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Phase transitions and composite order in U (1)N lattice London models
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The phase diagrams and the nature of the phase transitions in multicomponent gauge theories with an Abelian
gauge field are important topics with various physical applications. While an early renormalization-group-based
study indicated that the direct transition from a fully ordered to a fully disordered state is continuous for N = 1
and N > 183, recently it was demonstrated that the transition is discontinuous for N = 2. We quantitatively
study the dependence on N of the degree of discontinuity of this transition. Our results suggest that the transition
is discontinuous at least up to N = 7. Furthermore, we demonstrate that, at increased coupling strength, the
phase transitions of the neutral and charged sectors of the model split, which for N > 2 yields a new phase
with composite order. The transition from the composite-order phase to the fully disordered phase is then also
discontinuous, at least for N = 3 and N = 4. Via a duality argument, this indicates that van der Waals–type
interaction between directed loops may be responsible for the discontinuous phase transitions in these models.

DOI: 10.1103/PhysRevB.110.035163

I. INTRODUCTION

The problem of the order of the superconducting phase
transition has long been a subject of intense debate. This
debate has been renewed by the consideration of multicompo-
nent superconductors, which currently are of central interest
both in superconductivity and as effective field theories for
many other condensed matter systems. Especially interesting
are new phases with order only in relative degrees of free-
dom, which can appear in multicomponent superconducting
systems [1,2].

In mean-field BCS theory, the superconducting phase tran-
sition is second order [3,4], i.e., there is no latent heat but
a discontinuity in the specific heat. The first studies of fluc-
tuations in systems with local U (1) symmetry included the
fluctuation of the gauge field and concluded that—in contrast
to neutral systems, i.e., superfluids—superconductors have a
first-order transition [5,6]. Later work revised this conclusion
by showing that the result may apply only for type 1 super-
conductors, while to describe the opposite extreme type 2
superconductor it is crucial to include topologically nontrivial
excitations, i.e., vortices [7,8]. It was concluded that thermally
exited vortex loops make the transition continuous and in
the so-called inverted-XY universality class. This conclusion
is based on taking the London limit, where a duality map-
ping was constructed [7,8] that relates a statistical sum of a
three-dimensional (3D) lattice London superconductor and a
statistical sum of the superfluid 3D XY model with inverted
temperature. The duality argument related the statistical me-
chanics of proliferation of vortices in a system with local
U (1) symmetry, which are directed loops with short-range
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interaction, to a condensation of directed loops with long-
range interaction. Hence the term inverted-XY class: ap-
proaching a superconducting transition from below in tem-
perature is dual to approaching a superfluid transition from
above. For strongly type-2 superconductors this conclusion
was later backed by numerical simulations [9]. Therefore,
for single-component superconductors, a tricritical point de-
termined by the Ginzburg-Landau parameter κ = λ/ξ , which
separates discontinuous transitions from continuous ones, was
searched for using various methods [10–14].

The original work of Ref. [6] also considered the case
of several complex components. The claim was that the
phase transition should be expected to be continuous when
the number of components is larger than Nc = 183. The
universality class of the transition with multiple compo-
nents attracted intense interest after the proposal [15] that
a “deconfined” quantum phase transition can constitute a
direct continuous transition between two states character-
ized by distinct broken symmetries—contrary to the reigning
“Landau-Ginzburg-Wilson” paradigm which for such a case
insists on a generic discontinuous transition. It has been
argued [15,16] that phase transitions in quantum antiferro-
magnets can be mapped onto a phase transition of a U (1) ×
U (1) superconductor with equal component densities, or of
an SU (2) superconductor. The relationship of the models re-
ceived numerical backing in Ref. [17]. The argument for a
direct continuous transition, which was initially rather widely
accepted, was based on the idea that since the transition is
continuous for N = 1 type-2 models [7,8] and models with
N > 183 [6], the transition should be continuous also for
N = 2. Because the N = 2 model is self-dual, a continuous
transition would be in a different universality class than in-
verted XY . However, numerical computations demonstrated
that the transition is discontinuous [18–20]. This shifted the
search for continuous transitions to SU (2) models [21]. Sub-
sequently the transition was demonstrated to be discontinuous
also in the SU (2) case, although the discontinuity is weaker
[22–24]. This in turn raised the question of how the phase
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transitions change with increased numbers of degrees of
freedom.

