxy
t − r2∂yJxy

t − 2x2∂xJxx
t

)
dx + (

2xJxy
t − r2∂xJxy

t − 2y2∂yJyy
t

)
dy

]
,

=
∮

γ

1

4π
d
(
x2∂2

x φ − 2x∂xφ + y2∂2
y φ − 2y∂yφ + 2φ

) =
∫

�

δ jt − nv

∮
γ

d

(
εi juix j + 1

2
r2θ

)
. (94)

It can be expressed as an operator localized on the boundary
∂� = γ , which measures only the constant winding of φ in
Eq. (72). Physically, the quadrupole charge can be interpreted
as the number of vortices enclosed by the curve γ modulo
the contributions from the underlying vortex lattice and the
change of lattice area εi juix j + 1

2 r2θ due to dislocations and
disclinations, namely, it measures vortex vacancies and inter-
stitial defects added to the underlying vortex lattice.

We can systematically organize the winding defects or
equivalently the crystalline defects according to their timelike
winding charges. Let us first consider only defects placed
at the origin. Then (i) defects charged under the monopole
charge Q are the disclination defects with quantized Q ∈
1
6Z measuring the winding of the bond angle θ , (ii) de-
fects charged under the dipole charges Qn are the dislocation
defects with Qn = bn measuring the Burgers vector of the
dislocation defects b, and (iii) defects charged under the
quadrupole charge Q are vortex vacancies/interstitials with
quantized Q ∈ Z measuring the constant winding of φ or
equivalently the constant winding of the superfluid phase ϕ

over and above the underlying winding due to the vortex
lattice.

For defects away from the origin, the ones charged under
the dipole and quadrupole timelike symmetry are no longer
just the dislocations and vortex vacancies/interstitials, respec-
tively. Comparing the singularity Eq. (74) with the differential
condition in Eq. (86), we learn that disclination defects gener-
ate a δ-function source to the differential condition:

ε jkDi jJ
ik
t = 1

6δ2(x − x′), (95)

where x′ is the position of the disclination defect. Insert-
ing Eq. (95) into Eqs. (93) and (94), we see that such

disclination carries a dipole charge Qn = 2π
6 εnmx′

m and a
quadrupole charge Q = 1

12 Br′2, respectively. Conservation
of these charges requires that x′ is time independent, and
thus, a disclination is completely immobile. Physically, it
corresponds to the fact that moving a disclination creates
dislocations [15]. Similarly, a dislocation carries a quadrupole
charge Q = 1

2π
Bb × x′, which freezes its position trans-

verse to its Burgers vector b, forbidding its climb. We
thereby recover the glide-only constraint on a dislocation
motion. Physically, this corresponds to a creation of vortex
vacancies and interstitials in the climb process, which is for-
bidden by vortex conservation, as explicitly demonstrated in
Refs. [5,6,14,15].

C. Vortex-lattice defects via Wilson defects
in tensor gauge theory

The topological crystalline defects of the vortex lattice are
realized as Wilson defects in the traceless symmetric tensor
gauge theory in Eq. (35). A systematic way to match these
defects is to utilize the generalized global symmetry that acts
on them. In the Lifshitz theory, the relevant symmetry is the
winding symmetry whose conserved current under the opera-
tor correspondence in Eq. (36) is mapped to

Ji j
t = − B

8π2μ
ε jk Êik, J = − 1

4π2Bχ
(B̂ − b0∂iui ). (96)

The differential condition in Eq. (86) of this current now is
a consequence of the Euler-Lagrange equation of Ât in the
traceless symmetric tensor gauge theory, namely, the electric
Gauss’s law for Êik . The sources to the differential conditions
are the Wilson lines built out of Ât . Suppose we insert such a
Wilson line exp(iC

∫
Ât dt ) with an undetermined coefficient
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C at the origin. The Euler-Lagrangian equation or relatedly
the differential condition is modified into