Moreover, even for U (1)-symmetric London systems it has
been demonstrated that the phase transition can be discon-
tinuous if the system has several components. Namely, in
Ref. [25], it was found that if one takes a model with U (1)N

symmetry and breaks the symmetry explicitly to U (1) by
adding Josephson terms, there is a tricritical point and there
appears a discontinuous transition (see also Ref. [26]). Since
there is only one phase transition in a U (1) system, and only
one type of directed loop with short-range interaction that can
proliferate, the existence of a tricritical point shows that the
form of this interaction is important, in contrast to the usual
assumption in duality mappings. In the directed-loops model,
directly modifying the short-range interaction potential by
adding short-range attractive parts has also been shown to
lead to a discontinuous transition under certain conditions
[27].

The origin of the discontinuous phase transitions in mul-
ticomponent systems is still poorly understood. It remains
an outstanding open question whether there exist multicom-
ponent gauge theories with Abelian gauge fields that have
continuous phase transitions or if such theories can be gener-
ically ruled out or ruled out for a class of models. This
motivated recent works that have embarked on renormal-
ization group studies of theories with higher N [14,28–30].
Exploration of related questions in a more formal framework
is carried out in Ref. [31].

Importantly, at strong intercomponent coupling gauge the-
ories have been shown to have multiple phase transitions and
to form new phases with so-called composite order, which in
the context of two-component bosonic lattice systems are also
called paired phases [1,19,22,32–35]. These new phases occur
when the phase transition splits into two: at lower temperature
the phase sum of all the components disorders, the Meissner
effect disappears, and the system enters a phase with order
only in phase differences between components. Recently, an
observation of a related phase was reported above the super-
conducting transition in a U (1) × Z2 superconductor [2].

There is a mean-field argument [19] that relates the afore-
mentioned discontinuous phase transitions to the presence of
composite-order phases. The mean-field argument indicates
that the direct transition from the fully ordered phase to the
fully disordered phase is discontinuous for some range of cou-
plings. However, numerical calculations in the U (1) × U (1)
and SU (2) models that employ the flowgram method show
that the direct transition is always discontinuous, not only
in proximity to the composite-order phase [19,22–24]. Also,
multicomponent superconducting models without composite-
order phases can exhibit discontinuous transitions [25].

In Ref. [25] it was conjectured that van der Waals–type
interaction between directed composite loops is responsible
for driving the phase transitions to be discontinuous. This was
backed by relating the tricritical point of Josephson-coupled
systems to the range of the van der Waals–like forces between
composite vortices, as the composite vortices can be viewed
as bound states of electrically charged strings. The conjecture
was also backed by the numerical observation that, at least
for low N , the degree of discontinuity in a Josephson-coupled
system may, under certain conditions, increase with N .

The scenario where van der Waals–type interaction be-
tween directed composite loops drives the discontinuous
phase transitions deviates from the mean-field analysis in the
following testable aspect: The mean-field analysis [19] pre-
dicts that the transition from the fully ordered phase to the
composite-order phase should be discontinuous, at least near
the bicritical point, while the transition from the composite-
order to the disordered phase should be continuous. However,
by a duality mapping the transition from the disordered to
the composite-order phase with decreased temperature can be
mapped onto proliferation of directed composite loops that
should also interact via van der Waals–type forces that can
drive the transition discontinuous.

The goal of this paper is to numerically investigate phase
transitions in U (1)N London models of N complex fields
coupled to a noncompact Abelian gauge field for N > 2. The
paper is organized as follows. First we present the models that
we consider. Then we describe the numerical methods that we
use, including the observables used to locate and characterize
phase transitions. Finally, we present and discuss our results
on phase diagrams and the nature of certain transitions.

II. MODELS

We consider U (1)N -symmetric London models with iden-
tical components in three spatial dimensions, given by the
Hamiltonian density

h = 1

2
(∇ × A)2 + 1

2

∑
i

|(∇ + i qA)ψi|2. (1)

Here A is the magnetic vector potential and the ψi are matter
fields corresponding to the superconducting components. For
each N the amplitudes |ψi| = 1/

√
N , so that the total super-

conducting density
∑

i |ψi|2 = 1.
The model (1) can be rewritten in terms of neutral and

charged modes as [36]

h = 1

2
j2 + 1

2

∑
i< j

|ψi|2|ψ j |2(∇φi j )
2 + 1

2
(∇ × A)2, (2)

where φi j = φ j − φi and j is the density of charged
supercurrent:

j =
∑

i

|ψi|2(∇φi + qA). (3)

Note that the nonmagnetic energy can be divided into a term
that gives the energy from electrically charged currents and
a set of terms that give the energy from electrically neutral
currents consisting of counterflows of charged condensates.
Hence the model has one charged mode and N − 1 neutral
modes [or, more properly, an (N − 1)-dimensional space of
neutral modes]. Importantly, the original fields φi are 2π

periodic.
Because of the coupling to vector potential, vortices that

have winding in the phase of each component (composite
vortices) will have finite energy per unit length [36], as do
vortices in ordinary single-component superconductors. On
the other hand, vortices that do not have phase winding in
each component, e.g., those that have winding in only one
component (fractional vortices), will have an energy per unit
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length that diverges logarithmically with system size, as in
ordinary single-component superfluids. Composite vortices
carry magnetic flux equal to the ordinary superconducting flux
quantum, whereas fractional vortices carry only a fraction of a
flux quantum. This fraction is equal to the ratio of the density
|ψ j |2 of the component j in question to the total density∑

i |ψi|2. See detailed discussion of the vortex solutions in
Ref. [36] and Chap. 6 of Ref. [1].

We denote a type of vortex in an N-component supercon-
ductor by a tuple of N integers, where the ith integer gives the
winding of the phase of the ith component. For example, in
the four-component case, a fractional vortex with phase wind-
ing in only the first component is denoted (1,0,0,0), while a
composite vortex with winding in each component is denoted
(1,1,1,1).

III. MONTE CARLO SIMULATION
METHODS AND OBSERVABLES

We discretize the model (1) on a three-dimensional simple
cubic lattice with L3 sites and lattice constant a = 1. The
discretized model is given by the Hamiltonian density

h = 1

2

∑
k<l

F 2
kl −

∑
i,k

|ψi|2 cos χi,k (r), (4)

where

Fkl = Ak (r) + Al (r + k) − Ak (r + l) − Al (r) (5)

is a lattice curl,

χi,k (r) = φi(r + k) − φi(r) + qAk (r) (6)

is a gauge-invariant phase difference, k and l signify coordi-
nate directions, and k is a vector pointing from a lattice site
to the next site in the k direction. We use periodic boundary
conditions in all three spatial directions. The thermal proba-
bility distribution for configurations of the system at inverse
temperature β is given by the Boltzmann weight

e−βH , H =
∑

r

h(r), (7)

and we generate representative samples from these thermal
distributions using Monte Carlo simulation.

The simulations are performed using the Metropolis-
Hastings algorithm with local updates of each of the degrees
of freedom. At each point in the lattice the three components
of the vector potential are updated either together or one at a
time and the phases are updated one at a time. We also use
parallel-tempering swaps between systems with neighboring
temperatures. We typically use 32 or 64 parallel temperatures.
The temperatures are adjusted within a fixed interval during
the equilibration in order to make the acceptance ratios for
parallel-tempering swaps equal for all neighboring pairs of
temperatures. Equilibration is checked by comparing results
obtained using the first and second halves of the data gath-
ered after equilibration, by comparing inverse-temperature
derivatives obtained using finite differences and statistical
estimators, and by inspecting obtained time series of Monte
Carlo data.