ε jkDi jJ
ik
t = B

8π2μ
Di j Êi j = C

B
δ2(x), (97)

with Gauss’s law encoding disclinations as the (dual) elec-
tric charges. Comparing it with the differential condition in
Eq. (95) around the elementary disclination defect, we learn
that an elementary disclination defect is represented by the
Wilson line:

vortex disclination: exp

[
iB

6

∫
Ât dt

]
. (98)

The exponent of the Wilson line is dimensionless despite the
appearance of the effective background magnetic field B in it.
It is because the gauge parameter λ̂ has mass dimension −2.
Since this Wilson line must be the minimal properly quan-
tized Wilson line, the gauge parameter λ̂ has the following
identification:

λ̂ ∼ λ̂ + 12π

B
Z. (99)

As dislocations and vortex interstitials are composed of
disclinations, we can infer their representations by acting
differential operators on the exponent of Wilson line repre-
sentation in Eq. (98) of disclinations. With this, we deduce
that the dislocation with Burgers vector b:

b = {
x̂Z + 1

2 (x̂ +
√

3ŷ)Z
}
l, (100)

and the vortex interstitial are respectively represented by the
following properly quantized Wilson defects:

vortex dislocation: exp

[
− iB

2π

∫
b × ∇Ât dt

]
, (101)

vortex interstitial: exp

[
− i

2

∫
∇2Ât dt

]
. (102)

The quantization of these defects demands that the gauge
parameter λ̂ obey the following additional identifications:

λ̂ ∼ λ̂ + 8π2

√
3Bl

[
xZ + 1

2
(x +

√
3y)Z

]
+ π (x2 + y2)Z.

(103)

The mobility of these defects is reflected in whether there
exist gauge-invariant Wilson defects that can be deformed
in spatial directions. If such defects exist, they represent the
world lines of the mobile defects. In the case of disclinations
and dislocations, such gauge-invariant defects do not exist,
so they are completely immobile, consistent with our earlier
conclusion in the previous subsection and with general con-
siderations based on fracton-elasticity duality [5,6,14,15]. On
the other hand, a vortex interstitial can move freely, and its
motion is represented by the gauge-invariant Wilson defect:

exp

[
−i

∫
γ

(
1

2
∂2Ât dt + ∂iÂi j dx j

)]
, (104)

where γ is the world line of the vortex interstitial. The Wilson
defect is invariant under the gauge transformation in Eq. (33),

as the phase � generated by the transformation:

� =
∫

γ

(
1

2
∂2∂t λ̂ dt + ∂iDi j λ̂ dx j

)
=

∫
γ

1

2
d (∂2λ̂), (105)

is the integral of an exact form and thereby vanishes.
The Wilson defect descriptions of the topological crys-

talline defects allow us to compute the potentials between
them. Consider a disclination defect sitting at the origin. It
modifies the equation of motion of At , Ai j , and ui to

− B2

8π2μ
Di j Êi j + B

6
δ2(x) = 0,

− B2

4π2μ
∂t Êi j − 1

2π2χ
εikD jk (B̂ − b0∂iui ) = 0,

− b0

4π2χ
∂i(B̂ − b0∂iui ) − b0B

2π
εi j∂t u j = 0. (106)

Solving them gives the solution:

At = −πμ

3B
r2(ln r − 1), Ai j = 0, ui = 0. (107)

The potential between a disclination and an antidisclination is
then given by

Vd (r) = −B

6
At = πμ

18
r2(ln r − 1), (108)

which describes a confining potential. Since the dislocations
and vacancies/interstitials are compositions of disclinations,
it is straightforward to derive their potentials. For example,
the potential between a vacancy and interstitial is given by

Vv (r) =
(

3

B
∇2

)2

Vd (r) = 0, (109)

which vanishes. The potential gets corrected if the sub-
dominant kinetic and electric energies were included in the
effective theory in Eq. (12).