We use Ferrenberg-Swendsen reweighting [37] in order to
precisely determine peak values of heat capacity. We do this

by reweighting from the simulated temperature that gives the
largest value of the heat capacity.

Errors are estimated by bootstrapping and stated errors
correspond to one standard error. The bootstrapping procedure
we use is as follows. First, note that when a parallel-tempering
swap occurs, the state corresponding to either one of the
involved temperatures is immediately changed to a completely
new state that is uncorrelated with the previous state. Nonethe-
less, the state for a given temperature immediately prior to
the swap may, due to further swaps, be correlated with a
subsequent state for the same temperature. The sequence of
states for a given temperature will therefore be such that there
is correlation between states at different times that is not
mediated by the states at intermediate times. Consequently,
prior to blocking the data series should be reordered so that
values from correlated states are grouped together (with the
order within such a group being preserved). Having performed
this reordering, we divide the data into at least 20 blocks,
each of which is at least 20 times as long as the longest
of the autocorrelation times (estimated using the reordered
series) for the energy and the quantities we measure in order
to locate phase transitions. From these blocks we generate at
least 100 resampled data sets, each of which gives a value for
the observable in question. Finally, we estimate the standard
error σx in the observable x as

σx =
√√√√ 1

n − 1

n∑
i=1

(xi − x̄)2, x̄ = 1

n

n∑
i=1

xi, (8)

where n is the number of resamplings and xi is the value of x
obtained from resampling number i.

We now describe quantities that are measured during the
simulations and the methods we use to locate and characterize
phase transitions.

A. Locating superconducting transitions

For the purpose of locating superconducting transitions we
consider the dual stiffness [21,24,38]

ρμ(q) =
〈∣∣∑

r,ν,λ εμνλ�νAλ(r)eiq·r∣∣2

(2π )2L3

〉
, (9)

where εμνλ is the Levi-Civita symbol, �ν is a difference op-
erator, and 〈·〉 is a thermal expectation value. More precisely,
we consider the dual stiffness in the z direction evaluated at
the smallest relevant wave vector in the x direction qx

min =
(2π/L, 0, 0), i.e., ρz(qx

min). This quantity, which we denote
simply as ρ, will in the thermodynamic limit approach zero
in the superconducting phase in which the Meissner effect
suppresses fluctuations of the magnetic field. In nonsupercon-
ducting phases ρ will have a finite value. Consequently, it is a
dual order parameter in the sense that it is zero in the ordered
phase and nonzero in the disordered phase.

Generally, our estimates of superconducting critical tem-
peratures are given by finite-size crossings of the quantity Lρ

(dual stiffness scaled by system size), extrapolated to the ther-
modynamic limit [21,24]. (Although the transitions we study
are not necessarily continuous, we expect that such crossings
will converge to the critical temperature.) We estimate the
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locations of the crossings by simple linear interpolation
between simulated inverse temperatures. For some of the
transitions we study, the crossings are not sufficiently well
behaved for extrapolation to the thermodynamic limit to be
possible. Therefore, we also consider the inflection points
of ρ(β ), again extrapolated to the thermodynamic limit. We
estimate the location of such an inflection point by reweight-
ing from the simulated inverse temperature with the largest
absolute value of the inverse-temperature derivative. In some
cases, this second method does not work, either because the
quality of the data is insufficient or because extrapolation to
the thermodynamic limit is not possible. In those cases in
which both methods appear to work, the results are consistent.