VII. VORTEX PHASES AND PHASE TRANSITIONS

We now turn to a discussion of phases whose general struc-
ture directly follows from various schemes of proliferation of
topological defects: vacancies/interstitials, dislocations, and
disclinations.

A. Vortex supersolid

Per our comments above on generic unbinding the highest
multipole defects first, we consider proliferating disclina-
tion quadrupoles, i.e., vacancies and interstitials, as discussed
above, corresponding to vortices in φ. In the dual traceless
symmetric tensor gauge theory picture, this condensation cor-
responds to Higgs transition of the vortex crystal to the vortex
supersolid [19] (a nonsuperfluid vortex-lattice phase without
ODLRO of the underlying bosons, which has been previously
extensively studied in the context of type-II superconductors
[20,21]). These quadrupole charges couple to an ordinary Wil-
son line W = exp(i

∫
γ

aμdxμ) built from a composite vector
gauge field in Eq. (104):

aμ = (at , ai )μ = −(
1
2∂2Ât , ∂ jÂ ji

)
μ
. (110)
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The fluctuations of the quadrupole charges can be represented
by a complex field �, with the gauge symmetry:

� → exp

(
i

2
∂2α

)
�. (111)

Then the vortex-crystal–to–vortex-supersolid melting transi-
tion is captured by the following quantum Landau-Ginzburg
theory:

L = B2

16π2μ
Ê2

i j − 1

8π2χ
(B̂ − b0∂iui )

2 − b0B

4π
εi jui∂t u j

+ Kt

∣∣∣∣
(

∂t − i

2
∂2Ât

)
�

∣∣∣∣
2

+ K|(∂i − i∂ jÂ ji )�|2

+ m2|�|2 + g|�|4. (112)

When m2 is positive, � is massive, and the theory is the
vortex-lattice phase. When m2 is negative, � condenses and
develops a vacuum expectation value 〈�〉 = v. It can be pa-
rameterized as

� = (v + σ )eiA. (113)

The phase A transforms under the gauge symmetry as a gauge
field:

A → A + 1
2∂2λ̂. (114)

Combining this gauge field A with the traceless symmetric
gauge field (Ât , Âi j ), we can define a traceful symmetric
tensor gauge field as

At = Ât , Ai j = Âi j + δi jA, (115)

which transforms under the gauge symmetry as

At → At + ∂t λ̂, Ai j → Ai j + ∂i∂ j λ̂. (116)

The gauge-invariant field strengths are

Bi = ε jk∂ jAki, Ei j = ∂tAi j − ∂i∂ jAt . (117)

They are related to the field strength of (Ât , Âi j ) by

Êi j = Ei j − 1
2δi jEkk, B̂ = −∂iBi. (118)

In terms of this symmetric tensor gauge field, the vortex-
supersolid phase is described by the following Lagrangian:

L = B2

16π2μ

(
Ei j − 1

2
δi jEkk

)2

+ 1

4
KtE2

kk + KB2
i

− 1

8π2χ
(∂iBi + b0∂iui )

2 − b0B

4π
εi jui∂t u j . (119)

The Higgs transition thus leads to the dual traceful symmetric
tensor gauge theory of the vortex-supersolid state [as opposed
to a traceless one in Eq. (35)]. Interestingly, this dual tensor
gauge theory resembles that of a time-reversal broken Wigner
crystal (e.g., bosonic crystal in an effective magnetic field) [6].

In this vortex-supersolid phase, the condensate of vortex
vacancies and interstitials are encoded in the traces of Ai j and
Ei j . They break the U (1) vortex conservation symmetry and
thereby lift the glide-only constraint on the dislocation mo-
bility, akin to its time-reversal-symmetric analog of bosonic

crystals [6,14,15,18]. The motions of these mobile vortex dis-
locations are represented by the gauge-invariant Wilson defect
of the symmetric tensor gauge field:

exp

[
− iB

2π

∫
εi jbi(∂ jAt dt + A jkdxk )

]
. (120)

Physically, vortex dislocations become fully mobile in the
presence of vortex condensate because the latter absorbs
the vortex vacancies/interstitials created by the motions of
dislocations. Contrary to the vortex dislocations, vortex discli-
nations remain immobile in the vortex-supersolid phase [21].