B. Locating superfluid transitions

In order to locate superfluid transitions we use the helicity
modulus, which measures the global phase coherence of a
superfluid. More precisely, it measures the cost in free energy
of imposing an infinitesimal phase twist. Imposing a twist in
a certain linear combination

∑
i aiφi of the phases amounts to

replacing the phase φi by

φ′
i (r) = φi(r) − ai δ · r. (10)

For a given linear combination of phases, the helicity modulus
is by definition the second derivative

ϒμ,{ai} = 1

L3

∂2F [φ′
i]

∂δ2
μ

, (11)

where F is the free energy. By considering the fundamental
relations

F = −T ln Z, Z = Tr e−βH , (12)

one can derive an expression for the helicity modulus ϒμ,{ai}
in terms of the first and second derivatives of the Hamiltonian
H with respect to the phase-twist parameter δμ. We use this
expression to evaluate helicity moduli from our numerical
simulations. How this is done is described in more detail in
Ref. [39]. (However, here we do not always use reweighting
to improve our helicity-modulus data.)

Our estimates of superfluid critical temperatures are given
by finite-size crossings of the quantity Lϒ (helicity modulus
scaled by system size), extrapolated to the thermodynamic
limit. This is similar to how we use finite-size crossings of
Lρ in the superconducting case. Again, we use linear interpo-
lation between simulated inverse temperatures to estimate the
locations of the crossings.

C. Characterizing discontinuous transitions

For a system that has a temperature-driven discontinuous
phase transition, the distribution of internal energies will be
bimodal for large enough system sizes. This is a consequence
of phase coexistence, which is characteristic of discontinu-
ous transitions. The occurrence of energy distributions with
bimodality that becomes increasingly pronounced with in-
creasing system size is strong evidence that a transition is
discontinuous.

Apart from assessing whether a transition is discontinuous,
we estimate the degree of discontinuity by considering the

FIG. 1. Phase diagrams for N = 2 (blue, lower diagram), N = 3
(red, middle diagram), and N = 4 (green, upper diagram). In each
case there is a direct transition from a fully ordered to a fully disor-
dered state for small enough electric charge q, whereas there are two
separate transitions for large enough q. The phase between the two
separate transitions is a state with composite order, in which there is
order only in phase differences. This is a superfluid state where only
counterflow of components is dissipationless. With increased N the
area of the composite-order phase shrinks, since the bicritical point
that separates these two regimes moves to higher electric charge.
Errors are estimated to be smaller than symbol sizes and lines are
a guide to the eye.

finite-size scaling of the heat capacity. For a discontinuous
transition in a d-dimensional system of linear size L the heat-
capacity maximum is expected to scale as cmax ∼ Ld in the
thermodynamic limit [40]. Measuring the heat-capacity maxi-
mum for large L and fitting the curve cmax = kLd + m gives a
measure k of the strength of the discontinuous transition. The
quantity k is a measure of the (square of the) latent heat that
is normalized by the transition temperature.

IV. RESULTS AND DISCUSSION

A. Phase diagrams

We begin by calculating the phase diagrams for N = 2,
N = 3, and N = 4, which are shown in Fig. 1. Consider, as an
example, the case N = 4. As the coupling constant increases,
the energy of a composite vortex (1,1,1,1) decreases relative
to the energy of fractional vortices such as (1,0,0,0). At a
certain coupling strength, proliferation of composite vortices
takes place at a significantly lower temperature than the one
required to proliferate fractional vortices. In this case, the
system enters a composite-order phase characterized by order
only in phase differences between components. This phase is
described by the effective Hamiltonian

h = 1

2

∑
i< j

�(∇φi j )
2. (13)

While for N = 2 this state has the physical interpretation that
only counterflow is dissipationless, in general it describes
N − 1 neutral modes involving N phases. The N > 2 case
represents a new kind of superfluid state in which the dissi-
pationless counterflow allows exchange of particles between
the counterflowing components. This illustrates that while the
order parameter characterizing this phase is a product of the
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FIG. 2. The strength of a discontinuous transition is quantified here by the asymptotic slope k of the peak value cmax of the heat capacity
c = L−3 d〈E〉/dT versus the system volume L3. Finite-size scaling analyses for the cases N = 2–7 with q = 2 are shown. We estimate the
slope k by fitting a line cmax = kL3 + m for the larger systems. The system sizes are L = 8, 10, 12, 16, 20, 24, 32, 40, 48, 64 for N = 2 and the
same sizes in the range L = 8–32 for larger N . In each case we estimate k using the four largest system sizes. For each fitted line, the relative
deviation of the corresponding data points from the line is shown, together with the estimated relative errors in these peak heat-capacity
values.

original fields ψi, this state cannot be interpreted as a real-
space pairing. Such states are currently of significant interest
following the experimental report of a discrete-symmetry ex-
ample of such composite order [2].

Note that with increased N the relative volume of the
composite-order phase on the phase diagram decreases.
This is because with increased N at fixed total density∑

i |ψi|2 = 1, the energy of fractional vortices such as

(1,0,0,0) becomes smaller due to the diminishing fraction
of the flux quantum carried by an elementary vortex and
the diminishing prefactor for the logarithmically divergent
part of the energy, while the energy of a composite vortex
(1,1,1,1) does not change. (Note that the temperature of the
superconducting transition saturates in the limit of increased
charge to a value that only weakly depends on N .) Therefore,
with increased N a higher coupling constant is required to
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FIG. 3. Estimates of the strength k of the discontinuous phase
transitions at fixed coupling constant q = 2 as a function of the
number N of components. There is an increase of k up to N = 4 and
then a decrease with N . The error estimates (which are asymmetric)
take into account both the statistical uncertainty and the difference in
results when using only the two or three largest system sizes instead
of the four largest.

substantially split the temperatures of the superfluid and su-
perconducting transitions.

Finally, note that at charge q = 0 the model consists of N
uncoupled XY models. Thus the critical inverse temperature
at q = 0 is trivially proportional to N as a consequence of
the total superconducting density being held fixed, as this
implies that the prefactors of individual cosine terms scale
as 1/N .

B. Degree of discontinuity

Having established the phase diagram, we move to examin-
ing the nature of the phase transitions. We focus first on direct
transitions from the fully ordered phase to the fully disordered
phase and choose to consider the fixed coupling constant q =
2. For each N in the range from 2 to 7, these transitions show
signs of being discontinuous. For N = 2, 3, 4 we observe
clear evidence of discontinuity in the form of bimodality in the
energy distributions that becomes more pronounced with in-
creasing system size. For N = 5, 6 we observe bimodality for
the largest systems we simulate. For N = 7 we observe appar-
ent precursors of bimodality: anomalously flat-peaked energy
distributions in the vicinity of the transition temperature, with
distributions skewed toward higher and lower energies for
lower and higher temperatures, respectively.

Assuming that the transitions in question are discontinu-
ous, we consider their degree of discontinuity as measured by
the quantity k. Note that considering a fixed coupling constant
will tend to lead to underestimation of how pronounced the
discontinuous phase transitions are for larger values of N . This
is because the transitions are typically most discontinuous
close to the bicritical point. With increased N the composite-
order phase shrinks and thus one effectively moves away from
the bicritical point.

The process of estimating k is illustrated in Fig. 2 and the
resulting values are shown in Fig. 3. Note that the data points
that the lines are fitted to do not all fit the lines within the
statistical uncertainty. Therefore, in Fig. 3, we have chosen

to display error bars that not only reflect the statistical uncer-
tainty, but also the difference in results obtained when using
only the two or three largest system sizes instead of the four
largest.

Before we discuss these results, the following additional
caveat should be made. Whether system sizes used in a
simulation of a discontinuous transition are in the finite-size-
scaling regime can be assessed by the criterion [41] that the
free-energy barrier both (1) be much larger than unity and
(2) scale as Ld−1. The system sizes we use do not fulfill this
criterion; in fact, they do not even fulfill the first part of the
criterion. Nevertheless, we believe that the data presented here
may give a meaningful indication of the degrees of disconti-
nuity.

Since the transition in question is argued to be continuous
for large enough N , it was widely expected that there would
be a monotonic decrease of the degree of discontinuity with
N . However, the results in Fig. 3 suggest that this is not the
case. Instead, at least for small N the degree of discontinuity
k appears to increase with N , despite the fact that at fixed
q we are getting further away from the bicritical point with
increased N .