B. Vortex hexatic, smectic, and nematic

Vortex hexatic

Next, a simultaneous proliferation of all dislocations bα

(dipoles) in (100) melts the vortex supersolid into vortex hex-
atic, fully restoring the translational symmetry while retaining
bond orientational order. Like its vortex-supersolid parent,
this state lacks ODLRO of bosons, i.e., it is not a superfluid.
Extending arguments from melting of time-reversal-invariant
crystals of bosons to here, we find that the corresponding
hexatic vortex-liquid state is characterized by mobile discli-
nations. Physically, this is due to a condensate of dislocations
now able to absorb dislocations produced by disclination
motion and characterized by a space component of the discli-
nation Wilson loop in Table I.

Vortex smectic: If in contrast to vortex hexatic, only one
of the three vortex dislocations in (100) unbinds, the con-
densation of such dislocation b melts the vortex crystal into
a vortex smectic, characterized by a wave vector transverse
to the condensed b and a vanishing shear modulus for shear
along b. The Higgs transition gaps out gauge fields associated
with the phonon displacement along b and leads to restricted
Lineon mobility of the corresponding disclinations, immobile
only along smectic layers.

Vortex nematic: Unbinding the remaining two elementary
dislocations (they must unbind in pairs), leads to a nonsuper-
fluid vortex-nematic state with fully mobile disclinations,
quite similar to a hexatic but with C2 symmetry.

Both the hexatic and nematics can then quantum melt into
an isotropic vortex liquid via a Higgs condensation transition
of disclination defects. We leave the detailed derivation and
the resulting field theory to later studies.

VIII. CONCLUSIONS

In this paper, we formulated and studied an effective
QFT of a two-dimensional zero-temperature vortex lattice
in a neutral rotating superfluid, utilizing a combination of
particle-vortex, elasticity-fracton, and Lifshitz-gauge duali-
ties, augmented with a Berry phase term that encodes vortex
dynamics in the presence of a superflow, demonstrating con-
sistency between these different formulations. We discussed
a hidden multipole symmetry of the vortex lattice, used
its dual traceless symmetric tensor gauge theory to explore
vortex-lattice dynamics, characterized its topological vortex
crystalline defects using a multipole one-form symmetry,
and generalized Wilson lines, uncovering and detailing their
restricted mobility. This also allowed us to outline several
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descendant vortex phases separated by generalized Higgs
transitions, with detailed analysis left for future studies.

It would be interesting to generalize our vortex-lattice du-
ality to nonlinear Lifshitz theory. We also expect that the
duality can be extended to higher-dimensional theories, e.g.,
the Lifshitz photon theory [37] in three dimensions, which is
a gauge theory with Lifshitz scaling symmetry.

Note added. We would like to draw the reader’s attention to
the paper [50] by Nguyen and Moroz, which has some overlap
with this paper.
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APPENDIX: DUALITY OF LIFSHITZ THEORY WITHOUT
BERRY PHASE

In Sec. IV A, we study the duality of Lifshitz theory with
a Berry phase presented in Eq. (23). In this Appendix, we
instead consider Lifshitz theory without the Berry phase term
and revisit the Lifshitz duality in the presence of higher-rank
background probe fields [11].

1. Coupling to the higher-rank background probe fields

The Lagrangian is given by

L = χ

2
(∂tφ − Ĉt )

2 − K

2
(Di jφ − Ĉi j )

2, (A1)

where (Ĉt , Ĉi j ) is the traceless symmetric background gauge
field with background gauge transformation:

φ ∼ φ + γ , Ĉt ∼ Ĉt + ∂t γ̂ , Ĉi j ∼ Ĉi j + Di j γ̂ . (A2)

We dualize the theory in Eq. (A1) by introducing HS fields
π̂t and π̂i j , which is symmetric and traceless, and rewrite the
Lifshitz theory Lagrangian as

L = − 1

2χ
π̂2

t + 1

2K
π̂2

i j + π̂t (∂tφ − Ĉt ) + π̂i j (Di jφ − Ĉi j ).

(A3)

Integrating out φ, which appears linearly, gives the following
constraint:

∂t π̂t − Di jπ̂i j = 0. (A4)

To solve the constraint, it is convenient to define dual mag-
netic and electric fields:

B̂ ≡ 2ππ̂t , Êi j ≡ 2πε jkπ̂ik, (A5)

in terms of which constraint transforms into Faraday-like law:

∂t B̂ − εikD jk Êi j = 0. (A6)

Here, Êi j is a traceless symmetric tensor, following from the
fact that π̂i j is traceless symmetric. The constraint can be
solved by introducing a traceless symmetric tensor gauge
field:

Ât ∼ Ât + ∂t λ̂, Âi j ∼ Âi j + Di j λ̂, (A7)

and identifying Êi j , B̂ with the gauge-invariant field strengths
of the tensor gauge field:

Êi j = ∂tÂi j − Di jÂt , B̂ = εikD jkÂi j . (A8)

This then gives the dual tensor gauge theory Lagrangian:

L = 1

8π2K
Ê2

i j − 1

8π2χ
B̂2 − 1

2π
Ĉt B̂ + 1

2π
ε jkĈi j Êik, (A9)

where the higher-rank background probe field (Ĉt , Ĉi j )
couples to the tensor gauge theory via a generalized Chern-
Simons term for the tensor gauge fields. The background
gauge invariance of the coupling follows from the Faraday-
like law in Eq. (A6).

2. Connections with linearized gravity

The space components of the background traceless sym-
metric gauge field Ĉi j introduced in the previous section can
be naturally interpreted in terms of a background linearized
traceless symmetric metric Ĥi j with the relation [11]:

Ĥi j = −�̄2(εikĈ jk + ε jkĈik ), (A10)

where �̄ is a constant with dimension of length. The gauge
transformation on Ĉi j in Eq. (A2) implies transformation of
the metric:

Ĥi j → Ĥi j − �̄2(εik∂ j∂k + ε jk∂i∂k )γ̂ , (A11)

which can be reformulated by linearized version of
the transformation of the metric under area-preserving
diffeomorphism:

Ĥi j → Ĥi j − ∂iξ j − ∂ jξi, (A12)

with the definition of ξi = �̄2εik∂k γ̂ . Similarly, the traceless
symmetric tensor gauge field (Ât , Âi j ) can be equivalently
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interpreted as a dynamical metric:

ĥi j = −�̄2(εikÂ jk + ε jkÂik ), (A13)

in linearized gravity, which transforms as in Eq. (A7):

ĥi j → ĥi j − �̄2(εik∂ j∂k + ε jk∂i∂k )λ̂. (A14)

This establishes an area-preserving diffeomorphism, repre-
sented as xi → xi + ξ i, subject to the constraint ∂iξ

i = 0,
with the parameter ξ i defined as ξ i = �̄2εik∂k λ̂. The gauge-
invariant field strength Êi j , B̂ in Eq. (A8) can be written in

terms of this equivalent expression (Ât , ĥi j ) as

�̄2(εik Ê jk + ε jk Êik ) = ∂iv̂ j + ∂ j v̂i + ˙̂hi j, �̄
2B̂

= 1
2R̂ = 1

2∂i∂ j ĥi j, (A15)

where the shift vector is expressed as v̂i = �̄2εi j∂ jÂt and R̂
as the linearized Ricci scalar. Therefore, the Lagrangian for
the dual tensor gauge theory in Eq. (A9) can be expressed
as a Maxwell Chern-Simons theory within the framework of
linearized gravity.
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