Since for the case of uncoupled components (q = 0) the
heat capacity is trivially proportional to N (regardless of the
total density), one may reasonably ask whether k/N is a more
appropriate measure of the degree of discontinuity than k
itself. However, note that even if one considers k/N the tran-
sition for N = 3 is more discontinuous than that for N = 2.
As mentioned, this is true despite the fact that we effectively
move away from the bicritical point. This strengthens the
conclusion that the transitions become more discontinuous
with increasing N , at least for small values of N .

As the quantity k is proportional to the square of the latent
heat, one may also reasonably ask whether

√
k is a more ap-

propriate measure of the degree of discontinuity than k itself.
In total, we thus have four proposed measures of the degree
of discontinuity: k, k/N ,

√
k, and

√
k/N . For each of these

measures, our results suggest that the transition is significantly
more discontinuous for N = 3 than for N = 2.

C. Discontinuous superfluid transitions

Finally, we test another aspect of the hypothesis that van
der Waals–type forces between directed loops are a “mi-
croscopic” reason why phase transitions in multicomponent
gauge theories are discontinuous. In terms of vortex prolif-
eration, both the direct transition and the superconducting
transition from the fully ordered to the composite-order phase
involve proliferation of composite integer-flux vortex loops.
Because composite vortices can be viewed as bound states of
electrically charged strings, they have van der Waals attrac-
tive forces, potentially leading to phase separation of vortex
tangles. The superfluid transition from the composite-order
to the disordered phase is driven by noncomposite fractional
vortex loops such as (1,0,0, . . .) in a background of prolif-
erated composite vortices (1,1,1, . . .). However, in the dual
picture the same transition can be mapped to proliferation of
directed composite loops if one approaches the transition from
the disordered phase [1]. The hypothesis thus also leads to the
expectation that the superfluid transition is discontinuous.
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FIG. 4. Distributions of action density βH/L3 for temperatures
in the vicinity of the superfluid transition for N = 3 and q = 6;
the temperatures are chosen so that the peaks are as near as pos-
sible equal in height. The bimodality becomes more pronounced
with increasing system size, which shows that the transition is
discontinuous.

We demonstrate that the superfluid transition is dis-
continuous, at least for N = 3 and N = 4, and at least
close to the bicritical point. Our evidence for this is the
bimodality of energy distributions, which becomes more pro-
nounced with increasing system size. As an example we show
distributions of action density βH/L3 for the superfluid transi-
tion for N = 3 and q = 6 for the system sizes L = 20, 24, 32
(Fig. 4). All the superfluid transitions in the phase diagrams
for N = 3 and N = 4 in Fig. 1 show such bimodality of energy
distributions.

V. CONCLUSION

The nature of the phase transitions in multicomponent
theories coupled to a noncompact Abelian gauge field is an
outstanding question. While the U (1) × U (1) case is well

investigated numerically, in this paper we have addressed the
question of how the phase diagrams and nature of the phase
transitions evolve with increasing number of components in
U (1)N -symmetric London models.

For all numbers of components for which we have de-
termined phase diagrams (N = 2, 3, 4), we have established
the presence of a phase with composite order, in which order
exists only in phase differences. At the same time, the size of
the composite-order phase shrinks with increasing N .

Based on renormalization group calculations it has been
claimed that for sufficiently large N the direct transition may
become continuous [6,30]. Nonetheless, we have found indi-
cations that the transition may become more discontinuous
with increasing N , at least for small N . We have also seen
indications that the transition is discontinuous at least up to
N = 7.

Finally, we have demonstrated that, in contrast to previ-
ous expectations, the superfluid transition (i.e., the transition
from the composite-order to the fully disordered phase) is
also discontinuous, at least for certain values of the coupling
constant for N = 3 and N = 4. This suggests that van der
Waals–like interaction between directed composite loops may
be an important factor for the discontinuous character of phase
transitions in this kind of multicomponent gauge theory.
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